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Abstract

Recent advances in large language models have demonstrated the promise of unsu-
pervised reinforcement learning (RL) methods for enhancing reasoning capabilities
without external supervision. However, the generalizability of these label-free RL
approaches to smaller base models with limited reasoning capabilities remains un-
explored. In this work, we systematically investigate the performance of label-free
RL methods across different model sizes and reasoning strengths, from 0.5B to
7B parameters. Our empirical analysis reveals critical limitations: label-free RL
is highly dependent on the base model’s pre-existing reasoning capability, with
performance often degrading below baseline levels for weaker models. We find
that smaller models fail to generate sufficiently long or diverse chain-of-thought
reasoning to enable effective self-reflection, and that training data difficulty plays
a crucial role in determining success. To address these challenges, we propose
a simple yet effective method for label-free RL that utilizes curriculum learning
to progressively introduce harder problems during training and mask no-majority
rollouts during training. Additionally, we introduce a data curation pipeline to
generate samples with predefined difficulty. Our approach demonstrates consis-
tent improvements across all model sizes and reasoning capabilities, providing a
path toward more robust unsupervised RL that can bootstrap reasoning abilities in
resource-constrained models.

1 Introduction

Recent advances in large language models (LLMs) have highlighted the effectiveness of reinforce-
ment learning (RL) techniques for enhancing reasoning capabilities, particularly in domains like
mathematics and code generation. However, traditional approaches such as Reinforcement Learning
from Human Feedback (RLHF) and Reinforcement Learning with Verifiable Rewards (RLVR) rely
heavily on external supervision, including human annotations or domain-specific ground-truth labels
[1, 2]. This dependency poses significant scalability challenges, as acquiring such supervision be-
comes increasingly costly and impractical for emerging, complex tasks. To address this, recent works
have proposed unsupervised paradigms that enable models to self-improve without labelled data.
For instance, Test-Time Reinforcement Learning (TTRL) [3] leverages majority voting on unlabeled
test data to estimate rewards, allowing models to adapt and evolve during inference. Similarly,
Reinforcement Learning from Internal Feedback (RLIF), as exemplified by Intuitor [4], uses intrinsic
signals like the model’s own confidence (self-certainty) to drive optimization, eliminating the need
for external verifiers.

Despite these promising developments, existing unsupervised RL approaches have primarily been
evaluated on relatively large encoder-only models that already possess decent reasoning capabilities.
For example, both TTRL and Intuitor focus on backbones from the Qwen series, such as Qwen2.5-
Math-7B and Qwen2.5-7B, which are known for their strong baseline performance in reasoning tasks
due to extensive pre-training. However, it remains unclear how these methods perform on models
lacking such inherent capabilities, such as smaller LLMs or tasks where the pre-trained LLM does
not have pre-existing knowledge for complex reasoning.
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In this paper, we investigate how unsupervised

reinforcement learning methods adapt to smaller,
pure base models in a label-free environment.
Our findings reveal that these smaller models, %"
which have weaker reasoning capabilities, strug- <.
gle to learn in unlabeled settings, including both
pseudo-labelling and self-consistency setups.
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We identify several key factors contributing to
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the failure of existing methods and propose a Figure 1: The performance of the Qwen2.5-0.5B
curriculum-based unsupervised RL approach. base model, compared to the Qwen2.5-7B, shows
Our method demonstrates stronger generaliza- that smaller models with weaker reasoning capa-
tion across different model types and sizes. Be- bilities do not improve with label-free RL training.

low is a summary of our main takeaways.

Overview of takeaways

reasoning ability is insufficient.

to elicit self-reflection (Aha moment).

ever, generate the correct solution.

» Label-free RL is highly dependent on the reasoning capability of the base model. Per-
formance drops significantly, sometimes worse than the base model, if the base model’s

* Smaller base model (with limited reasoning) does not generate a longer chain-of-thought

* Length of chain-of-thought is not a direct reflection of strong reasoning for label-free RL.

The difficulty of the training data plays an important role. A base model with limited
reasoning ability cannot effectively learn from very hard problems, where it can rarely, if

* Our simple training modification, which employs a curriculum learning approach that
begins with easier problems and gradually introduces more challenging ones, enhances the
performance of label-free RL across all model sizes and reasoning capabilities. Performance
can be further enhanced by curating supplementary training datasets of predefined difficulty
levels and employing a masked reward strategy for non-majority samples.

2 Analysis on Label-free RL

2.1 Preliminary

To establish a foundation for our analysis, we first provide an
overview of the two key unsupervised RL methods: Test-Time Re-
inforcement Learning (TTRL) and Intuitor. TTRL [3] introduces a
framework for performing RL directly on unlabeled test data during
inference. Given a prompt x, the method samples multiple outputs
{y1,...,yn} from the policy 7y. A label y* is estimated via major-
ity voting on the extracted answers, and binary rewards are assigned:
r(9;,y*) = 1if §; = y*, else 0. The policy is then optimized to
maximize the expected reward using algorithms like Group Relative
Policy Optimization (GRPO). Intuitor [4] replaces external rewards
with the model’s intrinsic self-certainty—a measure of confidence
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Figure 2: Correct answers gen-
erated in early stages of train-
ing by Qwen2.5-0.5B.

defined as the average KL divergence from a uniform distribution over the vocabulary. Using
GRPO, advantages are computed from normalized self-certainty scores, guiding the policy toward

higher-confidence outputs.

2.2 Label-free RL struggles with smaller models

To investigate the effectiveness of verifier-free reinforcement learning methods on models with
varying baseline capabilities, we conduct extensive experiments comparing the performance of
Qwen2.5-0.5B and Qwen2.5-7B across multiple reasoning benchmarks. Our results, presented
in Figure 1, reveal a striking disparity between the smaller and larger models. For the Qwen2.5-
7B model, we observe consistent improvements across all evaluated benchmarks when applying
verifier-free RL methods. On Math 500, the base model achieves a score of 58.2 points, which



increases to 74.6 with TTRL and 72.2 with Intuitor, comparable Quen2.5-0.55

to the 73.8 achieved by verifier-based (using label) GRPO. Similar ol — gﬁ:iﬁ?ﬁiiB/\
positive trends are evident on GPQA, AIME24, GSMSK, and LCB,  w|— ™"

with improvements ranging from modest to substantial. In stark 5=

contrast, the Qwen2.5-0.5B model exhibits fundamentally different =

behaviour under the same training regimes. Across all benchmarks

and methods, we observe either only marginal gains or, more con- | e
cerningly, performance degradation. On Math 500, the 0.5B base —
model achieves 23.4, but its performance declines when trained Step

with Intuitor, and the model completely collapses when trained with
TTRL. Similar patterns are observed across the other benchmarks.
To further investigate the cause of model collapse, in Figure 2 we
plot the number of correct rollouts at the early stages of training for
the base Qwen2.5-0.5B model. As shown, the rollouts generated by the base model often contain no
correct outputs. Consequently, majority voting in TTRL produces incorrect pseudo-labels. Training
on these erroneous pseudo-labels ultimately leads to model collapse.

Figure 3: Comparison of av-
erage response length over the
training steps.

2.3 Weaker models do not generate long chain-of-thought (CoT)

One interesting trend we observe is that the reasoning COT length for the stronger model (Qwen2.5-
7B) increases as training progresses. As noted in prior work [2], longer reasoning chains often include
self-reflection (the so-called “Aha moment”). In contrast, the weaker model does not exhibit such
long chains. However, generation length alone is not a definitive indicator of improved reasoning.
For example, Qwen 0.5B and 1.5B show similar reasoning length, even though the performance is
much better for the 1.5B variant.

2.4 Difficulty of training data plays a critical role in label-free RL

To better understand the role of training data distribution, we 0.40 —
study the effect of increasing task difficulty on the Qwen2.5- 0351 = GPoA

0.5B model. Figure 4 shows performance trends across Math- 0.30 ‘\\‘ﬂ‘
500, GPQA, and GSMSK as the training data shifts from rela- 0.251
tively easier subsets (Level 1-2) to harder or less aligned subsets 0.201
(Level 1-5). A clear degradation emerges as the data difficulty 0151

Score

increases. For Math-500, the performance drops sharply, with 0101
the model nearly collapsing by Level 1-4. GPQA and GSM8K 0059
show a similar downward trend, though less steep. This sug- T s s s

gests that weak base models are particularly sensitive to data tevel

complexity and distributional mismatch. These results high-
light an important principle: choosing the right difficulty of
training data is critical for effective learning. If the data is too
challenging or comes from an unfamiliar distribution, weaker
models may fail to generalize and instead suffer from perfor-
mance degradation. Conversely, aligning training data difficulty with the model’s baseline capacity
appears essential for stable improvement

Figure 4: Correct answers gener-
ated in early stages of training by
Qwen2.5-0.5B.

3 Method

To enhance the reasoning capabilities of language models while learning in a label-free setting, we
propose Curriculum-guided Masked Majority Voting Reinforcement Learning (CuMa). This method
utilizes a curriculum learning approach to guide a reinforcement learning process with a majority
voting reward signal. By starting with easy samples and gradually increasing the difficulty, the
model can learn the reasoning process effectively. Additionally, we introduce a data curation pipeline
for generating synthetic data of predefined difficulty levels to stabilize model training and improve
reasoning performance. Finally, we employ a reward-masking approach for training in the GRPO
setup, where we mask the rewards for samples with no majority prediction. As motivated in Figure
2, many rollouts, especially at the start of training, generate no majority prediction. Masking the
learning signal on such samples ensures that the model does not receive negative feedback from
inconclusive examples.

Specifically, we partition an unlabeled dataset D = {z1,..., 2z} (e.g., math problems) into K = 5
difficulty bins, Dy, ..., Dk, where D; contains the easiest prompts and D the most challenging.



Training proceeds sequentially from D; to Dk . For each bin Dy, we sample a batch of prompts

{x;}2.| where B is the batch size. The model generates multiple candidate solutions {.%(] ) §-V:1

for each prompt z;, where N is the number of candidate solutions per prompt. We then apply
reinforcement learning using a reward signal derived from majority voting on these solutions:

Gy — 11y o (1) % Method Math 500 GPQA AIME24 GSMSK LCB
T(mi7 yz ) - [y’L - majorltY—VOte({yi yrt yz })] 0.5B Models
. L. . . )] Base Model 234 28.78 036 2638 0.0
where I[-] is the indicator function that returns 1 if the GRPO 33.8 2424 0.6 2509 0.6
e : : Intuitor 208 26.26 02 068 08
condition is true apd 0 otherwise. Smce; small.models TTRL 00 157 00 2638 00
often struggle with hard samples, this curriculum- Ours 328 2272 052 329 02
based approach allows them to build foundational  1.5B Models

reasoning skills on easy problems first, which in turn e todel o8 LY S vl
. S/ 23.25 3.35 Js. 2.42
helps them gradually learn to solve more difficult Intuitor 470 2222 14 4457 485
samples. TTRL 53.6 2525 3.85 5845 245
Ours 542 2575 249 59.96 3.66

Another key component of our proposed solution iS 35 mModels
the reward masking mechanism for samples where Base Model 542 3080 333 7331 520
(k) ) . .. GRPO 64.4 3232 546 6648 7.65
max; [{k:y," =y;”’} <2,1ie., nomajority con- Intuitor 506 3030 401 2656 7.83
sensus exists among the NV candidates. During early TTRL 638 2727 333 74.60 799
L . - Ours 644 2727 531 7285 8.04

training, small models generate diverse incorrect so- -5 Model

. . . . . odaels
lutions, creating sc§nar10s~w1th no dominant answer. Base Model 582 2777 667 8150 4.06
Rather than assigning arbitrary rewards to these in- GRPO 738 3787 1208 8567 9.91
: : : : Intuitor 722 2727 1234 7819 125
coqcluswe samples, we mask their learning signal TTRL 56 3131 1114 8439 ses
entirely: Ours 740 3232 1333 84.49 1031

Table 1: Performance comparison across dif-
ferent model sizes and methods. Results of

) ) . existing methods are reproduced in an identi-
This prevents learning from noisy feedback when ¢, training setup for fair comparison.

predictions are uncertain, focusing the RL process

on high-confidence samples while avoiding interference from ambiguous cases. The approach is
particularly beneficial during initial curriculum phases when the majority consensus reliably indicates
solution quality.

mask(z;) =1 |max |{k : ygk) = ygj)}\ >20 (2
J

To facilitate further learning from easier samples before being exposed to hard samples, we have
curated additional unlabelled samples by using LLM as the data generator, creating synthetic problems
at varying difficulty levels to augment the training curriculum. Details on the data curation pipeline
are presented in the Appendix.

4 Results

Table 2 reports the performance of our CuMa method compared to baselines and state-of-the-art
approaches across multiple reasoning benchmarks. Overall, CuMa consistently improves reasoning
performance, particularly on challenging tasks such as Math 500 and GSMS8K, achieving substantial
gains over GRPO, Intuitor, and TTRL. Our approach is effective across model scales, from 0.5B to
7B parameters, and demonstrates strong generalization across datasets. While performance gains
are observed at all model sizes, improvements are more pronounced for smaller models with weaker
prior reasoning capabilities. Importantly, we do not observe model collapse on any dataset or scale.
We provide additional experiments and implementation details in the Appendix.

5 Conclusion

This work systematically explores the limitations of label-free reinforcement learning for enhancing
reasoning in large language models, particularly smaller models with limited baseline capabilities.
Our analysis reveals that existing methods struggle with smaller models due to insufficient chain-of-
thought diversity and sensitivity to training data difficulty, often leading to performance degradation.
To address this, we propose CuMa, a curriculum-guided masked majority voting RL approach that
leverages progressive difficulty, curated synthetic data, and reward masking to achieve consistent
improvements across model sizes (0.5B to 7B) on reasoning benchmarks.
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A Related Work

Reinforcement Learning [5] has become central to improving the reasoning and instruction-following
abilities of large language models. The most prominent example, Reinforcement Learning from
Human Feedback (RLHF) [6], aligns models with human preferences through reward modeling
and optimization methods such as Proximal Policy Optimization (PPO) [7]. More recently, Large
Reasoning Models (LRMs) like DeepSeek-R1 [2] have highlighted the role of RL in strengthening
multi-step reasoning, often by leveraging rule-based rewards. A notable case is GRPO [1], which,
unlike RLHF’s broad focus on open-domain alignment, explicitly targets mathematical problem
solving by encouraging long chain-of-thought (CoT) [8] generation. Considerable attention has since
been devoted to improving the robustness and stability of such rule-based RL methods, including
GRPO and PPO [9, 10, 11]. Despite these advances, training still relies on supervised data, while
inference requires models to extrapolate extended reasoning on unseen tasks. Moreover, effective
reward design remains limited to domains with verifiable outcomes—such as math or code—where
correctness can be automatically checked [12, 13].

Beyond verifiable tasks, researchers have investigated self-rewarding [14, 15] and self-play [16]
approaches for unlabeled data. However, most of these efforts either emphasize general instruction
following [14, 16] or employ preference-based optimization strategies like DPO [17] instead of online
RL. In parallel, several concurrent directions [18, 19, 20] explore semi-supervised or reinforcement-
inspired reasoning. TTRL [3] is one of the latest work in this direction, which use majority voting as a
self-derived reward signal, which reduces susceptibility to reward hacking. Complementary findings
by [21] show that even a single reward-providing example can substantially improve mathematical
reasoning, underscoring the potential of lightweight supervision. Intuitor [4] replaces external
rewards with the model’s intrinsic self-certainty—a measure of confidence defined as the average KL
divergence from a uniform distribution over the vocabulary. In this work, we build upon the concept
of majority voting to generate pseudo-labels, similar to TTRL [3], and propose a new framework to
address the limitations arising from noisy pseudo-labels.

B Data Generation Pipeline

To support our curriculum-guided reinforcement learning approach, we developed a data curation
pipeline to generate synthetic unlabeled datasets with predefined difficulty levels. We leverage an
LLM to create diverse prompts, using a structured prompting strategy that emphasizes generating
high-quality, varied samples. The prompt explicitly instructs the LLM to produce prompts aligned
with a specified difficulty scale (Levels 1 to 5), where each level is defined by example problems
provided in the prompt. These examples are carefully selected to represent the reasoning complexity
and problem structure characteristic of each difficulty level, ranging from simple arithmetic for
Level 1 to advanced multi-step reasoning for Level 5. To ensure robust dataset creation, we generate
batches of 25 samples per iteration, allowing for sufficient volume while maintaining computational
efficiency.

To mitigate bias toward the provided example prompts and

promote diversity in the generated dataset, we dynamically ~ Setting Performance
refresh the example problems included in each prompt- Ours 32.8

ing iteration. This dynamic sampling approach ensures w/o reward masking 30.7
that the LLM does not overfit to specific patterns in the /5 curated data 245
provided examples, resulting in a broader range of prob- /0 < riculum 20.1
lem types and structures within each difficulty bin. The

generated prompts are then partitioned into K = 5 diffi- Table 2: Ablation study

culty bins, D1, ..., Dk, based on their alignment with the

defined difficulty criteria. This curated dataset is used to

train models in our CuMa framework, enabling a progressive learning curriculum that aligns with
the model’s reasoning capacity and enhances generalization across tasks.

The prompt used for curating our dataset is provided below:



Data curation prompt:

You are a math reasoning question generator for LLM training. Generate few
high-quality reasoning questions that should be self-contained, promote
step-by-step thinking, and not require external knowledge beyond basic facts.
Here are the texts:

Key requirements:

- Do not provide answers, solutions, or reasoning chains. Output only the
questions with their difficulty labels.

- Vary the questions to cover different sub-topics, including but not limited to
(’Algebra’, ’Counting Probability’, ’Geometry’, ’Intermediate Algebra’, ’Number
Theory’, ’Prealgebra’, ’Precalculus’)

- Ensure questions are original and engaging.

- Include a difficulty level for each question on a scale of 1-5 (1: very easy,
basic logic; 5: very hard, multi-step or abstract reasoning).

- Target difficulty level: {target_levell}.

- Examples of level 1 questions:

{level_1_examples}

- Examples of level 2 questions:

{level_2_examples}

- Examples of level 3 questions:

{level_3_examples}

- Examples of level 4 questions:

{level_4_examples}

- Examples of level 5 questions:

{level_5_examples}

The examples above are for illustration only, and to distinguish between
different difficulty levels. Your generated questions must be different from
these examples.

Output format:

- Level {target_levell}; Type: [Sub-topic]l; [Question text]

- Level {target_level}; Type: [Sub-topic]; [Question text]
(repeat for N questions)

Generate exactly N questions of Level {target_level}. """

C Experiments

C.1 Implementation details

To implement our CuMa method, we apply Group Relative Policy Optimization independently across
each benchmark, adapting the approach outlined in [2]. We utilize a cosine learning rate schedule
with a peak learning rate of 3 x 10~¢ and employ the AdamW optimizer for policy optimization.
For each training prompt, we generate 8 candidate responses using a temperature of 0.6 for majority
voting to estimate pseudo-labels. The maximum generation length is capped at 3,072 tokens for all
models. The number of training episodes is set to 1. All experiments were conducted on a cluster of
4 NVIDIA H100 80GB GPUs.

C.2 Ablation study

To evaluate the contributions of each component in our CuMa framework, we conducted an ablation
study on the Math 500 benchmark using the Qwen2.5-0.5B model, with results summarized in Table 2.
Our full method achieves a performance score of 32.8. Removing the reward-masking mechanism,
which excludes samples without a majority consensus, reduces the score to 30.7, indicating that



masking inconclusive rollouts is crucial for stabilizing training and preventing learning from noisy
feedback. Omitting the curated synthetic data generated by our data curation pipeline further degrades
performance to 24.5, highlighting the importance of diverse, difficulty-controlled samples in enhanc-
ing reasoning capabilities. Finally, excluding the curriculum learning strategy, which progressively
introduces harder problems, results in a significant drop to 20.1, underscoring the necessity of aligning
training data difficulty with the model’s capacity to avoid performance degradation. These results
confirm that each component—reward masking, curated data, and curriculum learning—plays a
critical role in the effectiveness of CuMa for label-free reinforcement learning across varying model
sizes.



	Introduction
	Analysis on Label-free RL
	Preliminary
	Label-free RL struggles with smaller models
	Weaker models do not generate long chain-of-thought (CoT)
	Difficulty of training data plays a critical role in label-free RL

	Method
	Results
	Conclusion
	Related Work
	Data Generation Pipeline
	Experiments
	Implementation details
	Ablation study


