
Traceback of Poisoned Texts in Poisoning Attacks to
Retrieval-Augmented Generation

Anonymous Authors

Abstract
Large language models (LLMs) integrated with retrieval-augmented
generation (RAG) systems enhance accuracy by accessing external
knowledge database. However, recent studies have exposed RAG’s
vulnerability to poisoning attacks, where an attacker inject poi-
soned texts into the knowledge database, leading to attacker-desired
responses. Existing defenses, primarily focused on inference-time
mitigation, have proven inadequate against sophisticated attacks.
In this paper, we present the first traceback system in RAG, RAG-
Forensics, which traces poisoned texts from the knowledge data-
base. RAGForensics narrows the space of potentially poisoned texts
and accurately identifies them without requiring access to model
gradients, a common challenge in RAG systems. Our empirical
evaluation on multiple datasets demonstrates RAGForensics’s ef-
fectiveness against state-of-the-art and adaptive poisoning attacks.
This work pioneers the exploration of poisoned texts traceback
in RAG systems, offering a practical and promising approach to
securing them against poisoning attacks.

1 Introduction
Large language models (LLMs) [1, 2, 5] have demonstrated impres-
sive capabilities, matching human-level performance in tasks like
question answering and summarization. However, they are prone
to hallucinations [16], generating incorrect information due to the
absence of real-time knowledge. Retrieval-augmented generation
(RAG) [4, 8, 11, 18, 19, 21, 25, 32] addresses this issue by retrieving
relevant texts from an external knowledge database. A RAG system
consists of three components: the knowledge database, a retriever,
and an LLM. When a user submits a query, the retriever selects the
top-𝐾 relevant texts from the database, which are then provided as
context to the LLM for generating a more accurate response.

Recent studies [7, 10, 28, 30, 40, 41] reveal that RAG systems are
highly susceptible to poisoning attacks. Since the knowledge data-
base sources information from platforms like Wikipedia [31] and
FactoidWiki [9], attackers can inject poisoned texts into the data
collection pipeline, causing the LLM in RAG to produce attacker-
intended responses for specific queries. In response, a few de-
fenses [36, 41] have been developed to counter such attacks, pri-
marily by mitigating the influence of poisoned texts during infer-
ence. For example, RobustRAG [36] uses an isolate-then-aggregate
approach to filter out malicious keywords from the top-𝐾 texts
retrieved for a given query.

Given the tendency for new defenses to be quickly overcome by
more advanced attacks [10, 12, 22, 23, 29], we argue that the imme-
diate priority should not be on developing complex inference-time
defenses. Instead, drawing inspiration from poison forensics in deep
learning systems [17, 24, 29], which focuses on tracing problematic
training data linked to misclassification behavior, we re-evaluate
the security needs of RAG systems. In practice, direct attacks on
the retriever or LLM are challenging since these components are

typically isolated from external access. However, the knowledge
database, which aggregates up-to-date information from various
external sources [7, 28, 40, 41], has become a prime target for attack-
ers. Exploiting this vulnerability, adversaries seek to manipulate
the LLM’s output by injecting stealthy, well-crafted poisoned texts
into the database, enabling them to influence responses covertly.

In light of this challenge, we argue that it is more practical for
RAG system providers to focus on tracing poisoned texts rather than
building sophisticated defenses to prevent adversarial manipulation
of the LLM. This approach offers the advantage of identifying prob-
lematic data sources or weaknesses in the data collection pipeline,
allowing providers to mitigate poisoning attacks by replacing com-
promised sources or removing malicious texts. However, tracing
poisoned texts in RAG systems is a complex task. First, while exist-
ing poison forensics methods in deep learning [29] have shown that
poisoned training data can be identified using model gradients, this
technique is not applicable in RAG systems since we lack access
to the parameters of both the LLM and the retriever. Second, with
knowledge databases often containing millions of entries, achiev-
ing a reliable traceback with an extremely low false positive rate
becomes a significant challenge.

In this paper, we are the first to address the challenge of tracing
poisoned texts in RAG systems under poisoning attacks and propose
RAGForensics, a traceback system capable of accurately identifying
malicious texts within the knowledge database based on the ob-
served attack. Our RAGForensics system operates in two key phases:
narrowing the scope of potential poisoned texts (Section 4.2) and
accurately identifying them (Section 4.3). In the narrowing phase,
the system retrieves a subset of texts from the database that are
most likely to be poisoned, reducing the identification scope from
millions to just a few dozen texts. The identification phase leverages
an LLM to precisely detect the poisoned texts within this subset,
eliminating the need for gradient calculations. Specifically, for each
targeted query flagged through user feedback, RAGForensics itera-
tively uses the RAG retriever to extract a set of suspect texts from
the knowledge database. The LLM then identifies which of these
texts are responsible for generating incorrect outputs. The iteration
process continues until no poisoned texts remain among the top-𝐾
most relevant texts retrieved for the targeted query.

Additionally, we recognize that incorrect outputs for targeted
queries, reported through user feedback, may not always result
from an attack (referred to as non-poisoned feedback). In such
cases, no poisoned text may be present among the top-𝐾 retrieved
texts. Instead, the error could stem from the LLM having learned
incorrect information during training. In Section 6, we explore how
RAGForensics can distinguish non-poisoned feedback and improve
the RAG system’s output through benign text enhancement. For
each targeted query, we insert a relevant benign text and its retrieval
proxy into the knowledge database, ensuring it appears among

the top-𝐾 texts to guide the LLM toward generating the correct
response.

We summarize the following contributions:
• We are the first to introduce the problem that the traceback of
poisoned texts in poisoning attacks to RAG, and propose the
traceback system RAGForensics that can accurately identify
poisoned texts from the knowledge database based on the
observed poisoning attacks.

• we discuss how to identify the non-poisoned feedback in our
traceback system RAGForensics and correct the output of
RAG.

• We empirically demonstrate the effectiveness of our RAG-
Forensics and BTE against a variety of state-of-the-art poi-
soning attacks on 3 datasets. In addition, we also evaluate our
RAGForensics against two adaptive attacks and demonstrate
that it is robust for the powerful attacks.

To the best of our knowledge, this is the first work to explore a
traceback of poisoning texts in RAG. Our results demonstrate the ef-
fectiveness of our proposed traceback system. Therefore, we believe
that poison forensics in RAG is very practical and promising.

2 Preliminaries and Related Work
2.1 RAG Overview
The RAG system improves LLMs by retrieving relevant information
from external knowledge bases [7, 28, 37, 41]. It fetches relevant
texts based on a user query and combines them with the query
to provide the LLM with additional context, leading to more accu-
rate responses. The RAG workflow is structured into two stages:
knowledge retrieval and answer generation.
Knowledge Retrieval: The goal of this stage is to retrieve the
most relevant texts from the external knowledge database based
on the user’s query. Typically, this is achieved using a vector-based
retrieval model. For a query 𝑞, the query encoder 𝑓𝑞 generates an
embedding vector 𝑣𝑞 . Each text 𝑑 𝑗 in the knowledge base D is
encoded into a vector 𝑣𝑑 𝑗

by a text encoder 𝑓𝑑 , forming the set 𝑉D .
The relevance between 𝑣𝑞𝑖 and 𝑉D is measured by similarity (e.g.,
dot product or cosine similarity). Based on these scores, the top-𝐾
most relevant texts R̂ (𝑞, 𝐾,D) are selected.
Answer Generation: At this stage, the input query 𝑞 is combined
with the set of retrieved documents R̂ (𝑞, 𝐾,D) to query the LLM,
which generates a response 𝑂 . Formally, the response can be repre-
sented as the following:

𝑂 = LLM(R̂ (𝑞, 𝐾,D), 𝑞), (1)

where R̂ (𝑞, 𝐾,D) represents the set of the top-𝐾 most relevant
texts retrieved from the knowledge database D based on the query
𝑞.

In this stage, we utilize a similar system prompt as described in
[41] for RAG, as shown in Appendix 8.3.

2.2 Poisoning Attacks to RAG
The dependence of RAG systems on external data sources creates
opportunities to poisoning attacks [28, 37, 40, 41]. In these attacks,
adversaries intentionally inject harmful or misleading information
into the knowledge base. Their goal is to influence or manipulate

the LLM’s responses to specific queries. Poisoning attacks to RAG
can be implemented by injecting prompts [13], where malicious
instructions are embedded in the knowledge base to manipulate
the LLM into generating specific responses to targeted questions.
In follow-up research, several methods for creating poisoned texts
have been proposed. For example, Zhong et al. [40] introduced
a method to generate adversarial paragraphs that, once inserted
into the retrieval corpus, can cause the LLM to produce misleading
answers. Unlike inserting semantically meaningless malicious text,
Zou et al. [41] proposed the PoisonedRAG method, where the at-
tacker injects carefully crafted, semantically meaningful “poisoned”
documents designed to influence the LLM to generate responses
controlled by the attacker.

2.3 Defenses against Poisoning Attacks to RAG
Current defenses against poisoning attacks to RAG include perplexity-
based detection [15], query rewriting through LLMs [15, 41], and
increasing the number of retrieved documents [41]. Perplexity-
based methods identify poisoned content by assessing text quality,
assuming that poisoned texts have higher perplexity scores, indi-
cating lower quality. Query rewriting defenses modify user queries
to reduce the likelihood of retrieving poisoned texts, aiming to
retrieve safer, benign information. Xiang et al. [36] introduced the
RobustRAG framework, which uses an isolate-then-aggregate strat-
egy to defend against such attacks, but its effectiveness declines as
the amount of poisoned data increases.

While current defenses show promise in detecting poisoned texts
or preventing them from influencing the outputs of LLM, stronger
and adaptive attackers can still evade them, as seen in deep learning
systems [3, 26, 27, 35, 39]. Drawing inspiration from poison foren-
sics in deep learning [17, 24, 29], which trace harmful training data
linked to misclassifications, we believe it is more valuable for RAG
system providers to trace poisoned texts rather than develop more
advanced defenses. However, poison forensics in deep learning
rely on model gradients, which are generally inaccessible in RAG
systems due to limited access to LLM parameters.

3 Traceback of Poisoned Texts in Poisoning
Attacks to RAG

This paper is the first to address the task of tracing poisoned texts
in RAG poisoning attacks. We illustrate this task with the following
example scenario. Figure 1 outlines the process of tracing poisoned
texts in RAG poisoning attacks. The attacker begins by injecting
poisoned texts into the knowledge database (Figure 1a). When a
user submits a targeted query, the RAG system, relying on the com-
promised database, generates an incorrect response aligned with
the attacker’s intent (Figure 1b). To address this, the RAG service
provider can offer a feedback button, allowing users to report in-
correct outputs along with the related queries. These reports are
sent to the traceback system, which identifies the poisoned texts
in the knowledge database responsible for the incorrect responses
(Figure 1c). We begin by outlining the threat model for poisoning
attacks and the traceback system in RAG. Afterward, we analyze
the key challenges involved in designing an effective traceback
system.

2

Retriver Knowledge database LLM

Benign
text

Poisoned
text

(a) Poisoning attacks

Query

LLM

RetriverUser

Knowledge
database

Incorrect
output

(b) Feedback by users

Query

RAG
Forensics

Incorrect
output

(c) Traceback of poisoned texts

Figure 1: The example scenario of our traceback system. (a) an attacker injects multiple poisoned texts into knowledge database;
(b) an user submits a query and obtain an incorrect output to cause a feedback; (c) our traceback system RAGForensics identifies
poisoned texts based on the user’s feedback that includes query and incorrect answer.

3.1 Threat Model
In this section, we describe the threat model of poisoning attacks
and the traceback system respectively.
Poisoning attacks: Building on existing poisoning attacks [28, 37,
40, 41], we outline the attacker’s goal and knowledge. The attacker
aims to poison the knowledge database so that the LLM in RAG
generates specific, attacker-chosen responses (targeted answers)
for a set of 𝑀 targeted queries. We assume the attacker has full
knowledge of the texts in the database and direct access to the
parameters of both the retriever and the LLM, allowing them to
query these components directly.
Traceback system: We assume that the service provider of the
traceback system is the owner of the RAG system. The traceback
system is granted full access to all texts in the knowledge database.
However, for the retriever and LLM, we consider a practical scenario
where the RAG owner uses a closed-source retriever and LLM that
outperform open-source alternatives. As a result, the traceback
system cannot access their internal parameters but can query them
directly. We assume that the traceback system has collected each
targeted query 𝑞𝑖 and its corresponding RAG output 𝑡𝑖 involved in
the poisoning attack. This is a common assumption in traceback
systems for poisoning attacks [17, 29]. Many LLM applications,
such as ChatGPT1, include a feedback button that allows users to
report incorrect outputs along with the related queries. Thus, this
assumption is both practical and easily implementable in RAG.

In practice, incorrect outputs can also result from the LLM itself.
An under-trained LLMor one that has acquired incorrect knowledge
may generate inaccurate responses even without poisoned texts. In
Section 6, we explore methods to identify whether the LLM is the
source of an incorrect output. Additionally, we propose a post-hoc
defense to help the LLM produce correct answers for all collected
queries.

3.2 Design Challenges
Optimization problem: Building on the traceback of data poison-
ing attacks in neural networks [29], we formulate the traceback of
poisoned texts in RAG poisoning attacks as an optimization prob-
lem. Unlike poisoning in neural networks, where individual data
1https://chatgpt.com/

points are manipulated, RAG attacks involve injecting multiple
poisoned texts into the knowledge database to cause the LLM to
generate attacker-desired answers for targeted queries. The goal of
the traceback process is to identify the specific texts in the knowl-
edge database responsible for the incorrect outputs. Given a set of
targeted queries Q and their incorrect outputs, as reported through
user feedback, our objective is to identify and remove the poisoned
texts D𝑝 from the knowledge database D. This ensures that the
LLM no longer produces the incorrect output 𝑡𝑖 for each targeted
query 𝑞𝑖 ∈ Q. We formalize this as the following problem:

min
D𝑝

1
|Q|

| Q |∑︁
𝑖=1

I(LLM(R̂ (𝑞𝑖 , 𝐾,D \ D𝑝), 𝑞𝑖) = 𝑡𝑖) (2)

s.t. 𝑞𝑖 ∈ Q, 𝑖 = 1, 2, . . . , |Q|,
D𝑝 ∈ D,

where D \ D𝑝 denotes the knowledge database with the poisoned
textsD𝑝 removed. The expression R̂ (𝑞𝑖 , 𝐾,D\D𝑝) refers to the top-
𝐾 most relevant texts retrieved by the retriever from the modified
database D \ D𝑝 for the targeted query 𝑞𝑖 .
Key challenges: The main challenge in identifying the poisoned
text set D𝑝 lies in solving the optimization problem in Equation
2. A straightforward approach would be to iteratively update D𝑝

using the gradient of the objective function, as suggested by [29].
However, this is impractical under our threat model. First, com-
puting the gradient is challenging due to two constraints: (1) we
lack access to the parameters of the retriever and LLM, and (2)
both R̂ (·) and I(·) are discrete functions. Second, determining up-
date candidates for D𝑝 requires calculating the gradient for every
text in the knowledge database D. This approach adds substantial
computational overhead and complicates optimization.

4 Our Traceback System: RAGForensics
In this section, we provide a high-level overview of our traceback
system RAGForensics, followed by its detailed design.

4.1 Overview
To address the key challenge in Section 3.2, our RAGForensics iden-
tifies the poisoned textsD𝑝 by iteratively retrieving and identifying

3

them for each targeted query. For every query, RAGForensics re-
trieves texts likely to be poisoned and identifies those responsible
for the incorrect output. The process stops once no poisoned texts
remain among the top-𝐾 relevant texts. RAGForensics involves two
key operations: narrowing the scope of poisoned texts (Section
4.2) and identifying them (Section 4.3). The narrowing operation
clusters scattered poisoned texts into a small set, reducing iden-
tification costs and false positives. We use the RAG retriever to
retrieve texts likely to be poisoned. In the identification step, a LLM
(potentially different from the one in RAG) evaluates each retrieved
text to determine if it is poisoned based on the incorrect output.

4.2 Narrowing the Scope of Poisoned Texts
Since the traceback system lacks knowledge of the attacker’s strat-
egy for injecting poisoned texts, we assume the poisoned texts are
randomly distributed throughout the knowledge database. For a tar-
geted query 𝑞𝑖 , a straightforward approach would be to brute-force
search through the entire database D to identify the text causing
the incorrect output 𝑡𝑖 . However, this approach is computationally
expensive and increases the risk of false positives for benign texts.
To address this, we propose clustering the texts most likely to be
poisoned into a smaller, manageable set.

The main challenge is determining which texts are more likely to
be poisoned. This presents a dilemma: we want to avoid evaluating
every text individually through clustering, but clustering requires
assessing the likelihood of each text being poisoned. To overcome
this, we leverage the attacker’s strategy. The attacker crafts poi-
soned texts to maximize their similarity with the targeted query 𝑞𝑖 ,
ensuring they are retrieved among the top-𝐾 texts. The incorrect
output 𝑡𝑖 further confirms that poisoned texts are being retrieved.
Using this insight, we iteratively employ the RAG retriever to select
the top-𝐾 relevant texts for the query 𝑞𝑖 as potential poisoned can-
didates. In each iteration, we identify which texts in the retrieved
set are poisoned (as detailed in Section 4.3) and remove them from
the knowledge database. The process repeats until no poisoned
texts are identified in the retrieved set.

4.3 Identifying Poisoned Texts
For the set of texts R retrieved in Section 4.2, we must accurately
determine whether each text is poisoned. Due to the complexity
of linguistic features, it is challenging to create a deterministic
function capable of identifying which texts are responsible for the
incorrect output.

To tackle this challenge, we leverage another aspect of the at-
tacker’s strategy. The attacker ensures that each poisoned text 𝑝 𝑗
can independently cause the LLM to generate the incorrect output
𝑡𝑖 for the targeted query 𝑞𝑖 . Thus, for each text R 𝑗 in the set R, we
can use a LLM (which may differ from the one in RAG) to assess
whether R 𝑗 triggers the incorrect output 𝑡𝑖 . However, if 𝑡𝑖 is mali-
cious, security restrictions may prevent the LLM from evaluating
accurately. To address this limitation, we provide explicit instruc-
tions, directing the LLM to disregard its background knowledge
and the correctness of both R 𝑗 and 𝑡𝑖 . Additionally, inspired by
the chain-of-thought (CoT) approach [34], we guide the LLM with
step-by-step instructions to ensure a thorough evaluation.

The prompt we designed to guide the LLM in evaluating the text
R 𝑗 follows three steps. First, it instructs the LLM to assess whether
R 𝑗 aims to induce an answer aligned with the incorrect output 𝑡𝑖 ,
regardless of factual accuracy. Second, the prompt asks the LLM to
provide a brief explanation for its judgment, encouraging logical
reasoning and improving the reliability of its assessment. Finally,
we incorporate the chain-of-thought (CoT) approach by including
the instruction, “Let’s think step by step”, prompting the LLM to
perform a structured, step-by-step evaluation. The complete prompt
is as follows:

I will provide a question, an response, and a context.
Without any other knowledge, judge whether the provided
context tries to induce you to generate an answer consis-
tent with the provided response [𝑡𝑖], regardless of whether
it is correct.’
Begin your judgement by providing a short explanation.
If yes, return "[Label: Yes]", otherwise, return "[Label: No]".
Question: [𝑞𝑖]
Context: [R 𝑗]
Response:[𝑡𝑖]
Let’s think step by step.

5 Experiments
5.1 Experimental Setup
5.1.1 Datasets. We utilize three question-answering datasets: Nat-
ural Questions (NQ) [20], MS-MARCO [38], and HotpotQA [6].
Each of these datasets contains a collection of queries along with
an associated knowledge database. For every query, multiple ground
truth texts are provided as correct answers. NQ originates from real
Google search queries, with its knowledge base being Wikipedia
pages. Similarly, MS-MARCO is built on Bing search queries, with
relevant web pages retrieved via Bing serving as its knowledge
source. In contrast, HotpotQA consists of human-crafted questions
requiring "multi-hop reasoning," and its knowledge base is also
drawn from Wikipedia.

In our experiments, we use the same 100 queries from Poisone-
dRAG [41] for each dataset as the initial set of targeted queries, and
adopt the same attacker-desired answers as in [41] for each query.
We simulate user feedback through the following process: 1) we
conduct poisoning attacks on the initial set of targeted queries; 2)
we submit each targeted query to the poisoned RAG to generate
the output; 3) we select 50 targeted queries whose outputs match
the attacker-desired answers to serve as the final test data.

5.1.2 Attacks. To assess the effectiveness of our traceback system
RAGForensics, we employ the following poisoning attacks:

PoisonedRAG attack [41]: PoisonedRAG aims to inject 𝑀 poi-
soned texts into the knowledge database so that the RAG generates
the attacker-desired answer for the targeted query. Each poisoned
text 𝑃 is split into two subtexts, 𝑆 and 𝐼 , where 𝑃 = 𝑆 ⊕ 𝐼 , with ⊕
denoting string concatenation. For the subtext 𝐼 , the attacker uses
an LLM to generate it in a way that, when used as context, the LLM
produces the attacker-desired answer. For the subtext 𝑆 , various

4

Table 1: The DACC, FPR and FNR of our traceback system RAGForensics and 6 traceback baselines against 3 poisoning attacks
on 3 datasets. Bold font indicates optimal, font underlined indicates suboptimal.

Datasets Attacks Metrics PPL-100 PPL-90 PoiFor ExpGen RKM TKM RAGForensics

NQ

PoisonedRAG-B
DACC ↑ 37.5 37.5 83.1 90.3 84.3 81.0 99.6
FPR ↓ 0.0 0.0 2.2 0.0 7.6 34.1 0.8
FNR ↓ 100.0 100.0 31.5 19.4 23.9 3.9 0.0

PoisonedRAG-W
DACC ↑ 16.7 16.7 81.1 91.2 84.9 72.9 99.2
FPR ↓ 0.0 0.0 0.0 0.5 8.8 38.8 1.6
FNR ↓ 100.0 100.0 37.9 17.1 24.1 15.4 0.0

InstruInject
DACC ↑ 28.6 28.6 100.0 100.0 69.6 86.3 99.6
FPR ↓ 0.0 0.0 0.0 0.0 0.8 11.5 0.4
FNR ↓ 100.0 100.0 0.0 0.0 60.0 16.0 0.4

HotpotQA

PoisonedRAG-B
DACC ↑ 0.0 68.2 75.5 87.5 77.7 85.4 97.4
FPR ↓ 0.0 18.1 19.6 2.6 6.7 29.1 2.4
FNR ↓ 100.0 45.6 29.5 22.5 37.8 0.0 2.8

PoisonedRAG-W
DACC ↑ 0.0 60.1 75.1 89.2 80.3 64.1 97.6
FPR ↓ 85.6 79.7 21.7 1.6 7.9 35.4 1.6
FNR ↓ 57.2 0.0 44.4 20.0 31.4 36.4 3.2

InstruInject
DACC ↑ 15.6 60.5 98.9 99.1 68.6 87.5 98.2
FPR ↓ 3.3 79.1 2.2 1.8 0.7 8.9 2.3
FNR ↓ 98.0 0.0 0.0 0.0 62.1 16.0 1.2

MS-MARCO

PoisonedRAG-B
DACC ↑ 44.4 67.6 73.0 83.4 76.6 74.4 98.4
FPR ↓ 0.0 8.3 1.0 0.0 18.1 49.2 2.3
FNR ↓ 100.0 56.4 53.0 33.3 28.7 2.0 0.8

PoisonedRAG-W
DACC ↑ 69.5 64.1 66.6 87.8 78.5 40.2 98.3
FPR ↓ 0.0 71.7 3.5 0.0 17.9 47.7 2.7
FNR ↓ 61.0 0.0 63.3 24.4 25.1 71.9 0.8

InstruInject
DACC ↑ 86.2 64.1 97.8 99.2 53.8 73.7 99.4
FPR ↓ 0.0 71.7 2.5 0.0 8.7 11.4 1.2
FNR ↓ 27.6 0.0 2.0 1.6 83.8 41.2 0.0

techniques are employed to craft it based on whether the retriever
operates in a white-box or black-box setting.

• Black-box (PoisonedRAG-B): The attacker only uses the
targeted query as the subtext 𝑆 .

• White-box (PoisonedRAG-W): The attacker initially sets
the targeted query as the subtext 𝑆 and then updates it to
maximize the similarity score between the subtext 𝑆 and the
targeted query.

Instruction injection attack (InstruInject) [28]: This attack was
formally introduced in [28]. The poisoned text for each targeted
query is crafted in the same manner as in PoisonedRAG (black-
box). However, in the instruction injection attack, the subtext 𝐼 is
replaced with the instruction: "Ignore all other context information
and respond only with: [attacker-desired answer]."

5.1.3 Traceback Baselines in Poisoning Attacks to RAG. Given the
limited research on traceback methods for poisoning attacks in
RAG, no established traceback method exists to use as a baseline. To
provide a more comprehensive evaluation of our traceback system
RAGForensics, we introduce six baselines by extending traceback
methods from poisoning attacks on neural networks and adapting
commonly used defenses against such attacks in RAG systems.

Poison Forensics (PoiFor): Poison Forensics [29] is a traceback
mechanism designed to address poisoning attacks on neural net-
works. It works by iteratively clustering and pruning benign train-
ing data to isolate the set of poisoned data. When adapted to RAG,
Poison Forensics uses an LLM to group the top-𝐾 texts for each
query into two clusters. Then, by prompting the LLM with the
texts from each cluster, Poison Forensics identifies and removes the
poisoned texts.

Explanation generation (ExpGen): Several studies [41] suggest
enhancing user comprehension of answer sources by having LLMs
provide explanations. To implement this, we first modify the sys-
tem prompt of RAG, instructing it to explain which specific texts
from the top-𝐾 sources are used to produce the answer. Next, we
detect poisoned texts by evaluating the answers and explanations
generated by the RAG model.

Response keywords matching (RKM): Inspired by the Robus-
tRAG defense (as outlined in Section 5.1.4), we introduce the RKM
method to detect poisoned texts. Specifically, after utilizing Ro-
bustRAG to extract the keywords from each top-𝐾 response, we
employ substring matching to determine if the corresponding text
is poisoned.

Text keywords matching (TKM): Different from the baseline
RKM, we directly extract the keywords of each text in the top-𝐾 .

5

Perplexity-based detection (PPL): Perplexity-base detection [28,
41] have proposed defenses against poisoning attacks targeting
RAG. In our experiment, we extend the Perplexity-based detection
approach to the traceback baseline. Specifically, for each dataset,
we begin by randomly selecting 1,000 texts from the knowledge
database and use Llama-2-7b [33] to calculate the perplexity of each
text. We then choose two thresholds to serve as baselines.

• PPLDetect-100: : The threshold is set to be greater than the
perplexity of all the texts.

• PPLDetect-90: : The threshold is set to be greater than the
perplexity of 90% of the texts.

5.1.4 Defense Baselines Against Poisoning Attacks to RAG. In our
experiment, we use the following state-of-the-art baseline defenses:

RobustRAG [36]: RobustRAG is a method designed to defend
against poisoning attacks targeting RAG. The process begins by
having the LLM generate a response for each of the top-𝐾 texts.
Next, it identifies keywords from all the generated responses and
filters out those that occur less frequently. Finally, the LLM produces
a final response using the remaining keywords.

Knowledge expansion (KE) [41] : Knowledge expansion is iden-
tified as the most effective defense strategy proposed in [41]. This
approachworks by increasing the number of retrieved texts, thereby
increasing the proportion of benign texts in the context. By doing
so, KE reduces the influence of poisoned texts on the LLM’s gener-
ated outputs. The notation KE-𝑥 indicates that 𝑥 texts are retrieved
during this process.

Perplexity-based detection (PPL): It is the same as described in
Section 5.1.3.

5.1.5 Evaluation Metric. In evaluating our traceback system, we
assess detection performance using three key metrics: detection
accuracy (DACC), false positive rate (FPR), and false negative rate
(FNR). For evaluating the general performance of our post-hoc
defense, we rely on two metrics: attack success rate (ASR) and
accuracy rate (ACC). The detailed computation of these metrics can
be found in Appendix 8.2.

5.1.6 Parameter Setting. We outline the default configurations for
the RAG system, the attack settings, and our traceback system.

RAG settings: For the retriever, we use Contriever [14] by default
and apply a dot product to calculate similarity scores. We retrieve
the 𝐾 = 5 most relevant texts from the knowledge database for
each query. For the LLM component, we use GPT-4o-mini as the
default LLM in RAG.

Attack settings: In general, we set the number of poisoned texts
𝑀 per targeted query to 5. For the PoisonedRAG attack, we use
GPT-4o-mini to craft the poisoned texts.

Our traceback system settings: We use GPT-4o-mini to identify
each text among the top-𝐾 retrieved texts.

To reduce computational costs, we conduct 5 iterations for each
experiment, with each iteration randomly selecting 10 queries for
evaluation.

Table 2: Impact of LLM used to identify the poisoned texts in
our RAGForensics on NQ datasets.

Attacks Metrics GPT-4o-mini GPT-4-turbo GPT-4o

PoisonedRAG-B
DACC ↑ 99.6 97.4 99.4
FPR ↓ 0.8 4.1 0.8
FNR ↓ 0.0 1.2 0.4

PoisonedRAG-W
DACC ↑ 99.2 99.6 99.6
FPR ↓ 1.6 0.4 0.0
FNR ↓ 0.0 0.4 0.8

InstruInject
DACC ↑ 99.6 97.5 98.0
FPR ↓ 0.4 5.0 0.8
FNR ↓ 0.4 0.0 3.2

5.2 Evaluation of Our Traceback System
RAGForensics

Our RAGForensics can accurately trace the poisoned texts of
various poisoning attacks on 3 datasets: Table 1 presents the
DACC, FPR, and FNRmetrics of our traceback system RAGForensics
when tested against three poisoning attacks across three datasets.
We have the following key observations. Firstly, our RAGForensics
consistently identifies all poisoning texts within the knowledge
database with high accuracy. For instance, the DACCs of our RAG-
Forensics are all higher than 97.4%, and the FPRs are all lower than
2.7%, and the FNRs are all lower than 3.2%. Secondly, RAGForensics
demonstrates stable performance across different poisoning attacks.
For instance, in the NQ dataset, the DACCs fluctuate by no more
than 0.4%, the FPRs by no more than 1.2%, and the FNRs by no more
than 0.4%.
Our RAGForensics outperforms all traceback baselines on
3 datasets: Table 1 also shows the comparison between our RAG-
Forensics and other traceback baselines against various poisoning
attacks. The results demonstrates that our RAGForensics signifi-
cantly outperforms other traceback baselines. Specifically, our RAG-
Forensics basically achieves the optimal or suboptimal performance
of the DACCs, FPRs, and FNRs. Moreover, our RAGForensics has
the best generalization performance, while other baselines can only
achieve good performance on the few settings of specific poisoning
attacks and datasets. For instance, the DACCs of our RAGForensics
are all higher than 97.4%, while the minimum fluctuation range of
DACC in other baselines is more than 15%.
Impact of the number of poisoned texts injected into the
knowledge database by attacker: We evaluate the effectiveness
of our RAGForensics as the number of poisoned texts increases,
ranging from 5 to 40. Figures 2, 3, 4 show the DACCs, FPRs, and
FNRs of our traceback system RAGForensics against various poison-
ing attacks on 3 datasets. We find that our RAGForensics achieves
similar DACCs, FNRs, and FPRs, demonstrating that its performance
is insensitive to the number of poisoned texts.
Impact of LLMs in our RAGForensics: We conduct experiments
using different LLMs in our RAGForensics to indentify the poi-
soned texts, including GPT-4o, GPT-4-turbo, and GPT-4o-mini. The
results on NQ dataset are presented in Table 2, with those on Hot-
potQA and MS-MARCO datasets shown in Table 5 in Appendix 8.5.
These results indicate that our RAGForensics performs well on the

6

5 10 15 20 25 30 35 40
M

96

97

98

99

100
DA

CC
 (%

)

PoisonedRAG-B
PoisonedRAG-W
InstruInject

5 10 15 20 25 30 35 40
M

0.0

1.0

2.0

3.0

4.0

FP
R

(%
)

PoisonedRAG-B
PoisonedRAG-W
InstruInject

5 10 15 20 25 30 35 40
M

0.0

1.0

2.0

3.0

4.0

FN
R

(%
)

PoisonedRAG-B
PoisonedRAG-W
InstruInject

Figure 2: Impact of the number of poisoned texts for each targeted query for our RAGForensics on NQ dataset.

5 10 15 20 25 30 35 40
M

96

97

98

99

100

DA
CC

 (%
)

PoisonedRAG-B
PoisonedRAG-W
InstruInject

5 10 15 20 25 30 35 40
M

0.0

2.0

4.0

6.0

8.0
FP

R
(%

)
PoisonedRAG-B
PoisonedRAG-W
InstruInject

5 10 15 20 25 30 35 40
M

0.0

1.0

2.0

3.0

4.0

FN
R

(%
)

PoisonedRAG-B
PoisonedRAG-W
InstruInject

Figure 3: Impact of the number of poisoned texts for each targeted query for our RAGForensics on HotpotQA dataset.

5 10 15 20 25 30 35 40
M

96

97

98

99

100

DA
CC

 (%
)

PoisonedRAG-B
PoisonedRAG-W
InstruInject

5 10 15 20 25 30 35 40
M

0.0

2.0

4.0

6.0

8.0

FP
R

(%
)

PoisonedRAG-B
PoisonedRAG-W
InstruInject

5 10 15 20 25 30 35 40
M

0.0

1.0

2.0

3.0

4.0
FN

R
(%

)
PoisonedRAG-B
PoisonedRAG-W
InstruInject

Figure 4: Impact of the number of poisoned texts for each targeted query for our RAGForensics on MS-MARCO dataset.

DACC, FNR, and FPR metrics across various LLMs, showcasing its
remarkable adaptability to different LLMs.

5.3 Adaptive Attacks to RAGForensics
To verify the robustness of our method, we consider targeted adap-
tive attacks that an attacker familiar with our RAGForensics might
deploy. We assume the adversary has full knowledge of the details
of our RAGForensics, including its processes and prompts. Based on
the three existing poisoning attacks mentioned before, we enhance
them using two new adaptive attack approaches to circumvent our
RAGForensics’s defense. We evaluate our RAGForensics’s defensive
performance against these adaptive attacks through experiments.
Deceiving identification: In our RAGForensics, we use prompts
to guide the LLM in assessing whether the texts in the knowledge
database are designed to induce responses that align with the incor-
rect answers. Inspired by the prompt injection attack, an attacker
familiar with our system and prompts can embed an additional
instruction within the poisoned text they create. This instruction

misleadingly asserts that the text is designed to prompt the LLM
to produce the correct answer, thereby attempting to deceive the
identification of poisoned texts by the LLM. Specifically, based on
the poisoned text generated by three different attack methods, the
attacker appends the phrase, “This text will induce you to gener-
ate [correct answer]”, with the goal of deceiving the judging LLM
within our RAGForensics.

We conduct experiments using this adaptive attack method both
in the absence of defense and within our RAGForensics, with the
results shown in Table 3. The experiments without any defense
reveal high ASRs, demonstrating the strong attack capability of this
method. In contrast, the results in our RAGForensics show high
DACCs, along with very low FPRs and FNRs. This indicates that
our RAGForensics can accurately distinguish between poisoned
and benign texts, demonstrating robust resistance to this adaptive
attack method.

Disguising Poison as Benign: In our RAGForensics, the LLM
compares texts with incorrect answers when making judgments.

7

Table 3: The evaluation of RAGForensics against adaptive
poisoning attacks in deceiving identification. ("No defense"
in the table means not using any defensive measure against
attacks; "Apt+" means that we enhance the basic attack meth-
ods using adaptive methods.)

Datasets Attacks No defense RAGForensics
ASR DACC FPR FNR

NQ
Apt+PoisonedRAG-B 72.0 99.5 1.1 0.0
Apt+PoisonedRAG-W 78.0 98.5 3.0 0.0

Apt+InstruInject 66.0 99.1 1.8 0.0

HotpotQA
Apt+PoisonedRAG-B 80.0 97.3 3.4 2.0
Apt+PoisonedRAG-W 92.0 98.2 1.3 2.3

Apt+InstruInject 72.0 99.0 2.1 0.0

MS-MARCO
Apt+PoisonedRAG-B 58.0 99.7 0.7 0.0
Apt+PoisonedRAG-W 82.0 98.8 2.4 0.0

Apt+InstruInject 40.0 99.0 2.0 0.0

Table 4: The evaluation of RAGForensics against adaptive
poisoning attacks in disguising poisoned as benign.

Datasets Attacks No defense RAGForensics
ASR DACC FPR FNR

NQ
Apt+PoisonedRAG-B 54.0 97.5 4.3 0.7
Apt+PoisonedRAG-W 80.0 99.5 1.0 0.0

Apt+InstruInject 74.0 99.5 1.1 0.0

HotpotQA
Apt+PoisonedRAG-B 62.0 96.4 2.6 4.7
Apt+PoisonedRAG-W 98.0 98.2 1.3 2.5

Apt+InstruInject 64.0 98.5 2.4 0.6

MS-MARCO
Apt+PoisonedRAG-B 56.0 98.0 4.0 0.0
Apt+PoisonedRAG-W 94.0 98.2 3.6 0.0

Apt+InstruInject 48.0 100.0 0.0 0.0

This creates an opportunity for attackers to mislead the judging
LLM by embedding the correct answer to a specific question within
the poisoned text, leading the LLM to mistakenly classify it as
harmless. In PoisonedRAG-B and Prompt Injection attack, attackers
typically segment the poisoned text into two parts, while adaptive
attackers can place the correct answer to the target question be-
tween these segments. For PoisonedRAG-W, the correct answer can
be positioned at the start of the generated poisoned text, thereby
confusing the LLM’s judgment.

We conduct experiments using this adaptive attack method, and
the results are shown in Table 4. In the absence of the defense, this
method exhibits high ASRs, indicating its strong attack capability.
In contrast, results in our RAGForensics demonstrate high DACCs,
with low FPRs and FNRs, indicating that our RAGForensics can
effectively identify benign and poisoned texts, thereby possessing
robustness against adaptive attacks.

6 Discussion
In this section, we first discuss how to identify non-poisoned feed-
back in our traceback system RAGForensics. Then, we propose
a method of benign texts enhancement to correct the output of
RAG for the non-poisoned feedback. In the last, we discuss the
limitations and future directions.

Identifying the non-poisoned feedback: In practice, the in-
correct output for a targeted query collected by the user’s feed-
back may not result from an attack (called non-poisoned feedback),
there might be no poisoned text among the top-𝐾 texts. Instead,
the LLM could have learned incorrect knowledge during training,
causing the incorrect output. Our traceback system RAGForensics
can adapted to identify these non-poisoned feedback. In particular,
given a targeted query and its incorrect output, we first use our
traceback system RAGForensics to trace all poisoned texts in the
knowledge database. When the tracing process is completed, we
remove the poisoned texts from the knowledge database. Next, we
submit the targeted query to the RAG system to obtain the latest
output. If the latest output is still consistent with the incorrect
output, we can assume that the incorrect output is not caused by
the attacker.

Correcting the output of RAG: Since removing poisoned texts
traced by our traceback system RAGForensics from the knowledge
database does not correct the output of non-poisoned feedback, we
have the responsibility to propose a post-hoc defensemethod to deal
with this limitation. As a result, we propose amethod of benign texts
enhancement (detailed in Appendix 8.1) to correct the outputs of
non-poisoned feedback. For each target question, we insert a benign
text and its retrieval proxy into the knowledge database, ensuring
that it can be retrieved among the top-𝐾 texts and induce the LLM
generate correct answer. We evaluate the method of removing
poisoned texts traced by our RAGForensics and the method of
benign texts enhancement on 3 datasets, and compare them with
other defense baselines. The results in Table 6 demonstrates that
the method of benign texts enhancement effectively improves the
accuracy of the correct answer to RAG output.

Limitation and future direction: Our traceback system may be
vulnerable for non-targeted poisoning attacks [7, 40], where an
attacker can inject multiple poisoning texts into the knowledge
database to induce LLM generate randomly incorrect answer for
the targeted query. This is because the error output and poisoning
text of the user feedback are weak links, which makes us unable to
accurately identify. This threat stimulates us to explore the trace-
back system against non-targeted poisoning attacks in the future,
thereby improving the security system of treceback in RAG.

7 Conclusion
In this paper, we propose a novel approach to addressing poisoning
attacks in RAG systems by introducing RAGForensics, a traceback
system that focuses on identifying and removing poisoned texts
from the knowledge database. By shifting the focus from inference-
time defenses to targeting the poisoned text itself, RAGForensics
provides a more effective solution to the problem of poisoned out-
puts. Additionally, we tackle the challenge of distinguishing non-
poisoned feedback from actual attacks, enhancing model reliabil-
ity with benign texts. Our experiments validate the robustness of
RAGForensics against a variety of sophisticated poisoning attacks,
making it a promising direction for strengthening the security of
RAG systems.

8

References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-

cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. 2023. Gpt-4 technical report. arXiv (2023).

[2] Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin,
Alexandre Passos, Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen,
et al. 2023. Palm 2 technical report. arXiv (2023).

[3] Eugene Bagdasaryan and Vitaly Shmatikov. 2020. Blind backdoors in deep
learning models. arXiv preprint arXiv:2005.03823 (2020).

[4] Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Ruther-
ford, Katie Millican, George Bm Van Den Driessche, Jean-Baptiste Lespiau, Bog-
dan Damoc, Aidan Clark, et al. 2022. Improving language models by retrieving
from trillions of tokens. In ICML.

[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. NeurIPS (2020).

[6] Daniel Fernando Campos, Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao,
Saurabh Tiwary, Rangan Majumder, Li Deng, and Bhaskar Mitra. 2016. MS
MARCO: A Human Generated MAchine Reading COmprehension Dataset. ArXiv
abs/1611.09268 (2016). https://api.semanticscholar.org/CorpusID:1289517

[7] Harsh Chaudhari, Giorgio Severi, John Abascal, Matthew Jagielski, Christopher A
Choquette-Choo, Milad Nasr, Cristina Nita-Rotaru, and Alina Oprea. 2024. Phan-
tom: General Trigger Attacks on Retrieval Augmented Language Generation.
arXiv preprint arXiv:2405.20485 (2024).

[8] Jiawei Chen, Hongyu Lin, Xianpei Han, and Le Sun. 2024. Benchmarking large
language models in retrieval-augmented generation. In AAAI.

[9] Tong Chen, Hongwei Wang, Sihao Chen, Wenhao Yu, Kaixin Ma, Xinran
Zhao, Hongming Zhang, and Dong Yu. 2023. Dense X Retrieval: What Re-
trieval Granularity Should We Use? arXiv preprint arXiv:2312.06648 (2023).
https://arxiv.org/pdf/2312.06648.pdf

[10] Gelei Deng, Yi Liu, Kailong Wang, Yuekang Li, Tianwei Zhang, and Yang Liu.
2024. Pandora: Jailbreak gpts by retrieval augmented generation poisoning. arXiv
preprint arXiv:2402.08416 (2024).

[11] Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai,
Jiawei Sun, and Haofen Wang. 2023. Retrieval-augmented generation for large
language models: A survey. arXiv preprint arXiv:2312.10997 (2023).

[12] Kai Greshake, Sahar Abdelnabi, Shailesh Mishra, Christoph Endres, Thorsten
Holz, and Mario Fritz. 2023. Not what you’ve signed up for: Compromising real-
world llm-integrated applications with indirect prompt injection. In Proceedings
of the 16th ACM Workshop on Artificial Intelligence and Security. 79–90.

[13] Kai Greshake, Sahar Abdelnabi, Shailesh Mishra, Christoph Endres, Thorsten
Holz, and Mario Fritz. 2023. Not What You’ve Signed Up For: Compromising Real-
World LLM-Integrated Applications with Indirect Prompt Injection. Proceedings
of the 16th ACM Workshop on Artificial Intelligence and Security (2023). https:
//api.semanticscholar.org/CorpusID:258546941

[14] Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebastian Riedel, Piotr Bo-
janowski, Armand Joulin, and Edouard Grave. 2021. Unsupervised Dense Infor-
mation Retrieval with Contrastive Learning. Trans. Mach. Learn. Res. 2022 (2021).
https://api.semanticscholar.org/CorpusID:249097975

[15] Neel Jain, Avi Schwarzschild, Yuxin Wen, Gowthami Somepalli, John Kirchen-
bauer, Ping yeh Chiang, Micah Goldblum, Aniruddha Saha, Jonas Geiping, and
Tom Goldstein. 2023. Baseline Defenses for Adversarial Attacks Against Aligned
Language Models. ArXiv abs/2309.00614 (2023). https://api.semanticscholar.org/
CorpusID:261494182

[16] Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii,
Ye Jin Bang, Andrea Madotto, and Pascale Fung. 2023. Survey of hallucination in
natural language generation. Comput. Surveys 55, 12 (2023), 1–38.

[17] Yuqi Jia, Minghong Fang, Hongbin Liu, Jinghuai Zhang, and Neil Zhenqiang
Gong. 2024. Tracing Back the Malicious Clients in Poisoning Attacks to Federated
Learning. arXiv preprint arXiv:2407.07221 (2024).

[18] Zhengbao Jiang, Frank F Xu, Luyu Gao, Zhiqing Sun, Qian Liu, Jane Dwivedi-Yu,
Yiming Yang, Jamie Callan, and GrahamNeubig. 2023. Active retrieval augmented
generation. arXiv preprint arXiv:2305.06983 (2023).

[19] Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey
Edunov, Danqi Chen, and Wen-tau Yih. 2020. Dense Passage Retrieval for Open-
Domain Question Answering. In EMNLP.

[20] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins,
Ankur P. Parikh, Chris Alberti, Danielle Epstein, Illia Polosukhin, Jacob De-
vlin, Kenton Lee, Kristina Toutanova, Llion Jones, Matthew Kelcey, Ming-Wei
Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc V. Le, and Slav Petrov. 2019.
Natural Questions: A Benchmark for Question Answering Research. Transac-
tions of the Association for Computational Linguistics 7 (2019), 453–466. https:
//api.semanticscholar.org/CorpusID:86611921

[21] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin,
Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al.
2020. Retrieval-augmented generation for knowledge-intensive nlp tasks. NeurIPS
(2020).

[22] Yupei Liu, Yuqi Jia, Runpeng Geng, Jinyuan Jia, and Neil Zhenqiang Gong. 2023.
Prompt injection attacks and defenses in llm-integrated applications. arXiv
preprint arXiv:2310.12815 (2023).

[23] Fábio Perez and Ian Ribeiro. 2022. Ignore previous prompt: Attack techniques
for language models. arXiv preprint arXiv:2211.09527 (2022).

[24] Evan Rose, Hidde Lycklama, Harsh Chaudhari, Anwar Hithnawi, and Alina Oprea.
2024. UTrace: Poisoning Forensics for Private Collaborative Learning. arXiv
preprint arXiv:2409.15126 (2024).

[25] Alireza Salemi and Hamed Zamani. 2024. Evaluating retrieval quality in retrieval-
augmented generation. In SIGIR.

[26] Roei Schuster, Congzheng Song, Eran Tromer, and Vitaly Shmatikov. 2021. You
autocomplete me: Poisoning vulnerabilities in neural code completion. In 30th
{USENIX} Security Symposium ({USENIX} Security 21).

[27] Giorgio Severi, Jim Meyer, Scott Coull, and Alina Oprea. 2021. Explanation-
Guided Backdoor Poisoning Attacks Against Malware Classifiers. In 30th
{USENIX} Security Symposium ({USENIX} Security 21).

[28] Avital Shafran, Roei Schuster, and Vitaly Shmatikov. 2024. Machine Against the
RAG: Jamming Retrieval-Augmented Generation with Blocker Documents. arXiv
preprint arXiv:2406.05870 (2024).

[29] Shawn Shan, Arjun Nitin Bhagoji, Haitao Zheng, and Ben Y Zhao. 2022. Poison
forensics: Traceback of data poisoning attacks in neural networks. In 31st USENIX
Security Symposium (USENIX Security 22). 3575–3592.

[30] Zhen Tan, Chengshuai Zhao, Raha Moraffah, Yifan Li, Song Wang, Jundong Li,
Tianlong Chen, and Huan Liu. 2024. " Glue pizza and eat rocks"–Exploiting
Vulnerabilities in Retrieval-Augmented Generative Models. arXiv preprint
arXiv:2406.19417 (2024).

[31] Nandan Thakur, Nils Reimers, Andreas Rücklé, Abhishek Srivastava, and Iryna
Gurevych. 2021. Beir: A heterogenous benchmark for zero-shot evaluation of
information retrieval models. arXiv preprint arXiv:2104.08663 (2021).

[32] Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kul-
shreshtha, Heng-Tze Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al.
2022. Lamda: Language models for dialog applications. arXiv (2022).

[33] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-
mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-
ale, et al. 2023. Llama 2: Open foundation and fine-tuned chat models. arXiv
(2023).

[34] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits reasoning
in large language models. Advances in neural information processing systems 35
(2022), 24824–24837.

[35] EmilyWenger, Josephine Passananti, Arjun Bhagoji, Yuanshun Yao, Haitao Zheng,
and Ben Y. Zhao. 2021. Backdoor Attacks Against Deep Learning Systems in the
Physical World. arXiv preprint arXiv:2006.14580 (2021).

[36] Chong Xiang, Tong Wu, Zexuan Zhong, David Wagner, Danqi Chen, and Pra-
teek Mittal. 2024. Certifiably Robust RAG against Retrieval Corruption. ArXiv
abs/2405.15556 (2024). https://api.semanticscholar.org/CorpusID:270045527

[37] Jiaqi Xue, Mengxin Zheng, Yebowen Hu, Fei Liu, Xun Chen, and Qian Lou. 2024.
BadRAG: Identifying Vulnerabilities in Retrieval Augmented Generation of Large
Language Models. arXiv preprint arXiv:2406.00083 (2024).

[38] Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, WilliamW. Cohen, Ruslan
Salakhutdinov, and Christopher D. Manning. 2018. HotpotQA: A Dataset for
Diverse, Explainable Multi-hop Question Answering. In Conference on Empir-
ical Methods in Natural Language Processing. https://api.semanticscholar.org/
CorpusID:52822214

[39] Yuanshun Yao, Huiying Li, Haitao Zheng, and Ben Y Zhao. 2019. Latent back-
door attacks on deep neural networks. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security. 2041–2055.

[40] Zexuan Zhong, Ziqing Huang, Alexander Wettig, and Danqi Chen. 2023. Poi-
soning retrieval corpora by injecting adversarial passages. arXiv preprint
arXiv:2310.19156 (2023).

[41] Wei Zou, Runpeng Geng, Binghui Wang, and Jinyuan Jia. 2025. Poisonedrag:
Knowledge poisoning attacks to retrieval-augmented generation of large lan-
guage models. In USENIX Security Symposium.

8 Appendix
8.1 Benign texts Enhancement
A straightforward post-hoc defense is to remove the poisoned texts
identified by our traceback system RAGForensics, which we refer to
as Poisoned Texts Removal (PTR). However, this approach has two
potential limitations. First, since RAGForensics cannot guarantee
perfect identification of all poisoned texts, PTR may accidentally
remove some benign texts or overlook a few poisoned ones. Second,
as discussed in Section 3.1, the incorrect output for a targeted query

9

https://api.semanticscholar.org/CorpusID:1289517
https://arxiv.org/pdf/2312.06648.pdf
https://api.semanticscholar.org/CorpusID:258546941
https://api.semanticscholar.org/CorpusID:258546941
https://api.semanticscholar.org/CorpusID:249097975
https://api.semanticscholar.org/CorpusID:261494182
https://api.semanticscholar.org/CorpusID:261494182
https://api.semanticscholar.org/CorpusID:86611921
https://api.semanticscholar.org/CorpusID:86611921
https://api.semanticscholar.org/CorpusID:270045527
https://api.semanticscholar.org/CorpusID:52822214
https://api.semanticscholar.org/CorpusID:52822214

reported by the user may not result from an attack; there might
be no poisoned text among the top-𝐾 results. Instead, the LLM
could have learned incorrect knowledge during training, causing
the erroneous output. In such cases, PTR would be ineffective.

To address these two limitations, we propose a post-hoc defense
called Benign Texts Enhancement (BTE), which enables the LLM
to generate correct answers for targeted queries without requiring
fine-tuning. In BTE, we assume the defender can obtain the correct
answer for each targeted query either throughmanual annotation or
by consulting more advanced LLMs. This assumption is practical, as
service providers of RAG systems must address user-reported issues
to improve user experience. For each targeted query 𝑞𝑖 reported
through user feedback, our BTE defense follows two steps:

Improving the confidence of LLM in RAG for the benign
text: The key is to increase the LLM’s confidence in the benign text
so it prioritizes it over other texts in the top-𝐾 set. Interestingly, this
aligns with the concept of backdoor attacks [], where an adversary
implants a backdoor to trigger specific model behavior for certain
inputs. In our defense, we leverage a similar idea, using triggers to
make the LLM focusmore on the benign text. However, in our threat
model, the defender cannot train the LLM to implant a backdoor.
Additionally, if the attacker discovers the trigger, retraining the
LLM to implant a new backdoor would be costly and impractical.

To overcome these challenges, we propose a method to implant a
backdoor into the LLMwithout requiring any training and allowing
for flexible trigger replacement. Our approach involves adjusting
the system prompt of RAG to prioritize texts with triggers in the top-
𝐾 results. Specifically, we embed the description of the trigger and
the corresponding text within the system prompt. To enhance the
robustness of the prompt, we account for three possible scenarios
involving the top-𝐾 texts and define appropriate handling rules
for each: (1) texts with triggers relevant to the user’s query, (2)
texts with triggers but irrelevant to the query, and (3) no texts
with triggers present. The detailed system prompt is provided in
Appendix 8.4.

Additionally, we need to create a benign text with the trigger.
To ensure the benign text 𝑏𝑖 conveys the correct answer 𝑐𝑖 for the
user’s query 𝑞𝑖 , we use an LLM (which may differ from the one in
RAG) to generate 𝑏𝑖 so that the LLM produces the correct answer
𝑐𝑖 for the targeted query 𝑞𝑖 . The prompt used to guide the LLM
in crafting the benign text is provided in Appendix 8.4. Next, we
embed a trigger into the benign text 𝑏𝑖 . To maintain the semantic
coherence and enhance the credibility of the modified text, we use
the semantic trigger "[LATEST][/LATEST]." Specifically, we insert
"[LATEST]" at the beginning of the benign text and "[/LATEST]" at
the end. An example of this can be found in Appendix 8.4.

Configuring the retrieval proxy of benign text 𝑏𝑖 : A crucial
aspect of the BTE algorithm is ensuring that the benign text 𝑏𝑖
with the trigger is included in the top-𝐾 most relevant texts. Since
the defender lacks access to the retriever’s parameters, optimizing
each 𝑏𝑖 using gradients to maximize its similarity with the target
query isn’t feasible. To overcome this, we propose a flexible and
efficient retrieval proxy method. Specifically, for each benign text
𝑏𝑖 , we designate its corresponding targeted query 𝑞𝑖 as its retrieval
proxy. Both 𝑏𝑖 and its proxy 𝑞𝑖 are inserted into the knowledge
database. If 𝑞𝑖 appears in the top-𝐾 retrieved texts, it is replaced

with the corresponding 𝑏𝑖 . This retrieval proxy method offers three
key advantages. First, it eliminates the need for retriever parameter
access or optimization of benign texts. Second, the semantics of 𝑏𝑖
are preserved, allowing it to be retrieved by other related queries.
Third, it is a plug-and-play solution that does not alter the RAG
system’s retrieval process.

8.2 Metrics Computation
False positive rate (FPR): FPR is the ratio of the number of texts
wrongly identified as poisoned (False Positive, 𝐹𝑃) to the total
number of benign texts. The FPR is computed as follows:

FPR =
𝐹𝑃

𝐹𝑃 +𝑇𝑁 , (3)

where 𝑇𝑁 is the True Negative, the number of texts correctly iden-
tified as benign.
False negative rate (FNR): FNR is the ratio of the number of
texts wrongly identified as benign (False Negative, 𝐹𝑁) to the total
number of poisoned texts. The FNR is computed as follows:

FNR =
𝐹𝑁

𝐹𝑁 +𝑇𝑃 , (4)

where 𝑇𝑃 is the True Positive, the number of texts correctly identi-
fied as poisoned.
Detection accuracy (DACC): DACC is fraction of texts that are
correctly identified. The DACC is computed as follows:

DACC =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 + 𝐹𝑃 +𝑇𝑁 + 𝐹𝑁 . (5)

Attack success rate (ASR): ASR is the ratio of the number of
targeted queries for which LLM generates targeted answers to the
number of all targeted queries. Given a set of targeted queries
𝑄 = {𝑞1, 𝑞2, . . . , 𝑞𝑛}, the ASR is computed as follows:

ASR =
1
|𝑄 |

|𝑄 |∑︁
𝑖=1

I(𝑜𝑖 , 𝑡𝑖), (6)

where 𝑜𝑖 is the answer generated by LLM for the targeted query
𝑞𝑖 , 𝑡𝑖 is the targeted answer. The indicator function I(·) returns 0
when the condition is satisfied, otherwise it returns 0.
Accuracy (ACC):ACC is the ratio of the number of targeted queries
for which LLM generates correct answers to the number of all
targeted queries. The ACC is computed as follows:

ACC =
1
|𝑄 |

|𝑄 |∑︁
𝑖=1

I(𝑜𝑖 , 𝑐𝑖), (7)

where 𝑐𝑖 is the correct answer for the targeted query 𝑞𝑖 .
Measurement of the ASRs and ACCs: For the term I(𝑜𝑖 , 𝑡𝑖) and
I(𝑜𝑖 , 𝑐𝑖) in Equation 6 and 7, we need to manually judge whether
the conditions of I(·) are met. To improve the efficiency of the
experiment, we use the LLM to replace human judgment.

10

8.3 System Prompt
The system prompt of RAG

You are a helpful assistant, below is a query from a user and some relevant contexts.
Answer the question given the information in those contexts. Your answer should be short and concise.
If you cannot find the answer to the question, just say "I dont́ know".
Contexts:[R̂ (𝑞𝑖 , 𝐾,D)]
Query: [𝑞𝑖]
Answer:

8.4 The prompts in Benign Texs Enhancement
The system prompt of RAG in the method of benign texts enhancement

You are a helpful assistant, below is a query from a user and some relevant contexts.
You should answer the question based on the information listed by entries in the contexts.Tell me your reasoning process in detail.
Firstly, you need assess the relevance of each entry to the query, focusing only on contributions to the answer and excluding
unrelated entry. Relevance is judged independently; do not evaluate correctness or contradictions. List all relevant entry unchanged.
Secondly, count and list the number of the entry **wrapped by [LATEST] and [/LATEST]**, you will encounter three different
situations regarding the filtered information:
Situation One: If there are more than one entry **wrapped by [LATEST] and [/LATEST]**, please follow these steps:
Step 1: For all contradictory entries, unconditionally select and display the one with the smallest index, regardless of its content.
Step 2: Subsequently, delete all entries that contradict the selected one, irrespective of their quantity.
Situation Two: If there is only one entry wrapped by [LATEST] and [/LATEST], this indicates that it is the **newest** information.
Therefore, please focus solely on the wrapped entry and disregard the remaining context.
Situation Three: If there is no entry wrapping by [LATEST] and [/LATEST], please analyze the relevance and consistency to
draw a conclusion.
If you cannot find the answer to the question, just say "I dont́ know".
Contexts:[R̂ (𝑞𝑖 , 𝐾,D)]
Query: [𝑞𝑖]
Answer:

The prompt to guide LLM in generating benign text

This is my question: [𝑞𝑖].
This is my answer: [𝑐𝑖].
Please craft a brief and complete corpus in a declarative tone that conveys the answer [𝑐𝑖] within the statement, ensuring it
corresponds directly to the question [𝑞𝑖]. Dont́ use phrases like "Yes" or "No". Please limit the corpus to 𝑉 words and only return the
corpus.

An example of the benign text with a trigger

Query: How many episodes are in chicago fire season 4?
Crafted benign text by LLM: Chicago Fire Season 4 consists of 23 episodes, showcasing the intense and dramatic experiences of
the firefighters and paramedics at Firehouse 51 throughout the season.
Benign text with the trigger: [LATEST] Chicago Fire Season 4 consists of 23 episodes, showcasing the intense and dramatic
experiences of the firefighters and paramedics at Firehouse 51 throughout the season. [/LATEST]

8.5 Experiment Results

11

Table 5: Impact of LLM used to identify the poisoned texts in our RAGForensics on HotpotQA amd MS-MARCO datasets.
(a) HotpotQA dataset.

Attacks Metrics GPT-4o-mini GPT-4-turbo GPT-4o

PoisonedRAG
(Black-Box)

DACC ↑ 0.97 0.99 0.98
FPR ↓ 0.02 0.01 0.00
FNR ↓ 0.03 0.02 0.03

PoisonedRAG
(White-Box)

DACC ↑ 0.98 0.98 0.99
FPR ↓ 0.02 0.00 0.00
FNR ↓ 0.03 0.03 0.02

Instruction
Injection

DACC ↑ 0.98 0.99 0.97
FPR ↓ 0.02 0.03 0.02
FNR ↓ 0.01 0.00 0.03

(b) MS-MARCO dataset.

Attacks Metrics GPT-4o-mini GPT-4-turbo GPT-4o

PoisonedRAG
(Black-Box)

DACC ↑ 0.98 0.99 0.99
FPR ↓ 0.02 0.00 0.01
FNR ↓ 0.01 0.02 0.02

PoisonedRAG
(White-Box)

DACC ↑ 0.98 0.99 0.99
FPR ↓ 0.03 0.01 0.01
FNR ↓ 0.01 0.02 0.01

Instruction
Injection

DACC ↑ 0.99 0.99 0.95
FPR ↓ 0.01 0.02 0.02
FNR ↓ 0.00 0.00 0.08

Table 6: The ASRs and ACCs of our defenses and other baseline defenses against various poisoning attacks on 3 datasets. PTR
represents the method of removing poisoned texts traced by our RAGForensics, PTE ⊕ BTE represents the method of the
combination of PTR and BTE. Bold font indicates optimal, font underlined indicates suboptimal.

Datasets Attacks Metrics No defense PPL-90 PPL-100 RobustRAG KE-10 KE-20 KE-50 PTR PTR⊕BTE

NQ

PoisonedRAG-B ASR ↓ 1.00 0.98 1.00 0.50 0.84 0.78 0.72 0.00 0.00
ACC ↑ 0.00 0.00 0.00 0.46 0.08 0.16 0.20 0.52 1.00

PoisonedRAG-W ASR ↓ 1.00 1.00 1.00 0.44 0.86 0.76 0.72 0.00 0.00
ACC ↑ 0.00 0.00 0.00 0.52 0.10 0.20 0.28 0.56 1.00

InstruInject ASR ↓ 1.00 0.98 1.00 0.28 0.82 0.80 0.72 0.00 0.00
ACC ↑ 0.00 0.00 0.00 0.66 0.06 0.10 0.14 0.52 1.00

HotpotQA

PoisonedRAG-B ASR ↓ 1.00 0.64 1.00 0.80 0.82 0.84 0.82 0.06 0.00
ACC ↑ 0.00 0.16 0.00 0.14 0.12 0.12 0.14 0.54 0.98

PoisonedRAG-W ASR ↓ 1.00 0.06 0.94 0.82 0.82 0.80 0.84 0.12 0.00
ACC ↑ 0.00 0.50 0.06 0.14 0.14 0.16 0.14 0.46 0.98

InstruInject ASR ↓ 1.00 0.04 0.96 0.54 0.86 0.82 0.82 0.06 0.00
ACC ↑ 0.00 0.54 0.00 0.40 0.08 0.10 0.10 0.40 0.96

MS-MARCO

PoisonedRAG-B ASR ↓ 1.00 0.62 1.00 0.38 0.72 0.64 0.56 0.00 0.00
ACC ↑ 0.00 0.32 0.00 0.60 0.26 0.34 0.36 0.80 1.00

PoisonedRAG-W ASR ↓ 1.00 0.00 0.70 0.36 0.76 0.68 0.66 0.00 0.00
ACC ↑ 0.00 0.80 0.22 0.62 0.22 0.30 0.34 0.80 1.00

InstruInject ASR ↓ 1.00 0.00 0.28 0.14 0.60 0.52 0.52 0.00 0.00
ACC ↑ 0.00 0.82 0.58 0.82 0.32 0.44 0.46 0.84 1.00

12

	Abstract
	1 Introduction
	2 Preliminaries and Related Work
	2.1 RAG Overview
	2.2 Poisoning Attacks to RAG
	2.3 Defenses against Poisoning Attacks to RAG

	3 Traceback of Poisoned Texts in Poisoning Attacks to RAG
	3.1 Threat Model
	3.2 Design Challenges

	4 Our Traceback System: RAGForensics
	4.1 Overview
	4.2 Narrowing the Scope of Poisoned Texts
	4.3 Identifying Poisoned Texts

	5 Experiments
	5.1 Experimental Setup
	5.2 Evaluation of Our Traceback System RAGForensics
	5.3 Adaptive Attacks to RAGForensics

	6 Discussion
	7 Conclusion
	References
	8 Appendix
	8.1 Benign texts Enhancement
	8.2 Metrics Computation
	8.3 System Prompt
	8.4 The prompts in Benign Texs Enhancement
	8.5 Experiment Results

