
Limited Maximum Flow Problem With Multiple
Sink Vertices

Anonymous
Faculty of Electronic and Information Engineering

Xi’an Jiaotong University
Xi’an, China

**********@stu.xjtu.edu.cn

Abstract—We propose a stochastic algorithm for limited max-
imum flow problem with multiple sink vertices in directed
acyclic graph, which is completely different from the traditional
network flow algorithms. The algorithm shows significant per-
formance advantages when computing the maximum flow for
all vertices. Compared to the Dinic algorithm solution with
complexity O(nm

3
2), our algorithm can optimize the complexity

to O(mk2) with considerable theoretical correctness. In practice,
its performance and correctness are better than the currently
known bounds.

Index Terms—graph theory, network flow, directed acyclic
graph, linear basis, hash

I. INTRODUCTION

A. Network Maximum Flow

The network maximum flow [1] is always an important
problem in the study of graph theory and algorithms, which
not only has some applications in traffic allocation and routing
in networks, but also can be reduced from problems such as
bipartite graph matching, minimum cut, task allocation, linear
programming, etc. to solve difficult problems in other fields.

Definition 1. Directed Graph. A directed graph G = (V,E)
consists of a vertex set V and an edge set E.

The elements of E ⊆ V 2 are ordered pairs of vertices. The
conventions n = |V |,m = |E| are the number of vertices and
edges of the graph, respectively.

Fig. 1. A graph with a directed cycle.

Definition 2. Directed Acyclic Graph. A directed acyclic
graph is a directed graph without any directed cycle.

Fig. 2. A directed acyclic graph.

Definition 3. Network Maximum Flow. Given a network
(graph) N = (V,E) with a source vertex s ∈ V , a sink vertex
t ∈ V and capacity for each of its edge e ∈ E, the maximum
flow is the maximum value among all its flow from s to t.

Formally, the capacity of edges is a mapping c : E → R+,
and c(e) is the maximum flow allowed over some edge e ∈ E.

A flow is a mapping f : E → R+ ∪ {0} satisfying the
following restrictions:

• Capacity constraint: f(e) ≤ c(e),∀e ∈ E;
• Conservation of flows: ∀v ∈ V \{s, t},∑

u:(u,v)∈E

f(u, v) =
∑

u:(v,u)∈E

f(v, u).

The value of flow |f |, is the flow from the source to the sink:

|f | =
∑

v:(s,v)∈E

f(s, v) =
∑

u:(u,t)∈E

f(u, t).

Finally, the maximum flow fmax is the maximum value
among all its flow:

fmax = max |f |

In this paper, we only discuss networks with a constant
capacity of 1. For edges with c(u, v) ̸= 1, we may show that

replacing them with c(u, v) number of multiple edges with
capacity 1 does not affect the answer to the maximum flow.

Definition 4. Limited Maximum Flow. An additional parame-
ter k > 0 is specified for the network flow problem, and then
it asks to compute the maximum flow of the network, or report
that the maximum flow is at least k. Typically k is small, e.g.,
k ≤ 50.

Formally, the problem asks the value of:

F = min{fmax, k}.

B. Network Maximum Flow with Multiple Sink Vertices

We note that in quite a few applications of network flows
[2], we need to not only compute the maximum flow for a
unique pair (s, t), e.g. in network routing, sometimes we want
to know the maximum flow from the current vertex to every
other vertex, and then we can estimate the channel capacity
from the current vertex to all vertices accordingly.

However, computing the maximum flow for multiple source-
sinks simultaneously is more difficult, even if the computa-
tional requirements have the same source or sink. Well-known
network flow algorithms almost exclusively focus on solving
maximum flow problem for unique (s, t) pairs, and rarely
generalize the problem to computing the maximum flow when
each vertices acts as a sink. The only way to compute the
maximum flow between q pairs of source-sinks is to run the
above algorithm Ω(q) times, whose time complexity is usually
unsatisfactory. We can also note that the computation of a lot
of flow information is repeated during the process, which is
wasteful in terms of time and space overhead.

C. Our result

For the limited maximum flow problem with multiple sink
vertices, we propose a Monte Carlo algorithm with a high
accuracy and a time complexity of O(mk2), where k is the
additional parameter. When k is small, our algorithm can
exhibit much higher performance than running n traditional
network flow algorithms directly.

The main idea of the algorithm is to hash the streams
using vectors and to further optimize the algorithm using
linear bases; to ensure sufficient accuracy and to make the
correctness estimable, we use the multidimensional vectors
in a finite field of modulo prime residue classes. We give a
description of the algorithm in Section III and a proof of its
complexity and correctness in Section IV. In Section V, we
perform comparison experiments to validate our algorithm.

II. RELATED WORKS

A. Ford-Fulkerson Augmentation

Ford-Fulkerson augmentation [1] is a general term for a
class of algorithms that compute maximal flows. The algorithm
computes the maximum flow by greedily finding augmentation
paths.

For a given graph G and flow f , The algorithm defines
a residual network Gf whose capacity of each edge is the

original capacity minus the flow of the corresponding edge in
f . Thus, the process of finding flows with maximum value can
be reduced to continuously searching for augmented paths in
the residual network, i.e. paths that go from the source to the
sink and have a non-zero flow through the route paths. The
algorithm also introduces flow withdrawal as a backtracking
greedy method. It can be shown that after the introduction of
flow withdrawal, the augmentation path cannot be found if and
only if the flow of the current stream has reached the maximum
value. Therefore, it is sufficient to define the initial flow f as
an empty flow and iteratively search for augmentation paths,
updating the flow scheme and the residual network, until no
new augmentation paths can be found.

The complexity of the algorithm varies due to the different
implementations, and the following are the two main imple-
mentations.

a) Edmonds-Karp Algorithm: Intuitively, to implement
Ford-Fulkerson augmentation, it is sufficient to find augmen-
tation paths in a residual network using BFS (breadth-first
search) and further assign flow to each edge in the found
augmentation paths [3]. In this algorithm, the upper bound
on the complexity of a single augmentation is O(m), while
the upper bound on the number of rounds of augmentation is
O(nm), and consequently the upper bound on the theoretical
complexity is O(nm2).

Running the algorithm multiple times to solve a limited
maximum flow problem with multiple sink vertices, has a
complexity of O(n2m2).

b) Dinic Algorithm: This implementation [4] introduces
multi-path augmentation and current arc optimization to re-
duce the upper bound on the number of rounds for Ford-
Fulkerson augmentation.

When performing BFS, the algorithm layers the residual
network and subsequently performs multi-path augmentation
using DFS (depth-first search) to compute the maximum
augmented flow on that layered graph. During DFS, the algo-
rithm maintains a pointer to the earliest edge for which flow
currently exists at each vertex, using current arc optimization
to ensure that full-flow edges are not visited repeatedly. Finally
the algorithm is able to optimize the upper bound on the
number of rounds of augmentation to O(n) at the cost of
the upper bound on the complexity of augmentation becoming
O(nm).

However, the running time of the algorithm does not reach
the theoretical upper bound in practice, and it can be shown
to have even better complexity on some well-characterized
graphs. For example, on networks of unit capacity, its com-
plexity improves further to O(mmin{m 1

2 , n
2
3 }). The com-

plexity is thus about O(nm
3
2) when using this algorithm to

solve a limited maximum flow problem with multiple sink
vertices.

B. Push-Relabel Algorithm

The push-relabel algorithm [5] solves the maximum flow
by performing update operations on individual vertices until
there are no vertices to update.

The flow function maintained by the algorithm does not
necessarily maintain flow conservation; for a vertex that is
not a source or sink, we allow the flow into the vertex to
exceed the flow out of the vertex, and the exceeding portion
is referred to as the excess flow of such vertex u, noted as
e(u); the algorithm maintains the height of each vertex, h(u),
and specifies that the vertex with the excess flow can only
push the flow to a vertex whose height is less than u (Push);
if it is not possible to push the flow, then re-modify the vertex
height (Relabel).

a) HLPP Algorithm: The HLPP algorithm adds the fol-
lowing restriction to the generic push-relabel algorithm: each
time a vertex is selected, the overflow vertex with the highest
height is preferred. The upper bound on the complexity of this
algorithm is O(n2

√
m). The complexity is O(n3

√
m) when

using this algorithm to solve a limited maximum flow problem
with multiple sink vertices.

C. Other Cutting-edge Algorithms

a) Maximum Flow in Almost-linear Time: Li Chen et
al [6] proposed an algorithm that can compute the minimum
cost while solving the maximum flow and has almost linear
time complexity. The complexity is at least O(n2) when using
this algorithm to solve a limited maximum flow problem with
multiple sink vertices.

b) Solution Using Expander Graphs: Cheung et al [7]
proposed an algorithm that is similar to our approach and
optimized the complexity to O(mkω−1) using expander graph
and matrix multiplication techniques, where ω ≈ 2.37 is the
matrix multiplication exponent.

III. MAIN ALGORITHM

A. Naive Algorithm

The main idea of the algorithm is to hash the flow using k-
dimensional vectors. In the implementation of the algorithm,
in order to ensure the decidability of the zero vector and the
accurate computation of the rank, we choose the finite field
Zp as the components of vectors, i.e. e ∈ Zk

p holds for every
vector e, where p is a prime number chosen in advance.

During the algorithm, we first perform topological sort on
the directed acyclic graph and process the vertices and edges in
corresponding order. For each edge in the graph, we compute
the hash vector corresponding to it according to the following:

1) For an edge (s, u) ∈ E from s, its hash vector esu is
selected uniformly at random in Zk

p;
2) For other edges (u, v) ∈ E, the hash vector euv is

selected uniformly at random in the in-edges space of
u,Eu.

where the in-edges space of a vertex is defined as the linear
space spanned by the hash vectors of all the in-edges of the
vertex:

Eu = span{evu : (v, u) ∈ E}.

We may consider Es = Zk
p to be a special case of the in-

edges space, therefore the rules for the computation of hash

vectors can be uniformly given by rule 2. In particular, if a
vertex u has no in-edges, then Eu is a zero vector space.

After computation of all hash vectors, we report dim(Eu)
as the answer at vertex u, i.e. we consider that:

dim(Eu) = Fu

holds with high probability. Here Fu is the answer of the
limited maximum flow problem when the sink is set to u.

Since our algorithm runs on a directed acyclic graph, the
computation of hash vectors of the in-edges for each vertex
must have been completed by the time it is processed in
topological sort, so we can immediately compute the in-edges
space for that vertex and then compute the hash vectors of
all out-edges of it. Therefore, we only need to process each
vertex and each edge according to the topological order to get
the approximate answer for all vertices:

Algorithm 1 Hash Vector Algorithm
Input: A directed acyclic network G = (V,E) with unit
capacity, and the source vertex s
Output: The limited maximum flow F (u) for each vertex
u ∈ V \ {s}
Initialize queue Q as empty;
for each vertex u ∈ V do
d(u)← |{v|(v, u) ∈ E}|; {In-degree of vertex u}
if d(u) = 0 then

Add u to the end of queue Q;
end if

end for
while Q is not empty do

u← front element of Q; {Dequeue the front element}
Remove the front element from Q;
if u = s then
Eu ← Zk

p;
else
Eu ← span{evu : (v, u) ∈ E}; {Span of in-edges}

end if
F (u)← dim(Eu); {Dimension of Eu}
for each v : (u, v) ∈ E do

euv ← a uniformly random vector from Eu;
d(v)← d(v)− 1; {Decrement in-degree of v}
if d(v) = 0 then

Add v to the end of queue Q;
end if

end for
end while

The relationship between our naive algorithm and the max-
imum flow of the network is not obvious. The following
sections further illustrate the connection by proving some
simple properties of hash vectors and in-edges spaces.

B. Unreachable vertex

We first consider excluding the effects of unreachable ver-
tices.

Theorem 1. For all vertices t which is unreachable form s,

dim(Et) = Ft = 0

holds.

Proof. Since there does not exist any path from s to t, it is
clear that there is a maximum flow of 0. The following proof
of dim(Et) = 0 is inductive by topological order.

For an unreachable vertex t with no in-edges, its in-edges
space is a zero vector space by definition.

For some unreachable vertex t, if ∀u : (u, t) ∈ E, u is
unreachable, and dim(Eu) = 0 holds:

Then there must be eut = 0. And since the unreachable
vertex t cannot have a reachable predecessor vertex, Et is
also a zero vector space by definition, thus dim(Et) = 0.

Corollary 1. For all edges (u, v) which is unreachable from
s, euv = 0 holds.

It follows immediately from the fact that the starting vertex
u of an unreachable edge must be an unreachable vertex,
combined with Theorem 1.

Theorem 1 shows that our algorithm is always correct for
any vertex that is unreachable from s.

Since the zero vector does not affect the in-edges spaces
for the other vertices, we can ignore all vertices unreachable
from s and their out-edges in the discussion that follows, and
they have no effect on the answers for the remaining vertices.

C. Minimum Cut

Minimum cut [1] is the dual of the maximum flow problem
and has many good properties related to maximum flow. To
facilitate further proofs, we introduce here the definition of
minimum cut and prove some properties related to it.

Definition 5. Minimum Cut. The minimum cut of a graph G is
the minimum value among capacities of all cuts for the graph.

where a cut of graph G is a partition on vertices, {S, T},
where T = V \ S, and s ∈ S, t ∈ T holds; the capacity of
cut, c(S, T) is the sum of capacities of all the edges from S
to T , i.e:

c(S, T) =
∑

u∈S,v∈T

cuv.

Lemma 1. Maximum Flow Minimum Cut Theorem. For any
graph G with source s and sink t, it holds that fmax = cmin.

Proof. Firstly, we prove that fmax ≤ cmin.
For some minimum cut scheme {S, T}, since s ∈ S, t ∈ T ,

due to flow conservation it can be obtained that fmax is the
flow from S to T . By the capacity limitation fuv ≤ cuv , we
have:

fmax =
∑

u∈S,v∈T

fuv −
∑

u∈S,v∈T

fvu

≤
∑

u∈S,v∈T

cuv

= cmin.

Then we proof that fmax ≥ cmin.

For some maximum flow scheme of fmax, there must be
no augmentation paths on its residual network, i.e. there does
not exist a non-zero flow path from s to t that satisfies the
capacity constraint. Let S be all the vertices reachable from s
on the residual network, then {S, V \S} must be a cut; and for
any edge (u, v) in the cut, since u is reachable and v is not,
it can be known that this edge is full, i.e. fuv = cuv, fvu = 0.
From the conservation of flow, we obtain:

fmax =
∑

u∈S,v∈T

fuv −
∑

u∈S,v∈T

fvu

=
∑

u∈S,v∈T

fuv

=
∑

u∈S,v∈T

cuv

≥ cmin.

Lemma 2. For any cut {S, T} of any sink t and any edge
(u, v) ∈ E satisfying u, v ∈ T , euv can be linearly represented
by the hash vectors of the cut edges.

Proof. We proof by induction on topological order.

For a vertex u whose in-edges are all cut edges, it is clear
that any vector in Eu can be linearly represented by the hash
vectors of the set of its in-edges, plus the set of its in-edges is
a subset of the cut edges, so that any outgoing edge of u must
satisfies that euv ∈ Eu , and it can be linearly represented by
the hash vectors of the full set of cut edges.

For a vertex u, if all its in-edges (v, u) ∈ E, v ∈ T from
the interior of T satisfies that evu is linearly representable by
the hash vectors of the cut edges, since any vector in Eu can
be linearly represented by the hash vectors of u’s in-edges,
which consists of cut edges and edges from the interior of T ,
both can be linearly represented by the vector set of cut edges;
therefore, any out-edge of u must also be linearly representable
by the hash vectors of the full cut edges.

Theorem 2. The rank of the in-edges space does not exceed
the maximum flow. i.e. for any sink t, fmax ≥ dim(Et).

Proof. By Lemma 1, the maximum flow is equal to the
minimum cut, so it suffices to prove c(S, T) ≥ dim(Et) for
the minimum cut scheme {S, T}.

Consider the vector set consisting of the hash vectors of
the cut edges in the minimum cut, and from Lemma 2, the
elements of the in-edges vectors of t that do not belong to the
vector set above can be linearly represented by the vector set,

and thus for the unit capacity graph we have:

fmax = cmin

=
∑

u∈S,v∈T

cuv

= |{euv : u ∈ S, v ∈ T, (u, v) ∈ E}|
≥ rank{euv : u ∈ S, v ∈ T, (u, v) ∈ E}
≥ rank{eut : (u, t) ∈ E}
= dim(Et).

The above theorem shows that dim(Et) is a lower bound
for fmax at t. Intuitively, dim(Et) = k′ implies that there exist
at least k′ in-edges vectors of t that are linearly independent,
which in turn, by Lemma 2, shows that these vectors must
belong to different flow paths in some flow scheme.

Note that when generating vectors uniformly in the space
Eu of a vertex u, any vector sets with less than dim(Eu)
vectors have a high probability of being linearly independent.
When the out-edges are less than dim(Eu), the major limita-
tion on the dimension of the subsequent out-edges space is the
number of out-edges of u; otherwise the major limitation is
dim(Eu). This corresponds to the fact that when the maximum
flow of u is fmax, we can assign the flow to any fmax or less
number of out-edges. When the out-edges are less than fmax,
the major limitation of the subsequent maximum flow is the
number of out-edges of u; otherwise, the major limitation is
maximum flow of u. In addition, since the computation of
dim(Eu) only needs the local information of u, it can be
computed directly by topological order without considering
the allocation scheme of the subsequent flows at the current
vertex, so it has a significant performance advantage.

Thus, we may consider the hash vector presented in the
algorithm as defining a hash of flow schemes up to the
limitation k. Except for some collision with little probability,
we have compressed multiple flow allocation schemes into the
hash vector of edges, so we needn’t select the edges and paths
for the flow scheme in computation, and when computing the
dimensionality of the vector space, we can immediately find
out the value of the maximum flow up to k at the current
vertex.

In Section IV-B we will strictly prove the correctness of
computing limited maximum flows with hash vectors.

IV. PERFORMANCE ANALYSIS

A. Complexity Analysis

In the naive algorithm from Section III-A, we have given
the pseudo-code for the implementation of the algorithm;
however, the pseudo-code is still vague in the way some
details are handled, such as how to represent and manage
Eu, how to compute dim(Eu), and how to generate the
successor hash vectors in Eu uniformly at random. In some
even more intuitive implementations, these processes can
become bottlenecks in the algorithm and finally fail to yield a
better time complexity; therefore, we first need to introduce a

data structure that can efficiently maintain a multidimensional
linear space.

a) Linear Basis: A linear basis [8] is a maximal linearly
independent set in a linear space. We can use a greedy strategy
to maintain a set of bases of a linear space so that it can
efficiently perform the vector operations in the algorithm. The
greedy strategy is specified as follows:

Whenever a new vector is added to the basis, the first
non-zero component of the vector is considered: if no vector
exists in the basis with that component as the first non-zero
one, the vector is added to the basis and then the process
terminated; otherwise, the first non-zero component of the
vector is eliminated with the vector found, generated a new
vector with zero at the mentioned component, using the linear
combination of the two vectors. The newly generated vectors
are considered recursively until the vector is added to the basis
or the vector is a zero vector.

We can note that the space complexity of the linear basis is
O(k2), and there are at most k rounds of greedy maintenance
when inserting a new vector, and at each round we need
to find the inverse element required for the elimination and
perform O(k) operations to update the current vector. Here it
is sufficient to compute the inverse of ap−2 mod p using fast
exponentiation according to Fermat’s Little Theorem, with a
total complexity of O(k(k + log(p − 2))) = O(k2). Since
dim(Eu) is the number of linearly independent vectors in the
linear basis, it can also be obtained by O(1) immediately after
adding all in-edges vectors at vertex u to the linear basis; since
the vectors in Eu are one-to-one corresponded with linear
combinations of linear bases, it only requires to uniformly
randomize the coefficients of vectors in the linear basis, then
the linear combination of which is a uniformly random vector
in Eu. The time complexity of obtaining a random vector
in space is also O(k2). In addition, the time complexity of
clearing the linear basis is also at most O(k2).

b) Improved Algorithm: With the use of linear basis, we
can obtain some improved algorithms with excellent com-
plexity. An intuitive implementation is to maintain a linear
basis for each vertex, and once we generated a hash vector,
we immediately add it to the linear basis of the succeeding
vertices. In this way, we have automatically obtained Eu each
time we take out vertex u as the front element of queue, and
thus also directly obtain F (u) and can randomize the successor
vectors directly. For s, it is straightforward to add k standard
orthogonal bases to Es at the beginning.

The initialization of d(u) can be done in O(n+m) = O(m)
time using common structures such as chain forward stars to
maintain the graph. Since each vector will only be generated
once and added to the linear basis once, the complexity of
processing the vertices in topological order is O(n+mk2) =
O(mk2) and the total time complexity is O(mk2).

Note that maintaining a linear basis for each vertex achieves
a space complexity of O(nk2) which may become a bottleneck
in performance. Therefore, we consider the following further
optimization:

Processing u in topological order reuses a linear basis,
enumerating the in-edges of u to compute Eu, and for Es we
still use the standard orthogonal basis; dim(Eu) can then be
computed to generate the successor vectors. A similar analysis
also gives a time complexity of O(mk2), while the space
complexity becomes O(k2 +mk) = O(mk).

We thus obtain a final algorithm with O(mk) space com-
plexity and O(mk2) time complexity, which performs signif-
icantly better than traditional network flow algorithms on the
limited maximum flow problem with multiple sink vertices.

The following Table I provides an intuitive comparison.

TABLE I
TIME COMPLEXITY COMPARISON

Algo- Performance
rithm Complexity n = 105,m = 2× 105,k = 50
Ours O(mk2) 5× 108

EK O(n2m2) 4× 1020

Dinic O(nm
3
2) 8.94× 1012

HLPP O(n3√m) 4.47× 1017

B. Correctness Analysis

This section analyses the correctness of the algorithm.

Lemma 3. The probability that some k′ number of out-edges
(k′ ≤ k) of s are linearly independent is

k∏
i=k−k′+1

(1− 1

pi
).

Proof. Since each vector is independently randomly gener-
ated from Zk

p , we may assume that the above vectors are
randomly generated sequentially. Consider the probability of
the following event: the i-th vector ei is randomly generated
conditioned on that the first i−1 vectors linearly independent,
and the newly generated vector can be linearly represented by
the previous vectors.

From the previous set of linearly independent vectors we
can obtain a basis {b1,b2, . . . ,bk} of Zk

p by extending the
vector set, where bj = ej ,∀j < i. If we randomly select
some coefficients θj ∈ Zp on the basis, then the different
sets of {θj} corresponds to each the vectors in Zk

p one-to-
one, so the process of randomly generating ei is equivalent to
independently and uniformly randomly generate θj ∈ Zp and
let ei =

∑k
j=1 θibj .

Note that ei is linearly dependent with {e1, e2, . . . , ei−1}
if and only if ∀j ≥ i, θj = 0, so the probability that
the mentioned event occurs is 1

pk−i+1 . The probability of
linear independent for some k′ vectors is thus the probability
of linear independent of the first k′ − 1 vectors multiplies
(1 − 1

pk−k′+1). Thus some simple induction is sufficient to
prove the lemma.

Theorem 3. For any vertex t,

Pr[dim(Et) = Ft] ≥ (1− 1

p
)m

k∏
i=1

(1− 1

pi
)

holds.

Proof. Consider the intuitive meaning of Ft, Ft = k′ implies
that there exists a flow of size k′ ≤ fmax, on a unit capacity
network, i.e. there are k′ ≤ k disjoint paths from s to t. Let’s
denote the hash vectors of all edges in the path as follow:

The vectors of the first path are denoted as
e11, e12, . . . , e1m1

respectively, and vectors of the second are
denoted as e21, e22, . . . , e2m2 , ... , vectors of the k′-th path
are denoted as ek′1, ek′2, . . . , ek′mk′ , where mi is the length
of the i-th path. Note that dim(Et) = dim(span{eimi

}).
Let’s consider the following process:
Maintain a vector set {eipi}, initially with pi = 1,∀1 ≤

i ≤ k′. Each time we choose an arbitrary j such that pj < mj

and let p′i = pi + [i == j], change the vector set to {eip′
i
}.

The process ends when ∀i, pi = mi.
Then the probability that dim(Et) = Ft = k′ is at

least the probability that rank{eipi
} = k′ always holds

for the process. For the maintenance, since each vector is
chosen independently at random, the probability above is the
probability of rank{ei1} = k′ multiplies the probability of
rank conservation at each update. Lemma 3 shows that the
probability of the initial condition is at least

∏k
i=1 1−

1
pi .

Now let’s consider the probability of rank{eip′
i
} = k′,

conditioned on rank{eipi
} = k′. We may denote the vertex

that pointed by edge of ejpj
as u, then the update is equivalent

to substituting ejpj
with a uniformly random vector, i.e. ejp′

j
,

from Eu.
Considering the subspace E′ = span{{eipi

}\{ejpj
}}∩Eu,

we can see that ejp′
j

is linearly dependent to the other vectors
if and only if ejp′

j
∈ E′. By the fact that ejpj

∈ Eu

can’t be linearly represented by other vectors, it is clear
that dim(E′) < dim(Eu), and because generating ejp′

j
is

equivalent to generating coefficients randomly on a basis of
Eu, we may assume that this basis is extended from some
basis on E′, then there is at least one extended base vector;
at this point, in order to make the generated new vector ejp′

j

to be linearly dependent to the other vectors, all the linear
combination coefficients of the extended basis vectors must
be zero, with probability at most 1

p . i.e. the probability that
rank conservation holds for the update is at least (1− 1

p).
In summary, multiplying the probabilities of the independent

events gives the probability that rank{eipi
} = k′ always holds

is:

(1− 1

p
)m

k∏
i=1

(1− 1

pi
)

and it must be a lower bound of Pr[dim(Et) = Ft].

Corollary 2. The probability that the answer of all vertices
are correct is at least

1− n(1− (1− 1

p
)m

k∏
i=1

(1− 1

pi
))

It follows immediately from Union Bound of Theorem 3.
Corollary 2 shows that the algorithm we propose has a high

accuracy and it can be improved to any precision by enlarge

p or by running the algorithm multiple times and taking the
maximum answer for each vertex, and is therefore also quite
scalable.

V. EXPERIMENTS

The comparison in Table I shows that the traditional network
flow algorithm that gives the best complexity on this problem
is Dinic. In this section, we implement our algorithm and
Dinic, and a data generator to generate the data, and then
compare their performance on an online judge system to eval-
uate the improvement of our algorithm. Also, by comparing
the final answers given by the two algorithms, we can check
the correctness of our algorithm.

A. Setup

We set a time limit of 15000ms. If it takes too long for a
test, a Time Limit Exceeded (TLE) is returned in the evaluation.

To verify the efficiency of the algorithm on various graphs
and to test the correctness of the algorithm, we constructed
four different types of data:

1) Random Graph. Randomly add edges between two
different vertices. To ensure that there are no loops in
the graph, it is sufficient to let the directed edge always
points to the vertex with a greater index number than
the other. Random graphs are the easiest to implement
and are commonly used construction in graph theory.

2) Hierarchical Graph. Given the parameters a, b, divide
into a layers of b vertices each and add edges between
neighbouring layers. Graphs constructed in layers can
have better network flow properties and thus can provide
tests with higher intensity.

3) Special Construction. Construct data that is un-
favourable to the hash vector algorithm. Split into two
major paths from the source, one of which will have a
smaller capacity, but will eventually have a large number
of edges connected to a vertex, while the other will have
a slightly larger capacity and be the correct scheme for
the maximum flow.

4) Random Hierarchical Graph. Combining random and
hierarchical graphs to construct test data with even
higher intensity.

The detailed setup for each test is specified in Table II.

TABLE II
DATA GENERATION SETUP

No. Type n m k Remark
1 1 20 100 10 /
2 2 26 50 50 5 layers
3 1 1000 3000 20 /
4 2 1001 3000 50 50 layers
5 1 10000 20000 25 /
6 2 10001 20000 50 200 layers
7 4 10001 20000 50 200 layers
8 1 100000 200000 30 /
9 2 99951 199900 50 1999 layers
10 4 99900 199810 50 999 layers
11 3 100000 200000 50 /

B. Result Analysis

The results of the performance comparison experiments are
shown in Fig. 3:

Fig. 3. Performance Comparison

We can see that the Dinic algorithm only passes tests with
small data size on all types of graphs, even though Dinic’s
performance in practice is superior to the theoretical complex-
ity. By contrast, our algorithm has a significant performance
advantage and passes large-scaled tests.

The pairwise comparison was then conducted, running our
algorithm and Dinic for solving the four types of medium-
scaled data to compare the correctness of the answers. Our
algorithm obtained correct answers in all tests during the
pairwise comparison script running for more than 10 hours.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we propose an algorithm for computing
limited maximum flow in directed acyclic graphs with multiple
sinks, which is quite different from traditional network flow
algorithms. When computing the maximum flow of a network
with multiple sinks, our method with a complexity of O(mk2)
is able to significantly outperform other traditional algorithms,
such as the most commonly used Dinic algorithm. Although
our algorithm introduces randomness and may produce incor-
rect results, its correctness is still within acceptable limits
and has good scalability. We validate the complexity and
correctness of our proposed algorithm with both theoretical
proofs and comparison experiments.

However, it is important to note that the correctness of our
algorithm in practice is significantly better than the known
theoretical lower bounds, and we conjecture that further proofs
of the algorithm’s tighter lower bounds on correctness could be
made, for example by considering the correlation of correct-
ness between answers of multiple vertices to further improve
the bound from Union Bound.

In addition, the current algorithm only has a intuitive form
on directed acyclic graphs, and it is not clear if there is a
feasible approach to generate hash vectors for general directed
graphs and solving for the network maximum flow using a
similar approach. Future work will proceed in this direction.

ACKNOWLEDGMENT

This paper is a coursework of the Paper Writing and Pub-
lishing course, and I would first like to thank Prof. Minnan Luo
for her guidance. I would also like to thank the Programming
Contest Team of Xi’an Jiaotong University, since the topic
of this research originated from the hardest problem of the
Shaanxi Provincial Contest that we jointly organized. Other
students in team also gave me a lot of help during my thinking
and research, especially Yeyuan Chen’s discussion of the hash
vector method and Ziqian Chen’s guidance in conducting
experiments such as the pairwise comparison verification.
Finally, I would also like to thank this coursework for giving
me the opportunity to carry out paper writing practice, so that
I can devote myself to scientific research more quickly and
lay a solid foundation for my future scientific studies.

REFERENCES

[1] L. R. Ford and D. R. Fulkerson, “Maximal flow through a network,”
Can. J. Math., vol. 8, pp. 399–404, 1956.

[2] O. Trabelsi, A. Abboud, L. Georgiadis, and R. Krauthgamer, “Faster
algorithms for all-pairs bounded min-cuts,” in Proc. 46th Int. Colloq.
Automata, Lang., Program. (ICALP), 2019, Art. no. 7, pp. 1–15.

[3] J. Edmonds and R. M. Karp, “Theoretical improvements in algorithmic
efficiency for network flow problems,” J. ACM, vol. 19, no. 2, pp.
248–264, 1972.

[4] E. A. Dinic, “Algorithm for solution of a problem of maximum flow in
a network with power estimation,” Sov. Math. Dokl., vol. 11, no. 5, pp.
1277–1280, 1970.

[5] A. V. Goldberg and R. E. Tarjan, “A new approach to the maximum
flow problem,” J. ACM, vol. 35, no. 4, pp. 921–940, 1986.

[6] L. Chen, R. Kyng, Y. P. Liu, and R. Peng, “Maximum flow and
minimum-cost flow in almost-linear time,” in Proc. 63rd Annu. IEEE
Symp. Found. Comput. Sci. (FOCS), 2022, pp. 123–134.

[7] H. Y. Cheung, L. C. Lau, and K. M. Leung, “Graph connectivities,
network coding, and expander graphs,” in Proc. 52nd Annu. IEEE Symp.
Found. Comput. Sci. (FOCS), 2011, pp. 190–199.

[8] J. Kleinberg and É. Tardos, Algorithm Design. Boston, MA, USA:
Addison-Wesley, 2006, pp. 128–130.

