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Abstract

Customized video generation aims to generate high-quality
videos guided by text prompts and subject’s reference images.
However, since it is only trained on static images, the fine-
tuning process of subject learning disrupts abilities of video
diffusion models (VDMs) to combine concepts and generate
motions. To restore these abilities, some methods use addi-
tional video similar to the prompt to fine-tune or guide the
model. This requires frequent changes of guiding videos and
even re-tuning of the model when generating different mo-
tions, which is very inconvenient for users. In this paper, we
propose CustomCrafter, a novel framework that preserves the
model’s motion generation and conceptual combination abil-
ities without additional video and fine-tuning to recovery. For
preserving conceptual combination ability, we design a plug-
and-play module to update few parameters in VDMs, enhanc-
ing the model’s ability to capture the appearance details and
the ability of concept combinations for new subjects. For mo-
tion generation, we observed that VDMs tend to restore the
motion of video in the early stage of denoising, while focus-
ing on the recovery of subject details in the later stage. There-
fore, we propose Dynamic Weighted Video Sampling Strat-
egy. Using the pluggability of our subject learning modules,
we reduce the impact of this module on motion generation in
the early stage of denoising, preserving the ability to generate
motion of VDMs. In the later stage of denoising, we restore
this module to repair the appearance details of the specified
subject, thereby ensuring the fidelity of the subject’s appear-
ance. Experimental results show that our method has a signif-
icant improvement compared to previous methods.

Code — https://github.com/WuTao-CS/CustomCrafter

Introduction
With the development of diffusion models and mul-
timodal, text-to-video generation has made significant
progress (Brooks et al. 2024; Yang et al. 2023, 2024a,b;
Miao et al. 2023; Su et al. 2023a,b). Challenges still arise
when users want to generate videos of specific subjects. Cus-
tomized video generation needs to simultaneously satisfy
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Figure 1: Comparison of our approach with previous work.
Our method can better learn the appearance of the subject
while preserving the concept combination ability and mo-
tion generation ability, only requires one stage of training
without additional videos.

three requirements: consistent subject appearance, free con-
cept combination, and smooth motion generation. Concept
combination refers to the ability to combine the learned spe-
cific subject with other different concepts. For example, as
shown in Figure 1, when we learn about a specific guitar, we
hope that this guitar can be combined with other concepts
(e.g., a person) to generate videos. Numerous studies (Gal
et al. 2023; Ruiz et al. 2023; Han et al. 2023; Gu et al. 2024b;
Kumari et al. 2023; Ruiz et al. 2024; Huang et al. 2024b,a)
have proposed many methods for customized image genera-
tion and have achieved good results. When these approaches
are applied directly to customized video generation, they of-
ten fail to generate videos well. These methods damage the
conceptual combination ability and motion generation abil-
ity of the text-to-video model during the fine-tuning process,
which means that the subject learned by the model cannot be
combined with other concepts and the motion in the gener-
ated video tends to be static.

Recent methods for customized video generation have
noticed these issues. Some works (Wei et al. 2024; He



Subject Generated Video 

<new1> teddybear is running on a country road<new1> teddybear 

<new1> cat is playing in the snow, snowflakes flying.<new1> cat 

<new1> anime girl selfie standing under the pink blossoms of a cherry tree.<new1> anime girl 

<new1> anime girl <new1> anime girl playing with their pet dog.

Figure 2: Visualization for our CustomCrafter. Our approach allows customization of subject identity and movement patterns
to generate the desired video with text prompt by preserving motion generation and conceptual combination abilities.

et al. 2023) have recognized the decline in motion fluid-
ity and conceptual combination abilities. These methods be-
lieve that the damage to the model’s concept combination
ability and motion generation ability cannot be recovered,
which is caused by using images to fine-tune the VDMs dur-
ing subject learning. So, as shown in Figure 1, they use
further fine-tuning of the model parameters with additional
videos similar to the content described in the prompt (Wei
et al. 2024), or use videos to guide the video generation pro-
cess (He et al. 2023). However, these methods require re-
trieving similar text prompts from massive video libraries to
generate different prompts for the same subject. It is often
necessary to frequently change the guiding videos or even
re-fine-tune the model, leading to additional training, which
brings great inconvenience to users. Considering the above
issues, one question naturally arises: Is it possible to gen-
erate videos of a specified subject only by performing
subject learning, while preserving the model’s inherent
abilities of concept combination and motion generation?

In this paper, we introduce a novel framework, Custom-
Crafter, which preserves the model’s motion generation and
conceptual combination abilities without the need for ad-
ditional video and fine-tuning to recover these abilities.
Through experiments, we have observed that: (1) Numer-
ous studies (Cao et al. 2023; Gu et al. 2024a; Nam et al.
2024) have indicated that for image models, self-attention
often significantly affects the ability to combine concepts.
And self-attention plays a crucial role in preserving geomet-
ric and shape for subject (Liu et al. 2024). We have observed

that this phenomenon remains applicable to VDMs. Further-
more, influenced by (Kumari et al. 2023), existing work
only updates spatial cross-attention during subject learning.
(2) During the video diffusion models (VDMs) generation
process, we can observe that in different timesteps of denois-
ing process, the model repair content has a certain tendency.
The early stages of the denoising process tend to restore the
layout of each frame and the motion, whereas the later stages
focus on the recovery of object detail.

Therefore, to address the issue of decreased concept com-
bination ability, we propose the Spatial Subject Learning
Module, which can update the weights of both the spatial
cross-attention and self-attention layers during fine-tuning.
This improves the model’s ability to capture the appear-
ance of new subjects, while also improving the model’s
ability to combine new subjects with other concepts. Re-
garding the decline in motion generation ability, we design
the Spatial Subject Learning Module to be pluggable, and
propose the Dynamic Weighted Video Sampling Strategy,
which improves the model’s inference process. When gener-
ating videos, by leveraging the pluggable nature of the sub-
ject learning module, we can preserve the model’s motion
generation ability by reducing the influence of subject learn-
ing on the stages that tend to restore motion. Then, during
the stages that tend to repair details, we can restore the influ-
ence of the subject learning module. This ensures the con-
sistency of the subject’s appearance, thereby enabling the
generation of videos of a specified subject using the model’s
inherent motion generation ability. As shown in Figure 2,



we can generate high-quality videos of a specified subject by
preserving the inherent abilities of VDMs of concept com-
bination and motion generation and only performing subject
learning. Our method does not require the introduction of
additional videos as guidance or repeated fine-tuning of the
model. By preserving the inherent knowledge of the text-to-
video model, we can conveniently generate videos of speci-
fied objects that align with the prompt.

We provide qualitative, quantitative, and user study results
that demonstrate the superiority of our method. Our contri-
butions are summarized as follows:

• As far as we know, we are the first to discover and use
the property of VDMs’ denoising process to decouple ap-
pearance and motion to improve customized generation.

• We propose a subject learning method that can learn the
appearance of the subject better and effectively preserve
the ability to combine new subjects with other concepts.

• We introduce a sampling strategy that can preserve the
motion generation of VDMs without using additional
videos to guide or fine-tune the model.

Related Work
Text-to-Video Diffusion Models
Diffusion models (Sohl-Dickstein et al. 2015; Ho, Jain, and
Abbeel 2020; Jiang et al. 2024) have recently emerged as
a trend in generative models, particularly in the domain of
text-to-image (T2I) generation (Ramesh et al. 2022; Rom-
bach et al. 2022; Zhang et al. 2024; Wu et al. 2024a;
Wang et al. 2024a; Wu et al. 2024b; Huang et al. 2024a;
Zheng et al. 2023). For video generation, Video Diffusion
Model has been introduced to model video distributions.
Pioneering work to utilize a space-time-factored U-Net for
video modeling in pixel space for unconditional video gen-
eration was done by VDM (Ho et al. 2022; Dou et al.
2024). AnimateDiff (Guo et al. 2024) further advanced the
field of text-to-video generation by incorporating a motion
module into the Stable Diffusion model. Following this,
LVDM (He et al. 2022; Chen et al. 2023) suggest extend-
ing LDM to model videos in the latent space of an auto-
encoder. This method gradually became mainstream and de-
rived many methods, including ModelScope (Wang et al.
2023a), LAVIE (Wang et al. 2023c), PYOCO (Ge et al.
2023), VideoFactory (Wang et al. 2023b), VPDM (Yu et al.
2023), and VideoCrafter2 (Chen et al. 2024a).

Customized Generation on Diffusion Models
Numerous studies (Wei et al. 2023; Li, Li, and Hoi 2024)
have proposed many methods for custom image genera-
tion and achieved good results. Most current work focuses
on subject customization with a few images (Han et al.
2023; Gu et al. 2024b; Shi et al. 2024). Moreover, some
works study the more challenging multi-subject customiza-
tion task (Yuan et al. 2024; Xiao et al. 2024; Ma et al.
2024; Chen et al. 2024b). Despite significant progress in
customized image generation, customized video generation
is still under exploration. Although there have been initial

Denoising Progress

Repairing motion and layout Repairing Subject Appearance

Figure 3: Visualization of video denoising process. The mo-
tion is formed in early stages of the denoising process, and
the subject’s appearance emerges in later stages.

attempts to customize video diffusion, such as VideoAssem-
bler (Zhao et al. 2023), VideoBooth (Jiang et al. 2023),ID-
Animator (He et al. 2024) and CustomVideo (Wang et al.
2024b), which use reference images to personalize the video
diffusion model while preserving the identity of the subject.
These approaches focus on addressing the problem of gen-
erating videos with a similar subject appearance, neglecting
disruption to motion and conceptual combination abilities.
DreamVideo (Wei et al. 2024) first decouples the learning
process for subject and motion. Animate-A-Story (He et al.
2023) refers to the depth information of the additional video
to guide motion generation. However, the use of additional
video data and the need to retrain the model according to
different prompts bring great inconvenience to users.

Preliminary
Video diffusion models (VDMs) (Wang et al. 2023a; He
et al. 2022; Guo et al. 2024; Chen et al. 2024a)2 are de-
signed for video generation tasks by extending image diffu-
sion models to adapt to video data. VDMs learn a video data
distribution by the gradual denoising of a variable sampled
from a Gaussian distribution. First, a learnable autoencoder
(consisting of an encoder E and a decoder D) is trained to
compress the video into a smaller latent space representa-
tion. Then, a latent representation z = E(x) is trained in-
stead of a video x. Specifically, the diffusion model ϵθ aims
to predict the added noise ϵ at each timestep t based on the
text condition c, where t ∈ U(0, 1). The training objective
can be simplified as a reconstruction loss:

Lvideo = Ez,c,ϵ∼N (0,I),t

[
∥ϵ− ϵθ (zt, c, t)∥22

]
, (1)

where z ∈ RF×H×W×C is the latent code of video data
with F,H,W,C being frame, height, width, and channel,
respectively. τθ presents a pre-trained text encoder. c is the
text prompt for input video. A noise-corrupted latent code zt
from the ground-truth z0 is formulated as zt = λtz0 + σtϵ,
where σt =

√
1− λ2

t , λt and σt are hyperparameters to
control the diffusion process. In this work, we have selected
the VideoCrafter2 (Chen et al. 2024a) as our base model.
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Figure 4: Overall review of CustomCrafter. For subject learning, we adopt LoRA to construct Spatial Subject Learning Module,
which update the Query, Key, and Value parameters of attention layers in all Spatial Transformer models. In the process of
generating videos, we divide the denoising process into two phases: the motion layout repair process and the subject appearance
repair process. By reducing the influence of the Spatial Subject Learning Module in the motion layout repair process, and
restoring it in the subject appearance repair process to repair the details of the subject.

Method
In this section, we first analyze the reasons for the impair-
ment of conceptual combination and motion capabilities in
models during the subject learning and outline our findings
about the VDMs. Then, we introduce the Spatial Subject
Learning Module, which used to learn the appearance details
of the subject. Finally, we introduce our Dynamic Weighted
Video Sampling Strategy, which can generate high-quality
videos without additional video guidance or training after
the model has learned the appearance of the subject.

Explore the Video Diffusion Model
Given a pre-trained VDM, our goal is to enable the model to
learn the subject’s appearance from a number of images and
the corresponding text prompt. To achieve this goal, most
existing works update part of the model to learn subject’s
appearance. However, since the training data only consist
of images and the VDMs require a relatively long training
period to learn a new concept, the model inevitably forgets
its motion generation and concept combination ability. Re-
garding the issue of conceptual combination, many studies
on diffusion models point out (Cao et al. 2023; Nam et al.
2024) that for text-to-image diffusion models, self-attention
significantly affects the geometric and shape for subject and
the ability to combine concepts. We found the same phe-
nomenon in video diffusion models. However, current meth-

ods tend to fine-tune only the parameters of cross-attention
during training. This results in the model being unable to
learn the appearance of new subjects and reduces its ability
to combine new subjects with other concepts.

For motion generation, as shown in Figure 3, we observed
that the duck’s movement is formed early in the denoising
process. The later stage of the denoising process is to en-
hance the appearance of the subject based on the established
motion. Therefore, during the video generation process, the
models repair content with a certain tendency. The VDMs
tend to restore the overall layout and motion in the early
stages of the denoising process, while focusing on the re-
covery of object detail in the later stages. Therefore, our
approach is to utilize a plug-and-play module to facilitate
subject learning. By reducing the influence of this module
on the denoising generation process in the early stages of
inference, we can mitigate the disruption to the motion gen-
eration capability of VDMs. In the later stages of the denois-
ing process, where object detail recovery occurs, we increase
the influence of this module. This approach allows us to pre-
serve the original model’s video motion generation ability
while generating high-quality appearance of new subjects.

Spatial Subject Learning Module
For learning the appearance of new subject, we constructed
a Spatial Subject Learning Module. During training, we re-



peat a single picture of the object N times to turn the picture
into a still N frame video. As shown in Figure 4, our fine-
tuning parameters can be divided into two parts. First, fol-
lowing textual inversion (Gal et al. 2023), we employ a new
token V ∗ and learn a new token embedding vector in the
CLIP text encoder to represent a new concept. For example,
a specified teddy bear can be represented as V ∗teddybear.
The second part pertains to the spatial transformer module
of the video diffusion model. We fine-tuned both the cross-
attention module and the self-attention module in the spatial
transformer blocks of VDM to ensure that the model has the
ability to combine new subjects with other concepts while
learning the appearance of the subject. To achieve a plug-
and-play effect, we adopted the Low-Rank Adaptation (Hu
et al. 2021) (LoRA) method for fine-tuning. LoRA applies a
residue path of two low-rank matrices B ∈ Rd×r, A ∈ Rr×k

in the attention layers, whose original weight is W0 ∈ Rd×k,
r ≪ min(d, k). The new forward path is as follows:

W = W0 + λ∆W = W0 + λBA, (2)

where λ is a coefficient adjusting the strength of the added
LoRA. In this paper, we insert LoRA layers into the query,
key, and value corresponding to Wq ,Wk,Wv in both the
cross-attention and self-attention modules for fine-tuning.

Dynamic Weighted Video Sampling Strategy
To alleviate the decrease in motion generation ability, as
shown in Algorithm 1, we propose Dynamic Weighted
Video Sampling Strategy. We notice that during the genera-
tion process of the video diffusion model, in the early stage
of denoising, the model tends to restore the video’s motions.
In the later stage of the denoising process, the model tends
to restore the details of the generated video. Therefore, in
the first K steps of the denoising process, we adjust the
weight λ of all LoRA modules in our Spatial Subject Learn-
ing Module to a smaller value λs, to ensure that the model
is almost unaffected by motion stagnation and the decrease
in the combination ability of concepts caused by the parame-
ters of the subject’s overfit. In the later stage of the denoising
process, we restore the weight λ of the LoRA modules to a
higher value λl, allowing the model to further repair the spe-
cific details of each frame of the subject, thereby generating
high-quality videos of the specified subject.

Model Training Strategy
Inspired by previous work (Ruiz et al. 2023; Kumari et al.
2023), during training, we use class-specific prior preserva-
tion to mitigate overfitting issues in the training process, to
enhance the diversity of the generated videos. The loss for
prior preservation is formulated as the following:

Lpr = Ezpr,cpr,ϵ∼N (0,I),t

[
∥ϵ− ϵθ (z

pr
t , cpr, t)∥22

]
, (3)

where zpr is the latent code of the input regularized video,
cpr is the text condition for the input regularized video. In
training, our total loss function is as follows:

L = Lvideo + αLpr, (4)

where α is a hyper-parameter to adjust the relative weight of
prior-preservation.

Algorithm 1: Dynamic Weighted Video Sampling Strategy
Input: A source prompt P , a random seed s, a small LoRA
weight λs used in Phase 1, a large LoRA weight λl used in
Phase 2, and the delimitation point k.
Output: latent code for generating video.
zT ∼ N(0, I) a unit Gaussian random variable with random
seed s;
Change(DM,λ, λs); /* Change λ to λs */
for t = T, T − 1, . . . , 1 do

if t == ( T - K ) then
Change(DM,λ, λl) /* Change λ to λl */

end
zt−1 ← DM(zt,P, t, s)

end
Return: z0

Method CLIP-T↑ CLIP-I ↑ DINO-I↑ T. Cons. ↑
Custom Diffusion 0.289 0.759 0.546 0.990
Custom Diffusion* 0.286 0.769 0.583 0.992
DreamVideo 0.298 0.724 0.489 0.992
DreamVideo* 0.295 0.748 0.536 0.993
Ours 0.318 0.786 0.627 0.994

Table 1: Comparison with the existing methods. Note that
Custom Diffusion* and DreamVideo* in the table represent
the results we get after extending the number of training
steps in the original paper.

Experiments
Experimental Setup
Datasets and Protocols For subject customization, we se-
lect subjects from image customization papers (Ruiz et al.
2023; Kumari et al. 2023) for a total of 20 subjects. For each
subject, we use ChatGPT to generate 10 related prompts,
which are used to test the generation of specified motion
videos for the subject. All experiments use VideoCrafter2
as the base model. When learning the subject, we use the
AdamW optimizer, set the learning rate to 3 × 10−5 and
the weight decay to 1 × 10−2. We perform 10,000 iter-
ations on 4 NVIDIA A100 GPUs. For the Class-specific
Prior Preservation Loss, similar to (Ruiz et al. 2023; Ku-
mari et al. 2023),we collected 200 images from LAION-
400M (Schuhmann et al. 2021) for each subject as regular-
ization data and set α to 1.0. During the inference process,
we use DDIM (Song, Meng, and Ermon 2020) for 50-step
sampling and classifier-free guidance with a cfg of 12.0 to
generate videos with a resolution of 512× 320. For all sub-
jects, to facilitate experimentation and comparison, we uni-
formly set λs and λl to 0.4 and 0.8 respectively, and set K to
5 based on our observation. In actual use, these parameters
can be adjusted by the user.

Baselines Given that different base model are chosen in
the current field of video customization, we reproduce Cus-
tom Diffusion (Kumari et al. 2023) and DreamVideo (Wei
et al. 2024) based on VideoCrafter2. Since our methods
do not introduce additional videos as guidance, to ensure
fairness, we only reproduce the subject learning part of



A skilled musician is masterfully strumming the strings 
of a <new1> guitar, on the bustling city street.

OursCustom Diffusion DreamVideo

<new1> plush toy sits on a child's bed. The 
camera slowly pans to the right.

A child hand out the <new1> dice plush toy.

（a）

（c） （d）

<new1> cat is sitting in a cardboard box. 
looking around.

（b）

SubjectsOursCustom Diffusion DreamVideoSubjects

Figure 5: Qualitative comparison of customized video generation with both subjects and motions. Without guidance from
additional videos, our method significantly outperforms in terms of concept combination.

DreamVideo for fair comparison. In addition, considering
that VDMs need more steps to learn the appearance of the
subject, and the default settings of Custom Diffusion and
DreamVideo cannot fit the subject appearance features well,
we accordingly extend the training steps of these methods.

Evaluation Metrics Follow (Wei et al. 2024; Wang et al.
2024b), we evaluate our approach with the following four
metrics: (1) CLIP-T calculates the average cosine simi-
larity between CLIP (Radford et al. 2021) image embed-
dings of all generated frames and their text embedding. (2)
CLIP-I measures the visual similarity between the generated
and target subjects. We computed the average cosine sim-
ilarity between the CLIP image embeddings of all gener-
ated frames and the target images. (3) DINO-I (Ruiz et al.
2023), another metric to measure visual similarity using
ViTS/16 DINO (Zhang et al. 2022). Compared to CLIP, the
self-supervised training model encourages the distinguish-
ing features of individual subjects. (4) Temporal Consis-
tency (Esser et al. 2023), we compute CLIP image embed-
dings on all generated frames and report the average cosine
similarity between all pairs of consecutive frames.

Quantitative Results
We trained 20 subjects using Custom Diffusion,
DreamVideo and our method, respectively. After train-
ing, we used each method to generate videos for each
subject using 10 prompts, employing the same random

seed and denoising steps. The results, as shown in Table 1,
indicate that our method outperforms existing methods in
all four metrics. The degree of text alignment and subject
fidelity have been significantly improved. The temporal
consistency of the generated videos is roughly equivalent
to that of other methods. The metrics used to evaluate the
subject fidelity, CLIP-I and DINO-I, have improved by 1.7%
and 4.4%, respectively, compared to existing methods. The
degree of text alignment has improved by 1.5% compared
to the previous best result.

Qualitative Results
We also visualized some results for qualitative analysis. We
used the prompt of dynamic videos to generate videos of
specified subjects, observing the subject fidelity in the gener-
ated videos and the motion fluency. As shown in Figure 5(a),
when we want to generate a video of a specified plush toy sit-
ting on a child’s bed and the camera slowly pans to the right,
we find that existing methods overfit reference image dur-
ing training. Without guidance from additional videos, the
generated motions are almost static. However, our method
can generate videos with fluent motions and right concept
combination. Besides, in Figure 5(b), only our method cor-
rectly generates the conceptual combination of the cat and
the cardboard box and the motion of “looking around” with
high subject fidelity. Furthermore, in Figure 5(c), when we
want to generate a video of a musician playing a given guitar,



Figure 6: User Study. Our CustomCrafter achieves the best
human preference compared with other comparison methods

we find that existing methods greatly damage the model’s
ability to combine concepts. They cannot generate a musi-
cian playing the guitar, and the motion is ”frozen”. Simi-
larly, in Figure 5(d), when we want to generate a video of a
child handing out the dice toy, a similar situation occurs. Our
method successfully generated the combination of concept
of a child and a toy dice, and has smooth motions. Therefore,
without guidance from additional videos, our method sig-
nificantly outperforms existing methods in terms of concept
combination ability and motion naturalness, and has better
subject fidelity. Please refer to the supplementary material
for more visualizations and demonstration videos.

User Study
To further validate the effectiveness of our method, we con-
ducted a human evaluation of our method and existing meth-
ods without using additional video data as guidance. We in-
vited 20 professionals to evaluate the 30 sets of generated
video results. For each group, we provided subject images
and videos generated using the same seed and the same text
prompt under different methods for comparison. We eval-
uated the quality of the generated videos in four dimen-
sions: Text Alignment, Subject Fidelity, Motion Fluency,
and Overall Quality. Text Alignment evaluates whether the
generated video matches the text prompt. Subject Fidelity
measures whether the generated object is close to the ref-
erence image. Motion Fluency is used to evaluate the qual-
ity of the motions in the generated video. Overall Quality is
used to measure whether the quality of the generated video
overall meets user expectations. As shown in Figure 6, our
method has gained significantly more user preference in all
metrics, proving the effectiveness of our method.

Ablation Study
In this section, we construct ablation studies to validate the
effectiveness of each component. As shown in Table 2,
we choose Custom Diffusion as the baseline to present the
quantitative results of our designed Spatial Subject Learning
Module and Dynamic Weighted Video Sampling Strategy.
It can be observed that using our Spatial Subject Learning

<new1> plush toy is eating bamboo.

Subject

(b) W/O DWVVS

(c) CustomCrafter

(a) W/O Upate SA and DWVVS

Figure 7: Effect of each design of our method. It can be seen
that each of our designs has achieved the expected effect.

SSLM DWVSS CLIP-T↑ CLIP-I↑ DINO-I↑ T.Cons.↑
0.286 0.769 0.583 0.992

✓ 0.294 0.790 0.631 0.993
✓ ✓ 0.318 0.786 0.627 0.994

Table 2: Ablation Study. “SSLM” is Spatial Subject Learning Mod-
ule, “DWVSS” is Dynamic Weighted Video Sampling Strategy.

Module achieves better results on the CLIP-I and DINO-I
metrics, which measure the subject fidelity. This suggests
that compared to previous work, our method is more ca-
pable of capturing the details of the subject. The Dynamic
Weighted Video Sampling Strategy, due to modifications in
the process, may result in a slight impairment of the subject’s
appearance similarity. However, the motions can be signifi-
cantly improved, substantially enhancing the text alignment.
In addition, we use visualization results to demonstrate the
effectiveness of our method. As shown in Figure 7, when
we only update the parameters of cross-attention, we find
that the model’s ability to combine concepts is poor and
it cannot generate a simple concept combination of pan-
das and bamboo that matches the prompt. However, when
we use our Spatial Subject Learning Module module to up-
date both cross-attention and self-attention, and do not use
the Dynamic Weighted Video Sampling Strategy, the gen-
erated video’s ability to combine concepts is improved, but
the VDM cannot generate fluent motions that match the text
prompt. After adopting our sampling strategy, the generated
video has almost no significant loss in subject fidelity, but
the naturalness of the motion has greatly improved.

Conclusion
In this paper, we introduce our CustomCrafter, a novel
framework for customized video generation. This approach
does not require additional video to repair motion genera-
tion ability. We first designed a Spatial Subject Learning
Module, which updates the Spatial Attention for subject
learning. Simultaneously, we proposed a Dynamic Weighted
Video Sampling Strategy, which improves the model’s in-
ference process to restore the motion generation capability
of VDMs. Through experiments, we have demonstrated that
our method is better than existing methods.
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