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Abstract

In many social, behavioral, and biomedical sciences, treatment effect estimation
is a crucial step in understanding the impact of an intervention, policy, or treat-
ment. In recent years, an increasing emphasis has been placed on heterogeneity in
treatment effects, leading to the development of various methods for estimating
Conditional Average Treatment Effects (CATE). These approaches hinge on a
crucial identifying condition of no unmeasured confounding, an assumption that is
not always guaranteed in observational studies or randomized control trials with
non-compliance. In this paper, we proposed a general framework for estimating
CATE with a possible unmeasured confounder using Instrumental Variables. We
also construct estimators that exhibit greater efficiency and robustness against vari-
ous scenarios of model misspecification. The efficacy of the proposed framework
is demonstrated through simulation studies and a real data example.

1 Introduction

In various domains, different subjects may exhibit different responses to the same set of treatments.
The exploration of this heterogeneity in the effects resulting from exposure has gained substantial
interest in recent years. For instance, inferring the heterogeneous effect of a medical treatment on
clinical outcome can contribute to the development of personalized treatment (Cai et al., 2011).
A similar concept has found application in personalized marketing as well (Chandra et al., 2022).
The heterogeneity among subjects can be measured by the disparity in conditional mean outcomes
given other covariates, typically referred to as the Conditional Average Treatment Effect (CATE).
Another problem closely related to the heterogeneity in treatment effects is the optimal Individualized
Treatment Regime (ITR), which is a decision rule that selects treatments for individuals to maximize
the expected outcome.

There has been significant development in the literature regarding the estimation of CATE and the
optimal ITR in the case of no unmeasured confounding. For example, Q-learning (Qian and Murphy,
2011) models the conditional mean outcome under each treatment separately and the estimated CATE
is constructed using the difference between the estimated conditional mean outcomes. The success of
this method relies on the correct specification of the outcome models. To address this issue, direct
learning (DL) (Tian et al., 2014; Qi and Liu, 2018) and robust direct learning (RD) (Meng and Qiao,
2022) models the conditional contrast between treatments directly, which has been shown to be more
robust to model misspecification. Another strand of work approaches with tree-based or forest-based
methods. Hill (2011) and Green and Kern (2012) extended the Bayesian Additive Regression Tree
(BART) method of Chipman et al. (2010) for estimating heterogeneous treatment effect. Athey and
Imbens (2016) proposed Causal Trees with an “honest” splitting approach, wherein the partitioning is
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constructed in one sample, and the treatment effects within each node are estimated using another
sample. This methodology is subsequently adopted in Causal Forest (Wager and Athey, 2018), which
extends the random forest algorithm to estimate heterogeneous treatment effects. On the other hand,
optimal ITR estimation aims to determine the optimal decision rule for treatment assignment based
on subjects’ covariates to maximize the mean outcome. A significant line of work in the field involves
transforming ITR estimation into a classification problem through the use of Inverse Probability
Weighting (IPW). Notable contributions include Outcome Weighted Learning (OWL) (Zhang et al.,
2012; Zhao et al., 2012) and Residual Weighted Learning (RWL) (Zhou et al., 2017).

The aforementioned methods all rely on the key assumption of no unmeasured confounding to identify
the heterogeneous treatment effect or the optimal ITR. However, this assumption is in most cases
unverifiable (if not untrue) in observational studies or randomized controlled trials (RCT) with non-
compliance. A well-known approach that takes into account the unmeasured confounding is the use
of an instrumental variable (IV). A proper IV is usually a pre-treatment variable that is independent of
any possible unmeasured confounder while correlated with the treatment. For example, in RCT with
non-compliance, the random treatment assignment can be considered as an IV while the treatment
received is considered the treatment variable. Here these two are clearly correlated since a subject
will not receive the treatment if they are not assigned one, though the strength of the correlation may
depend on other characteristics such as the education level of the subject.

There is a growing literature on estimating heterogeneous treatment effects or optimal ITR under
unmeasured confounding using IV. Imbens and Angrist (1994) identified and estimated the so-
called Local Average Treatment Effect (LATE), restricted to the subgroup of the always-compliant
population, with the help of an IV. More recently, machine learning methods like Doubly Robust
IV (Syrgkanis et al., 2019) and Generalized Random Forest (Athey et al., 2019) have shown their
applicability and effectiveness in various settings including unmeasured confounding, particularly
when used in conjunction with an IV. Wang and Tchetgen Tchetgen (2018) introduced two alternative
assumptions on the unobserved confounders and the IV, which enable the identification of the Average
Treatment Effect (ATE). They proposed an estimator that has the so-called multiply robustness
property, which guarantees consistent estimate under three observed data models. These findings
were incorporated into Cui and Tchetgen Tchetgen (2021) to obtain an optimal ITR estimation while
accounting for unmeasured confounding. On the other hand, Frauen and Feuerriegel (2022) utilized
these findings for CATE estimation.

In this paper, we propose a new framework for estimating CATE using IV when there exist unmeasured
confounders. This framework can be viewed as an extension of the Direct Learning method under
unconfoundedness to the case that allows the existence of unmeasured confounding. We call the
proposed method Direct Learning using Instrumental Variables (IV-DL). The proposed framework is
easy to implement under many flexible learning methods. Additionally, we introduce several efficient
and robust estimators by residualizing the outcome. These estimators have been demonstrated to be
robust to multiple model misspecification scenarios.

The rest of this paper is organized as follows. The notations and some related preliminaries are
introduced in Section 2. The proposed framework IV-DL is formally introduced in Section 3. In
Section 4 and 5, we proposed efficient and robust estimators. In Section 6, we conduct simulation
studies and compare the performance with existing methods in the literature. A real data example
is included in Section 7. Section 8 concludes the paper with a discussion on possible future work.
Proofs and additional simulations are provided in the Appendix.

2 Notations and Preliminaries

Denote A ∈ A = {+1,−1} as the binary treatment, and X ∈ X ⊆ Rp the pre-treatment covariates.
We adapt the potential outcome framework (Rubin, 1974) in causal inference and denote by Y (a) ∈ R
the potential outcome that the subject would have obtained if the received treatment was a ∈ A. The
observed outcome is then given by Y = Y (A) = Y (1)1[A = 1] + Y (−1)1[A = −1]. Denote by U
the unobserved confounder of the effect of A on Y . Suppose we have access to a pre-treatment binary
IV denoted by Z ∈ Z = {+1,−1}. Then the complete data consists of independent and identically
distributed copies of (Y,X,A,U, Z), even though only copies of (Y,X,A,Z) are observed.
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Our goal is to estimate the Conditional Average Treatment Effect (CATE), defined as ∆(x) ≜
E[Y (1)− Y (−1)|X = x]. As mentioned in Section 1, most of the prior works are based on the core
assumption of no unmeasured confounding:
Assumption 1 (Unconfoundedness). Y (a) ⊥⊥ A|X for a = ±1.

This assumption essentially implies that the observed covariates X would suffice to account for
the confounding of the effect of A on Y , thereby excluding the presence of U . Under the above
assumption of unconfoundedness, it can be easily verified that CATE is identified by ∆(x) =
E[Y |A = 1, X = x] − E[Y |A = −1, X = x]. Q-learning (Qian and Murphy, 2011) models
the two conditional mean outcomes separately and estimates the CATE by taking the difference
between these estimates. Consequently, its effectiveness depends on correctly specifying the models
for the conditional mean outcomes. Denote the propensity score for the treatment as πA(a, x) =
P[A = a|X = x] for a = ±1. Direct Learning (Qi and Liu, 2018; Tian et al., 2014) propose
to directly model for the heterogeneous treatment effect, based on the observation that ∆(x) =
E[AY/πA(A,X)|X = x]. In other words, one can obtain an estimate of CATE by regressing the
modified outcome AY /πA(A,X) on X . Robust Direct Learning (RD) Meng and Qiao (2022) further
extends this framework by residualizing the outcome using an estimate of the main effect, which is
the average of the two conditional mean outcomes. This method demonstrates double robustness
in the sense that it yields consistent estimation of CATE if either the propensity score or the main
effect is correctly specified. Despite the success in RCT or observational studies, all the methods
mentioned above rely on the unconfoundedness Assumption 1. In the next section, we will introduce
a general framework that directly models CATE using an IV approach when there exists unmeasured
confounding.

3 Direct Learning with Instrumental Variable Approach

In this paper, we look beyond Assumption 1, and consider the existence of an unmeasured confounder
U . To establish the identification of CATE in this setting, we approach with the use of a proper IV.
We will start with the following assumptions seen in Cui and Tchetgen Tchetgen (2021).
Assumption 2. This assumption consists of five parts as follows:

a. Y (z, a) ⊥⊥ (Z,A)|X,U for z, a = ±1.

b. Z ̸⊥⊥ A|X .

c. Z ⊥⊥ U |X .

d. Y (z, a) = Y (z′, a) for z, z′, a = ±1.

e. 0 < πZ(1, X) < 1 almost surely, where πZ(z, x) = P[Z = z|X = x] for z = ±1.

Here, Y (z, a) represents the potential outcome that would be observed if a subject were exposed to
treatment a ∈ A, and the IV takes a value of z ∈ Z . Assumption 2.a rules out the existence of any
other confounder, except for X and U , for the joint effect of Z and A on the outcome Y . However,
this unconfoundedness is hidden from the data collected, since U is never observed. Assumptions
2.b-2.e provides us with a well-defined IV. Assumption 2.b requires a correlation between the IV and
the treatment given observed covariates. In many applications, a strong correlation is often necessary
to ensure accurate inference in the estimation process. Assumption 2.c guarantees that the causal
effect of Z on Y is not confounded given X; otherwise Z suffers the same issue as A. Additionally,
required by Assumption 2.d, the causal effect of Z on Y can only be mediated by the treatment A. In
light of this assumption, we omit the argument z in the potential outcome and denote the common
value as Y (a). Assumption 2.e implies that each subject has a positive chance of having either value
of the IV. An example of the relationships between variables that satisfy Assumption 2 is presented
in a directed acyclic graph in Figure 1. In order to identify the CATE, we also need the following
assumption on the unmeasured confounder.
Assumption 3. At least one of the following is true:

a. E[A|Z = 1, X, U ]− E[A|Z = −1, X, U ] = E[A|Z = 1, X]− E[A|Z = −1, X]

b. E[Y (1)− Y (−1)|X,U ] = E[Y (1)− Y (−1)|X]
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Figure 1: A directed acyclic graph with unmeasured confounding and an IV

Assumption 3 states that, conditional on the measured covariates, either the additive effect of Z on
A is independent of U , or the additive effect of A on Y is independent of U . Now, we finally have
identification of the CATE.
Proposition 1. Under Assumptions 2–3, the CATE can be identified by

∆(x) =
E[Y |Z = 1, X = x]− E[Y |Z = −1, X = x]

P[A = 1|Z = 1, X = x]− P[A = 1|Z = −1, X = x]
(1)

= E
[

ZY

δ(x)πZ(Z, x)

∣∣∣∣X = x

]
, (2)

where πZ(z, x) = P[Z = z|X = x] and δ(x) = P[A = 1|Z = 1, X = x] − P[A = 1|Z =
−1, X = x] for any x ∈ X .

The first equality (1) was shown in Wang and Tchetgen Tchetgen (2018), which means that the
CATE is identified by the conditional Wald estimand. Equation (2) reveals an interesting observation
that we do not need the realized treatment A as long as we have δ(x), which can be viewed as the
conditional effect of the IV on the treatment given observed covariates. Hereafter, we denote the
conditional means of Y and A by µY

z (x) = E[Y |Z = z,X = x] and µA
z (x) = E[A|Z = z,X = x],

respectively, for any z ∈ {−1,+1} and x ∈ X .

3.1 Conditional Average Treatment Effect Estimation

In this section, we will introduce the IV-DL framework. Motivated by Equation (2), the next lemma
offers a way to estimate ∆(x) using inverse propensity score of IV as weight.
Lemma 1. Under Assumptions 2–3,

∆ ∈ argmin
f

E

[
1

πZ(Z,X)

(
2ZY

δ(X)
− f(X)

)2
]
.

Based on Lemma 1, we can adopt many existing regression methods to obtain an estimate on CATE
by regressing the modified outcome on the covariates, weighted by the propensity score for Z.
Specifically, given the data {yi, xi, ai, zi}ni=1, an estimator π̂Z of the propensity score function and
an estimator δ̂ of the effect of Z on A„ the IV-DL estimate for ∆ is given by

f̂(x) = argmin
f∈F

1

n

n∑
i=1

1

π̂Z(zi, xi)

(
2ziyi

δ̂(xi)
− f(xi)

)2

+ λ∥f∥F ,

where F is a function space with norm ∥ · ∥F , and λ ≥ 0 is the tuning parameter for the regularization
term ∥f∥F . To obtain π̂Z , we can fit a logistic regression of Z on X or a non-parametric model such
as random forest. Since δ is the treatment effect of Z on A, it is noteworthy that, under Assumption 3,
estimation of δ can be viewed as a CATE estimation problem with unconfoundedness. In this case, A
may be viewed as a binary “outcome” and Z a binary “treatment”. Thus, we can adopt many existing
CATE estimation methods such as Q-learning, DL, and Causal Forest.

The proposed framework allows a variety of learning methods to model the treatment effect ∆(x).
For example, under the linear model, we may model f(x) = x̃Tβ where the regression coefficients
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are β and x̃i ≜ (1, xT
i )

T . Then IV-DL estimator for β is

β̂ = argmin
β∈Rp+1

1

n

n∑
i=1

1

π̂Z(zi, xi)

(
2ziyi

δ̂(xi)
− x̃T

i β

)2

and the CATE ∆(x) is estimated by f̂(x) = x̃T β̂.

In high dimensional setting where p is large, sparse regularization can be easily applied here because
the optimization is essentially a weighted least square problem. For example, we can use Least
Absolute Shrinkage and Selection Operator (LASSO) and the estimator of β is given by

β̂
lasso

= argmin
β∈Rp+1

1

n

n∑
i=1

1

π̂Z(zi, xi)

(
2ziyi

δ̂(xi)
− x̃T

i β

)2

+ λ∥β∥1,

where λ > 0 is the tuning parameter for the l1 penalty.

In practice, there is no guarantee that the true treatment effect follows a linear model. For a more
complex model, we can adopt nonlinear methods such as Kernel Ridge Regression (KRR) and solve

argmin
β∈Rn,β0∈R

1

n

n∑
i=1

1

π̂Z(zi, xi)

(
2ziyi

δ̂(xi)
− (KT

i β + β0)

)2

+ λβTKβ,

where Ki is the i-th column of the kernel matrix K = (K(xi, xj))n×n and K(·, ·) is a kernel
function. KRR might be computationally expensive when dealing with large datasets. In such
cases, other machine learning methods capable of solving a weighted least squares problem can be
considered. Examples include local regression, regression trees, random forests, and neural networks.

3.2 Optimal Individualized Treatment Regime Estimation

In some domains, the optimal Individualized Treatment Regime (ITR) can be of interest. The goal
here is to find a mapping d : X → A from a specific class D to maximizes the expected outcome:
d∗ ≜ argmaxd∈D E[Y (d(X))], where Y (d(X)) is the potential outcome that the subject X obtained
after receiving treatment d(X), and E[Y (d(X))] is also known as the Value of the regime d.

ITR and CATE are closely related. For example, in the binary treatment setting, the CATE ∆ is the
difference between two conditional mean outcomes. Assuming greater values of outcome is preferred,
then the sign of ∆ will determine which treatment is optimal. It can be verified that d∗(x) =

sign(∆(x)). Therefore, we define the estimated optimal ITR using IV-DL as d̂(x) = sign(f̂(x)),
where f̂(x) may be any CATE estimator introduced in the last subsection.

4 Efficient Estimators by Residualization

In the literature, considerable advancements have been made to enhance the efficiency and robustness
of the CATE and optimal ITR estimation. To this end, residualization and augmentation are two
common strategies. For example, in the IPW framework for optimal ITR estimation, Zhou et al.
(2017) and Zhou and Kosorok (2017) proposed to replace the outcome by its residual Y − ĝ(x) in
estimation of the optimal regime, where ĝ(x) is an estimate of the weighted average of the conditional
mean outcomes. For the estimation of CATE, Meng and Qiao (2022) residualized the outcome by
an estimate of the average of conditional mean outcomes. Frauen and Feuerriegel (2022) proposed
augmenting a preliminary estimate of CATE to enhance the robustness of the estimator.

In this section, we present the Robust Direct Learning using IV approach (IV-RDL), which involves
residualizing the outcome in IV-DL to enhance both efficiency and robustness. We propose two ways
of residualization, referred to as IV-RDL1 and IV-RDL2, respectively. They are shown to reduce the
variance when estimating CATE. In Section 5, we show that they have robustness properties when
confronted with model misspecification for nuisance variables.

4.1 Residualization using a Function of Covariates

We first consider residualizing the outcome by a function of the observed covariates only. Ideally, we
would like to find a function g : X → R that can improve the efficiency of the estimation on CATE,
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while keeping it consistent. As shown in the following lemma, the consistency of the estimator is in
fact preserved under a shift of Y by any function of the observed covariates.
Lemma 2. For any measurable g : X → R and any probability distribution for (Y,X,A,Z)

∆ ∈ argmin
f

E

[
1

πZ(Z,X)

(
2(Y − g(X))Z

δ(X)
− f(X)

)2
]

Asymptotically, the variance of the estimator is related to the variance of the derivative of
[πZ(Z,X)]−1[2(Y − g(X))Z)Zδ−1(X)− f(X)]2, the weighted loss for each individual. Hence, it
is natural to choose g that minimize the variance of [πZ(Z,X)]−1[2(Y − g(X))Zδ−1(X)− f(X)].
See Appendix B for a more detailed discussion using the linear model as an example. The following
theorem gives us the minimizer.
Theorem 1. Among all measurable g : X → R, the following function minimize the variance of

1
πZ(Z,X)

(
2(Y−g(X))Z

δ(X) − f(X)
)

:

g∗(x) ≜
1

2
E
[

Y

πZ(Z,X)

∣∣∣∣X = x

]
=

µY
1 (x) + µY

−1(x)

2
. (3)

There is an interesting interpretation of the optimal function g∗, which equals the average of µY
1 (x)

and µY
−1(x). Recall that Eq. (1) states that CATE under unmeasured confounding is identified by

the ratio of two contrasts, where the numerator happens to be µY
1 (x)− µY

−1(x). The residualization
strategy amounts to shifting the outcome Y , and hence µY

1 (x) and µY
−1(x) as well. Naturally, shifting

both by their average will not affect their difference, but it will reduce the variance. A similar
residualization was incorporated in RD under unconfoundedness (Meng and Qiao, 2022), where the
goal was to learn the contrast between conditional mean outcomes given the two treatments.

In practice, g∗ needs to be estimated before we can estimate the CATE. There are several approaches
to obtain the estimate of g∗, denoted by ĝ∗. For example, we can take the average of estimated
conditional mean outcomes, i.e., ĝ∗(x) = (µ̂Y

1 (x)+µ̂Y
−1(x))/2. One can also regress Y/(2πZ(Z,X))

on X , inspired by Eq. (3). Given ĝ∗(x), the IV-RDL1 estimator for ∆ is obtained by

f̂g(xi) = argmin
f∈F

1

n

n∑
i=1

1

π̂Z(zi, xi)

(
2(yi − ĝ∗(xi))zi

δ̂(xi)
− f(xi)

)2

+ λ∥f∥F .

In Section 5, we will show that this estimator is robust against misspecification of either g∗ or πZ ,
given that δ is correctly specified.

4.2 Residualization using Covariates, Treatment, and IV

In this paper, we also consider an alternative way of residualizing the outcome by a function
h : (X ,A,Z) → R. Like IV-RDL1, the optimal choice is the function that minimizes the variance
while maintaining the consistency of CATE estimation. Among all functions that still convey
consistent CATE estimation, the following three equivalent functions minimize the variance of
[πZ(Z,X)]−1[2(Y − h(X,A,Z))Zδ−1(X)− f(X)].

h∗
1(x, a, z) = µY

1 (x) + ∆(x)
(
a− µA

1 (x)− zδ(x)
)
/2

h∗
2(x, a, z) = µY

−1(x) + ∆(x)
(
a− µA

−1(x)− zδ(x)
)
/2

h∗
3(x, a, z) = mY (x) + ∆(x)

(
a−mA(x)− zδ(x)

)
/2

where mY (x) ≜ (µY
1 (x) + µY

−1(x))/2 and mA(x) ≜ (µA
1 (x) + µA

−1(x))/2. The technical details
are provided in the Appendix C. In practice, all these conditional means (µY

−1, µY
1 , µA

−1 and µA
1 ) need

to be estimated, together with estimations of πZ and δ. Additionally, we need to obtain a preliminary
estimate of CATE. The IV-RDL2 estimator is constructed by,

f̂h(xi) = argmin
f∈F

1

n

n∑
i=1

1

π̂Z(zi, xi)

(
2(yi − ĥ∗(xi, ai, zi))zi

δ̂(xi)
− f(xi)

)2

+ λ∥f∥F ,

where ĥ∗ is an estimator for one of h∗
1, h∗

2 and h∗
3.
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5 Robustness Properties

In this section, we investigate the robustness properties of IV-RDL1 and IV-RDL2. We start with the
following theorem to demonstrate the double robustness property of the IV-RDL1 that residualizes
the outcome by using g(x).

Theorem 2. Suppose Assumption 2–3 holds, and we have a consistent estimator of δ, denoted by δ̂.
Let π̃Z be a working model for πZ , and g̃ be a working model for g∗. Then we have

∆ ∈ argmin
f∈{X→R}

E

 1

π̃Z(Z,X)

(
(Y − g̃(X))Z

δ̂(X)
− f(X)

)2


if either π̃Z(z, x) = πZ(z, x) or g̃(x) = g∗1(x) almost surely.

Theorem 2 indicates that we will have a doubly robust estimator for ∆ if either πZ or g∗ is correctly
specified when δ is known or correctly specified. However, the requirement of a consistent estimate
of δ would not pose a significant issue in practical application, since it is essentially a CATE
estimation problem under no unmeasured confounding. A consistent estimator for δ can be found by
implementing any state-of-the-art CATE estimation method in the literature.

For the IV-RDL2, there are more nuisance variables that need to be estimated. The next theorem
shows that IV-RDL2 is robust to various scenarios of misspecified nuisance variables.

Theorem 3. Suppose Assumption 2–3 holds. Let π̃Z , δ̃, µ̃Y
1 , µ̃Y

−1, µ̃A
Z , µ̃A

−1, m̃Y , m̃A and ∆̃ be
working models for πZ , δ, µY

1 , µY
−1, µA

Z , µA
−1, mY , mA and ∆, respectively. Denote h̃1, h̃2 and h̃3

as chosen augmentation formulated according to h∗
1, h∗

2 and h∗
3 using working estimates. Then we

have

∆ ∈ argmin
f∈{X→R}

E

 1

π̃Z(Z,X)

(
(Y − h̃(X,A,Z))Z

δ̂(X)
− f(X)

)2


if any one of the following condition is satisfied: (1) π̃Z = πZ and ∆̃ = ∆ almost surely, and h̃
can be any one of h̃1, h̃2 and h̃3. (2) π̃Z = πZ and δ̃ = δ almost surely, and h̃ can be any one of
h̃1, h̃2 and h̃3. (3) µ̃Y

1 = µY
1 , µ̃a

1 = µA
1 and ∆̃ = ∆ almost surely, and h̃ = h̃1. (4) µ̃Y

−1 = µY
−1,

µ̃a
−1 = µA

−1 and ∆̃ = ∆ almost surely, and h̃ = h̃2. (5) m̃Y = mY , mA = mA and ∆̃ = ∆ almost
surely, and h̃ = h̃3. (6) m̃Y = mY , mA = mA and δ̃ = δ almost surely, and h̃ = h̃3.

Theorem 3 summarizes in total six cases of the minimal combination of correctly specified nuisance
variables in order to have a consistent estimate of CATE. The three choices of residualization
functions possess robustness against different scenarios. In the first two scenarios, obtaining a
consistent estimate of CATE is guaranteed as long as we correctly specify πZ and either ∆ or δ. This
consistency holds irrespective of the choice of the three h̃ functions. In practice, the second scenario
may be particularly accessible, especially when πZ is known. The other scenarios are less likely to be
verified in practice and therefore requires more domain knowledge of the data structure. Specifically,
scenarios (3)-(5) requires the corresponding set of conditional means to be correctly specified as
well as the preliminary ∆. Lastly, in scenario (6), when δ and the averages of conditional means are
correctly specified, the IV-RDL2 will also provide a consistent estimate of CATE.

While working on this paper, we encountered unpublished work by Frauen and Feuerriegel (2022)
that is similar to our IV-RDL2 estimator. Inspired by Wang and Tchetgen Tchetgen (2018), Frauen
and Feuerriegel introduced the MRIV framework, which is a two-step process. First, a preliminary
estimator of CATE and nuisance estimators of δ, πZ , µY

−1 and µA
−1 are obtained. Then, a pseudo-

outcome is created by augmenting the preliminary CATE with the nuisance estimates, and the final
CATE estimator is obtained by regressing the pseudo-outcome on the covariates. As shown in Wang
and Tchetgen Tchetgen (2018), this estimator is robust against model misspecification of the nuisance
variables in three of the six scenarios in Theorem 3 (scenarios (1), (2), and (4)). Our numerical studies
have shown that our proposed IV-DL framework performs better than the MRIV method.
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6 Simulation Study

In this section, we present the results of the simulation study conducted to assess the performance
of the proposed IV-DL framework. We compared the proposed method with Bayesian additive
regression trees (BART; Chipman et al., 2010), robust direct learning (RD; Meng and Qiao, 2022),
causal forest with IV approach (CF; Athey et al., 2019), MRIV method (Frauen and Feuerriegel,
2022), and weighted learning with IV approach (IPW-MR; Cui and Tchetgen Tchetgen, 2021).

6.1 Simulation Settings

We begin by introducing the data-generating mechanism. The covariates, denoted as X =
(X1, X2, X3, X4, X5), were generated from uniform distribution with Xi ∼ Unif(−1, 1) for
i = 1, . . . , 5. We followed Cui and Tchetgen Tchetgen (2021) and generated the treatment A
under logistic model with probability for success: P(A = 1|X,Z,U) = expit{2X1+2.5Z−0.5U},
where the instrumental variable Z was a Bernoulli random variable with probability 1/2 and U was
the unobserved confounder that followed Bridge distribution with parameter ϕ = 1/2. By the results
from Wang and Louis (2003), the above usage of Bridge distribution will guarantee that the marginal
distribution f(A|X,Z) can be modeled directly by logistic regression. In other words, there exists
some vector α such that logit{P(A = 1|X,Z)} = αT (1, X, Z).

The outcome Y was generated in two different settings corresponding to linear and non-linear models
of the true CATE:

1. Y = h(X) + q(X)A+ 0.5U + ϵ

2. Y = h(X) + {exp(q(X))− 1}A+ U + ϵ

where the error term ϵ follows N(0, 1). Functions h(X) and q(X) are defined as follows:

h(X) = 0.5 + 0.5X1 + 0.8X2 + 0.3X3 − 0.5X4 + 0.7X5

q(X) = 0.2− 0.6X1 − 0.8X2.

In Setting 1, the true CATE is 2q(x), which is linear in x. In Setting 2, the true CATE is 2(exp(q(x))−
1), which is nonlinear. The sample size for each setting was 500 and the simulation was repeated 100
times. An independent sample of size 5000 was used to evaluate the performance of different methods.
The proposed methods were implemented according to Sections 3 and 4 with δ̂(X) estimated by
causal forest (“grf” package) and the other nuisance variables estimated by random forest. For
methods that require to estimate the same nuisance variable, they shared the same copies of nuisance
estimates.

6.2 Numerical Results

We compared all methods based on three performance metrics in the testing sample: the correct
classification rate by the estimated ITR (AR); the value function evaluated at the estimated ITR
(Value); the mean squared error of the estimated CATE (MSE). Table 1 reports the mean and standard
error of these three evaluation metrics over 100 replications for different methods in the two settings.

Table 1: Simulation results: mean×10−2(SE×10−2). IPW-MR: the multiply robust weighted
learning; BART: Bayesian additive regression trees; RD: robust direct learning; CF: causal forest.
The empirical maximum value is 0.998 for setting 1 and 1.01 for setting 2.

BART RD IPW-MR CF MRIV IV-DL IV-RDL1 IV-RDL2

1
MSE 121(3.4) 97.6(2.9) NA 89.6(1.8) 66.3(2.3) 55.5(3.8) 40.5(2.9) 42.5(3.3)
AR 66.3(0.7) 71.4(0.5) 84.1(0.7) 79.1(0.7) 78.3(0.6) 81.4(1) 84.6(0.8) 83.7(1)
Value 75.4(0.8) 81.6(0.5) 84.1(0.7) 85.4(0.7) 84.5(0.7) 87.1(1) 89.9(0.9) 88.9(1.1)

2
MSE 449(11.1) 397(9.8) NA 149(2.9) 150(5.6) 164(8.9) 140(7.7) 142(7.4)
AR 57.6(0.6) 60.8(0.7) 55.5(0.3) 70.1(1) 68.8(0.9) 77.1(0.9) 77.9(0.8) 77.2(0.9)
Value 53.1(1.6) 61(1.6) 81.6(0.2) 83.5(1.2) 81.6(1) 89.9(1) 90.6(0.9) 90(1)
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Among the methods implemented, BART and RD rely on the unconfoundedness assumption and
therefore fail to identify CATE when there is unobserved confounding. Both IPW-MR and CF make
use of the IV to take unmeasured confounding into account. IPW-MR had fine performances on
estimating ITR and maximizing the value. However, it was not designed to estimate CATE. CF
performs slightly worse than IPW-MR in terms of AR and value in Setting 1, despite offering a
CATE estimation. Its performance is more competitive compared to IPW-MR in Setting 2. Our
proposed methods showed superior performances on all the metrics. In particular, IV-RDL1, which
residualized the outcome using averages of the estimated conditional means, outperformed all the
methods in both settings. IV-RDL2 had a more complicated residualization, and achieved the second-
best performance (but still fairly close to IV-RDL1). Even the unresidualized IV-DL performed better
than other methods in most of the metrics. Additional simulation results on testing the robustness of
the proposed framework is reported in Appendix D.

7 Data Analysis

In this section, following Angrist and Evans (1998), we study the causal effect of child-rearing on
a mother’s labor-force participation, using a sample of married mothers with two or more children
from the U.S. 1980 census data (80PUMS). Assuming the sex of children is random, “first two
children mixed sex or not” becomes a suitable instrumental variable for the causal effect of having
a third child on a mother’s labor force participation. Angrist and Evans showed that having a third
child reduces women’s labor force participation on average. Our goal is to investigate heterogeneity
among families, offering personalized insights on the decision to have a third child and its impact on
employment opportunities. We used a dataset of 478,005 subjects with at least two children. The
outcome, Y , represents whether the mother was employed in the year preceding the census. The
treatment, A, indicates whether the mother had three or more children at the census time, and the
instrumental variable, Z, indicates whether the first two children were of the same sex. We considered
five covariates, X: mother’s age at first birth, age at census time, years of education, race, and the
father’s income.

Figure 2: Tree splitting of estimated CATE
on covariates. The five leaf nodes shall be
numbered 1–5.

Figure 3: Histograms of estimated CATE in
three majority subgroups

We used the random forest algorithm for both the implementation of the proposed method and the
estimation of the nuisance variables µY

z , µA
z , δ, and πZ . The preliminary CATE estimator was

formulated according to Eq. 1 with plug-in estimates on the conditional means. To identify subgroups
with distinct treatment effects, we used the estimated CATE as the response to construct a regression
tree, shown in Figure 2. The splits occurred at the mother’s age at census (33), age at first birth (23),
and father’s income ($2.1k/year and $26k/year). By investigating the five subgroups (32%, 4%, 3%,
15%, and 47% of the sample), labeled as groups 1–5, we have made the following observations. First,
older mothers are more likely to work after having a third child (subgroups 4 and 5 show a larger
estimated treatment effect). Second, younger mothers with very low-income fathers (subgroup 3)
tend to stay in the labor force after the third child. Lastly, younger mothers are more likely to stop
working if their husband’s income is between $2.1k and $26k/year (subgroups 1-3). Figure 3 displays
the histogram of estimated CATE for the three majority groups (1, 4, and 5). The estimated CATE
for group 1 is overall smaller than for groups 4 and 5. We also constructed 3-dimensional scatter

9



plots based on the three splitting variables for a more detailed look at the heterogeneity (shown in
Appendix E).

8 Conclusions

In this paper, we proposed a new framework to estimate CATE under unmeasured confounding by
using an instrumental variable. Under the proposed framework, the estimation procedure boils down
to solving a weighted least square problem, which can be tackled with any modern statistical or
machine learning method. We also constructed two robust estimators by residualizing the outcome,
which are shown to be more efficient and robust to model misspecification on nuisance variables.
Numerical studies have shown very competitive performance for our proposed methods.

A potential extension of our work involves using IV to estimate treatment effects for multi-arm and
continuous treatments, with the challenge lying in the generalization of Assumption 3. Another
avenue is to incorporate deep neural networks to make use of their rich expressiveness for data
distribution. However, the empirical performance and theoretical properties need to be formally
studied. One notable limitation is the issue of extreme weights, which can arise during the estimation
process and potentially lead to instability and biased results. Addressing this limitation is crucial for
improving the reliability and accuracy of our method.
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A Proofs

Proof of Proposition 1. For any z ∈ {−1,+1}, we have
E[2Y |Z = z,X]

= EU

(
E[2Y |Z = z,X,U ]

)
= EU

(
E[Y (1 +A)|Z = z,X,U ]

)
+ EU

(
E[Y (1−A)|Z = z,X,U ]

)
= EU

(
E[Y (1)(1 +A)|Z = z,X,U ]

)
+ EU

(
E[Y (−1)(1−A)|Z = z,X,U ]

)
= EU

(
E[Y (1) + Y (−1)|Z = z,X,U ]

)
+ EU

(
E[AY (1)−AY (−1)|Z = z,X,U ]

)
= EU

(
E[Y (1) + Y (−1)|X,U ]

)
+ EU

(
E[Y (1)− Y (−1)|X,U ]E[A|Z = z,X,U ]

)
Evaluate the above equality at z = 1 and z = −1, and take the difference. Then we have

2E[Y |Z = 1, X]− 2E[Y |Z = −1, X]

= EU

[
E[Y (1)− Y (−1)|X,U ]

(
E[A|Z = 1, X, U ]− E[A|Z = −1, X, U ]

)]
Based on Assumption 3, we have

E[A|Z = 1, X, U ]− E[A|Z = −1, X, U ] = E[A|Z = 1, X]− E[A|Z = −1, X].

Combining the above two, we have
E[Y |Z = 1, X]− E[Y |Z = −1, X]

=
1

2
EU

(
E[Y (1)− Y (−1)|X,U ]

)(
E[A|Z = 1, X]− E[A|Z = −1, X]

)
= E[Y (1)− Y (−1)|X]

(
P[A|Z = 1, X]− P[A|Z = −1, X]

)
The above equality is equivalent to Equation (1). On the other hand, for any x ∈ X ,

E
[

ZY

πZ(Z,X)

∣∣∣∣X = x

]
= πZ(1, x)E

[
Y

πZ(1, X)

∣∣∣∣Z = 1, X = x

]
+ πZ(−1, x)E

[
−Y

πZ(−1, X)

∣∣∣∣Z = −1, X = x

]
= E[Y |Z = 1, X = x]− E[Y |Z = −1, X = x]

Dividing both sides of the above equality by δ(x) = P[A|Z = 1, X = x]− P[A|Z = −1, X = x]
yields Equation (2).

Lemma 3. Let ℓ(X, f) = E[Q(X, f)|X] and L(f) = Eℓ(X, f). Denote f∗ ∈ argminf ℓ(X, f).
Then f∗ ∈ argminf L(f).

Proof. Denote f+ ∈ argminf L(f). Then by definition, we have the following two inequalities:

L(f+) ≤ L(f∗) = Eℓ(X, f∗)

L(f∗) = Eℓ(X, f∗) ≤ Eℓ(X, f+) = L(f+)

Therefore, L(f∗) = L(f+) and f∗ ∈ argminf L(f).

Proof of Lemma 1. Let ℓ(X, f) = E
[

1
πZ(Z,X)

(
2Y Z
δ(X) − f(X)

)2 ∣∣∣∣X]. By Lemma 3, it suffices to

show ∆ ∈ argminf ℓ(X, f).

The gradient of ℓ(X, f) with respect to f is given by

∂

∂f
ℓ(X, f) = E

[
∂

∂f

1

πZ(Z,X)

(
2Y Z

δ(X)
− f(X)

)2∣∣∣∣X]
= − 2E

[
1

πZ(Z,X)

(
2Y Z

δ(x)
− f(X)

)∣∣∣∣X]
= 2E

[
f(X)

πZ(Z,X)

∣∣∣∣X]− 2E
[

2Y Z

δ(X)πZ(Z,X)

∣∣∣∣X]
= 4f(X)− 4∆(X)

Since ℓ(X, f) is convex, we have ∆ ∈ argminf ℓ(X, f).
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Proof of Lemma 2. Let ℓg(f) = E
[

1
πZ(Z,X)

(
2(Y−g(X))Z

δ(X) − f(X)
)2 ∣∣∣∣X]. By Lemma 3, it suffices

to show that for any g, argminf ℓg(X, f) = argminf ℓ(X, f). For any g(x),

ℓg(X, f) = E
[

1

πZ(Z,X)

(
2Y Z

δ(X)
− f(X)− 2g(X)Z

δ(X)

)2∣∣∣∣X]
= ℓ(X, f) + 2E

[
1

πZ(Z,X)

(
2Y Z

δ(X)
− f(X)

)(
2g(X)Z

δ(X)

)∣∣∣∣X]
+ E

[
1

πZ(Z,X)

(
2g(X)Z

δ(X)

)2∣∣∣∣X]
= ℓ(X, f) + 8

g(X)

(δ(X))2
E
[

Y

πZ(Z,X)

∣∣∣∣X]− 4
g(X)f(X)

δ(X)
E
[

Z

πZ(Z,X)

∣∣∣∣X]
+ 4

[
g(X)

δ(X)

]2
E
[

1

πZ(Z,X)

∣∣∣∣X]

Here the second term and the fourth term don’t depend on f , and the third term is 0 because
E
[

Z
πZ(Z,X)

∣∣∣X = x
]
= 0. Therefore, argminf Lg(f) = argminf L(f).

Proof of Theorem 1. For any g(x), the variance of the derivative of the weighted loss at f = ∆ is
given by

Var

(
1

πZ(Z,X)

(
2
(
Y − g(X)

)
Z

δ(X)
−∆(X)

))
= E

(
E
[

1

(πZ(Z,X))2

(
2
(
Y − g(X)

)
δ(X)

− Z∆(X)

)2∣∣∣∣X])
≜ E[S(X, g)]

Set the gradient of S with respect to g equal to 0. Then for any x ∈ X , we have

0 = E
[
− 4

δ(x)(πZ(Z, x))2

(
2(Y − g(x))

δ(x)
− Z∆(x)

)∣∣∣∣X = x

]
2g(x)E

[
1

(πZ(Z, x))2

∣∣∣∣X = x

]
= 2E

[
Y

(πZ(Z, x))2

∣∣∣∣X = x

]
− E

[
Zδ(x)∆(x)

(πZ(Z, x))2

∣∣∣∣X = x

]
2g(x)

(
π−1
Z (1, x) + π−1

Z (−1, x)
)
=

2µY
1 (x)

πZ(1, x)
+

2µY
−1(x)

πZ(−1, x)

−
(
µY
1 (x)− µY

−1(x)
)(
π−1
Z (1, x)− π−1

Z (−1, x)
)

2g(x)
(
π−1
Z (1, x) + π−1

Z (−1, x)
)
=
(
µY
1 (x) + µY

−1(x)
)(
π−1
Z (1, x) + π−1

Z (−1, x)
)

g(x) =
1

2

(
µY
1 (x) + µY

−1(x)
)

=
1

2
E
[

Y

πZ(Z,X)

∣∣∣∣X = x

]
Additionally, S is convex since ∂2S

∂g2 = 8
(δ(x))2πZ(1,x)πZ(−1,x) . By Lemma 3, g∗ ∈

argming E[S(X, g)].

Proof of Theorem 2. Let ℓ̃g(X, f) = E
[

1
π̃Z(Z,X)

(
2(Y−g̃(X))Z

δ̂(X)
− f(X)

)2 ∣∣∣X]. By Lemma 3, it

suffices to show ∆ ∈ argminf ℓ̃g(X, f), if either π̃Z = πZ almost surely or g̃ = g almost surely.
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The gradient of ℓ̃g(x, f) with respect to f is given by

∂ℓ̃g(x, f)

∂f
= 2E

[
1

π̃Z(Z,X)
f(X)

∣∣∣∣X = x

]
− 2E

[
1

π̃Z(Z,X)

2(Y − g̃(X))Z

δ̂(X)

∣∣∣∣X = x

]

= 2f(x)

(
πZ(1, x)

π̃Z(1, x)
+

πZ(−1, x)

π̃Z(−1, x)

)
− 4

δ̂(x)

[
πZ(1, x)

π̃Z(1, x)

(
µY
1 (x)− g̃(x)

)
− πZ(−1, x)

π̃Z(−1, x)

(
µY
−1(x)− g̃(x)

)]
If π̃Z = πZ almost surely, then

∂ℓ̃g(x, f)

∂f
= 4f(x)− 4

δ̂(x)

(
µY
1 (x)− µY

−1(x)
)
= 4
(
f(x)−∆(X)

)
If g̃ = g almost surely, then g̃(x) = [µY

1 (x) + µY
−1(x)]/2. Thus, we have

∂ℓ̃g(x, f)

∂f
= 2f(x)

(
πZ(1, x)

π̃Z(1, x)
+

πZ(−1, x)

π̃Z(−1, x)

)
− 2

δ̂(x)

(
πZ(1, X)

π̃Z(1, x)

(
µY
1 (x)− µY

−1(x)
))

− 2

δ̂(x)

(
πZ(−1, x)

π̃Z(−1, x)

(
µY
1 (x)− µY

−1(x)
))

= 2 (f(x)−∆(x))

(
πZ(1, x)

π̃Z(1, x)
+

πZ(−1, x)

π̃Z(−1, x)

)
Check that πZ(1,x)

π̃Z(1,x) + πZ(−1,x)
π̃Z(−1,x) > 0. By convexity of ℓ̃g(x, f), ∆ ∈ argminf ℓ̃g(X, f) in both

cases.

Proof of Theorem 3. Let ℓ̃h(X, f) =
[

1
π̃Z(Z,X)

(
2(Y−h̃(X,A,Z))Z

δ̃(X)
− f(X)

)2 ∣∣∣X]. By convexity of

ℓ̃h and Lemma 3, it suffices to show that the gradient of ℓ̃h(x, f) with respect to f is 0 at f = ∆ in
all cases. The gradient is given by

∂ℓ̃h(x, f)

∂f
= 2E

[
1

π̃Z(Z,X)
f(X)

∣∣∣∣X = x

]
− 2E

[
2Z

π̃Z(Z,X)

Y − h̃(X,A,Z)

δ̃(X)

∣∣∣∣X = x

]

= 2f(x)

(
πZ(1, x)

π̃Z(1, x)
+

πZ(−1, x)

π̃Z(−1, x)

)
− 4

δ̃(x)

πZ(1, x)

π̃Z(1, x)

(
µY
1 (x)− E[h̃(X,A,Z)|Z = 1, X = x]

)
+

4

δ̃(x)

πZ(−1, x)

π̃Z(−1, x)

(
µY
−1(x)− E[h̃(X,A,Z)|Z = −1, X = x]

)
• If π̃Z = πZ almost surely, then we have the unweighted difference E[h̃(X,A,Z)|Z =

1, X = x]−E[h̃(X,A,Z)|Z = −1, X = x] = 0 by Equation (4). The resulting gradient is

∂ℓ̃h(x, f)

∂f
= 4f(x)−

2(µA
1 (x)− µA

−1(x))

δ̃(x)

(
∆(x)− ∆̃(x)

)
− 4∆̃(x)

= 4

[
f(x)− ∆̃(x)− δ(x)

δ̃(x)

(
∆(x)− ∆̃(x)

)]

It will yield 4(f(x)−∆(x)) if either ∆̃ = ∆ or δ̃ = δ almost surely.
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• If µ̃Y
1 = µY

1 , µ̃A
1 = µA

1 and ∆̃ = ∆ almost surely, and the choice of residualization function
is h̃1, then we have

∂ℓ̃h(x, f)

∂f

= 2f(x)

(
πZ(1, x)

π̃Z(1, x)
+

πZ(−1, x)

π̃Z(−1, x)

)
− πZ(1, x)

π̃Z(1, x)
2∆̃(x)

+
4

δ̃(x)

πZ(−1, x)

π̃Z(−1, x)

(
∆(x)δ(x)− [2δ(x)− δ̃(x)]∆̃(x)/2

)
= 2(f(x)− ∆̃(x))

(
πZ(1, x)

π̃Z(1, x)
+

πZ(−1, x)

π̃Z(−1, x)

)
+

πZ(−1, x)

π̃Z(−1, x)

δ(x)

δ̃(x)
4(∆(x)− ∆̃(x))

= 2(f(x)− ∆̃(x))

(
πZ(1, x)

π̃Z(1, x)
+

πZ(−1, x)

π̃Z(−1, x)

)

• If µ̃Y
−1 = µY

−1, µ̃A
−1 = µA

−1 and ∆̃ = ∆ almost surely, and the choice of residualization
function is h̃2, then we have

∂ℓ̃h(x, f)

∂f

= 2f(x)

(
πZ(1, x)

π̃Z(1, x)
+

πZ(−1, x)

π̃Z(−1, x)

)
− 4

δ̃(x)

πZ(1, x)

π̃Z(1, x)

(
∆(x)δ(x)− [2δ(x)− δ̃(x)]∆̃(x)/2

)
+

πZ(−1, x)

π̃Z(−1, x)
2∆̃(x)

= 2(f(x)− ∆̃(x))

(
πZ(1, x)

π̃Z(1, x)
+

πZ(−1, x)

π̃Z(−1, x)

)
− πZ(1, x)

π̃Z(1, x)

δ(x)

δ̃(x)
4(∆(x)− ∆̃(x))

= 2(f(x)− ∆̃(x))

(
πZ(1, x)

π̃Z(1, x)
+

πZ(−1, x)

π̃Z(−1, x)

)

• If (µ̃Y
1 + µ̃Y

−1)/2 = (µY
1 +µY

−1)/2 and (µ̃A
1 + µ̃A

−1)/2 = (µA
1 +µA

−1)/2 almost surely, and
the choice of residualization function is h̃3, then the gradient is

∂ℓ̃h(x, f)

∂f
= 2f(x)

(
πZ(1, x)

π̃Z(1, x)
+

πZ(−1, x)

π̃Z(−1, x)

)
− 4

δ̃(x)

πZ(1, x)

π̃Z(1, x)

(
∆(x)δ(x)

2
− (δ(x)− δ̃(x))∆̃(x)/2

)
+

4

δ̃(x)

πZ(−1, x)

π̃Z(−1, x)

(
− ∆(x)δ(x)

2
− (−δ(x) + δ̃(x))∆̃(x)/2

)
= 2

(
f(x)− ∆̃(x)− δ(x)

δ̃(x)
(∆(x)− ∆̃(x))

)(
πZ(1, x)

π̃Z(1, x)
+

πZ(−1, x)

π̃Z(−1, x)

)

It will yield 2
(
f(x) − ∆(x))

)(
πZ(1,x)
π̃Z(1,x) +

πZ(−1,x)
π̃Z(−1,x)

)
if either ∆̃ = ∆ or δ̃ = δ almost

surely.
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B Optimal residualization (linear model example)

Consider linear model for ∆(x) with coefficients denoted by β. The objective function with outcome
residualized by a function g(x) is defined as follows:

Lg(y, z, x, β) =
1

πZ(z, x)

(
2(y − g(x))z

δ(x)
− xTβ

)2

Let β∗ be the unique minimizer of Q(β) ≜ E[Lg(Y, Z,X, β)]. Let ℓg(y, z, x, β) be the deriva-
tive of Lg(y, z, x, β) with respect to β. Denote by β̂ the root of the estimating equation
n−1

∑n
i=1 ℓg(Yi, Xi, β) = 0. By Bahadur representation, we have

β̂ − β∗ = n−1H−1
n∑

i=1

ℓg(Yi, Xi, β
∗) + oP (n

−1)

where H is the second derivative of Q(β) with respect to β at β = β∗. Therefore, selecting the
optimal g is equivalent to minimizing the variance of ℓg(Yi, Xi, β

∗).

C Technical details for IV-RDL2

Unlike IV-RDL1, we need additional constraints on h(x, a, z) to make sure the estimation for CATE
remains consistent after the residualization.

Lemma 4. For any measurable h : (X ,A,Z) → R satisfying

E
[
Zh(X,A,Z)

πZ(Z,X)

∣∣∣∣X = x

]
= 0 (4)

or equivalently, E[h(X,A,Z)|Z = 1, X = x] = E[h(X,A,Z)|Z = −1, X = x], we have

∆ ∈ argmin
f

E

[
1

πZ(Z,X)

(
2(Y − h(X,A,Z))Z

δ(X)
− f(X)

)2
]
.

Proof of Lemma 4. Let ℓh(X, f) = E
[

1
πZ(Z,X)

(
2(Y−h(X,A,Z))Z

δ(X) − f(X)
)2 ∣∣∣∣X]. By Lemma 3, it

suffices to show argminf ℓh(X, f) = argminf ℓ(X, f). For any h(x, a, z) satisfying Equation (4),
we have

ℓh(X, f) = E

[
1

πZ(Z,X)

(
2Y Z

δ(X)
− f(X)− 2h(X,A,Z)Z

δ(X)

)2 ∣∣∣∣X
]

= ℓ(X, f) + 2E
[

1

πZ(Z,X)

(
2Y Z

δ(X)
− f(X)

)(
2h(X,A,Z)Z

δ(X)

) ∣∣∣∣X]
+ E

[
1

πZ(Z,X)

(
2h(X,A,Z)Z

δ(X)

)2 ∣∣∣∣X
]

= ℓ(X, f) +
8

(δ(X))2
E
[
Y h(X,A,Z)

πZ(Z,X)

∣∣∣∣X]− 4f(X)

δ(X)
E
[
Zh(X,A,Z)

πZ(Z,X)

∣∣∣∣X]
+

4

(δ(X))2
E
[
(h(X,A,Z))2

πZ(Z,X)

∣∣∣∣X]
Here the second term and the fourth term don’t depend on f , and the third term is 0. Therefore,
argminf ℓh(X, f) = argminf ℓ(X, f)

As shown in Lemma 4, the minimizer is invariant of a shift on outcome by a function h that satisfies
Eq. (4). Similar to the way of finding ĝ∗, we would like to find the function h with the smallest
variance of [πZ(Z,X)]−1[2(Y − h(X,A,Z))Zδ−1(X)− f(X)] among all h that satisfies Eq. (4).
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Theorem 4. Among all measurable h : (X , A, Z) → R satisfying Eq. (4), the following function

minimizes Var
[

1
πZ(Z,X)

(
2(Y−h(X,A,Z))Z

δ(X) − f(X)
)]

:

h∗(x, a, z) = µY (x) +
∆(x)

2

(
a− µA(x)− zδ(x)

)
if the conditional means µY (x) and µA(x) is one of these three pairs: (1) µY

1 (x) and µA
1 (x); (2)

µY
−1(x) and µA

−1(x); (3) mY (x) ≜ (µY
1 (x) + µY

−1(x))/2 and mA(x) ≜ (µA
1 (x) + µA

−1(x))/2.

Proof of Theorem 4. For any h(x, a, z) satisfying Equation (4), the variance of the derivative of the
weighted loss Lh(f) at f = ∆ is given by

Var

(
1

πZ(Z,X)

(
2
(
Y − h(X,A,Z)

)
Z

δ(X)
−∆(X)

))
= E

(
E
[

1

(πZ(Z,X))2

(
2
(
Y − h(X,A,Z)

)
δ(X)

− Z∆(X)

)2∣∣∣∣Z,X])
≜ E[S(X,Z, h)]

where

S(x, z, h) = E
[

1

(πZ(Z,X))2

(
2
(
Y − h(X,A,Z)

)
δ(X)

− Z∆(X)

)2∣∣∣∣Z = z,X = x

]
Now we seek to minimize E[S(X,Z, h)]. By convexity of S(X,Z, h) and Lemma 3, it suffices to
show that the gradient of S(X,Z, h) with respect to h is 0 at f = ∆, if h is one of the three equivalent
forms. To this end, set the gradient of S with respect to h to be 0. Then for any (x, z) ∈ (X ,Z), we
have

E
[
− 4

δ(X)

1

(πZ(Z,X))2

(
2(Y − h(X,A,Z))

δ(X)
− Z∆(X)

) ∣∣∣∣Z = z,X = x

]
= 0,

which leads to the following condition on the optimal h:

E[h(X,A,Z)|Z = z,X = x] = E[Y |Z = z,X = x]− z∆(x)δ(x)/2 (5)

Since δ(x)∆(x) = µY
1 (x)− µY

−1(x), it can be verified that Equation (5) implies E[h(X,A,Z)|Z =
1, X = x] = E[h(X,A,Z)|Z = −1, X = x], which is equivalent to Equation (4). We will then
verify that the following three equivalent functions satisfy Equation (5).

h∗
1(x, a, z) = µY

1 (x) +
∆(x)

2

(
a− µA

1 (x)− zδ(x)
)

h∗
2(x, a, z) = µY

−1(x) +
∆(x)

2

(
a− µA

−1(x)− zδ(x)
)

h∗
3(x, a, z) =

µY
1 (x) + µY

−1(x)

2
+

∆(x)

2

(
a−

µA
1 (x) + µA

−1(x)

2
− zδ(x)

)
To see their equivalence, notice that ∆(x) = 2[µY

1 (x)− µY
−1(x)]/[µ

A
1 (x)− µA

−1(x)]. Then we have

µY
−1(x)− µA

−1(x)∆(x)/2 =
µY
−1(x)µ

A
1 (x)− µY

1 (x)µ
A
−1(x)

µA
1 (x)− µA

−1(x)
= µY

1 (x)− µA
1 (x)∆(x)/2,

and h∗
3 is simply the average of h∗

1 and h∗
2. It suffices to show h∗

1 satisfies (5). We have

E[h∗
1(X,A,Z)|Z = 1, X = x] = µY

1 (x)−
∆(x)

2
δ(x)

E[h∗
1(X,A,Z)|Z = −1, X = x] = µY

1 (x) +
∆(x)

2

(
µA
−1(x)− µA

1 (x) + δ(x)
)

= µY
−1(x) +

∆(x)

2
δ(x),

which completes the proof.
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D Additional Simulations

In this section, we conducted simulations that evaluate the performance of the proposed framework
against model mispecification on the nuisance variables. The data is generated by the same model as
Setting 1 in Section 6, except that πZ(1, X) = expit{2X1}. Based on the true model, the conditional
mean outcome is non-linear on X . However, in Setting 3, we will use its OLS estimate as a case of
misspecification. In Setting 4, we deliberately used a wrong propensity π̂Z(1, x) = 1/2. We keep all
the other procedures the same as Setting 1. The results are summarized in Table D. We can observe
that the residualized version have superior performance, and have significant lower MSE compared
to the original version.

Table 2: Simulation results: mean×10−2(SE×10−2). IPW-MR: the multiply robust weighted
learning; BART: Bayesian additive regression trees; RD: robust direct learning; CF: causal forest.
The empirical maximum value is 0.967 for setting 3 and 0.979 for setting 4.

BART RD IPW-MR CF MRIV IV-DL IV-RDL1 IV-RDL2

3
MSE 136(4.3) 93(5.7) NA 96.6(1.9) 552(86) 194(14) 80(7.0) 81.8(6.5)
AR 63.4(0.9) 76.2(0.8) 79.5(0.7) 76.9(0.8) 77.1(0.7) 80.1(0.6) 84.5(0.6) 82.8(0.7)
Value 73.7(1.2) 85.5(0.9) 89.4(0.8) 85.6(0.8) 85.6(0.7) 89.3(0.5) 93(0.4) 91.6(0.6)

4
MSE 137(4.3) 86.2(2.6) NA 96.7(1.9) 79.5(2.4) 103(5) 44.1(3.1) 60.7(3)
AR 63.5(0.9) 72.1(0.6) 78.6(1.0) 77(0.8) 75.6(0.6) 74.1(0.8) 83.6(0.8) 78.5(0.9)
Value 74.5(1.2) 84.9(0.6) 87.3(0.8) 86.3(0.8) 84.8(0.7) 83.5(0.9) 92.6(0.7) 87.9(0.9)

E 3D plots for the data analysis

In the data analysis, we construct a 3-dimensional plot for the estimated CATE based on the three
splitting variables (age of mom at census, age of mom at first birth, and income of father). The plot
is presented in two rotations in Figure 4. The points in the plots are color-coded by the estimated
CATE with red indicating more likely to work and blue indicating more likely to not work. We can
see that, overall, blue points are at the bottom of the plots, with a majority of them below $25k/year.
Subgroup 3 of young mothers with extremely low fathers’ income only accounts for 3% of the data
and hence is hard to see here.

Figure 4: 3D scatter plots of three covariates colored by estimated CATE for 3000 randomly selected
subjects. Both plots reflect different rotations.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: They provide a summary of the research objectives, methodologies, and
findings, which are consistently supported by the detailed content of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We included discussion on the accessibility of the assumptions in practice.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: The proof for each theoretical result can be found in Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The code provided in the supplemental materials can be used to reproduce
results in both simulation study and real data analysis.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The code is included in the supplementary materials, with instructions to
reproduce the results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All steps for data generation, model fitting, evaluation, etc., are discussed in
the paper. Full details provided with the code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: For each evaluation metric, we provided standard error as a measure of the
error bar.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

21

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No]

Justification: Each experiment takes a few hours on an old Macbook. Detailed information
on the computer resources and an estimate of time needed is included in the code instructions.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper proposed an estimation framework and technical details within a
specific field, without offering practical applications or solutions that could be implemented
in broader societal contexts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: Our data analysis used public data.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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