
Under review as a conference paper at ICLR 2023

SPEEDING UP POLICY OPTIMIZATION WITH VANISH-
ING HYPOTHESIS AND VARIABLE MINI-BATCH SIZE

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning-based algorithms have been used extensively in recent
years due to their flexible nature, good performance, and the increasing number
of said algorithms. However, the largest drawback of these techniques remains
unsolved, that is, it usually takes a long time for the agents to learn how to solve a
given problem. In this work, we outline a novel method that can be used to drasti-
cally reduce the training time of current state-of-the-art algorithms like Proximal
Policy Optimization (PPO). We evaluate the performance of this approach in a
unique environment where we use reinforcement learning to help with a practical
astronomical problem: where to place a fixed number of observatory stations in
the Solar System to observe space objects (e.g. asteroids) as permanently as pos-
sible. That is, the reward in this scenario corresponds to the total coverage of the
trajectories of these objects. We apply noisy evaluation for calculating the reward
to speed up the training, which technique has already been efficiently applied in
stochastic optimization. Namely, we allow the incorporation of some additional
noise in the reward function in the form of a hypothesis term and a varying mini-
batch size. However, in order to follow the theoretical guidelines, both of them are
forced to vanish during training to let the noise converge to zero. Our experimental
results show that using this approach we can reduce the training time remarkably,
even by 75%.

1 INTRODUCTION

Reinforcement learning (RL) was in the focus of numerous studies in the last few years. As such,
plenty of new algorithms have emerged and are continuously surfacing that improve the already
existing RL algorithms or combine the traditional methods with modern deep learning techniques,
like deep Q-learning (Mnih et al., 2013), Proximal Policy Optimization (PPO) (Schulman et al.,
2017), Asynchronous Advantage Actor-critic (Mnih et al., 2016b) or Soft Actor-Critic (Haarnoja
et al., 2018). Researchers have used these algorithms with great success, solving various challeng-
ing problems, ranging from using RL to play table games like Go (Silver et al., 2016; 2017), playing
Massively Multiplayer Online (MMO) games (Suarez et al., 2019), to solving complex problems in
robotics (Plappert et al., 2018). Recent research (Reed et al., 2022) has also shown that we can train
a single RL agent in a way that it can be used to solve different tasks, indicating the high gener-
alization capabilities of these types of algorithms. However, one of the biggest problems of these
algorithms – especially on-policy methods – still remains: the optimization process, and hence the
training of the agent, takes a really long time (Yarats et al., 2021; Yu, 2018). This is especially true
in the case of policy-based algorithms which are notorious for being sample inefficient (Bastani,
2020). Although PPO, which is also a policy-based method, has better sample complexity (Schul-
man et al., 2017) than the original policy gradient algorithm (Mnih et al., 2016a), it still suffers from
this phenomenon. Despite this drawback, PPO is still widely used due to its convergence to at least
a local optimum, in contrast to value-based methods, where convergence is not necessarily guaran-
teed, which phenomenon is referred to as the ”deadly triad” by Sutton & Barto (2018). In this work,
we show that we can remarkably reduce the training time of a PPO agent while still preserving its
convergence and achieving the same cumulative rewards by treating the loss as an energy function
and incorporating some noises in the optimization process.

In real-world applications it is quite common that the energy function cannot be evaluated precisely
because of certain noise corruptions. If the noise is too large then a meaningful optimization cannot

1



Under review as a conference paper at ICLR 2023

take place. On the other hand, we can also inject some corruption deliberately to speed up the
optimization process via applying noisy evaluation (Gelfand & Mitter, 1989). The original idea
was to perform only a rough evaluation which approach can save a lot of computational time if
the energy function is complex, and its proper evaluation is laborious. It has already been shown
that this approach is valid only in the case when the corruption vanishes as the search progresses
to be able to keep up the convergence behavior of the original (uncorrupted) model. Specifically,
for simulated annealing (SA) Gelfand & Mitter (1989) have shown in what extent the noise should
converge to 0 to preserve the search efficiency of the uncorrupted case.

In this work, we focus on policy-based approaches and further refine the noisy evaluation idea to
integrate it in the RL framework in different ways. The first integration is possible only in such
applications – including ours –, where a batch size is used during the gradient descent or ascent
update. This is true for policy gradient algorithms which measure the goodness of a policy π as the
cumulative reward achieved in a set time frame via r(π) =

∑
t

[r(s, a, s′)|s = st, a = at, s
′ = st+1]

for each timestep t ∈ N in the given time frame and use a gradient estimate to update π. In such cases
we can apply the well-known mini-batch approach with including only a part of these timesteps in
one update cycle. However, opposite to the traditional mini-batch approach that keeps the batch size
constant, we also consider it as a noise w.r.t. a full-batch validation. Consequently, we also follow
the above requirement to vanish the noise, which can be achieved here with continuously increasing
the batch size during training till reaching the total number of observations in the episode.

Beyond considering variable mini-batch size, we also include a hypothesis term h(s′) for every sub-
sequent state s′ in the reward function r(s, a, s′) as a direct feedback for our agent. This procedure
can also be interpreted as adding noise in the light of the above summary. Our intention with this
addition is to speed up the training process and improve the sample efficiency, as we believe that an
appropriately formulated hypothesis can direct the search to the optimal location and hence make
the convergence faster. However, we can never be sure that our hypothesis indeed has this behaviour,
since we can be mistaken with it. Moreover, to take the above considerations also into account, the
noise term should tend to 0 to keep up the convergence behavior of the original RL model. Thus, the
hypothesis term will be added in such a way that it will vanish as the search progresses. As we will
see, both the variable mini-batch and the vanishing hypothesis term are able to speed up the training
process, however their simultaneous integration will improve it further.

The rest of the paper is organized as follows. In section 2 we properly exhibit how the hypothesis
term and the variable mini-batch can be integrated in a reward function considered in policy op-
timization. Our special application domain that originally motivated the research is introduced in
section 3. Then, section 4 presents the details of the proper implementation. In section 5 we show
our experimental results suggesting a meaningful speed up in finding the solution for our problem.
Finally, some conclusions are drawn in section 6.

2 METHODOLOGY

Policy gradient methods like PPO use an estimation of the gradient to update their policy π param-
eterized by a set of weights θ (πθ for short) so that the expected cumulative reward

Eπθ
[
∑
t

rt|rt = r(s, a, s′), s = st, a = at, s
′ = st+1] (1)

increases. To this end, they use an estimation similar to the following expression (Schulman et al.,
2017) for each timestep t and perform gradient ascent:

ĝ = Êt[∇θ log πθ(at|st)Ât], (2)

where Ât is the estimation of the advantage. PPO also uses a clipped surrogate objective to prevent
large updates during the optimization process. Although this facilitates training to a certain degree,
making PPO converge faster than the vanilla policy gradient method (Mnih et al., 2016a) and achieve
higher scores as shown in Schulman et al. (2017), the training still takes a long time. What is even
more important is the fact that in the PPO paper it can also be observed that in several environments
the agents achieved really low scores in a significant chunk of the total training time before finally

2



Under review as a conference paper at ICLR 2023

converging to an optimum. This raises the question whether this part of the training could be further
improved to reduce the total time required for training the agent.

In our work, we focus on reducing this time by incorporating some additional noise and performing
noisy evaluation during the training process, which technique has been shown to work well with
regular stochastic optimization problems. Namely, for SA it has been shown in Gelfand & Mitter
(1989) that a normally distributed noise with mean 0 and variance

(
σ(k)

)2
> 0 in the k-th iteration

still let the search converge to the globally optimal solution with probability 1 if

σ(k) = o
(
T (k)

)
. (3)

Besides the temperature, an alternative constraint has also been formulated in Gutjahr & Pflug (1996)
for the same purpose for the number of iterations as

σ(k) = O
(
k−β

)
with some β > 1. (4)

Though the conditions (3), and (4) require the variance of the noise to decrease along with the
progress of the exploration, it is obvious that the noise should also vanish to preserve convergence.

A very attractive expectation towards any optimization methods is that the applied heuristics that is
used to speed up the search should guarantee the original convergence properties; esp. to preserve
convergence to the global optimum. Though numerous very efficient strategies have been proposed
to improve exploration, unfortunately, the theoretical preservation of the convergence has been rarely
proved and even in such cases strict limitations had to be applied. For example, even for the original
SA algorithm it has been shown (Geman & Geman, 1984) that only the logarithmic cooling schedule
can preserve global convergence, while in practice the linear, and the exponential schemes became
very popular. Regarding our current study, we can have very similar claims for the PPO algorithm.
As a relatively new approach, in spite of its very popular and well-applicable nature, the theoretical
foundations have already just begun recently (Bhandari & Russo, 2019; Agarwal et al., 2021). Thus,
regarding the above discussion, we will follow the theoretical suggestions for noisy evaluation to
incorporate our speed-up considerations as noises in the PPO algorithm. Accordingly, they should
vanish by the end of the training to fulfill (3), and (4).

2.1 VARIABLE MINI-BATCH SIZE

The first approach that we have used to incorporate noise in the training process relies on the number
of samples used in the rollout during the gradient update. For this to work, the most important
requirement is to have a batch of samples to work with. Therefore, we will use the rollout itself
and Êt from (2) which is the average over a batch of samples, but instead of defining a static, fixed
batch size K, we will start from a small K and gradually increase it up until the total number of
observations N .

The batch size K can be changed with different dynamics for the k-th iteration step. In Tóth et al.
(2020) it has been proved that the variance of the noise coming from this sampling should fulfill

σ
(k)
K ≳ T (k)(1− ϵ)k, 0 < ϵ≪ 1 (5)

using SA to preserve convergence. Accordingly, it was also derived that

K ≈ Nσ2
max

(N − 1)σ
(k)
K

2
+ σ2

max

(6)

should hold for the minimal batch size at the k-th iteration step in SA, where σmax is the worst-case
maximum value of the whole population standard deviation.

The trend to increase K depends on the cooling profile selected in SA to calculate the temperature
T (k) for the k-th iteration step in (5). The linear cooling schedule

T (k) = T (0) − αk, 0 < α (7)

leads to the requirement

σ
(k)
K ≈

(
T (0) − αk

)
(1− ϵ)k, 0 ≤ α ≤ 1, 0 < ϵ≪ 1 (8)

3



Under review as a conference paper at ICLR 2023

by applying (5) and also to

K =
Nσ2

max

(N − 1)(T (0) − αk)2(1− ϵ)2k + σ2
max

(9)

by (6). Similarly, for the exponential schedule

T (k) = T (0) αk with 0 ≤ α ≤ 1, (10)

we have
σ
(k)
K ≈ T (0) αk(1− ϵ)k with 0 ≤ α ≤ 1, and 0 < ϵ < 1, (11)

and

K =
Nσ2

max

(N − 1) (T (0) αk(1− ϵ)k)
2
+ σ2

max

(12)

to meet the requirements.

Similarly to various SA applications, we have found the trend (12) corresponding to the exponential
cooling schedule the most efficient in our experiments to adjust K. To incorporate the variable mini-
batch size, we slightly modify the loss function described in Schulman et al. (2017) and arrive at the
following formula for the loss function L(θ):

L(θ) =
1

K

K∑
t=0

[
min(Rt(θ)Ât, clip(Rt(θ), 1− ε, 1 + ε)Ât)

]
, (13)

where Rt(θ) is the probability ratio calculated between the current (πθ) and the old (πθold ) policies,
and is defined as in the original paper as:

Rt(θ) =
πθ(at|st)
πθold(at|st)

. (14)

2.2 HYPOTHESIS AS NOISE

The second approach that we have realized is using a hypothesis as noise. To this end, we have
decided on a fixed hypothesis h : S → R, where S is the state space that we have incorporated in
the reward function r(s, a, s′) in the following way. For each timestep t within the k-th iteration,
when the agent used an action at in a state st and arrived at the next state st+1, it received the reward
rt = r(st, at, st+1) through the formula

r(st, at, st+1) =

1−
σ
(k)
K

max
s∈S

(h(s))

 r̂t +
σ
(k)
K

max
s∈S

(h(s))
h(st+1), (15)

where r̂t denotes the traditional reinforcement learning reward that the agent would receive without
taking any hypothesis into account, h(s′) is the reward for arriving in the next state s′ = st+1

according to our hypothesis h, and maxs∈S(h(s)) is the theoretically obtainable maximal reward
at a timestep. The role of the trade-off parameter σ

(k)
K /maxs∈S(h(s)) in (15) is to balance the

final reward r(s, a, s′) between the traditional and hypothesis-based rewards. Moreover, with this
selection of the trade-off we incorporate the hypothesis as a vanishing noise which follows the same
trend as the variable mini-batch size. In this way we preserve the original convergence behavior of
PPO and by using the trade-off parameter to weight both types of rewards we also make sure that the
final reward r(s, a, s′) is on the same scale as the traditional reward r̂t to make them comparable.

The adjustments of the parameters discussed throughout this section are task-dependent and will be
given properly in section 4.

3 APPLICATION DOMAIN

Our practical task motivating the research focuses on optimal sensor placement. The goal is to
place sensors in a spatial domain in such a way that we achieve the maximum result according to a
particular reward function. This task has received a great interest in recent years as a RL problem.

4



Under review as a conference paper at ICLR 2023

Research has been carried out on a wide variety of topics, such as placing sensors in greenhouses
to measure humidity and temperature (Uyeh et al., 2021), but there have also been publications
generalizing the idea (Wang et al., 2019). Perhaps the greatest scientific acclaim of all, however,
came from the Google Brain team, who in Mirhoseini et al. (2017); Goldie & Mirhoseini (2020)
presented a RL algorithm that solved the chip placement dilemma significantly faster and better
than human experts.

By studying the approaches that set out to solve this type of task, we can observe a broadly consistent
methodology for dealing effectively with the optimal placement problem. The solution starts with
the transformation of the problem into a Markov decision process. Typically, the environment is
thought of as a discrete mapping of the domain, so the problem can be formulated in general terms
as follows: the goal is to place M sensors in a finite number of possible locations to provide optimal
coverage. In these problems, the agent is the entity that chooses the actions that usually place or
move a sensor. The reward function varies from problem to problem.

Figure 1: Observing space objects in the Solar System from the Earth.

We investigate the applicability of RL in a time-varying continuous model with geometric coverings.
Specifically, it strives to find out how to optimally position observatories on the surface of the Earth,
so they provide the maximum possible coverage for monitoring the celestial bodies of the Solar
System for a chosen time interval (see Figure 1). Specific subtasks may relate to the fast detection
and observation of the trajectories of space objects e.g. asteroids or unidentified ones. Generally
speaking, the problem at hand is so complex that with theoretical models it is virtually impossible to
handle. However, the presented RL approach is able to address it and can be extended to even more
complex problems. One simple extension can be e.g. to let the observatories to be installed also on
other planets/moons of the Solar System.

To achieve optimal placement, the software uses the methodology described above. In our case,
this means that at each step a location is chosen for an observatory. It is achieved by generating
two values from [−1, 1], where the first represents latitude mapped to [−90, 90], and the second
means longitude mapped to [−180, 180]. Although giving partial rewards after each step seemed
reasonable, it did not help the learning process. When all the observatories are placed, rewards are
calculated based on coverage earned, and the episode ends.

The solution was implemented in Unity (Haas, 2014), using the open-source Pytorch-based Unity
ML-Agents Toolkit (Juliani et al., 2018). The main advantage of this framework is that it can deal
exceptionally well with our geometry-based problem, while also having ease of implementation
through the ML-Agents toolkit. On top of that, it provides a well-optimized pre-implemented ver-
sion of PPO, the algorithm most often used to solve positioning problems recently.

5



Under review as a conference paper at ICLR 2023

4 IMPLEMENTATION

4.1 DATA ACQUISITION

To find the optimal sensor placement, it is essential to have the location of the celestial objects of
the Solar System at different time instants to handle occlusions. For this task, the DE 421 planetary
and lunar ephemeris (Folkner et al., 2009) was used, which contains estimates for the orbits of all
objects from 1900 to 2050; our examples will fall in this time interval.

In ephemerides, the positions of the celestial bodies are typically described by three values, Alpha,
Delta (angles), and distance from a given center (origin). In astronomy, different reference frames
are used for different problems. The frame we have chosen for this task is the International Terres-
trial Reference System (ITRS) (Petit & Luzum, 2010). ITRS is a coordinate system whose origin
is the Earth’s center of mass, and as the Earth rotates, so does the coordinate system itself. It also
identifies the location of points with 3D coordinates (X,Y, Z triplets), with the XY plane going
through the Earth’s equator and the Z-axis pointing towards the North Pole, which makes it ideal
for working with Unity.

The coordinates of the ephemerides represent the actual positions of the celestial bodies in space.
However, the task requires information about where a given celestial body appears in the sky when
observed from Earth. This conversion was done with the Skyfield Python package Rhodes (2019),
designed to easily obtain the positions of different planets and celestial bodies. The procedure to
convert the values obtained from DE421 to ITRS is as follows:

• Selecting the Earth’s center of mass as the observation point.
• Selecting a target to observe.
• Generating the astrometric position, which considers the effect of light travel time.
• Generating the apparent position, which applies additional effects that might affect where

celestial objects appear in the sky.
• Converting the position to ITRS.

4.2 LEARNING PROCESS

For the implementation to address multiple problems, a flexible framework has been developed that
can be parameterized with different data. These parameters include information about the observa-
tories and celestial bodies, which were collected into a CSV file with a structure of:

• 1st row: Angle of View (AOV) of the observatories to be placed. For example, ’30,20,10’
means that three observatories are placed, with AOVs of 30◦, 20◦, and 10◦, respectively.

• 2nd row: Diameter of the bodies to be observed. As with the AOV, the number of values
displayed is the same as the number of celestial bodies being monitored. Celestial bodies
are represented by a regular sphere.

• 3rd row: The importance value of the objects to be observed (used for reward calculation).
For example, if we rewarded closer objects to the Earth more, we could have an importance
value based on distance.

• 4th and the following rows: Observations in ITRS reference frame in ’X / Y / Z’ format.
A row represents an observation at a time instant, with a column describing the position of
the celestial body. For example, on January 1, 2000, the position of the Sun after scaling
is: -135.32690109260457 / -57.646292187056936 / -1.7959018771790942

At the beginning, the only entity in the environment is the Earth, since it is the only object, whose
position will not change during the learning process (no need to move or rotate it thanks to the
reference system). Solving the task starts with processing the parameters. We read the problem to
be solved and save the data related to the observatories and celestial bodies. Then, we create the
corresponding spheres representing these objects in the environment at the appropriate size. The
learning process is as described above, with a new observatory being placed at each step. After all
the observatories are placed, the reward r̂t in (15) is calculated, and the episode ends. The whole
process can be described more formally by Algorithm 1.

6



Under review as a conference paper at ICLR 2023

Algorithm 1 Optimal placement of observatories

1: Input
2: genPos generated positions
3: obs observatories to be placed
4: planets planets to be observed
5: maxPoints maximum achievable points based on importance values

6: Output
7: reward reward earned

8: reward← 0
9: for each gp ∈ genPos do

10: distinctP lanetsSeen← ∅
11: position planets according to gp
12: for each o ∈ obs do
13: planetsInCone← all planets that are inside an o.angle cone
14: for each p ∈ planetsInCone do
15: send ray from o to p
16: if ray collides first with p and distinctP lanetsSeen ∩ p = ∅ then
17: distinctP lanetsSeen = distinctP lanetsSeen ∪ p
18: end if
19: end for
20: reward+ = getPointsBasedOnPlanets(distinctP lanetsSeen)
21: end for
22: end for
23: return reward/(len(genPos) ∗maxPoints)

The way it is done is by going through all the generated positions from the CSV file and checking
the number of distinct objects seen by that placement. A celestial body is considered seen, if it is
within the observatory’s AOV, and is not obscured by another object. The reward earned in a given
generated position is the sum of the importance values assigned to the objects seen. The sum of the
rewards earned by the placement is divided by the number of generated positions and the maximum
achievable points, so it is always less than 1.0 (Unity ML-Agents best practice).

Our main example considers placing M = 3 observatories, each with an AOV of 30◦, trying to find
the optimal placement for the time interval from 01.01.2022 to 12.12.2032 with four daily samples,
at 0 am, 6 am, 12 am, and 6 pm (N = 15 992). The main objective is to monitor the planets of our
Solar System plus Pluto, the Sun, and the Moon, each with an importance value of 1. This way the
maximum achievable point (maxPoint) is 10.

When noise is not considered the reward is simply given to the agent. Meanwhile, when seeking
to speed up the training by using a hypothesis, the reward is further refined by (15). During the
development, several hypotheses were tested, most of which were based on knowledge of the Solar
System. It is known that the Earth’s orbit around the Sun defines a plane 23.5◦ from the equator,
called the ecliptic. Since the shape of the Solar System is more similar to that of a flattened disk,
the planets move more or less in this plane. The orbits of these planets are at most 3◦ to the ecliptic,
except for Mercury, which is 7◦, and Pluto, which is classified as a dwarf planet, being at an angle
of 17◦. Using this knowledge, a hypothesis can be constructed that rewards placements that are not
too far off the ecliptic.

We also know that for an observatory to see an object, it has to be within a cone defined by its
AOV. Therefore, the closer the observatories are to each other, the higher the chance that their cones
will intersect. We can specify a minimum distance or a minimum difference in either latitude or
longitude and if the placement meets the condition, we can reward it.

The variable mini-batch approach described in section 2.1 does not change how rewards are calcu-
lated but uses a subset of generated positions instead as given in (13). Figure 2 depicts how the batch
size K changes during the training when using the parameters from Table 2. In the beginning, the

7



Under review as a conference paper at ICLR 2023

algorithm will only get rewards based on the chosen 64 samples, but it slowly increases to 15 992
according to (12) as discussed in section 2.

Figure 2: Mini-batch sizes K used for the k-th episodes.

Table 1: Parameters used for adjusting the mini-batch size.

PARAMETER VALUE
ϵ 0.0000009
σmax 40
T (0) 5
α 0.99997
N 15 992

5 EXPERIMENTAL RESULTS

We have tried various heuristics, but in the end, h(st+1) was calculated in (15) as a combination of
two different terms. The first gives a linearly decreasing reward for each observatory whose latitude
value was below 20◦ with maximizing at 0◦, while the second rewards the algorithm if the longitude
or latitude of a pair of observatories differs by at least 50◦. Intuitively, we have formulated that
we expect the observatories close to the equator with a remarkably large distance from each other.
For our experiments with M = 3 observatories we have fixed the maximum heuristics reward
maxs∈S(h(s)) = 3× (0.5 + 0.9) = 4.2 in (15) empirically which is on a similar scale as r̂t.

Using traditional PPO, the maximum reward achieved was 0.4568704, which means that, on aver-
age, the observatories can monitor 4.5 celestial objects out of the ten chosen ones. Figure 3 plots
how the rewards earned evolved during training. It can be observed that using heuristics the algo-
rithm reaches the original PPO maximum slightly faster. The variable mini-batch size, however,
shows a significant improvement in training speed, which can be further escalated by combining it
with the hypothesis noise. As Table 2 more precisely indicates, we could speed up the learning pro-
cess by almost 75% in this way. The entries in the table were calculated by taking the elapsed times
when the different approaches reached the maximum reward earned by the original PPO algorithm.

Table 2: Learning speed increments according to incorporating variable mini-batch and hypothesis.

Method Speed increase (%)
Hypothesis 0.686
Mini-batch 70.409
Hypothesis and mini-batch 74.219

8



Under review as a conference paper at ICLR 2023

(a) 2 hours training. (b) 6 hours training.

Figure 3: Comparison of the rewards earned (10-years period).

Using the hypothesis term solely did not increase the training speed remarkably in our above exam-
ple. However, for a harder task including a 50-years time period with a capped maximum amount of
steps and decreasing learning rate, it apparently outperformed the simple PPO. As depicted in Fig-
ure 4(a) the learning process reached the maximum reward with 47.099% faster using the heuristics
term. Figure 4(b) demonstrates also the optimal locations found for the 50-years example.

(a) Speeding up learning with adding heuristics. (b) Optimal locations of M = 3 observatories.

Figure 4: An example for 50-years observation period.

6 CONCLUSIONS

In this work, we have introduced two new approaches, a heuristics term and variable mini-batch
size, to speed up the PPO algorithm in RL. They have been incorporated as noises that vanish as
the learning progresses to keep up the original convergence characteristics. We have demonstrated a
remarkable gain in the training time in our experimental analysis focusing on finding optimal sensor
placement to monitor space objects. Both of the approaches (esp. the variable mini-batch) were
found to be efficient with an additional gain when they were combined. As a further step, we plan
to let the sensors be placed in a more flexible way to other types of locations, which extension is
expected to induce further modifications to our current solution.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Alekh Agarwal, Sham M. Kakade, Jason D. Lee, and Gaurav Mahajan. On the theory of policy
gradient methods: Optimality, approximation, and distribution shift. Journal of Machine Learning
Research, 22(98):1–76, 2021. URL http://jmlr.org/papers/v22/19-736.html.

Osbert Bastani. Sample complexity of estimating the policy gradient for nearly deterministic dynam-
ical systems. In International Conference on Artificial Intelligence and Statistics, pp. 3858–3869.
PMLR, 2020.

Jalaj Bhandari and Daniel Russo. Global optimality guarantees for policy gradient methods. CoRR,
abs/1906.01786, 2019. URL http://arxiv.org/abs/1906.01786.

W. Folkner, James Williams, and Dale Boggs. The planetary and lunar ephemeris de 421. Inter-
planetary Network Progress Report, 42–178:1–, 08 2009.

S. B. Gelfand and S. K. Mitter. Simulated annealing with noisy or imprecise energy measurements.
Journal of Optimization Theory and Applications, 62(1):49–62, 1989. ISSN 1573-2878. doi:
10.1007/BF00939629.

Stuart Geman and Donald Geman. Stochastic relaxation, gibbs distributions, and the bayesian
restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-6
(6):721–741, 1984. doi: 10.1109/TPAMI.1984.4767596.

Anna Goldie and Azalia Mirhoseini. Placement optimization with deep reinforcement learning.
In Proceedings of the 2020 International Symposium on Physical Design, ISPD ’20, pp. 3–7,
New York, NY, USA, 2020. Association for Computing Machinery. ISBN 9781450370912. doi:
10.1145/3372780.3378174. URL https://doi.org/10.1145/3372780.3378174.

Walter J. Gutjahr and Georg Ch. Pflug. Simulated annealing for noisy cost functions. Journal of
Global Optimization, 8(1):1–13, 1996. doi: 10.1007/bf00229298.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. CoRR, abs/1801.01290,
2018. URL http://arxiv.org/abs/1801.01290.

John K Haas. A history of the unity game engine. 2014.

Arthur Juliani, Vincent-Pierre Berges, Ervin Teng, Andrew Cohen, Jonathan Harper, Chris Elion,
Chris Goy, Yuan Gao, Hunter Henry, Marwan Mattar, and Danny Lange. Unity: A general
platform for intelligent agents, 2018. URL https://arxiv.org/abs/1809.02627.

Azalia Mirhoseini, Hieu Pham, Quoc V. Le, Benoit Steiner, Rasmus Larsen, Yuefeng Zhou, Naveen
Kumar, Mohammad Norouzi, Samy Bengio, and Jeff Dean. Device placement optimization with
reinforcement learning, 2017. URL https://arxiv.org/abs/1706.04972.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin A. Riedmiller. Playing atari with deep reinforcement learning. CoRR,
abs/1312.5602, 2013. URL http://arxiv.org/abs/1312.5602.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928–1937. PMLR, 2016a.

Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. CoRR, abs/1602.01783, 2016b. URL http://arxiv.org/abs/1602.01783.

Gérard Petit and Brian Luzum. Iers conventions (2010). Tech. Rep. DTIC Document, 36:31–42, 01
2010.

Matthias Plappert, Marcin Andrychowicz, Alex Ray, Bob McGrew, Bowen Baker, Glenn Powell,
Jonas Schneider, Josh Tobin, Maciek Chociej, Peter Welinder, Vikash Kumar, and Wojciech
Zaremba. Multi-goal reinforcement learning: Challenging robotics environments and request
for research. CoRR, abs/1802.09464, 2018. URL http://arxiv.org/abs/1802.09464.

10

http://jmlr.org/papers/v22/19-736.html
http://arxiv.org/abs/1906.01786
https://doi.org/10.1145/3372780.3378174
http://arxiv.org/abs/1801.01290
https://arxiv.org/abs/1809.02627
https://arxiv.org/abs/1706.04972
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1602.01783
http://arxiv.org/abs/1802.09464


Under review as a conference paper at ICLR 2023

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov,
Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al.
A generalist agent. arXiv preprint arXiv:2205.06175, 2022.

Brandon Rhodes. Skyfield: High precision research-grade positions for planets and Earth satellites
generator. Astrophysics Source Code Library, record ascl:1907.024, July 2019.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. CoRR, abs/1707.06347, 2017. URL http://arxiv.org/abs/
1707.06347.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. nature, 550(7676):354–359, 2017.

Joseph Suarez, Yilun Du, Phillip Isola, and Igor Mordatch. Neural MMO: A massively multiagent
game environment for training and evaluating intelligent agents. CoRR, abs/1903.00784, 2019.
URL http://arxiv.org/abs/1903.00784.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

János Tóth, Henrietta Tomán, and András Hajdu. Efficient sampling-based energy function evalu-
ation for ensemble optimization using simulated annealing. Pattern Recognition, 107:107510,
2020. ISSN 0031-3203. doi: https://doi.org/10.1016/j.patcog.2020.107510. URL https:
//www.sciencedirect.com/science/article/pii/S0031320320303137.

Daniel Dooyum Uyeh, Blessing Itoro Bassey, Rammohan Mallipeddi, Senorpe Asem-Hiablie,
Maryleen Amaizu, Seungmin Woo, Yushin Ha, and Tusan Park. A reinforcement learning ap-
proach for optimal placement of sensors in protected cultivation systems. IEEE Access, 9:100781–
100800, 2021. doi: 10.1109/ACCESS.2021.3096828.

Zhi Wang, Han-Xiong Li, and Chunlin Chen. Reinforcement learning based optimal sensor place-
ment for spatiotemporal modeling. IEEE Transactions on Cybernetics, PP, 03 2019. doi:
10.1109/TCYB.2019.2901897.

Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos, Joelle Pineau, and Rob Fergus. Improv-
ing sample efficiency in model-free reinforcement learning from images. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 35, pp. 10674–10681, 2021.

Yang Yu. Towards sample efficient reinforcement learning. In IJCAI, pp. 5739–5743, 2018.

11

http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1903.00784
https://www.sciencedirect.com/science/article/pii/S0031320320303137
https://www.sciencedirect.com/science/article/pii/S0031320320303137

	Introduction
	Methodology
	Variable mini-batch size
	Hypothesis as noise

	Application Domain
	Implementation
	Data acquisition
	Learning process

	Experimental Results
	Conclusions

