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ABSTRACT

We study offline change point localization and inference in dynamic multilayer
random dot product graphs (D-MRDPGs), where at each time point, a multilayer
network is observed with shared node latent positions and time-varying, layer-
specific connectivity patterns. We propose a novel two-stage algorithm that com-
bines seeded binary segmentation with low-rank tensor estimation, and establish
its consistency in estimating both the number and locations of change points. Fur-
thermore, we derive the limiting distributions of the refined estimators under both
vanishing and non-vanishing jump regimes. To the best of our knowledge, this is
the first result of its kind in the context of dynamic network data. We also develop
a fully data-driven procedure for constructing confidence intervals. Extensive nu-
merical experiments demonstrate the superior performance and practical utility of
our methods compared to existing alternatives.

1 INTRODUCTION

Statistical network analysis models entities as nodes and their interactions as edges. While single-
layer networks capture pairwise interactions efficiently, many real-world systems involve multiple
types of interaction among the same set of nodes. Multilayer networks address this complexity
by organizing these varied interactions into distinct layers over a common node set, enabling both
the capture of heterogeneity and the identification of shared latent structures. In practice, network
structures often evolve over time. For instance, transportation networks may exhibit gradual diurnal
variations or sudden structural changes due to accidents or road closures. Detecting such sudden
shifts and providing adaptive strategies, such as dynamic traffic signal control or rerouting recom-
mendations, is crucial for efficient transportation management. These abrupt structural shifts are
referred to as change points. This naturally falls in the territory of change point analysis.

Change point analysis is a well-established area in statistics concerned with detecting abrupt struc-
tural changes in ordered data. It can be broadly classified into online and offline settings, depend-
ing on whether data are analyzed sequentially as they are collected or retrospectively after the full
dataset has been observed. In the context of dynamic networks, online change point detection has
been studied in models such as inhomogeneous Bernoulli networks (e.g., Yu et al., 2021) and ran-
dom weighted edge networks (e.g., Chen et al., 2024). Offline detection has been explored in various
network models, including inhomogeneous Bernoulli networks (e.g., Wang et al., 2021), stochastic
block models (e.g., Xu and Lee, 2022; Bhattacharjee et al., 2020) and random dot product graphs
(e.g., Padilla et al., 2022). More recently, Wang et al. (2025) investigated online change point detec-
tion in dynamic multilayer random dot product graphs (D-MRDPGs).

In this paper, we study offline change point localization and inference for D-MRDPGs. Specifically,
at each time point, we observe a realization of an L-layered multilayer network, where nodes are
associated with fixed but latent positions, and layer-specific weight matrices capture heterogeneous
interactions across layers. These weight matrices are allowed to vary over time. Our goal is to
develop efficient procedures for localizing and inferring change points under this dynamic multilayer
structure in the offline setting.

1.1 LIST OF CONTRIBUTIONS

The main contributions of this paper are summarized as follows.
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First, to the best of our knowledge, this is the first study on offline change point detection in dynamic
multilayer networks. We propose a novel two-stage procedure: (i) seeded binary segmentation with
refined CUSUM statistics to generate a coarse set of candidates, and (ii) refinement via low-rank
tensor estimation. We establish consistency for both the estimated number of change points and
their locations.

Second, we derive the limit distributions of the refined estimators, revealing two distinct regimes
depending on whether the jump size is fixed or vanishes as the time horizon grows. To the best
of our knowledge, these are the first such results in the network literature. We further provide a
data-driven procedure for constructing confidence intervals.

Finally, extensive numerical experiments demonstrate that our methods substantially outperform
existing state-of-the-art algorithms.

1.2 NOTATION AND ORGANIZATION

For p ∈ N+, let [p] = {1, . . . , p}. For sequences {an}n∈N+ , {bn}n∈N+ ⊂ R+, write an = O(bn)
if an ≤ Cbn for some constant C > 0 and all sufficiently large n, and an = Θ(bn) if both
an = O(bn) and bn = O(an). For a sequence of random variables {Xn}n∈N+ , Xn = Op(an) if
limM→∞ lim supn P(|Xn| ≥Man) = 0. For sets C and C′, define the one-sided Hausdorff distance
d(C′|C) = maxc∈C minc′∈C′ |c′ − c|, with d(C′|C) =∞ if either set is empty.

For A ∈ Rp1×p2 , let Ai and Aj denote its ith row and jth column, and σ1(A) ≥ · · · ≥
σp1∧p2

(A) ≥ 0 its singular values. For tensors M,Q ∈ Rp1×p2×p3 , define ⟨M,Q⟩ =∑p1

i=1

∑p2

j=1

∑p3

l=1 Mi,j,lQi,j,l and ∥M∥2F = ⟨M,M⟩. The mode-s matricization of M is de-
noted by Ms(M) with M1(M)i1,(i2−1)p3+i3 = Mi1,i2,i3 and Ms(M) ∈ Rps×

∏
t ̸=s pt . Tucker

ranks (r1, r2, r3) are given by rs = rank(Ms(M)). For Us ∈ Rqs×ps , the marginal multiplication
operator ×1 is defined as M×1 U1 = {

∑p1

k=1 Mk,j,l(U1)i,k}i∈[q1], j∈[p2], l∈[p3] ∈ Rq1×p2×p3 , with
×2 and ×3 defined analogously.

The paper is organized as follows. Section 2 introduces the D-MRDPG model, the two-stage local-
ization procedure and theoretical guarantees. Section 3 derives limiting distributions of the refined
estimators and proposes a data-driven method for confidence intervals. Section 4 presents numerical
experiments and Section 5 concludes. Proofs and auxiliary results are in the Appendix.

2 CHANGE POINT LOCALIZATION

2.1 PROBLEM FORMULATION

We consider the multilayer random dot product graph (MRDPG) model (Jones and Rubin-Delanchy,
2020), an extension of the random dot product graph (Young and Scheinerman, 2007) to multilayer
networks. Each layer is characterized by a distinct weight matrix, while all layers share a common
set of latent positions. We focus on undirected edges, noting that the directed case is analogous.
Definition 1 (Multilayer random dot product graphs, MRDPGs). Given a sequence of deterministic
matrices {W(l)}Ll=1 ⊂ Rd×d, let {Xi}ni=1 ⊂ Rd be fixed vectors satisfying X⊤

i W(l)Xj ∈ [0, 1] for
all i, j ∈ [n], l ∈ [L]. An adjacency tensor A ∈ {0, 1}n×n×L follows an MRDPG if

P{A} =
L∏

l=1

∏
1≤i≤j≤n

P
Ai,j,l

i,j,l (1−Pi,j,l)
1−Ai,j,l

=

L∏
l=1

∏
1≤i≤j≤n

(
X⊤

i W(l)Xj

)Ai,j,l
(
1−X⊤

i W(l)Xj

)1−Ai,j,l .

We write A ∼ MRDPG({Xi}ni=1, {W(l)}l∈[L]) and denote the probability tensor by P ∈ Rn×n×L.

We now extend this static model to a dynamic setting and introduce a change point framework.
Definition 2 (Dynamic multilayer random dot product graphs, D-MRDPGs). Let {Xi}ni=1 ⊂ Rd

be latent positions and {W(l)(t)}l∈[L],t∈[T ] ⊂ Rd×d be a weight matrix sequence. A sequence
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of mutually independent adjacency tensors {A(t)}t∈[T ] follows the dynamic MRDPGs if A(t) ∼
MRDPG({Xi}ni=1, {W(l)(t)}l∈[L]) for t ∈ [T ]. We write {A(t)}Tt=1 ∼ D-MRDPGs({Xi}ni=1,

{{W(l)(t)}l∈[L]}Tt=1) and write {P(t)}Tt=1 as the corresponding sequence of probability tensors.

Model 1. Let {A(t)}t∈[T ] ⊂ {0, 1}n×n×L follow D-MRDPGs as in Definition 2. (i) Assume that
there exist change points 0 = η0 < η1 < · · · < ηK < T = ηK+1 such that for t ∈ [T − 1],
{W(l)(t)}Ll=1 ̸= {W(l)(t+ 1)}Ll=1 if and only if t ∈ {ηk}Kk=1. Let ∆ = mink∈[K+1](ηk − ηk−1) be
the minimal spacing between two consecutive change points and assume ∆ = Θ(T ). (ii) For each
k ∈ [K], define the k-th jump size and normalized jump tensor as κk = ∥P(ηk+1)−P(ηk)∥F and
Ψk = κ−1

k {P(ηk+1)−P(ηk)}, and let κ = mink∈[K] κk denote the smallest jump magnitude.

Model 1 allows abrupt changes in layer connectivity (via weight matrices), while keeping latent
positions unchanged over time. This framework is motivated by applications such as air transporta-
tion networks (Section 4.2), where nodes represent airports with relatively stable intrinsic attributes
(e.g. geographical location and logistical capacity). In contrast, airline routing preferences, encoded
in the weight matrices, may shift due to route optimization strategies or policy interventions.

In Model 1(i), we assume that the minimal spacing ∆ between successive change points scales
with the time horizon T , essentially bounding the number of changes K. This assumption can be
relaxed (see Section 5 and Appendix F.1). In Model 1(ii), the change magnitude is quantified via
the Frobenius norm of the difference between expected adjacency tensors. This metric is sufficiently
general to accommodate both dense changes - small but widespread deviations across many layers -
and sparse changes - large deviations concentrated in a few layers. Throughout, we allow all model
parameters, including the number of nodes n, number of layers L, latent dimension d, jump size κ
and minimal spacing ∆ to diverge with T .

2.2 CHANGE POINT LOCALIZATION ALGORITHM

In this section, we introduce a two-stage procedure for offline change point localization in dynamic
multilayer networks, detailed in Algorithm 1. Stage I generates a coarse set of change point candi-
dates using seeded binary segmentation and CUSUM statistics. Stage II refines them via localized
scan statistics constructed using a tensor-based low-rank estimation technique. This approach builds
on Wang et al. (2021) for single-layer networks and extends it to the multilayer setting.

For Stage I, we begin by defining the seeded intervals (Kovács et al., 2023) and CUSUM statistics
(Page, 1954) for dynamic multilayer networks in Definitions 3 and 4.

Definition 3 (Seeded intervals). Let J = ⌈CJ log2(T )⌉ for some sufficiently large absolute constant
CJ > 0. For each j ∈ [J ], define the collection of intervals Jj as Jj = {(⌊(i − 1)T2−j⌋, ⌈(i −
1)T2−j + T2−j+1⌉] : i ∈ [2j − 1]}. The full collection of seeded intervals is defined as J =⋃J

j=1 Jj .

Definition 4 (CUSUM statistics). Given a tensor sequence {B(t)}t∈[T ] and any 0 ≤ s < t < e ≤
T , define the CUSUM statistics as

B̃s,e(t) =

e∑
u=s+1

ωt
s,e(u)B(u), where ωt

s,e(u) =


√

e−t
(e−s)(t−s) , for u ∈ [t]\[s],

−
√

t−s
(e−s)(e−t) , for u ∈ [e]\[t].

(1)

Stage I implements a modified version of seeded binary segmentation (SBS), a computationally
efficient algorithm introduced by Kovács et al. (2023). SBS leverages seeded intervals to construct a
multiscale collection of candidate regions for detecting multiple change points. Within each interval,
the algorithm computes CUSUM statistics and retains time points where the statistic is maximized
and exceeds a predefined threshold, as preliminary change point estimators

We next define the refined scan statistics used in Stage II, based on tensor heteroskedastic principal
component analysis (TH-PCA), a low-rank tensor estimation method proposed by Han et al. (2022)
and detailed in Algorithm 2 in Appendix C.

Definition 5 (Refined scan statistics). Let {A′(t)}t∈[T ] and {B′(t)}t∈[T ] be independent sequences

generated according to Definition 2. Given {(bk, sk, ek)}K̃k=1, for any k ∈ [K̃] and t ∈ (sk, ek),
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Algorithm 1 Two-stage change point localization for D-MRDPGs
INPUT: Mutually independent sequences {A(t)}t∈[T ], {A′(t)}t∈[T ], {B(t)}t∈[T ], {B′(t)}t∈[T ] ⊂
{0, 1}n×n×L, threshold τ ∈ R+, collection of seeded intervals J

Initialise: s← 0, e← T , C̃ ← ∅
Stage I: Seeded Binary Segmentation, SBS

(
(s, e), τ,J

)
for I = (α′, β′] ∈ J do

if I = (α′, β′] ⊆ (s, e] then
(α, β] = (⌊α′ + 64−1(β′ − α′)⌋, ⌈β′ − 64−1(β′ − α′)⌉]
if β − α ≥ 2 then

bI ← argmaxα<t<β

∣∣〈Ãα,β(t), B̃α,β(t)⟩
∣∣, aI ← ∣∣〈Ãα,β(bI), B̃

α,β(bI)⟩
∣∣

else aI ← −1
end if

else aI ← −1
end if

end for
I∗ ← argmaxI∈J aI
if aI∗ > τ then
C̃ ← C̃ ∪ {bI∗}, SBS

(
(s, bI∗), τ,J

)
, SBS

(
(bI∗ , e), τ,J

)
end if
Stage II: Local Refinement, LR( C̃ )
{bk}K̃k=1 ← C̃ with 0 = b0 < b1 < · · · < bK̃ < bK̃+1 = T

for k = 1 to K̃ do
(sk, ek]←

(
⌊(bk−1 + bk)/2⌋, ⌈(bk + bk+1)/2⌉

]
η̃k ← argmaxsk<t<ek

D̂sk,ek
bk

(t) ▷ See Definition 5
end for

OUTPUT: {η̃k}K̃k=1

we define the refined scan statistic as D̂sk,ek
bk

(t) =
∣∣〈P̂sk,ek(bk)/∥P̂sk,ek(bk)∥F, Ã′sk,ek(t)

〉∣∣,
where P̂sk,ek(bk) = TH-PCA

(
B̃′sk,ek(bk), (d, d,m

sk,ek
bk

),
√

(ek − bk)(bk − sk)/(ek − sk),√
(ek − bk)(bk − sk)/(ek − sk)

)
with TH-PCA detailed in Algorithm 2, B̃′·,·(·) defined in Defi-

nition 4 and ms,e
bk

defined in Assumption 1(ii).

Stage II refines each preliminary change point estimate from Stage I by locating the time point
that maximizes the refined scan statistics within a local window around the initial estimate. This
step employs the TH-PCA procedure with an additional truncation step (see Algorithm 2) to more
accurately estimate the local expected CUSUM adjacency tensors, yielding provably improved lo-
calization accuracy.

The assumption of mutual independence among the four sequences in Algorithm 1 is imposed for
theoretical convenience. In practice (and in our numerical experiments in Section 4), Stage I and
Stage II are implemented using the same two split tensor sequences via the odd–even splitting
approach. The computational cost is O(Tn2L log2(T )) for Stage I and O(Tn2Lr log(n)) for Stage
II, where r is the maximum input rank in TH-PCA, giving an overall cost of O(n2Lr log2(T ∨ n)).

2.3 THEORETICAL GUARANTEES

This section establishes the theoretical guarantees of the proposed two-stage change point local-
ization procedure (Algorithm 1). We begin by justifying the use of low-rank tensor estimation via
TH-PCA (Algorithm 2) in Stage II through an analysis of the expected CUSUM-transformed and
average adjacency tensors. While the expected averaged adjacency tensors introduced below are not
used in this section, they are essential for deriving the limiting distributions in Section 3.
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For any 0 ≤ s < t < e ≤ T , define the expected CUSUM-transformed and average adjacency
tensors as

P̃s,e(t) = E
{
B̃s,e(t)

}
and Ps,e = E

{
Bs,e

}
, where Bs,e = (e− s)−1

e∑
t=s+1

B(t), (2)

and B̃·,·(·) is defined in Definition 4. Both tensors admit Tucker representations of the form
P̃s,e(t) = S×1X×2X×3Q̃

s,e(t), and Ps,e = S×1X×2X×3Q
s,e, where X = (X1, . . . , Xn)

⊤ ∈
Rn×d and S ∈ Rd×d×d2

with Si,j,l = 1{l = (i−1)d+ j}. The matrices Q̃s,e(t) and Qs,e are given
by

Q̃s,e(t) =

e∑
u=s+1

ωt
s,e(u)Q(u), Qs,e = (e− s)−1

e∑
t=s+1

Q(t), (3)

where ωt
s,e(u) is define in (1) and Q(u) ∈ RL×d2

with rows(
Q(u)

)
l
=
(
(W(l)(u))1 · · · (W(l)(u))d

)
, l ∈ [L]. (4)

To establish the low-rank structure of P̃s,e(t) and Ps,e (in terms of Tucker ranks, see Section 1.2),
and to state theoretical guarantees for Algorithm 1, we state some necessary assumptions below.
Assumption 1. Consider D-MRDPGs({Xi}ni=1, {{W(l)(t)}l∈[L]}Tt=1) from Definition 2.

(i) Let X = (X1, . . . , Xn)
⊤ ∈ Rn×d. Assume that rank(X) = d, σ1(X)/σd(X) ≤ Cσ and

σd(X) ≥ Cgap
√
n with absolute constants Cσ, Cgap > 0.

(ii) For any 0 ≤ s < t < e ≤ T , let Q̃s,e(t) ∈ RL×d2

be defined in (3). Denote ms,e
t =

rank(Q̃s,e(t)). Assume that σ1

(
Q̃s,e(t)

)
/σms,e

t

(
Q̃s,e(t)

)
≤ Cσ and σms,e

t

(
Q̃s,e(t)

)
≥ Cgap with

absolute constants Cgap, Cσ > 0.

(iii) For any 0 ≤ s < e ≤ T , let Qs,e ∈ RL×d2

be defined in (3). Denote ms,e = rank(Qs,e).
Assume that σ1

(
Qs,e

)
/σms,e

(
Qs,e

)
≤ Cσ and σms,e

(
Qs,e

)
≥ Cgap with absolute constants

Cgap, Cσ > 0.

Assumption 1(i) imposes a full-rank condition on the latent position matrix X , requiring its smallest
singular value to be at least of order

√
n, with all singular values of the same order. Since X

represents latent positions rather than observed data, the full-rankness of X can be interpreted as a
condition on the knowledge of the intrinsic dimension d, ensuring that the input dimension to TH-
PCA is no smaller than the true latent dimension d. Further discussion on rank selection, see Wang
et al. (2025) and Section 4.1.

Assumptions 1(ii) and (iii) - with (iii) for Section 3 - impose low-rank conditions on the CUSUM
and averaged forms of {Q(t)}Tt=1, where each Q(t) comprises the weight matrices {W(l)(t)}Ll=1. In
Appendix D, we show that, with high probability, each working interval (sk, ek] or (s̃k, ẽk] contains
exactly one change point ηk, implying max{msk,ek

t ,ms̃k,ẽk} ≤ rank(Q(ηk))+rank(Q(ηk+1)) for
t ∈ (sk, ek). This implicitly constraints the ranks of {Q(ηk)}K+1

k=1 . While this low-rank structure
may not directly or transparently reflect the explicit model structure, such ambiguity is common in
tensor-based models (e.g. Jing et al., 2021).

The signal-to-noise ratio (SNR) is commonly used to characterize the inherent difficulty of change
point detection. We now state the SNR condition required for our theoretical guarantees.
Assumption 2 (Signal-to-noise ratio condition). Assume that there exists a large enough absolute
constant CSNR > 0 such that κ

√
∆ ≥ CSNR log(T )

√
nL1/2 + d2mmax + nd+ Lmmax, where

mmax = maxk∈[K+1] rank
(
Q(ηk)

)
with Q(ηk) defined in (4).

We compare Assumption 2 to its counterpart in Wang et al. (2021). When the sparsity parameter
ρ = 1, their SNR condition (Assumption 3) becomes κ

√
∆ ≥ CSNR log1+ξ(T )

√
nd for some

ξ > 0. Our assumption is consistent with this and extends it to the multilayer setting by accounting
for the additional complexity from multilayers and the low-rank structure of layers’ weight matrices.

Theorem 1. Let {η̃k}K̃k=1 be the output of Algorithm 1. Suppose the mutually independent adja-
cency tensor sequences {A(t)}t∈[T ], {A′(t)}t∈[T ], {B(t)}t∈[T ], {B′(t)}t∈[T ] ⊂ {0, 1}n×n×L are

5
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generated according to Definition 2 and satisfy Model 1, Assumptions 1(i), (ii) and 2. Assume
the threshold τ is chosen such that cτ,1n

√
L log3/2(T ) < τ < cτ,2κ

2∆, where cτ,1, cτ,2 > 0 are
sufficiently large and small absolute constants, respectively. We have that

P
{
K̃ = K and |η̃k − ηk| ≤ ϵk, ∀k ∈ [K]

}
≥ 1− CT−c, where ϵk = Cϵ

log(T )

κ2
k

,

and Cϵ, C, c > 0 are absolute constants.

Theorem 1 implies that, with probability tending to 1 as T → ∞, the estimated number of change
points satisfies K̃ = K and the relative localization error vanishes: maxk∈[K] ∆

−1|η̃k − ηk| ≤
Cϵ∆

−1κ−2 log(T ) → 0 by Assumption 2. This establishes the consistency of Algorithm 1 in both
detecting and localizing all change points.
Remark 1. Compared to Wang et al. (2021), which established minimax-optimal localization rates
for single-layer networks, our work extends these guarantees to more complex multilayer settings
without sacrificing accuracy. In contrast, Wang et al. (2025) focused on the online setting and
obtained a localization rate of order κ−2(d2mmax + nd + Lmmax) log(∆/α), where α controls
the Type-I error rate. Our approach, by comparison, achieves a substantially sharper rate of order
κ−2
k log(T ).

3 LIMITING DISTRIBUTIONS

Inference on change points is generally more challenging than establishing high-probability bounds
on localization errors. To address this, we introduce a final refinement step, inspired by approaches
such as those in Madrid Padilla et al. (2023); Xue et al. (2024); Xu et al. (2024).

Let {A(t)}t∈[T ] and {B(t)}t∈[T ] be independent samples as defined in Definition 2. Let {η̃k}Kk=1

be the output of Algorithm 1 with 0 = η̃0 < η̃1 < · · · < η̃K̃ < η̃K̃+1 = T . For each k ∈ [K̃],
define the final estimators as

η̂k = argmin
s̃k<t<ẽk

Qk(t) = argmin
s̃k<t<ẽk

t∑
u=s̃k+1

∥A(u)− P̂η̃k−1,η̃k∥2F +

ẽk∑
u=t+1

∥A(u)− P̂η̃k,η̃k+1∥2F, (5)

where (s̃k, ẽk] = ((η̃k−1 + η̃k)/2, (η̃k + η̃k+1)/2] and

P̂η̃k−1,η̃k = TH-PCA(Bη̃k−1,η̃k , (d, d,mη̃k−1,η̃k), 1, 0), (6)
with TH-PCA detailed in Algorithm 2, B·,· defined in (2) and mη̃k−1,η̃k

defined in Assump-
tion 1(iii).
Theorem 2. Let {A(t)}t∈[T ], {A′(t)}t∈[T ], {B(t)}t∈[T ], {B′(t)}t∈[T ] ⊂ {0, 1}n×n×L be mutually
independent adjacency tensor sequences generated according to Definition 2 and satisfying Model 1,
Assumptions 1 and 2. Let {η̂k}K̃k=1 be defined in (5) with {η̃k}K̃k=1 obtained from Algorithm 1, using
a threshold τ satisfying condition stated in Theorem 1.

For k ∈ [K], if κk → 0, as T →∞, then when T →∞, we have |η̂k − ηk| = Op(κ
−2
k ) and

κ2
k(η̂k − ηk)

D−→ argmin
r∈R

P ′
k(r), where P ′

k(r) =


−r + 2σk,kB1(−r), r < 0,

0, r = 0,

r + 2σk,k+1B2(r), r > 0,

for r ∈ Z. Here, B1(r) and B2(r) are independent standard Brownian motions, and for any k′ ∈
{k, k + 1}, σ2

k,k′ = Var
(
⟨Ψk,Ek′(1)⟩

)
, where Ψk is the normalized jump tensor (Model 1), and

Ek′(t) = Ak′(t)−P(ηk′) with {Ak′(t)}t∈Z
i.i.d.∼ MRDPG({Xi}ni=1, {W(l)(ηk′)}l∈[L]).

Theorem 2 establishes the localization error bounds and limiting distributions for the refined change
point estimators in the vanishing jump regime (κk → 0). In particular, it shows the uniform tightness
κ2
k|η̂k − ηk| = Op(1), which improves upon Theorem 1 by a logarithmic factor and guarantees the

existence of limiting distributions. To the best of our knowledge, Theorem 2 is the first to derive
limiting distributions for change point estimators in network data. These limiting distributions are
associated with a two-sided Brownian motion. Results for the non-vanishing jump regime (κk →
ρk > 0) are deferred to Appendix A.
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Table 1: Means of evaluation metrics for networks simulated from Scenarios 1 and 2.

Scenario 1 Scenario 2
n Method |K̂ −K| ↓ d(Ĉ|C) ↓ d(C|Ĉ) ↓ C(G,G′) ↑ |K̂ −K| ↓ d(Ĉ|C) ↓ d(C|Ĉ) ↓ C(G,G′) ↑

50

CPDmrdpg 0.01 0.00 0.42 99.86% 0.00 0.00 0.00 100%
gSeg (nets.) 1.09 Inf Inf 52.82% 1.60 Inf Inf 67.68%
kerSeg (nets.) 0.10 0.00 3.12 99.13% 0.15 0.00 1.53 99.32%
gSeg (frob.) 0.52 Inf Inf 90.12% 0.23 Inf Inf 97.71%
kerSeg (frob.) 0.26 0.00 5.76 98.35% 0.35 0.11 3.43 98.37%

100

CPDmrdpg 0.00 0.00 0.00 100% 0.00 0.00 0.00 100%
gSeg (nets.) 1.12 Inf Inf 52.62% 1.58 Inf Inf 69.24%
kerSeg (nets.) 0.12 0.00 2.82 99.17% 0.16 0.00 1.81 99.31%
gSeg (frob.) 0.47 Inf Inf 88.71% 0.16 0.04 1.65 99.17%
kerSeg (frob.) 0.30 0.00 6.07 98.11% 0.40 0.02 4.42 97.81%

3.1 CONFIDENCE INTERVAL CONSTRUCTION

Using Theorem 2, we construct data-driven (1 − α) confidence intervals for ηk, k ∈ [K], in the
vanishing regime, for a user-specified confidence level α ∈ (0, 1) as follows.

Step 1: Estimate the jump size and normalized jump tensor. Compute the estimated jump size
κ̂k = ∥P̂η̃k,η̃k+1 − P̂η̃k−1,η̃k∥F and the estimated normalized jump tensor Ψ̂k = κ̂−1

k (P̂η̃k,η̃k+1 −
P̂η̃k−1,η̃k) where P̂·,· is defined in (6).

Step 2: Estimate the variances. For each k′ ∈ {k, k + 1}, compute

σ̂2
k,k′ =

1

η̃k′ − η̃k′−1 − 1

η̃k′∑
t=η̃k′−1+1

(
⟨Ψ̂k,A(t)− P̂η̃k′−1,η̃k′ ⟩

)2
.

Step 3: Simulate limiting distributions. Let B ∈ N+ and M ∈ R+. For each b ∈ [B], let

û
(b)
k = argmin

r∈(−M,M)

P̂ ′
k(r), where P̂ ′

k(r) =


−r + 2σ̂k,k√

T

∑−1
i=⌈Tr⌉ z

(b)
i , r < 0,

0, r = 0,

r +
2σ̂k,k+1√

T

∑⌊Tr⌋
i=1 z

(b)
i , r > 0,

with independent standard Gaussian random variables {z(b)i }
⌈TM⌉
i=−⌊TM⌋.

Step 4: Construct the confidence interval. Let q̂α/2, q̂1−α/2 be empirical quantiles of {û(b)
k }Bb=1.

The (1− α) confidence interval for ηk is given by[
η̂k −

q̂1−α/2

κ̂2
k

1{κ̂k ̸= 0}, η̂k −
q̂α/2

κ̂2
k

1{κ̂k ̸= 0}
]
.

The empirical performance of this procedure is evaluated in Section 4.1.

4 NUMERICAL EXPERIMENTS

4.1 SIMULATION STUDIES

To evaluate the performance of our method (Algorithm 1) for change point detection and localiza-
tion, we compare it to gSeg (Chen and Zhang, 2015) and kerSeg (Song and Chen, 2024). For the
competitors, we consider two input types: networks (nets.) and their layer-wise Frobenius norms
(frob.). For gSeg, we construct the similarity graph using the minimum spanning tree and apply
the original edge-count scan statistics. For kerSeg, we use the kernel-based scan statistics fGKCP1.
For both methods, we set the significance level α = 0.05. Our proposed method is referred to as
CPDmrdpg. Following Wang et al. (2025), we use relatively large Tucker ranks as inputs to TH-PCA
(Algorithm 2) for robustness, setting r1 = r2 = 15 and r3 = L to compute the refined scan statistics
(Definition 5). Based on Theorem 1, we set the threshold τ = cτ,1n

√
L log3/2(T ) with cτ,1 = 0.1.
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We also assess the confidence intervals constructed utilizing the procedure in Section 3.1, a capa-
bility not supported by the competitors. We set B = 500 and M = T as suggested by Xu et al.
(2024).

To assess sensitivity to tuning parameters, we vary the threshold constant cτ,1 ∈ {0.05, 0.08, 0.10,
0.12, 0.15, 0.20, 0.25} and input ranks r ∈ {10, 15, 20}. We further conduct simulations to examine
the robustness of our method under temporal dependence and high-frequency change scenarios. In
addition, we compare our approach with existing dynamic multilayer network approaches (Wang
et al., 2025), which are designed for online settings, as well as with deep-learning-based approaches
(Li et al., 2024). All results are reported in Appendix F.1.

Performance is quantified using the following metrics: (i) Absolute error: |K̂ − K| where K̂ and
K denote the numbers of estimated and true change points, respectively; (ii) One-sided Haus-
dorff distances (see Section 1.2): d(Ĉ|C) and d(C|Ĉ) where Ĉ and C denote the sets of estimated
and true change points, respectively; (iii) Time segment coverage: C(G,G′) = T−1

∑
A∈G |A| ·

maxA′∈G′ |A ∩ A′|/|A ∪ A′| where G and G′ denote the partitions of the time span [1, T ] into
intervals between consecutive true and estimated change points, respectively.

Throughout, we set the time horizon to T = 200 and the number of layers to L = 4, and consider
node sizes n ∈ {50, 100}. Each setting is evaluated over 100 Monte Carlo trials. We consider
two network models: the Dirichlet distribution model (DDM) and the multilayer stochastic block
model (MSBM), with structural changes specified in each scenario. In the DDM, we generate latent
positions {Xi}ni=1∪{Yi}ni=1

i.i.d.∼ Dirichlet(1d) with d = 5 and 1d ∈ Rd denoting the all-one vector.
For each time t, we sample weight matrices {W(l)(t)}Ll=1 ⊂ Rd×d with entries (W(l)(t))u,v ∼
Uniform((ρtL + l)/(4L), (ρtL + l + 1)/(4L)). The edge probabilities are given by Pi,j,l(t) =
X⊤

i W(l)(t)Yj and the adjacency entries are sampled as Ai,j,l(t) ∼ Bernoulli(Pi,j,l(t)). In the
MSBM, the edge probability tensor Pi,j,l(t) ∈ [0, 1]n×n×L is defined as Pi,j,l(t) = p1,l if nodes
i, j ∈ Bc for some c ∈ [Ct], and p2,l otherwise, where {Bc}c∈[Ct] partitions the nodes into Ct

communities. The connection probabilities are drawn from p1,l ∼ Uniform((3L+l−1)/(4L), (3L+
l)/(4L)) and p2,l ∼ Uniform((2L + l − 1)/(4L), (2L + l)/(4L)). The adjacency tensor A(t) ∈
{0, 1}n×n×L is then sampled Ai,j,l(t)

ind.∼ Bernoulli(Pi,j,l(t)).

Scenario 1. We consider the DDM with K = 2 change points at t ∈ {70, 140}, yielding 3 time
segments {Ai}3i=1. We set ρt = 2 for t ∈ A1∪A3, and ρt = 3 with reversed layer order for t ∈ A2.

Scenario 2. We consider the MSBM with K = 5 change points at t ∈ {20, 60, 80, 160, 180}, re-
sulting in 6 time segments {Ai}6i=1. We let {Bc(t)}c∈[Ct] be evenly-sized communities and specify
the changes as follows: Ct = 4 for t ∈ A1, Ct = 2 for t ∈ A2, Ct = 4 for t ∈ A3, Ct = 4 with
reversed layer order for t ∈ A4, Ct = 3 for t ∈ A5 and Ct = 4 for t ∈ A6.

Scenario 3. We consider the MSBM with K = 3 change points at t ∈ {50, 100, 150}, yielding 4
time segments {Ai}4i=1. The number of communities is fixed at Ct = 3 but in the first layer, the the
community sizes vary across segments (0.3n, 0.4n, 0.3n) in A1 ∪A4, (0.4n, 0.3n, 0.3n) in A2 and
(0.5n, 0.3n, 0.2n) in A3. The remaining layers retain equal-sized communities.

Scenario 4. We consider the MSBM with K = 5 change points at t ∈ {20, 60, 80, 160, 180},
resulting in 6 time segments {Ai}6i=1. The number of communities is fixed at Ct = 4
with equal-sized partitions, while the connection probabilities vary across segments. Specifi-
cally, for ϵ = 0.1, we let p1,l ∼ Uniform (0.5 · [0.21 + δt · ϵ], 0.5 · [0.25 + δt · ϵ]) and p2,l ∼
Uniform (0.21 + δt · ϵ, 0.25 + δt · ϵ), where δt = 0 for t ∈ A1 ∪ A5, δt = 1 for t ∈ A2 ∪ A4 ∪ A6

and δt = 2 for t ∈ A3.

The changes in Scenarios 1 and 4 follow Model 1, while those in Scenarios 2 and 3 do not, allowing
us to assess the robustness of our methods. Table 1 presents results for Scenarios 1 and 2, and
Table 3 in Appendix F.1 for Scenarios 3 and 4. Across all scenarios, our method achieves the best
overall performance, nearly accurately estimating both the number and locations of change points,
and remains robust even when Model 1 is violated. For gSeg, Frobenius norm (frob.) inputs yield
better results than networks (nets.), while kerSeg performs better with networks, benefiting from its
high-dimensional kernel-based design. Although both competitors exhibit low Hausdorff distances
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Table 2: The 95% confidence interval coverage (average length) for change points across all scenar-
ios.

n Scenario 1 Scenario 2 Scenario 3 Scenario 4
100 100% (0.003) 100% (0.106) 76.67% (1.528) 100% (0.605)
150 100% (0.001) 100% (0.029) 95.33% (0.653) 100% (0.294)

d(Ĉ|C), their higher reverse distances d(C|Ĉ) and frequent errors in estimating the number of change
points suggest they often detect spurious change points.

Table 2 reports the coverage and average lengths of the confidence intervals constructed via the
procedure in Section 3.1 for node size n ∈ {100, 150}. The proposed method generally achieves
strong coverage with reasonably narrow intervals. Coverage is lower in Scenario 3, where violations
of Model 1 and relatively small, layer-specific changes pose greater challenges. The performance
improves with larger n as the change magnitudes κk increase.

4.2 REAL DATA EXPERIMENTS

Our analysis incorporates two real data sets, the worldwide agricultural trade network data set pre-
sented here and the U.S. air transport network data set in Appendix F.2.

The worldwide agricultural trade network data are available from Food and Agricultural Orga-
nization of the United Nations (2022). The dataset comprises annual multilayer networks from 1986
to 2020 (T = 35), with nodes representing countries and layers representing agricultural products.
A directed edge within a layer indicates the trade relation between two countries of a specific agri-
cultural product. We use the top L = 4 agricultural products by the trade volume and the n = 75
most active countries based on import/export volume. Tuning parameters follow the setup in Section
4.1, and our method detects change points in 1991, 1999, 2005, and 2013. Results for competing
methods and confidence intervals are provided in Appendix F.2.

The 1991 change point aligns with the German reunification and the dissolution of the Soviet Union,
both of which triggered major political shifts that significantly affected the trade dynamics. The 1999
change point corresponds to the World Trade Organization’s (WTO) Third Ministerial Conference,
a key moment in debates on globalization, particularly regarding agricultural subsidies and tariff
reductions, with developing nations demanding fairer trade terms. The 2005 change point marks
a WTO agreement to eliminate agricultural export subsidies, promoting greater equity in global
markets. Finally, the 2013 change point corresponds to the adoption of the WTO’s Bali Package, the
first fully endorsed multilateral agreement, which introduced the Trade Facilitation Agreement and
key provisions on food security and tariff quota administration, significantly impacting agricultural
trade.

5 CONCLUSION

In this paper, we study offline change point localization and inference in dynamic multilayer net-
works — a setting that, to the best of our knowledge, has not been previously addressed. We propose
a two-stage algorithm with consistency guarantees for estimating both the number and locations of
change points. We further develop local refinement procedures, derive limiting distributions and
introduce a data-driven method for constructing confidence intervals for the true change points.

The current framework assumes temporal independence, but it can be extended to incorporate tem-
poral dependence structures (e.g. Padilla et al., 2022; Cho and Owens, 2023); see Appendix B for
details on the framework and corresponding adjustments to the theoretical analysis.

Several limitations of this work remain open for future research. First, the assumption ∆ = Θ(T )
precludes frequent change points. This could be relaxed using alternative selection strategies such
as the narrowest-over-threshold approach (Baranowski et al., 2019) instead of greedy selection in
this paper. Second, our inference procedure is limited to vanishing jumps. It would be interesting to
explore practical procedures for the non-vanishing regime, potentially building on bootstrap methods
(e.g. Cho and Kirch, 2022).
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APPENDIX

All technical details are deferred to the Appendix. Appendix A establishes the limiting distributions
in the non-vanishing regime, while Appendix B discusses the extension to incorporate temporal
dependence. Additional algorithms used in our procedures are provided in Appendix C. The proof
of Theorem 1 is given in Appendix D, while the proofs of the limiting distribution results, including
Theorem 2 in the main text and Theorem 3 in Appendix A are presented in Appendix E. Further
details and results for Section 4 are collected in Appendix F.

A LIMITING DISTRIBUTIONS IN THE NON-VANISHING REGIME

Theorem 3. Let {A(t)}t∈[T ], {A′(t)}t∈[T ], {B(t)}t∈[T ], {B′(t)}t∈[T ] ⊂ {0, 1}n×n×L be mutually
independent adjacency tensor sequences generated according to Definition 2 and satisfying Model 1,
Assumptions 1 and 2. Let {η̂k}K̃k=1 be defined in (5) with {η̃k}K̃k=1 obtained from Algorithm 1, using
a threshold τ satisfying condition stated in Theorem 1.

For k ∈ [K], if κk → ρk, as T →∞, with ρk > 0 being an absolute constant, then when T →∞,
we have |η̂k − ηk| = Op(1) and

η̂k − ηk
D−→ argmin

r∈Z
Pk(r), where Pk(r) =


−rρ2k − 2ρk

∑0
t=r+1⟨Ψk,Ek(t)⟩, r < 0,

0, r = 0,

rρ2k + 2ρk
∑r

t=1⟨Ψk,Ek+1(t)⟩, r > 0,

for r ∈ Z. Here, the normalized jump tensor Ψk is defined in Model 1, and for any k ∈ [K +1] and

t ∈ Z, Ek(t) = Ak(t)−P(ηk) with {Ak(t)}t∈Z
i.i.d.∼ MRDPG({Xi}ni=1, {W(l)(ηk)}l∈[L]).

The proof of Theorem 3 is given in Appendix E.

Similar to Theorem 2, Theorem 3 establishes the uniform tightness κ2
k|η̂k − ηk| = Op(1) and

further derives the limiting distributions of the refined change point estimators defined in (5), which
are associated with a two-sided random walk.

B TEMPORAL DEPENDENCE EXTENSION

To incorporate temporal dependence, we modify the data-generating process in Definition 2 by
introducing exponentially decaying correlations governed by a parameter π ∈ [0, 1]. Specifically, at
time points t ∈ {ηk + 1}Kk=1, adjacency tensors are sampled independently: for any 1 ≤ i ≤ j ≤ n
and l ∈ [L],

Ai,j,l(t) ∼ Bernoulli(Pi,j,l(t)),

where Pi,j,l(t) = X⊤
i W(l)(t)Xj . For k ∈ [K], t ∈ [ηk+1]\[ηk + 1], 1 ≤ i ≤ j ≤ n and l ∈ [L],

edges evolve as follows:

Ai,j,l(t+ 1)

{
= Ai,j,l(t), with probability π,

∼ Bernoulli
(
Pi,j,l(ηk + 1)

)
, with probability 1− π.

When π = 0, the framework reduces to the independent case. For π > 0, the adjacency tensors
exhibit dependence across time, requiring modifications to the theoretical analysis.

Adjustments to theoretical analysis. Temporal dependence introduces correlations across time,
which invalidate the standard concentration inequalities used in our original analysis. To address
this, we adapt our results using Lemma 14 from Padilla et al. (2022), which extends Bernstein’s
inequality to account for weak temporal dependence.

Two main components of our theoretical framework require modification:

Proof of Proposition 4: We redefine the event

A(s, t, e) =
{∣∣〈Ãs,e(t), B̃s,e(t)

〉
− ∥P̃s,e(t)∥2F

∣∣
≤ CA log(T )

(
∥P̃s,e(t)∥F +

√
(1− π)−1 log(T )n

√
L
)}

.
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By modifying the proof of Lemma S.4 in Wang et al. (2021) and applying Lemma 14 in Padilla et al.
(2022), we obtain that P(A(s, t, e)c) ≤ C1T

−c1 .

Proof of Theorem 1: By revising the proof of Theorem 4 in Wang et al. (2025) and applying
Lemma 14 in Padilla et al. (2022), together with Assumption 1 (i) and (ii) and Lemma 5 in Wang
et al. (2025), for any t ∈ (s, e), we have that

P
{∥∥P̂sk,ek(t)− P̃sk,ek(t)

∥∥
F
≤ C1

√
(d2ms,e

t + nd+ Lms,e
t )(1− π)−1 log(T )

}
≥ 1− T−c1 .

Then by revising the proof of Lemma 5 to account for temporal dependence via Lemma 14 in Padilla
et al. (2022), and for any ε > 0, we establish that

P
{∣∣∣ 1√

ek − sk

ek∑
t=sk+1

〈
P(t)−A′(t), P̂sk,ek(bk)/∥P̂sk,ek(bk)∥F

〉∣∣∣ ≥ ε
}

≤2 exp

{
− c4

ε2

(1− π)−1 + ε/(c3κk

√
∆)

}
.

Combining these modifications, the signal-to-noise ratio (SNR) condition becomes

κ
√
∆(1− π) ≥ CSNR log(T )

√
nL1/2 + d2mmax + nd+ Lmmax,

Under this condition, we have that

P
{
K̃ = K and |η̃k − ηk| ≤ ϵk, ∀k ∈ [K]

}
≥ 1− CT−c, where ϵk = Cϵ

log(T )

(1− π)κ2
k

.

Compared to the independent case (π = 0) as shown in Theorem 1, the signal-to-noise ratio is
stronger by a factor of (1 − π)−1/2 and the localization rate worsens by a factor of (1 − π)−1,
reflecting the impact of the temporal dependence.

C ADDITIONAL ALGORITHMS

We present the tensor heteroskedastic principal component analysis (TH-PCA) algorithm introduced
in Han et al. (2022), incorporating an additional truncation step, in Algorithm 2. Its subroutine, the
heteroskedastic principal component analysis (H-PCA) algorithm proposed by Zhang et al. (2022),
is provided in Algorithm 3.

Algorithm 2 Tensor heteroskedastic principal component analysis, TH-PCA(A, (r1, r2, r3), τ1, τ2)

INPUT: Tensor A ∈ Rp1×p2×p3 , ranks r1, r2, r3 ∈ N+, thresholds τ1, τ2 ≥ 0
for s ∈ [3] do

Ûs ← H-PCA(Ms(A)Ms(A)⊤, rs) ▷ See Algorithm 3 for H-PCA and Section 1.2 for Ms(A)
end for
P̃← A×1 Û1Û

⊤
1 ×2 Û2Û

⊤
2 ×3 Û3Û

⊤
3 ▷ See Section 1.2 for ×s

for {i, j, l} ∈ [p1]× [p2]× [p3] do
P̂i,j,l ← min

{
τ1,max{−τ2, P̃i,j,l}

}
end for

OUTPUT: P̂ ∈ Rp1×p2×p3

D PROOF OF THEOREM 1

The proof of Theorem 1 is in Appendix D.1 with all necessary auxiliary results in Appendix D.2.

D.1 PROOF OF THEOREM 1

Proof. We first define the event

A =
{
K̃ = K and |bk − ηk| ≤ ϵ̃, ∀k ∈ [K]

}
, where ϵ̃ = Cϵ̃ log(T )

{
n
√
L log1/2(T )

κ2
+

√
∆

κ

}
,

13
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Algorithm 3 Heteroskedastic principal component analysis, H-PCA(Σ, r)

INPUT: Matrix Σ ∈ Rn×n, rank r ∈ N+.
Initialise: Σ̂(0) ← Σ, diag

(
Σ̂(0)

)
← 0, T ← 5 log{σmin(Σ)/n}

for t ∈ {0} ∪ [T − 1] do
Singular value decomposition Σ̂(t) =

∑n
i=1 σ

i,(t)ui,(t)(vi,(t))⊤, σ1,(t) ≥ · · · ≥ σn,(t) ≥ 0

Σ̃(t) ←
∑r

i=1 σ
i,(t)ui,(t)

(
vi,(t)

)⊤
Σ̂(t+1) ← Σ̂(t), diag

(
Σ̂(t+1)

)
← diag

(
Σ̃(t)

)
end for
U ← (u1, . . . ,ur) from top-r left singular vectors of Σ̂(T )

OUTPUT: U ∈ Rn×r

where {bk}K̃k=1 are preliminary change point estimates obtained from Stage I in Algorithm 1. Then
by Proposition 4, it holds that

P{A} ≥ 1− C0T
−c0

and Cϵ̃, C0, c0 > 0 are absolute constants. Since {A′(t)}Tt=1 ∪ {B′(t)}Tt=1 are independent of
{A(t)}Tt=1 ∪ {B(t)}Tt=1, the distribution of {A′(t)}Tt=1 ∪ {B′(t)}Tt=1 remains unaffected under the
conditioning on the event A. All subsequent analysis in this proof is carried out under the event A.
Consequently, we can derive that

|bk − ηk| ≤ ϵ̃ ≤ ∆/6, ∀k ∈ [K], (7)

where the last inequality follows from Assumption 2 and the fact that CSNR is a sufficiently large
constant.

Step 1. We first establish that for any k ∈ [K], each working interval (sk, ek) contains exactly one
true change point, namely ηk, and the two endpoints are well separated.

From (7), we obtain that ηk ∈ [bk−1, bk+1],

ηk − bk−1 ≥ ηk − ηk−1 − |ηk−1 − bk−1| ≥ ∆−∆/6 ≥ 5∆/6,

and
bk+1 − ηk ≥ ηk+1 − ηk − |ηk+1 − bk+1| ≥ ∆−∆/6 ≥ 5∆/6.

Similarly, we can derive that

min{bk − bk−1, bk+1 − bk} ≥ 2∆/3.

As a result, the working interval

(sk, ek] =
(
bk−1 + (bk − bk−1)/2, bk+1 − (bk+1 − bk)/2

]
,

contains exactly one change point ηk. For any t ∈ (sk, ek), denote msk,ek
t = rank(Q̃sk,ek(t)) with

Q̃sk,ek(t) defined in (3). Then we have that

msk,ek
t ≤ mk +mk+1 ≤ 2mmax, (8)

where mk = rank
(
Q(ηk)

)
with Q(ηk) defined in (4), and mmax = maxk∈[K+1] mk.

In addition, we have that
bk − sk = (bk − bk−1)/2 ≥ ∆/3,

and
ek − bk = (bk+1 − bk)/2 ≥ ∆/3.

Therefore,
min{ek − bk, bk − sk} ≥ ∆/3. (9)

Step 2. We now show that the population statistics P̃sk,ek(bk) provide a sufficiently strong signal
within each working interval (sk, ek].

14
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By Lemma 6, it holds that

∥∥P̃sk,ek(t)
∥∥2
F
=

{
t−sk

(ek−sk)(ek−t) (ek − ηk)
2κ2

k, sk < t ≤ ηk,
ek−t

(ek−sk)(t−sk)
(ηk − sk)

2κ2
k, ηk < t < ek.

Define the scaling factor

∆̃k =

√
(bk − sk) (ek − bk)

ek − sk
.

Assuming without loss of generality that bk ≤ ηk and using (9), we obtain

∆̃2
k ≥

min{bk − sk, ek − bk}
2

≥ ∆

6
. (10)

Thus, we have that

∥∥P̃sk,ek(bk)
∥∥2
F
=

bk − sk
(ek − sk)(ek − bk)

(ek − ηk)
2 κ2

k = ∆̃2
k

(
ek − ηk
ek − bk

)2

κ2
k

=∆̃2
k

(
1− ηk − bk

ek − bk

)2

κ2
k ≥

∆

6
(1− ∆/6

∆/3
)2κ2

k = ∆κ2
k/24, (11)

where the first inequality follows from (7), (9) and (10).

Step 3. Note that each entry of the tensor B̃′s,e(bk) is independently cσ-sub-Gaussian distributed
with mean tensor E{B̃′s,e(bk)} = P̃sk,ek(ηk) and an absolute constant cσ > 0. By Theorem 4 and
Lemma 5 in Wang et al. (2025), and Assumption 1 (i) and (ii), for any t ∈ (s, e), it holds that

P
{∥∥P̂sk,ek(t)− P̃sk,ek(t)

∥∥
F
≤ C1

√
(d2ms,e

t + nd+ Lms,e
t ) log(T )

}
≥ 1− T−c1 ,

for some constants C1 > 0 and c1 > 3. By (8), we can derive that

P
{∥∥P̂sk,ek(t)− P̃sk,ek(t)

∥∥
F
≤ C2

√
(d2mmax + nd+ Lmmax) log(T )

}
≥ 1− T−c1 ,

where C2 > 0 is a constant. Define the event

B =

{
sup

0≤sk<t<ek≤T

(sk,ek) contains only one change point ηk

∥∥P̂sk,ek(t)− P̃sk,ek(t)
∥∥
F
≤

CB
√
(d2mmax + nd+ Lmmax) log(T )

}
. (12)

with a constant CB > 0. By the union bound argument, it holds that

P
{
B
}
≥ 1− T−cB ,

with a constant cB > 0. By the event B and the triangle equality, we have that∥∥P̂sk,ek(bk)
∥∥
F
≥
∥∥P̃sk,ek(bk)

∥∥
F
− CB

√
(d2mmax + nd+ Lmmax) log(T ) ≥ κk

√
∆/48, (13)
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where the last inequality follows from (11), Assumption 2 and the fact that CSNR is a sufficiently
large constant. As a consequence,

2
〈
P̃sk,ek(bk)/∥P̃sk,ek(bk)∥F, P̂sk,ek(bk)/∥P̂sk,ek(bk)∥F

〉
=2−

∥∥∥∥∥ P̃sk,ek(bk)

∥P̃sk,ek(bk)∥F
− P̂sk,ek(bk)

∥P̂sk,ek(bk)∥F

∥∥∥∥∥
2

F

=2−

∥∥∥∥∥
(
P̃sk,ek(bk)− P̂sk,ek(bk)

)
∥P̃sk,ek(bk)∥F

∥P̃sk,ek(bk)∥F∥P̂sk,ek(bk)∥F

+
P̃sk,ek(bk)

(
∥P̂sk,ek(bk)∥F − ∥P̃sk,ek(bk)∥F

)
∥P̃sk,ek(bk)∥F∥P̂sk,ek(bk)∥F

∥∥∥∥∥
2

F

≥2−

(
∥P̃sk,ek(bk)− P̂sk,ek(bk)∥F∥P̃sk,ek(bk)∥F

∥P̃sk,ek(bk)∥F∥P̂sk,ek(bk)∥F

+
∥P̃sk,ek(bk)∥F∥P̂sk,ek(bk)− P̃sk,ek(bk)∥F

∥P̃sk,ek(bk)∥F∥P̂sk,ek(bk)∥F

)2

=2−

((
∥P̃sk,ek(bk)∥F + ∥P̃sk,ek(bk)∥F

)
∥P̂sk,ek(bk)− P̃sk,ek(bk)∥F

∥P̃sk,ek(bk)∥F∥P̂sk,ek(bk)∥F

)2

≥2− 4

(
∥P̃sk,ek(bk)− P̂sk,ek(bk)∥F

min{∥P̃sk,ek(bk)∥F, ∥P̂sk,ek(bk)∥F}

)2

≥2− 4
482C2

B(d
2ms,e

t + nd+ Lms,e
t ) log(T )

κ2
k∆

≥ 1,

where the first inequality follows from the reverse triangle inequality, the third inequality follows
from the definition of the event B, (11) and (13), and the final inequality follows from Assumption 2
and the fact that CSNR is a sufficiently large constant. Therefore,〈

P̃sk,ek(bk), P̂
sk,ek(bk)/∥P̂sk,ek(bk)∥F

〉
≥ ∥P̃sk,ek(bk)∥F/2 ≥ κk

√
∆/96, (14)

where the last inequality follows from (11).

Step 4. Since {A′(t)}Tt=1 is independent of {B′(t)}Tt=1, the distribution of {A′(t)}Tt=1 remain
unaffected under the conditioning on the event B. By the truncation in the construction of P̂sk,ek(bk)
stated in Algorithm 2, we have that

∥P̂sk,ek(bk)∥∞ ≤

√
(ek − bk)(bk − sk)

(ek − sk)

Combined with (13), it follows that

(ek − sk)
−1/2∥P̂sk,ek(bk)∥∞/∥P̂sk,ek(bk)∥F ≤

1

c3κk

√
∆
,

for some constant c3 > 0. Applying Lemma 5, we obtain for any ε > 0

P
{∣∣∣ 1√

ek − sk

ek∑
t=sk+1

〈
P(t)−A′(t), P̂sk,ek(bk)/∥P̂sk,ek(bk)∥F

〉∣∣∣ ≥ ε
}

≤2 exp

{
− c4

ε2

1 + ε/(c3κk

√
∆)

}
.
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where c4 > 0 is a constant. Choosing ε = C3

√
log(T ) for a large enough constant C3 > 0, and

applying Assumption 2 and the fact that CSNR is a sufficiently large constant, we finally derive that

P
{∣∣∣ 1√

ek − sk

ek∑
t=sk+1

〈
P(t)−A′(t), P̂sk,ek(bk)/∥P̂sk,ek(bk)∥F

〉∣∣∣ ≥ C3

√
log(T )

}
≤ 2T−c5 ,

(15)
where c5 > 3 is a constant. A similar argument also demonstrates that

P
{∣∣∣〈P̃sk,ek(t)− Ã′sk,ek(t), P̂sk,ek(bk)/∥P̂sk,ek(bk)∥F

〉∣∣∣ ≥ C3

√
log(T )

}
≤ 2T−c5 . (16)

Step 5. We now consider the univariate time series defined for all t ∈ (sk, ek) as

y(t) =
〈
A′(t), P̂sk,ek(bk)/∥P̂sk,ek(bk)∥F

〉
and

ysk,ek(t) =
〈
Ã′sk,ek(t), P̂sk,ek(bk)/∥P̂sk,ek(bk)∥F

〉
.

Conditional on the event B, define the corresponding mean functions

f(t) = E(y(t)) =
〈
P(t), P̂sk,ek(bk)/∥P̂sk,ek(bk)∥F

〉
,

and

fsk,ek(t) = E(ysk,ek(t)) =
〈
P̃sk,ek(t), P̂sk,ek(bk)/∥P̂sk,ek(bk)∥F

〉
.

The function f(t) is a piecewise constant on (sk, ek] with a single change point at ηk. Using (14),
we obtain that

|fsk,ek(ηk)|
∣∣∣ ≥ κk

√
∆/96,

Moreover, from (15), (16) and an union bound argument, we have that

P

{
sup

0≤sk<t<ek≤T

(sk,ek) contains only one change point ηk

∣∣∣∣ 1√
ek − sk

ek∑
t=sk+1

(y(t)− f(t))

∣∣∣∣
≥ C3

√
log(T )

}
≤ 2T−c6

and

P

{
sup

0≤sk<t<ek≤T

(sk,ek) contains only one change point ηk

∣∣ysk,ek(t)− fsk,ek(t)
∣∣ ≥ C3

√
log(T )

}
≤ 2T−c6 ,

for some constant c6 > 0. Applying Lemma 12 from Wang et al. (2017) with λ = C
√
log(T ), it

follows that the estimated change point η̃k = argmaxsk<t<ek
|ysk,ek(t)| is an undetected change

point and satisfies for a large enough constant C5 > 0,

|η̃k − ηk| ≤ C5
log(T )

κ2
k

,

which completes the proof.
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D.2 ADDITIONAL RESULTS

Proposition 4. Let {bk}K̃k=1 denote the output of Stage I in Algorithm 1 applied to two indepen-
dent adjacency tensor sequences {A(t)}t∈[T ], {B(t)}t∈[T ] ⊂ {0, 1}n×n×L, generated according to
Definition 2 and satisfying Model 1 and Assumption 2. Suppose the threshold τ is chosen such that

cτ,1n
√
L log3/2(T ) < τ < cτ,2κ

2∆, (17)

where cτ,1, cτ,2 > 0 are sufficiently large and small absolute constants, respectively.

Then, it holds that

P
{
K̃ = K and |bk − ηk| ≤ ϵ̃, ∀k ∈ [K]

}
≥ 1− CT−c,

where

ϵ̃ = Cϵ̃ log(T )

{
n
√
L log1/2(T )

κ2
+

√
∆

κ

}
,

and Cϵ̃, C, c > 0 are absolute constants.

Proof. The proof presented here is a minor modification of Theorem 1 in Wang et al. (2021). For
completeness, we include the full details below.

For 0 ≤ s < t < e ≤ T , we define the event

A(s, t, e) =
{∣∣〈Ãs,e(t), B̃s,e(t)

〉
− ∥P̃s,e(t)∥2F

∣∣ ≤ CA log(T )
(
∥P̃s,e(t)∥F + log1/2(T )n

√
L
)}

,

where P̃s,e(t) is defined in (2) and CA > 0 is a constant. Due to Lemma S.4 in Wang et al. (2021),
it holds that P(A(s, t, e)c) ≤ C1T

−c1 for some constants C1 > 0 and c1 > 3. By an union bound
argument, it holds that

P(A) = P
{ ⋃

0≤s<t<e≤T

A(s, t, e)
}
≥ 1− C1T

3−c1 .

All subsequent analysis in this proof is carried out under the event A.

We aim to demonstrate that, conditioned on the event A and assuming that the algorithm has accu-
rately detected and localized change points so far, the procedure will also successfully identify any
remaining undetected change point, if one exists, and estimate its location within an error of ϵ̃. To
this end, it suffices to consider an arbitrary time interval 0 ≤ s < e ≤ T that satisfies

ηr−1 ≤ s < ηr < · · · < ηr+q < e ≤ ηr+q+1, q ≥ −1,
and

max
{
min{ηr − s, s− ηr−1},min{ηr+q+1 − e, e− ηr+q}

}
≤ ϵ̃,

where q = −1 indicates that there is no change point contained in (s, e) and

ϵ̃ = Cϵ̃ log(T )

{
n
√
L log1/2(T )

κ2
+

√
∆

κ

}
.

with an absolute constant Cϵ̃ > 0. By Assumption 2, we have that

ϵ̃ ≤ Cϵ̃∆

(
1

C2
SNR log1/2(T )

+
1

CSNR

√
nL1/2

)
≤ ∆/64, (18)

where the final inequality follows that CSNR is large enough. Consequently, for any change point ηk,
it must be that either |ηk−s| ≤ ϵ̃ or |ηk−s| ≥ ∆−ϵ̃ ≥ 3∆/4. This implies that if min{|e−ηk|, |ηk−
s|} ≤ ϵ̃, then ηk corresponds to a change point that has already been detected and estimated within
an error of at most ϵ̃ during the previous induction step. We refer to a change point ηk in (s, e) as
undetected if

min{ηk − s, ηk − e} ≥ 3∆/4.

To complete the induction step, it suffices to show that SBS
(
(s, e), τ,J

)
satisfies the following tow

properties: (i) It does not detect any new change point within (s, e) if all change points in that
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interval have already been detected; and (ii) It detects a point b in (s, e) such that |ηk − b| ≤ ϵ̃ if
there exists at least one previously undetected change point ηk in (s, e).

Step 1. Assume that there are no undetected change points within the interval (s, e). Then, for
any interval (α′, β′] ∈ J with (α′, β′] ⊆ (s, e], one of the following scenarios must hold: (i) The
interval (α′, β′) contains no change points; (ii) The interval (α′, β′) contains exactly one change
point ηk and min{ηk − α′, β′ − ηk} ≤ ϵ̃; (iii) The interval (α′, β′) contains two change points ηk
and ηk+1, and max{ηk − α′, β′ − ηk+1} ≤ ϵ̃.

We focus on analyzing the scenario (iii), as the other two scenarios are similar and more straight-
forward. If scenario (iii) holds, then by (18), we have

ϵ̃ ≤ ∆/64 ≤ (β′ − α′)/64,

This implies that the interval

(α, β] =
(
α′ + 64−1(β′ − α′), β′ − 64−1(β′ − α′)

]
,

contains no change points. Note that P̃α,β(t) = 0 for all t ∈ (α, β), since there are no true change
points within (α, β). Moreover, by the event A,

max
α<t<β

〈
Ãα,β(t), B̃α,β(t)

〉
≤ CAn

√
L log3/2(T ).

Therefore, if the input parameter τ satisfies

τ > CAn
√
L log3/2(T ),

Algorithm 1 will correctly reject the existence of undetected change points.

Step 2. Now suppose there exists a change point ηk ∈ (s, e) such that

min{ηk − s, ηk − e} ≥ 3∆/4.

Let aI , bI and I∗ be as defined in the procedure SBS
(
(s, e), τ,J

)
. Denote I∗ = (α∗′, β∗′]. By

Lemma 8 in Madrid Padilla et al. (2022), for any change point ηk ∈ (s, e) satisfying min{ηk−s, e−
ηk} ≥ 3∆/4, there exists an interval (α′, β′] ⊆ (s, e] containing only one ηk such that

ηk − 3∆/4 ≤ α′ ≤ ηk − 3∆/16 and ηk + 3∆/16 ≤ β′ ≤ ηk + 3∆/4.

Since (α, β] = [α′ + (β′ − α′)/64, β′ − (β′ − α′)/64], we have

ηk −∆3/4 ≤ α ≤ ηk −∆/8 and ηk +∆/8 ≤ β ≤ ηk +∆3/4.

On the event A, it holds that〈
Ãα,β(ηk), B̃

α,β(ηk)
〉
≥ ∥P̃α,β(ηk)∥2F − CA log(T )

{
log1/2(T )n

√
L+ ∥P̃α,β(ηk)∥F

}
. (19)

Furthermore, by Lemma 6, it hold that

∥P̃α,β(ηk)∥2F =
(ηk − α)(β − ηk)

β − α
κ2
k.

Then we can derive that

∥P̃α,β(ηk)∥2F ≥ κ2
k∆/16 and ∥P̃α,β(ηk)∥2F ≤ 3κ2

k∆/4. (20)

Combining (19) and (20), and using Assumption 2 along with fact that CSNR is a sufficiently large
constant, we obtain〈

Ãα,β(ηk), B̃
α,β(ηk)

〉
≥ κ2

k∆/16− κ2
k∆/64− κ2

k∆/64 ≥ κ2
k∆/32.

By the definition of I∗, it follows that

aI∗ =
〈
Ãα∗,β∗

(bI∗), B̃α∗,β∗
(bI∗)

〉
≥ (κs,e

max)
2∆/32, (21)

where
κs,e
max = max

{
κk : min{ηk − s, e− ηk} ≥ 3∆/4

}
.
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Therefore, if the threshold τ satisfies
τ < κ2∆/32,

Algorithm 1 will consistently detect the existence of any previously undetected change points within
the interval.

Step 3. Suppose there exists at least one undetected change point ηk ∈ (s, e) such that

min{ηk − s, ηk − e} ≥ 3∆/4.

Let aI , bI and I∗ be defined according to the procedure SBS
(
(s, e), τ,J

)
, and denote I∗ =

(α∗′, β∗′]. To complete the induction step, it suffices to establish that there exists an undetected
change point ηk ∈ (α∗′, β∗′) satisfying

min{ηk − α∗′, β∗′ − ηk} ≥ 3∆/4, (22)

and that
|bI∗ − ηk| ≤ ϵ̃. (23)

Step 3.1. Proof of (22). Let

(α∗, β∗] = (α∗′ + (β∗′ − α∗′)/64, β∗′ − (β∗′ − α∗′)/64]. (24)

Assume for contradiction that

max
α∗<t<β∗

∥∥P̃α∗,β∗
(t)
∥∥2
F
< (κs,e

max)
2∆/64. (25)

Then on the event A, we obtain

max
α∗<t<β∗

〈
Ãα∗,β∗

(t), B̃α∗,β∗
(t)
〉

≤ max
α∗<t<β∗

∥∥P̃α∗,β∗
(t)
∥∥2
F
+ CA log(T ) max

α∗<t<β∗

∥∥P̃α∗,β∗
(t)
∥∥
F
+ CA log3/2(T )n

√
L

<(κs,e
max)

2∆/64 + CA log(T )κs,e
max

√
∆/8 + CA log3/2(T )n

√
L

≤(κs,e
max)

2∆/64 + (κs,e
max)

2∆/128 + (κs,e
max)

2∆/128 = (κs,e
max)

2∆/32,

where the second inequality follows from (25), the third inequality follows from Assumption 2 and
the fact that CSNR is a large enough constant. This contradicts the inequality (21). Thus,

max
α∗<t<β∗

∥∥P̃α∗,β∗
(t)
∥∥2
F
≥ (κs,e

max)
2∆/64. (26)

Now, observe (i) If (α∗, β∗) contains at least two change points, then β∗ − α∗ ≥ ∆. (ii) If it
contains exactly one change point ηk, but min{ηk − α∗, β∗ − ηk} < ∆/64, then by Lemma 6, we
would have

max
α∗<t<β∗

∥∥P̃α∗,β∗
(t)
∥∥2
F
=
∥∥P̃α∗,β∗

(ηk)
∥∥2
F
=

(ηk − α∗)(β∗ − ηk)

β∗ − α∗ κ2
k

≤min{β∗ − ηk, ηk − α∗}κ2
k < (κs,e

max)
2∆/64,

contradicting (26). Therefore, it has to be the case that min{ηk −α∗, β∗− ηk} ≥ ∆/64. Moreover,
by (24), it holds that

β∗,′ − α∗,′ ≥ β∗ − α∗ ≥ ∆/64.

Then, using Assumption 2 and the the fact that CSNR is large enough, we have that

ϵ̃ ≤ Cϵ̃∆

(
1

C2
SNR log1/2+2ξ(T )

+
1

CSNR

√
nL1/2 log1+ξ(T )

)
≤ (β∗,′ − α∗,′)/64,

Hence, by a similar argument as in Step 1, no previously detected change point lies in (α∗, β∗).
Note that by (21), there is at least one undetected change point in (α∗, β∗).

Step 3.2. Proof of (23). To this end, we apply Lemma S.5 in Wang et al. (2021). Define

λ = max
α∗<t<β∗

∣∣∣〈Ãα∗,β∗
(t), B̃α∗,β∗

(t)
〉
−
∥∥P̃α∗,β∗

(t)
∥∥2
F

∣∣∣. (27)
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From (26), Assumption 2 and the fact that CSNR is a sufficiently large constant, it follows that

c2 max
α∗<t<β∗

∥∥P̃α∗,β∗
(t)
∥∥2
F
/2 ≥max

{
CA log(T ) max

α∗<t<β∗

∥∥P̃α∗,β∗
(t)
∥∥
F
,

CA log3/2(T )n
√
L
}
, (28)

where c2 > 0 is a small enough constant. By the definition of the event A, we obtain

λ ≤CA log(T )
{

max
α∗<t<β∗

∥∥P̃α∗,β∗
(t)
∥∥
F
+ log1/2(T )n

√
L
)}
≤ c2 max

α∗<t<β∗

∥∥P̃α∗,β∗
(t)
∥∥2
F
, (29)

where the last inequality follows from (28). Note that (21), (27) and (29) verify conditions (2), (3),
(4) of Lemma S.5 in Wang et al. (2021), respectively. Therefore, Lemma S.5 in Wang et al. (2021)
implies that there exists an undetected change point ηk within (s, e) such that

|ηk − bI∗ | ≤ C3∆λ

∥P̃α∗,β∗(ηk)∥2F
and ∥P̃α∗,β∗

(ηk)∥2F ≥ c4 max
α∗≤t≤β∗

∥P̃α∗,β∗
(t)∥2F, (30)

where C3, c4 > 0 are constants. Then combining (29) and (30), we can derive that

|ηk − bI∗ | ≤
C3CA∆ log(T )

{
maxα∗<t<β∗

∥∥P̃α∗,β∗
(t)
∥∥
F
+ log1/2(T )n

√
L
)}

c4 maxα∗≤t≤β∗ ∥P̃α∗,β∗(t)∥2F

=
C3CA log(T )

c4

{
∆

maxα∗<t<β∗
∥∥P̃α∗,β∗(t)

∥∥
F

+
∆ log1/2(T )n

√
L

maxα∗≤t≤β∗ ∥P̃α∗,β∗(t)∥2F

}

≤C3CA log(T )

c4

{
8
√
∆

κ
+

64 log1/2(T )n
√
L

κ2

}
≤C5 log(T )

{√
∆

κ
+

log1/2(T )n
√
L

κ2

}
,

where the second inequality follows form (26) and C5 > 0 is an constant. This completes the
induction step and therefore, the proof.

Lemma 5. Let {A(t)}t∈[T ] follow D-MRDPGs as in Definition 2. Let V ∈ Rn×n×L and
{wt}Tt=1 ⊂ R satisfy

∑T
t=1 w

2
t = 1. Then for any ε > 0, it holds that

P
(∣∣∣∣ T∑

t=1

wt

〈
A(t)−P(t),V/∥V∥F

〉∣∣∣∣ ≥ ε

)
≤ 2 exp

(
− c

ε2

1 + ε∥V∥−1
F ∥V∥∞ max1≤t≤T |wt|

)
,

where c > 0 is an absolute constant and ∥V∥∞ = maxi,j∈[n],l∈[L] |Vi,j,l|.

Proof. By definition of the tensor inner product, we have that

T∑
t=1

wt

〈
A(t)−P(t),V/∥V∥F

〉
=

T∑
t=1

n∑
i=1

n∑
j=1

L∑
l=1

∥V∥−1
F wtVi,j,l

{(
A(t)

)
i,j,l
−
(
P(t)

)
i,j,l

}
.

We can derive that
T∑

t=1

n∑
i=1

n∑
j=1

L∑
l=1

∥V∥−2
F w2

tV
2
i,j,l = 1,

and
max

t∈[T ],i,j∈[n],l∈[L]

{
∥V∥−1

F wtVi,j,l

}
≤ ∥V∥−1

F ∥V∥∞ max
1≤t≤T

|wt|.

Since
{
(
A(t)

)
i,j,l
−
(
P(t)

)
i,j,l
}i,j∈[n],l∈[L],t∈[T ]
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are mutually independent centered Bernoulli random variables By Bernstein inequality (e.g. Theo-
rem 2.8.2 in Vershynin, 2018), it holds with an absolute constant c0 > 0 that

P
(∣∣∣∣ T∑

t=1

wt

〈
A(t)−P(t),V/∥V∥F

〉∣∣∣∣ ≥ ε

)
≤ 2 exp

(
− c0

ε2

1 + ε∥V∥−1
F ∥V∥∞ max1≤t≤T |wt|

)
,

which completes the proof.

Lemma 6. Suppose the adjacency tensor sequence {B(t)}t∈[T ] ⊂ {0, 1}n×n×L is generated ac-
cording to Definition 2 and satisfy Model 1. For any 0 ≤ s < t < e ≤ T , let P̃s,e(t) be defined as
in (2). If (s, e) contains exactly one change point ηk, then for any t ∈ (s, e)

∥∥P̃s,e(t)
∥∥2
F
=

{
t−s

(e−s)(e−t) (e− ηk)
2κ2

k, s < t ≤ ηk,
e−t

(e−s)(t−s) (ηk − s)2κ2
k, ηk < t < e.

Proof. This follows directly the definition of P̃s,e(t) in (2).

E PROOFS OF THEOREMS 2 AND 3

Proof. Step 1. Preliminary bounds. We first define the event

A =
{
K̃ = K and |η̃k − ηk| ≤ ϵk, ∀k ∈ [K]

}
, where ϵk = Cϵ

log(T )

κ2
k

.

Then by Theorem 1, it holds that
P{A} ≥ 1− C0T

−c0 ,

and Cϵ̃, C0, c0 > 0 are absolute constants. Since A holds with probability tending to 1 as T →
∞,we condition the remainder of the proof on A.

FromA, Assumption 2 and the fact that CSNR is a sufficiently large constant, we have for all k ∈ [K]
that ηk ∈ [η̃k−1, η̃k+1],

ηk − η̃k−1 ≥ ηk − ηk−1 − |ηk−1 − η̃k−1| ≥ ∆− Cϵ
log(T )

κ2
≥ ∆−∆/6 = 5∆/6, (31)

and

η̃k+1 − ηk ≥ ηk+1 − ηk − |ηk+1 − η̃k+1| ≥ ∆− Cϵ
log(T )

κ2
≥ ∆−∆/6 = 5∆/6. (32)

Similarly, we can derive that for any k ∈ [K + 1]

η̃k − η̃k−1 ≥ 2∆/3. (33)

As a result, the working interval

(s̃k, ẽk] = (η̃k−1 + (η̃k − η̃k−1)/2, η̃k+1 − (η̃k+1 − η̃k)/2],

contains exactly one change point ηk.

Next, by Theorem 4 and Lemma 5 in Wang et al. (2025), and Assumption 1 (i) and (iii), for any
k ∈ [K + 1], we have

∥∥P̂η̃k−1,η̃k −Pη̃k−1,η̃k
∥∥
F
= Op

(√
(d2mη̃k−1,η̃k

+ nd+ Lmη̃k−1,η̃k
) log(T )

η̃k − η̃k−1

)
,

for some absolute constant C1 > 0. For any k ∈ [K + 1], by (31) and (32), each interval (η̃k−1, η̃k)
contains at most two true change points ηk − 1 and ηk. Consequently, we have that

mη̃k−1,η̃k
≤ mk−1 +mk +mk+1 ≤ 3mmax.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Thus, it holds that

∥∥P̂η̃k−1,η̃k −Pη̃k−1,η̃k
∥∥
F
≤ C2

√
(d2mmax + nd+ Lmmax) log(T )

η̃k − η̃k−1
, ∀k ∈ [K + 1], (34)

with an absolute constant C2 > 0.

Step 2. Characterization of bias. From (31) and (32), for any k ∈ [K], the interval (η̃k−1, η̃k+1) may
contain one, two or three change points. One example that contains three change points is illustrated
in the figure below. We analyze the biases in this case. The analyses for the other scenarios are
similar but simpler and therefore omitted.

η̃k−1
ηk−1 ηk η̃k ηk+1η̃k+1

In the following, we analyze three types of bias terms. Denote αT = log(T ), then αT → ∞ as
T →∞. Observe that∥∥P(ηk)−Pη̃k−1,η̃k

∥∥
F

=

∥∥∥∥P(ηk)−
ηk−1 − η̃k−1

η̃k − η̃k−1
P(ηk−1)−

ηk − ηk−1

η̃k − η̃k−1
P(ηk)−

η̃k − ηk
η̃k − η̃k−1

P(ηk+1)

∥∥∥∥
F

≤ηk−1 − η̃k−1

η̃k − η̃k−1

∥∥P(ηk)−P(ηk−1)
∥∥
F
+

η̃k − ηk
η̃k − η̃k−1

∥∥P(ηk+1)−P(ηk)
∥∥
F

≤3Cϵ log(T )

2∆κ2
k−1

κk−1 +
3Cϵ log(T )

2∆κ2
k

κk ≤ α−1
T κk, (35)

where the second inequity follows from the event A and (33), and the last inequality follows from
Assumption 2 and the fact that CSNR is a large enough constant. Similarly, we have that∥∥P(ηk+1)−Pη̃k,η̃k+1

∥∥
F
=

∥∥∥∥P(ηk+1)−
ηk+1 − η̃k
η̃k+1 − η̃k

P(ηk+1)−
η̃k+1 − ηk+1

η̃k+1 − η̃k
P(ηk+2)

∥∥∥∥
F

=
η̃k+1 − ηk+1

η̃k+1 − η̃k

∥∥P(ηk+1)−P(ηk+2)
∥∥
F

≤3Cϵ log(T )

2∆κ2
k+1

κk+1 ≤ α−1
T κk, (36)

and ∥∥P(ηk+1)−Pη̃k−1,η̃k
∥∥
F

=

∥∥∥∥P(ηk+1)−
ηk−1 − η̃k−1

η̃k − η̃k−1
P(ηk−1)−

ηk − ηk−1

η̃k − η̃k−1
P(ηk)−

η̃k − ηk
η̃k − η̃k−1

P(ηk+1)

∥∥∥∥
F

≤ηk−1 − η̃k−1

η̃k − η̃k−1

∥∥P(ηk+1)−P(ηk−1)
∥∥
F
+

ηk − ηk−1

η̃k − η̃k−1

∥∥P(ηk+1)−P(ηk)
∥∥
F

≤3Cϵ log(T )

2∆κ2
k−1

(κk−1 + κk) + κk ≤ α−1
T κk + κk ≤ C3κk, (37)

for some constant C3 > 0.

Step 3. Uniform tightness of κ2
k|η̂k − ηk|. In this step, we show that κ2

k|η̂k − ηk| = Op(1). Let
r = η̂k − ηk and without loss of generality, assume r ≥ 0. Our goal is to establish that

rκ2
k = Op(1)

If rκ2
k < 1, the conclusion holds trivially. Thus, for the remainder of the argument, we assume

that rκ2
k ≥ 1. Since η̂k = ηk + r, it follows that

Qk(ηk + r)−Qk(ηk) ≤ 0.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Now observe that

Qk(ηk + r)−Qk(ηk) =

ηk+r∑
t=ηk+1

∥∥A(t)− P̂η̃k−1,η̃k
∥∥2
F
−
∥∥A(t)− P̂η̃k,η̃k+1

∥∥2
F

=

ηk+r∑
t=ηk+1

{∥∥A(t)− P̂η̃k−1,η̃k
∥∥2
F
−
∥∥A(t)−Pη̃k−1,η̃k

∥∥2
F

}

−
ηk+r∑

t=ηk+1

{∥∥A(t)− P̂η̃k,η̃k+1
∥∥2
F
−
∥∥A(t)−Pη̃k,η̃k+1

∥∥2
F

}

+

ηk+r∑
t=ηk+1

{∥∥A(t)−Pη̃k−1,η̃k
∥∥2
F
−
∥∥A(t)−P(ηk)

∥∥2
F

}

−
ηk+r∑

t=ηk+1

{∥∥A(t)−Pη̃k,η̃k+1
∥∥2
F
−
∥∥A(t)−P(ηk+1)

∥∥2
F

}

+

ηk+r∑
t=ηk+1

{∥∥A(t)−P(ηk)
∥∥2
F
−
∥∥A(t)−P(ηk+1)

∥∥2
F

}
=I − II + III − IV + V.

Therefore, we have that

V ≤ −I + II − III + IV ≤ |I|+ |II|+ |III|+ |IV |. (38)

Step 3.1. Order of magnitude of I . We start by analyzing the term

I =

ηk+r∑
t=ηk+1

{∥∥A(t)− P̂η̃k−1,η̃k
∥∥2
F
−
∥∥A(t)−Pη̃k−1,η̃k

∥∥2
F

}

=

ηk+r∑
t=ηk+1

∥∥P̂η̃k−1,η̃k −Pη̃k−1,η̃k
∥∥2
F
− 2

ηk+r∑
t=ηk+1

〈
A(t)−Pη̃k−1,η̃k , P̂η̃k−1,η̃k −Pη̃k−1,η̃k

〉
=

ηk+r∑
t=ηk+1

∥∥P̂η̃k−1,η̃k −Pη̃k−1,η̃k
∥∥2
F
− 2

ηk+r∑
t=ηk+1

〈
A(t)−P(ηk+1), P̂

η̃k−1,η̃k −Pη̃k−1,η̃k
〉

− 2

ηk+r∑
t=ηk+1

〈
P(ηk+1)−Pη̃k−1,η̃k , P̂η̃k−1,η̃k −Pη̃k−1,η̃k

〉
=I.1− 2I.2− 2I.3. (39)

By (34), we have that∥∥P̂η̃k−1,η̃k −Pη̃k−1,η̃k
∥∥2
F
≤C2

2

(d2mmax + nd+ Lmmax) log(T )

η̃k − η̃k−1

≤3C2
2

(d2mmax + nd+ Lmmax) log(T )

2∆
≤ α−1

T κ2
k, (40)

where the second inequality is by (33) and the last inequality follows from Assumption 2 and the
fact that CSNR is a sufficiently large constant. This yields that

|I.1| =
ηk+r∑

t=ηk+1

∥∥P̂η̃k−1,η̃k −Pη̃k−1,η̃k
∥∥2
F
= Op(rα

−1
T κ2

k), (41)

We now turn to the term I.2 in (39). By Lemma 5 and (40), we obtain that

|I.2| = Op

(
r1/2

∥∥P̂η̃k−1,η̃k −Pη̃k−1,η̃k
∥∥
F

)
= Op(r

1/2α
−1/2
T κk). (42)
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Next, by the Cauchy–Schwarz inequality, we derive that

|I.3| ≤ r
∥∥P(ηk+1)−Pη̃k−1,η̃k

∥∥
F

∥∥P̂η̃k−1,η̃k −Pη̃k−1,η̃k
∥∥
F
= Op(rα

−1/2
T κ2

k), (43)

where the last inequality follows from (37) and (40).

Combining (39), (41), (42) and (43), we conclude that

(I) = op(rκ
2
k + r1/2κk). (44)

Step 3.2. Order of magnitude of II . We now analyze the term

II =

ηk+r∑
t=ηk+1

{∥∥A(t)− P̂η̃k,η̃k+1
∥∥2
F
−
∥∥A(t)−Pη̃k,η̃k+1

∥∥2
F

}

=

ηk+r∑
t=ηk+1

∥∥P̂η̃k,η̃k+1 −Pη̃k,η̃k+1
∥∥2
F
− 2

ηk+r∑
t=ηk+1

〈
A(t)−Pη̃k,η̃k+1 , P̂η̃k,η̃k+1 −Pη̃k,η̃k+1

〉
=

ηk+r∑
t=ηk+1

∥∥P̂η̃k,η̃k+1 −Pη̃k,η̃k+1
∥∥2
F
− 2

ηk+r∑
t=ηk+1

〈
A(t)−P(ηk+1), P̂

η̃k,η̃k+1 −Pη̃k,η̃k+1
〉

− 2

ηk+r∑
t=ηk+1

〈
P(ηk+1)−Pη̃k,η̃k+1 , P̂η̃k,η̃k+1 −Pη̃k,η̃k+1

〉
=II.1− 2II.2− 2II.3. (45)

By (34), we have that

∥∥P̂η̃k,η̃k+1 −Pη̃k,η̃k+1
∥∥2
F
≤C2

2

(d2mmax + nd+ Lmmax) log(T )

η̃k+1 − η̃k

≤3C2
2

(d2mmax + nd+ Lmmax) log(T )

2∆
≤ α−1

T κ2
k, (46)

where the second inequality follows from (33) and the last inequality follows from Assumption 2
and the fact that CSNR is a sufficiently large constant. It then follows that

|II.1| =
ηk+r∑

t=ηk+1

∥∥P̂η̃k,η̃k+1 −Pη̃k,η̃k+1
∥∥2
F
= Op(rα

−1
T κ2

k), (47)

To control II.2, by Lemma 5 and (46), we obtain that

|II.2| = Op

(
r1/2

∥∥P̂η̃k,η̃k+1 −Pη̃k,η̃k+1
∥∥
F

)
= Op(r

1/2α
−1/2
T κk). (48)

Next, by the Cauchy–Schwarz inequality, we derive that

|II.3| ≤ r
∥∥P(ηk+1)−Pη̃k,η̃k+1

∥∥
F

∥∥P̂η̃k−1,η̃k −Pη̃k,η̃k+1
∥∥
F
= Op(rα

−3/2
T κ2

k), (49)

where the last inequality follows from (36) and (46).

Combining (45), (47), (48) and (49), we conclude that

|II| = op(rκ
2
k + r1/2κk). (50)
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Step 3.3. Order of magnitude of III . We now analyze the term

III =

ηk+r∑
t=ηk+1

{∥∥A(t)−Pη̃k−1,η̃k
∥∥2
F
−
∥∥A(t)−P(ηk)

∥∥2
F

}

=

ηk+r∑
t=ηk+1

∥∥P(ηk)−Pη̃k−1,η̃k
∥∥2
F
− 2

ηk+r∑
t=ηk+1

〈
A(t)−P(ηk),P

η̃k−1,η̃k −P(ηk)
〉

=

ηk+r∑
t=ηk+1

∥∥P(ηk)−Pη̃k−1,η̃k
∥∥2
F
− 2

ηk+r∑
t=ηk+1

〈
P(ηk+1)−P(ηk),P

η̃k−1,η̃k −P(ηk)
〉

− 2

ηk+r∑
t=ηk+1

〈
A(t)−P(ηk+1),P

η̃k−1,η̃k −P(ηk)
〉

=III.1− 2III.2− 2III.3. (51)

From (35), we obtain that

|III.1| = Op(rα
−2
T κ2

k). (52)

Using the Cauchy–Schwarz inequality and again (35), we have that

|III.2| ≤ r
∥∥P(ηk+1)−P(ηk)

∥∥
F

∥∥Pη̃k−1,η̃k −P(ηk)
∥∥
F
= Op(rα

−1
T κ2

k). (53)

To bound III.3, by Lemma 5 and (35), we get that

|III.3| = Op

(
r1/2

∥∥Pη̃k−1,η̃k −P(ηk)
∥∥
F

)
= Op(r

1/2α
−1/2
T κk). (54)

Combining (51), (52), (53) and (54), we conclude that

|III| = op(rκ
2
k + r1/2κk). (55)

Step 3.4. Order of magnitude of IV . Consider the term

IV =

ηk+r∑
t=ηk+1

{∥∥A(t)−Pη̃k,η̃k+1
∥∥2
F
−
∥∥A(t)−P(ηk+1)

∥∥2
F

}

=

ηk+r∑
t=ηk+1

∥∥P(ηk+1)−Pη̃k,η̃k+1
∥∥2
F
− 2

ηk+r∑
t=ηk+1

〈
A(t)−P(ηk+1),P

η̃k,η̃k+1 −P(ηk+1)
〉

=IV.1− 2IV.2. (56)

By (36), we derive that

|IV.1| = Op(rα
−2
T κ2

k). (57)

By Lemma 5 and (36), we have that

|IV.2| = Op

(
r1/2

∥∥P(ηk+1)−Pη̃k,η̃k+1
∥∥
F

)
= Op(r

1/2α
−1/2
T κk). (58)

Combining (56), (57) and (58), we conclude that

|IV | = op(rκ
2
k + r1/2κk). (59)

Step 3.5. Order of magnitude of V . We now analyze the final term

V =

ηk+r∑
t=ηk+1

∥∥A(t)−P(ηk)
∥∥2
F
−
∥∥A(t)−P(ηk+1)

∥∥2
F

=

ηk+r∑
t=ηk+1

∥∥P(ηk)−P(ηk+1)
∥∥2
F
− 2

ηk+r∑
t=ηk+1

〈
A(t)−P(ηk+1),P(ηk)−P(ηk+1)

〉
=rκ2

k − 2V.1 (60)

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Using Lemma 5, we obtain that

|V.1| = Op

(
r1/2

∥∥P(ηk)−P(ηk+1)
∥∥
F

)
= Op(r

1/2κk). (61)

Step 3.6: Combining (38), (44), (50), (55), (59), (60) and (61) we have for all rκ2
k ≥ 1 that

rκ2
k = Op(1).

Step 4. Limiting Distributions. For any t ∈ (s̃k, ẽk), define

Q̃k(t) =

t∑
u=s̃k+1

∥A(u)−P(ηk)∥2F +

ẽk∑
u=t+1

∥A(u)−P(ηk+1)∥2F.

Note that the term V defined in (38) satisfies

V = Q̃k(ηk + r)− Q̃k(ηk),

and hence by (38), (44), (50), (55), (59) and rκ2
k = Op(1), we have that∣∣Qk(ηk + r)−Qk(ηk)−

{
Q̃k(ηk + r)− Q̃k(ηk)

}∣∣ ≤ |I|+ |II|+ |III|+ |IV | p→ 0.

Therefore, by Slutsky’s theorem, it suffices to derive the limiting distributions of Q̃k(ηk + r) −
Q̃k(ηk) as T →∞. We consider the two scenarios for κk.

Non-vanishing scenario. Suppose κk → ρk, as T → ∞, with ρk > 0 being an absolute constant.
For r < 0, we have that

Q̃k(ηk + r)− Q̃k(ηk) =

ηk∑
t=ηk+r+1

{∥∥A(t)−P(ηk+1)
∥∥2
F
−
∥∥A(t)−P(ηk)

∥∥2
F

}
=

ηk∑
t=ηk+r+1

∥∥P(ηk)−P(ηk+1)
∥∥2
F

− 2

ηk+r∑
t=ηk+1

〈
A(t)−P(ηk),P(ηk+1)−P(ηk)

〉
D−→ − rρ2k − 2ρk

0∑
t=r+1

⟨Ψk,Ek(t)⟩, (62)

with Ψk defined in Model 1, and for any k ∈ [K + 1] and t ∈ Z, Ek(t) = Ak(t) − P(ηk) with
{Ak(t)}t∈Z

i.i.d.∼ MRDPG({Xi}ni=1, {W(l)(ηk)}l∈[L]).

For r > 0, we have that when T →∞,

Q̃k(ηk + r)− Q̃k(ηk) =

ηk+r∑
t=ηk+1

{∥∥A(t)−P(ηk)
∥∥2
F
−
∥∥A(t)−P(ηk+1)

∥∥2
F

}

=

ηk+r∑
t=ηk+1

∥∥P(ηk)−P(ηk+1)
∥∥2
F

+ 2

ηk+r∑
t=ηk+1

〈
A(t)−P(ηk+1),P(ηk+1)−P(ηk)

〉
D−→ rρ2k + 2ρk

r∑
t=1

⟨Ψk,Ek+1(t)⟩. (63)
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By Slutsky’s theorem and the argmin continuous mapping theorem (see e.g. Theorem 3.2.2 in Well-
ner et al., 2013), we obtain

η̂k − ηk
D−→ argminPk(r),

which completes the proof of part Theorem 3.

Vanishing scenario. Let m = κ−2
k , noting that m→∞ as T →∞. For r > 0, we have that

Q̃k(ηk + rm)− Q̃k(ηk)

=

ηk+rm∑
t=ηk+1

{∥∥A(t)−P(ηk)
∥∥2
F
−
∥∥A(t)−P(ηk+1)

∥∥2
F

}

=

ηk+rm∑
t=ηk+1

∥∥P(ηk)−P(ηk+1)
∥∥2
F
+ 2

ηk+rm∑
t=ηk+1

〈
A(t)−P(ηk+1),P(ηk+1)−P(ηk)

〉
=r +

2√
m

ηk+rm∑
t=ηk+1

〈
A(t)−P(ηk+1),Ψk

〉
.

By the functional central limit theorem, we have that when T →∞,

1√
m

ηk+rm∑
t=ηk+1

〈
A(t)−P(ηk+1),Ψk

〉 D−→ σk,k+1B1(r),

where B1(r) is a standard Brownian motion and for any k ∈ [K] and k′ ∈ {k, k + 1}, σ2
k,k′ =

Var
(
⟨Ψk,Ek′(1)⟩

)
. Consequently, as T →∞

Q̃k(ηk + rm)− Q̃k(ηk)
D−→ r + 2σk,k+1B1(r).

Similarly, for r < 0, we have that when T →∞

Q̃k(ηk + rm)− Q̃k(ηk)
D→ −r + 2σk,kB2(−r),

where B2(r) is a standard Brownian motion. Applying Slutsky’s theorem and the argmin continuous
mapping theorem (see e.g. Theorem 3.2.2 in Wellner et al., 2013), we conclude that

κ2
k(η̂k − ηk)

D−→ argminP ′
k(r),

which completes the proof of Theorem 2.

F ADDITIONAL DETAILS AND RESULTS IN SECTION 4

All experiments were run on a CPU with 16GB RAM. For each synthetic scenario with node size
n = 100, number of layers L = 4 and time span T = 200, the compute time is about 10 hours
to localize the change points and to construct the confidence intervals over 100 Monte Carlo trials.
For each real data experiment, the computation time is approximately 15 minutes to perform change
point localization and confidence interval construction.

F.1 ADDITIONAL RESULTS IN SECTION 4.1

Table 3 presents the results for Scenarios 3 and 4.

Sensitivity analysis: We examine the sensitivity of Algorithm 1 to the threshold constant cτ,1.
Guided by Theorem 1, the threshold is set as τ = cτ,1n

√
L log3/2(T ). The constant cτ,1 is calibrated

by evaluating the false positive rate under an MSBM with no change points (four equally sized
communities; see Section 4.1). We find that cτ,1 = 0.1 yields a false detection rate of about 1%,
demonstrating effective control. Smaller values (cτ,1 ∈ 0.05, 0.08) increased false detections, while
larger values (cτ,1 ∈ 0.12, 0.15, 0.20) reduced detection power.
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Table 3: Means of evaluation metrics for networks simulated from Scenarios 3 and 4.

Scenario 3 Scenario 4
n Method |K̂ −K| ↓ d(Ĉ|C) ↓ d(C|Ĉ) ↓ C(G,G′) ↑ |K̂ −K| ↓ d(Ĉ|C) ↓ d(C|Ĉ) ↓ C(G,G′) ↑

50

CPDmrdpg 0.19 9.64 0.14 95.11% 0.00 0.02 0.02 99.98%
gSeg (nets.) 0.98 Inf Inf 68.93% 5.00 Inf Inf 0.00%
kerSeg (nets.) 0.16 0.18 2.06 98.90% 0.36 0.14 2.65 98.56%
gSeg (frob.) 0.92 Inf Inf 66.78% 1.53 Inf Inf 74.92%
kerSeg (frob.) 0.82 48.52 5.11 73.55% 0.40 0.05 3.71 98.12%

100

CPDmrdpg 0.00 0.02 0.02 99.98% 0.00 0.00 0.00 100%
gSeg (nets.) 0.69 Inf Inf 80.10% 4.98 Inf Inf 0.77%
kerSeg (nets.) 0.17 0.00 3.26 99.16% 0.34 0.08 2.93 98.47%
gSeg (frob.) 0.79 Inf Inf 72.11% 1.86 Inf Inf 68.57%
kerSeg (frob.) 0.79 48.82 4.75 73.80% 0.42 0.06 2.93 98.63%

Table 4: Means of evaluation metrics for dynamic networks simulated from Scenario 1, varying cτ,1.

n cτ,1 |K̂ −K| ↓ d(Ĉ|C) ↓ d(C|Ĉ) ↓ C(G,G′) ↑

50

0.25 0.00 0.00 0.00 100%
0.20 0.00 0.00 0.00 100%
0.15 0.00 0.00 0.00 100%
0.12 0.00 0.00 0.00 100%
0.10 0.01 0.00 0.42 99.86%
0.08 0.25 0.00 6.68 97.80%
0.05 5.18 0.00 52.86 67.50%

100

0.25 0.00 0.00 0.00 100%
0.20 0.00 0.00 0.00 100%
0.15 0.00 0.00 0.00 100%
0.12 0.00 0.00 0.00 100%
0.10 0.00 0.00 0.00 100%
0.08 0.15 0.00 4.98 98.54%
0.05 5.02 0.00 53.84 67.56%

Tables 4–7 report results for Scenarios 1-4 with cτ,1 ∈ {0.05, 0.08, 0.10, 0.12, 0.15, 0.20, 0.25}.
These results demonstrate that our method is relatively robust against the choices of cτ,1.

We also assess sensitivity to the input ranks r1 = r2 = r ∈ {10, 15, 20} with results shown in
Table 8. We find that the method remains robust across these choices.

Frequent change points: To assess performance under frequent changes, we conduct simulations
with increasing numbers of change points K ∈ {2, 7, 12}. As reported in Table 9, while localization
accuracy decreases slightly as K increases, all change points are consistently detected, demonstrat-
ing robustness even in high-frequency settings.

Temporal dependence We further evaluate robustness under temporal dependence by modifying
Scenario 1. Instead of sampling Ai,j,l(t) ∼ Bernoulli(Pi,j,l(t)) independently across time, we
generate temporally dependent edges as follows:

Ai,j,l(t+ 1) ∼
{

Bernoulli
(
(1−Pi,j,l(t+ 1))π +Pi,j,l(t+ 1)

)
, Ai,j,l(t) = 1,

Bernoulli
(
Pi,j,l(t+ 1)(1− π)

)
, Ai,j,l(t) = 0;

with π ∈ {0.005, 0.01, 0.02} controlling dependence strength. Results in Table 10 show that our
method maintains strong performance when temporal dependence is weak (π ≤ 0.01) and degrades
gradually as dependence increases.

Comparisons with other competitors: The method of Wang et al. (2025), denoted CPDonline,
is designed for online change point detection in dynamic multilayer networks. The method of Li
et al. (2024), denoted AutoCPD, is deep learning–based and typically requires myriad labeled data
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Table 5: Means of evaluation metrics for dynamic networks simulated from Scenario 2, varying cτ,1.

n cτ,1 |K̂ −K| ↓ d(Ĉ|C) ↓ d(C|Ĉ) ↓ C(G,G′) ↑

50

0.25 0.00 0.00 0.00 100%
0.20 0.00 0.00 0.00 100%
0.15 0.00 0.00 0.00 100%
0.12 0.00 0.00 0.00 100%
0.10 0.00 0.00 0.00 100%
0.08 0.02 0.00 0.64 99.68%
0.05 3.79 0.00 28.46 75.43%

100

0.25 0.00 0.00 0.00 100%
0.20 0.00 0.00 0.00 100%
0.15 0.00 0.00 0.00 100%
0.12 0.00 0.00 0.00 100%
0.10 0.00 0.00 0.00 100%
0.08 0.05 0.00 1.14 99.38%
0.05 3.53 0.00 28.60 76.50%

Table 6: Means of evaluation metrics for dynamic networks simulated from Scenario 3, varying cτ,1.

n cτ,1 |K̂ −K| ↓ d(Ĉ|C) ↓ d(C|Ĉ) ↓ C(G,G′) ↑

50

0.25 1.00 50.00 0.00 75.00%
0.20 0.96 48.00 0.00 76.00%
0.15 0.64 32.00 0.00 84.00%
0.12 0.39 19.58 0.08 90.17%
0.10 0.19 9.64 0.14 95.11%
0.08 0.09 4.30 0.50 97.61%
0.05 4.27 0.36 32.54 71.55%

100

0.25 0.43 21.50 0.00 89.25%
0.20 0.15 7.52 0.02 96.23%
0.15 0.00 0.02 0.02 99.98%
0.12 0.00 0.02 0.02 99.98%
0.10 0.00 0.02 0.02 99.98%
0.08 0.06 0.02 1.08 99.57%
0.05 4.04 0.02 32.76 73.62%

indicating whether a time window contains a change point to train a classifier, which is not available
in our fully unsupervised setting.

Nevertheless, we conduct simulations comparing our method with CPDonline and AutoCPD. For
AutoCPD, we trained the method using simulated labeled data and then applied it to a testing dataset.
As shown in Table 11, our method (CPDmrdpg) outperforms CPDonline and AutoCPD across nearly
all evaluation metrics for both small and moderate-sized networks.

F.2 ADDITIONAL DETAILS AND RESULTS IN SECTION 4.2

This section provides a detailed analysis of the U.S. air transportation network data, evaluates the
performance of competing methods (introduced in Section 4.1) on both real datasets and presents
the constructed confidence intervals using the procedure in Section 3.1.

The U.S. air transportation network data consist of monthly data from January 2015 to June 2022
(T = 90) and are available from Bureau of Transportation Statistics (2022). Each node corresponds
to an airport and each layer represents a commercial airline. A directed edge in a given layer in-
dicates a direct flight operated by a specific commercial airline between two airports. We choose
the L = 4 airlines with the highest flight volumes and the n = 50 airports with the most depar-
tures and arrivals. Our method identifies change points in December 2015, June 2017, February
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Table 7: Means of evaluation metrics for dynamic networks simulated from Scenario 4, varying cτ,1.

n cτ,1 |K̂ −K| ↓ d(Ĉ|C) ↓ d(C|Ĉ) ↓ C(G,G′) ↑

50

0.25 2.67 83.20 0.00 62.47%
0.20 1.19 28.40 0.00 85.63%
0.15 0.13 2.60 0.00 98.67%
0.12 0.01 0.22 0.02 99.88%
0.10 0.00 0.02 0.02 99.98%
0.08 0.00 0.02 0.02 99.98%
0.05 0.75 0.02 11.94 93.36%

100

0.25 0.01 0.20 0.00 99.90%
0.20 0.00 0.00 0.00 100%
0.15 0.00 0.00 0.00 100%
0.12 0.00 0.00 0.00 100%
0.10 0.00 0.00 0.00 100%
0.08 0.00 0.00 0.00 100%
0.05 0.89 0.00 12.46 92.55%

Table 8: Means of evaluation metrics for dynamic networks simulated from Scenarios 1 and 3 with
n = 50, L = 4, r3 = L, varying input ranks r1 = r2 = r.

Scenario r |K̂ −K| ↓ d(Ĉ|C) ↓ d(C|Ĉ) ↓ C(G,G′) ↑

1
10 0.00 0.00 0.00 100%
15 0.01 0.00 0.42 99.86%
20 0.00 0.00 0.00 100%

3
10 0.15 7.80 0.30 95.96%
15 0.19 9.64 0.14 95.11%
20 0.05 2.70 0.20 98.55%

2019, February 2020 and February 2021, all corresponding to major abruptions in the U.S. aviation
industry.

The change point in December 2015 coincides with increased regulatory scrutiny over airline consol-
idation, following concerns raised by the American Antitrust Institute about reduced market com-
petition after a series of mergers. The June 2017 change point aligns with the proposal of the
Aviation Innovation, Reform and Reauthorization Act, which advocated for privatizing air traffic
control and influenced route planning among carriers. Moreover, the February 2019 change point
follows the U.S. government shutdown (December 2018 - January 2019), which caused Transporta-
tion Security Administration staffing shortages and significant operational disruptions, prompting
stabilization efforts in the months that followed. Lastly, the most significant structural disruptions
emerged in February 2020 and February 2021, aligning with the initial shock and continued fallout
of the COVID-19 pandemic, which triggered widespread flight cancellations, demand collapse and
structural reconfiguration in the aviation industry.

Performance of competitors. Table 12 summarizes the change points detected by the proposed and
competing methods for the worldwide agricultural trade network data. Notably, the gSeg method
fails to detect any change points after 2010, regardless of input type. Meanwhile, the kerSeg method
detects change points in 1990 and 1992, which are temporally too close. In contrast, our proposed
method (CPDmrdpg) identifies four major change points that align well with known geopolitical
and policy-related events.

Table 13 presents the results for the U.S. air transportation network data. Although the kerSeg
method using networks as input demonstrates a good performance in the simulation study, it detects
an excessive number of change points in this real data experiment, making the results unreliable and
raising concerns about false positives. Similarly, the kerSeg method that uses layer-wise Frobenius
norms as input has detected change points that are too close, yielding clusters of change points that
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Table 9: Means of evaluation metrics for dynamic networks simulated from Scenario 1 with n = 100
and L = 8, varying K.

K |K̂ −K| ↓ d(Ĉ|C) ↓ d(C|Ĉ) ↓ C(G,G′) ↑
2 0.00 0.00 0.00 100%
7 0.00 1.00 1.00 96.08%
12 0.00 1.00 1.00 94.19%

Table 10: Means of evaluation metrics for dynamic networks simulated from Scenario 1 with n =
50, varying levels of temporal dependence π.

π |K̂ −K| ↓ d(Ĉ|C) ↓ d(C|Ĉ) ↓ C(G,G′) ↑
0.000 0.01 0.00 0.43 99.86%
0.005 0.05 0.00 0.20 99.90%
0.010 0.60 0.00 15.00 93.90%
0.020 5.50 0.00 57.00 62.60%

could potentially be grouped together. On the contrary, the gSeg method that uses the Frobenius
norms as input detects too few change points, while the gSeg method using networks as input has
detected too many change points. The proposed CPDmrdpg method (Algorithm 1) yields five change
points that align well with known disruptions and policy changes in the aviation sector.

While the competitor methods do detect important and relevant change points in both two real
datasets, they tend to either over- or under-segment the time span. These patterns suggest that the
change points identified by the competing methods may be less realistic or informative compared to
those identified by the proposed method.

Performance of constructed confidence intervals. Tables 14 and 15 report the detected change
point from Algorithm 1 and the 95% confidence intervals constructed via the procedure from Sec-
tion 3.1, for the agricultural trade and air transportation networks, respectively.
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Table 11: Means of evaluation metrics for dynamic networks simulated from Scenario 1.

n Method |K̂ −K| ↓ d(Ĉ|C) ↓ d(C|Ĉ) ↓ C(G,G′) ↑

50
CPDmrdpg 0.01 0.00 0.42 99.86%
CPDonline 0.00 3.00 3.00 95.13%
AutoCPD 0.00 0.69 0.69 99.12%

100
CPDmrdpg 0.00 0.00 0.00 100%
CPDonline 0.00 2.00 2.00 97.05%
AutoCPD 0.97 0.89 16.17 88.29%

Table 12: Detected change points for the worldwide agricultural trade network data.

Method Detected change points
CPDmrdpg 1991, 1999, 2005, 2013
gSeg (nets.) 1993, 2002, 2010
kerSeg (nets.) 1990, 1992, 1999, 2005, 2012
gSeg (frob.) 1993, 2002, 2009
kerSeg (frob.) 1990, 1992, 1997, 2003, 2012

Table 13: Detected change points for the U.S. air transportation network data.

Method Detected change points
CPDmrdpg 2015-12, 2017-06, 2019-02, 2020-02, 2021-02
gSeg (nets.) 2015-11, 2016-10, 2017-09, 2018-09, 2019-09, 2020-10, 2021-08
kerSeg (nets.) 2015-11, 2016-03, 2016-10, 2017-05, 2017-09, 2018-05, 2018-10

2019-03, 2019-09, 2020-03, 2020-10, 2021-03, 2021-09
gSeg (frob.) 2015-11, 2020-01, 2021-03
kerSeg (frob.) 2015-11, 2017-10, 2020-01, 2021-03, 2021-05, 2021-09, 2022-01

Table 14: Detected change point from Algorithm 1 and 95% confidence intervals via Section 3.1 for
the worldwide agricultural trade network data.

Detected change points Time point Confidence interval
1991 6 (5.97, 6.03)
1999 14 (13.98, 14.02)
2005 20 (17.97, 18.05)
2013 28 (25.99, 26.06)

Table 15: Detected change point from Algorithm 1 and 95% confidence intervals via Section 3.1 for
the U.S. air transportation network data.

Detected change points Time point Confidence interval
2015-12 12 (11.55, 12.41)
2017-06 30 (28.79, 30.98)
2019-02 50 (49.67, 53.22)
2020-02 62 (59.66, 60.36)
2021-02 74 (73.58, 74.27)
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