

EXPOSING THE ILLUSION OF FAIRNESS: AUDITING VULNERABILITIES TO DISTRIBUTIONAL MANIPULATION ATTACKS

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

013 Proving the compliance of AI algorithms has become an important challenge with
 014 the growing deployment of such algorithms for real-life applications. Inspecting
 015 possible biased behaviors is mandatory to satisfy the constraints of the regulations
 016 of the EU Artificial Intelligence’s Act. Regulation-driven audits increasingly
 017 rely on global fairness metrics, with Disparate Impact being the most widely
 018 used. Yet such global measures depend highly on the distribution of the sample
 019 on which the measures are computed. We investigate first how to manipulate
 020 data samples to artificially satisfy fairness criteria, creating minimally perturbed
 021 datasets that remain statistically indistinguishable from the original distribution
 022 while satisfying prescribed fairness constraints. Then we study how to detect
 023 such manipulation. Our analysis (i) introduces mathematically sound methods
 024 for modifying empirical distributions under fairness constraints using entropic
 025 or optimal transport projections, (ii) examines how an auditee could potentially
 026 circumvent fairness inspections, and (iii) offers recommendations to help auditors
 027 detect such data manipulations. These results are validated through experiments
 028 on classical tabular datasets in bias detection. The code is available at <https://anonymous.4open.science/r/Inspection-76D6/>.

1 INTRODUCTION

032 Fairness auditing has emerged as a critical practice to ensure that machine learning models comply
 033 with ethical and legal standards by not exhibiting discriminatory bias (Barocas et al., 2019; Besse
 034 et al., 2022; Oneto & Chiappa, 2020; Wang et al., 2022). High-profile investigative audits, such as
 035 the ProPublica analysis of the COMPAS recidivism risk tool, have exposed significant biases against
 036 certain demographic groups Angwin et al. (2016). These findings underscored the societal harms
 037 of unverified AI systems and prompted calls for regular fairness audits by independent parties Raji
 038 et al. (2020). In response, regulators have begun instituting fairness compliance requirements. For
 039 instance, the EU’s proposed AI Act mandates bias monitoring, and in the U.S., the Disparate Impact
 040 DI doctrine (the “80% rule”) is used to quantify indirect discrimination in algorithms Feldman et al.
 041 (2015). This doctrine requires that the selection rate for a protected group be at least 80% of that
 042 of the most favored group. Consequently, the demographic parity metric (also known as statistical
 043 parity) has become a standard global fairness criterion which has inspired many mitigation methods,
 044 for example, in Hardt et al. (2016b); Gouic et al. (2020); Chzhen et al. (2020). A small demographic
 045 parity gap or a ratio above 0.8 is expected for fairness under this rule, along with other metrics such
 046 as equalized odds and predictive parity. These metrics provide quantifiable targets for auditors and
 047 have been integrated into various auditing toolkits Bellamy et al. (2018); Bird et al. (2020).

048 We consider an auditing framework in which the auditee submits a sub-sample of their dataset to
 049 a regulatory authority, either by providing the algorithm’s outputs on that sample or by sharing
 050 the sample itself along with API access to the model, allowing the auditor to compute outputs
 051 independently. The supervisory body is then responsible for verifying that the submitted sample is
 052 sufficiently representative (in terms of distributional distances) of the auditee’s complete dataset. This
 053 framework is particularly relevant for high-risk systems, where rigorous oversight is required. The
 054 supervisory authority may be internal (e.g., a general inspection body) or external, such as the Cour
 055 des Comptes for public administration or the ACPR for banking supervision.

054 Ensuring the good faith of the auditee is critical, as exemplified by the Volkswagen emissions scandal
 055 Jacobs & Kalbers (2019). Similar concerns arise in machine learning, where inconsistencies in model
 056 behavior during auditing have been documented, such as in the case of Facebook’s models discussed
 057 in Bourrée et al. (2025). In summary, the auditing framework similar to the one proposed in Fukuchi
 058 et al. (2020) involves three distinct entities:

- 060 1. **The audited entity**, which provides a subset of its data and, in the context of the audit,
 061 grants access to run its algorithm on this data.
- 062 2. **The auditor**, who applies standardized procedures to assess whether the dataset and corre-
 063 sponding model outputs satisfy a prescribed fairness criterion, in this case, the DI.
- 064 3. **The supervisory authority**, a higher-level body that oversees the integrity of the entire
 065 auditing process. It ensures that the audited submits a dataset that is representative of the
 066 full underlying data distribution, and that the auditor adheres to accepted auditing protocols.

068 In this work, our objective is to support supervisory authorities by identifying potential strategies that
 069 audited entities might use to circumvent fairness audits, and by providing tools to detect such attempts.
 070 Building on the notion of *manipulation-proof* introduced in Yan & Zhang (2022), we show how a
 071 dataset that initially violates a fairness criterion, such as Disparate Impact, can be minimally altered
 072 to appear compliant, with limited distributional shift as measured by the Kullback–Leibler (KL)
 073 divergence or the Wasserstein distance. By systematically analyzing these plausible manipulations,
 074 our aim is to raise awareness of audit vulnerabilities and to equip oversight bodies with methods
 075 to detect suspicious modifications, thereby strengthening the reliability and robustness of fairness
 076 auditing processes. Our contributions are the following:

- 077 • We introduce an entropic projection under constraint tool to a new field that is fairness
 078 application and auditing, we also build upon this tool to enable constraints on DI.
- 079 • We provide mathematical foundations for Wasserstein projection under constraint and
 080 implement its application, as well as other Wasserstein-minimizing algorithm, to control
 081 distribution shift under fairness constraint.
- 082 • We assess whether—and to what extent—a sample from the projected distribution can signifi-
 083 cantly increase, without being detected by distributional-based statistical tests, the Disparate
 084 Impact from 7 unfair tabular datasets. These tests would be used by the supervisory authority
 085 to assert the representativeness of the sample.

087 2 RELATED WORKS

089 **Bias mitigation.** Achieving fairness under these metrics has prompted extensive research. One line
 090 of work proposes *pre-processing* techniques that alter the training data to remove bias. Kamiran
 091 & Calders (2009) introduced a “data massaging” approach, flipping class labels of a few selected
 092 instances to reduce discrimination. Feldman et al. (2015) proposed repairing datasets by adjusting
 093 feature values to remove disparate impact, while Calmon et al. (2017) framed the problem as a convex
 094 optimization for probabilistic data transformation. More recently, Celis et al. (2019) introduced a
 095 maximum entropy approach to learn fair distributions under statistical constraints. Gordaliza et al.
 096 (2019); Del Barrio et al. (2019) or Chakraborty et al. (2024) applied optimal transport (OT) to modify
 097 datasets by respectively reweighting the training dataset or reducing the relationship between the
 098 sensitive attribute and the covariates, ensuring fairness criteria are met while minimizing divergence
 099 from the original distribution. On the other hand, post-processing methods modify the outputs of the
 100 model to enforce fairness and let practitioners retrofit fairness to black-box systems. These methods
 101 modify the attributes of the individuals to modify global fairness measures such as statistical parity
 102 or Equality of opportunity or odds. In Hardt et al. (2016b), authors solves a linear program to find
 103 flipping probabilities that equalize FPR and FNR. OT method can also be used to move the outputs
 104 towards the Wasserstein barycenter. This post-processing method is proven to be optimal with respect
 105 to the accuracy of this model, as discussed in Jiang et al. (2020), Gouic et al. (2020) or Chzhen et al.
 106 (2020).

107 **Fair-washing.** Ironically, these same tools can be misused to *fake* fairness. A growing body of
 work highlights how auditees may deliberately manipulate data or outputs to deceive auditors, a

108 phenomenon called *fair-washing* (Aivodji et al., 2019). One major vulnerability is that global fairness
 109 metrics measure the impact of a sensitive attribute on the decision or on the loss of the model.
 110 Yet estimating these probabilities require observations from a test sample. Hence these fairness
 111 measures depend heavily on the audited sample. Fukuchi et al. (2020) proposed so-called *stealthily*
 112 *biased sampling*, where biased decision-makers curate benchmark datasets that appear fair but mask
 113 discrimination in the full data. Their method guarantees that the audited sample passes fairness
 114 checks, while remaining close to the biased distribution in a way that is hard to detect.

115 Another form of fair-washing involves model output manipulation. Aivodji et al. (2019) showed that
 116 interpretable proxy models can be trained to mimic the behavior of a black-box model but appear
 117 much fairer. These surrogates can be presented as evidence of fairness, while the actual deployed
 118 model remains biased. Le Merrer & Trédan (2020) discusses altering decisions during audits, for
 119 instance, temporarily approving more minority applicants to artificially satisfy demographic parity.
 120 Case studies have confirmed discrepancies between model behavior shown to auditors and that
 121 experienced by users Raji et al. (2020), reinforcing the idea that audits based solely on observed data
 122 or queries can be manipulated. We note that even explainability tools are vulnerable to exploitation.
 123 Slack et al. (2020) and Anders et al. (2020) demonstrated attacks on the explainable methods LIME
 124 Ribeiro et al. (2016) and SHAP Lundberg & Lee (2017), generating biased models that appear fair
 125 by masking the influence of sensitive attributes. Shamsabadi et al. (2023) examined the theoretical
 126 limits of fair-washing detection, showing that under certain conditions, audit evasion may be provably
 127 undetectable. Other approaches leverage *external consistency*. Garcia-Borruet et al. (2023) proposed
 128 two-source audits, comparing outputs across APIs and user-facing systems to identify inconsistencies
 129 indicative of manipulation. Bourrée et al. (2025) suggested using prior knowledge or independent
 130 ground-truth data to detect implausible distributions. They provide bounds on the extent of bias an
 131 auditee can inject without detection.

132 In summary, fairness auditing is undergoing an arms race between auditees' capacity to fake compli-
 133 ance and auditors' ability to detect manipulation. Our contribution formalize entropic and optimal
 134 transport (OT)-based data transformation methods to simulate audit circumvention and analyze
 135 their detectability, offering guidance for designing more resilient auditing frameworks and oversight
 136 mechanisms.

137 3 METHODS

138 3.1 METHODOLOGY

139 Statistical parity property ensures that the decision of the algorithm does not depend on the sensitive
 140 attribute. In our work we use the well-known Disparate Impact, defined for a model $\hat{Y} = f(X)$
 141 by the ratio $DI(f, Q_n) := \frac{\mathbb{P}(\hat{Y} = 1 | S = 0)}{\mathbb{P}(\hat{Y} = 1 | S = 1)}$. This quantity is equal to 1 when no probabilistic
 142 relationship exists between the outcome of the model and the sensitive variable, which implies a strict
 143 independence in the case where $f(X)$ is a two-class classification model. Hence, several norms or
 144 regulations impose that a model should have its disparate impact greater than a given level t , often set
 145 to $t = 0.8$ as chosen originally by EEOC et al. (1978).

146 In this part, we propose a methodology that enables stakeholders to evade an audit based on the
 147 application of a fairness criterion, the Disparate Impact. Our method aims to construct a dataset
 148 whose distribution is close to the distribution of the original data, while ensuring that the fairness
 149 measure is above a threshold, as required by the regulations. Let $(E, \mathcal{B}(E))$ be a measurable
 150 space. Denote by $\mathcal{P}(E)$ and $\mathcal{M}(E)$, respectively the space of probability measures on E and
 151 the space of finite measures in E . Consider a distance d in E . In reality, given an empirical
 152 distribution $Q_n = \frac{1}{n} \sum_{i=1}^n \delta_{Z_i}$ where Z_i is an i.i.d. sample of a random variable with value in E ,
 153 the construction of a falsely compliant dataset is modeled as finding the solution to the optimization
 154 problem : $\operatorname{argmin}_{P \in \mathcal{P}(E), DI(f, P) \geq t} d(P, Q_n)$. In the following, we will consider two different
 155 distances: in Section 3.2, one is related to the similarity for probabilistic inference (KL information),
 156 while in Section 3.3, the other distance captures geometric information between distances (Monge-
 157 Kantorovich a.k.a. Wasserstein distance). Consequently, fair-washing amounts to modify the initial
 158 distribution of the data by providing a fake but plausible distribution Q_t in order to achieve that
 159 $DI(f, Q_t) = t$ or $DI(f, Q_t) \geq t$.

162 3.2 USING ENTROPIC PROJECTION TO FAKE FAIRNESS
163

164 **Entropic distributional projection.** Set Q a probability measure on E . If P is another probability
165 measure on $(E, \mathcal{B}(E))$, then the KL information is $D_{\text{KL}}(P\|Q) = \int_E \log \frac{dP}{dQ} dP$, if $P \ll Q$ and
166 $\log \frac{dP}{dQ} \in L^1(P)$, and $+\infty$ otherwise. For any resulting dimension $k \geq 1$, let $\Phi : Z = (X, S, \hat{Y}, Y) \in$
167 $E \mapsto \Phi(X, S, \hat{Y}, Y) \in \mathbb{R}^k$ be a measurable function representing the shape of the stress deformation
168 on the whole input. Note that our results are stated for a generic function Φ of all variables $Z =$
169 (X, S, \hat{Y}, Y) . This includes the case of functions depending only on X , (X, Y) or (X, \hat{Y}) . We set
170 for two vectors $x, y \in \mathbb{R}^k$ the scalar product as $\langle x, y \rangle = x^\top y$. The problem can be stated as follows:
171 given the distribution Q_n , our aim is to construct a distribution close to Q_n but satisfying a constraint
172 expressed through the mean of the chosen function Φ . Actually, for $t \in \mathbb{R}^k$, we aim at finding a new
173 distribution Q_t satisfying the constraint $\int_E \Phi(x) dQ_t(x) = t$ and being the closest possible to the
174 initial empirical distribution Q_n in the sense of KL divergence, *i.e.* with $D_{\text{KL}}(Q_t\|Q_n)$ as small as
175 possible. The following theorem, whose proof can be found in Bachoc et al. (2023), characterizes the
176 distribution solution Q_t .

177 **Theorem 3.1.** *Let $t \in \mathbb{R}^k$ and $\Phi : E \rightarrow \mathbb{R}^k$ be measurable. Assume that t can be written as a
178 convex combination of $\Phi(X_1, \hat{Y}_1, Y_1), \dots, \Phi(X_n, \hat{Y}_n, Y_n)$, with positive weights. Assume also that
179 the empirical covariance matrix $\mathbb{E}_{Q_n}(\Phi\Phi^\top) - \mathbb{E}_{Q_n}(\Phi)\mathbb{E}_{Q_n}(\Phi^\top)$ is invertible.*

180 Let $\mathcal{D}_{\Phi, t}$ be the set of all probability measures P on E such that $\int_E \Phi(x) dP(x) = t$. For a vector
181 $\xi \in \mathbb{R}^k$, let $Z(\xi) := \frac{1}{n} \sum_{i=1}^n e^{\langle \Phi(X_i, \hat{Y}_i, Y_i), \xi \rangle}$. Define now $\xi(t)$ as the unique minimizer of the strictly
182 convex function $H(\xi) := \log Z(\xi) - \langle \xi, t \rangle$. Then, $Q_t := \arg\inf_{P \in \mathcal{D}_{\Phi, t}} D_{\text{KL}}(P\|Q_n)$ (1)
183 exists and is unique. It can also be computed as $Q_t = \frac{1}{n} \sum_{i=1}^n \lambda_i^{(t)} \delta_{X_i, \hat{Y}_i, Y_i}$,
184 with, for $i \in \{1, \dots, n\}$, $\lambda_i^{(t)} = \exp \left(\langle \xi(t), \Phi(X_i, \hat{Y}_i, Y_i) \rangle - \log Z(\xi(t)) \right)$.
185

186 **Faking Statistical Parity using Entropic Projection.** Let t_{init} such that $DI(f, Q_n) = t_{\text{init}}$. We
187 aim at building a distribution Q_t such that $DI(f, Q_n) = t_{\text{new}} \geq t_{\text{init}}$ for a given t_{new} . Define the
188 fairness improvement $\Delta_{DI} := DI(f, Q_t) - DI(f, Q_n)$. Note that $DI(f, Q_n) = \frac{\lambda_0/n_0}{\lambda_1/n_1}$ where for
189 $i \in \{0, 1\}$, $n_s = |\{i = 1, \dots, n | S_i = s\}$ and $\lambda_s = |\{i = 1, \dots, n | \hat{Y}_i = 1 \wedge S_i = s\}|$. Note also that
190 $\lambda_0 = \sum_{i=1}^n \hat{Y}_i (1 - S_i)$ and $\lambda_1 = \sum_{i=1}^n \hat{Y}_i S_i$. Hence modifying the DI can be achieved applying
191 Theorem 3.1 for $Z = (S, \hat{Y})$ and selecting the function
192

$$\Phi(s, f(x)) = \begin{pmatrix} (1-s)f(x) \\ sf(x) \\ s \\ 1-s \end{pmatrix} \text{ and } m = \begin{pmatrix} \lambda_0 + \delta_0 \\ \lambda_1 - \delta_1 \\ n_1 \\ n_0 \end{pmatrix} \quad (2)$$

193 Our purpose is to improve the perceived fairness of the model. Accordingly, we only consider
194 increasing the numerator $+\delta_0 \geq 0$ and decreasing the denominator $-\delta_1 \leq 0$.
195

196 **Proposition 3.2** (KL-fair washing method). *Finding a solution Q_t such that $D_{\text{KL}}(Q_t\|Q_n)$ is minimum
197 and $DI(f, Q_t) = DI(f, Q_0) + \Delta_{DI}$ is achieved by finding the solution to equation 1 with Φ
198 defined as in equation 2 and with the two possible choices of parameters:*

- *Balanced case : set $\delta_0 = \delta_1$ and $\delta_1 = \frac{\lambda_1}{1 + \frac{n_1}{n_0 \Delta_{DI}} (1 + \frac{\lambda_0}{\lambda_1})}$*
- *Proportional case : set $\frac{\delta_0}{n_0} = \frac{\delta_1}{n_1}$ and $\delta_1 = \frac{\lambda_1}{1 + \frac{1}{\Delta_{DI}} (1 + \frac{n_1 \lambda_0}{n_0 \lambda_1})}$*

201 **Remark 3.1.** *The balanced case corresponds to modifying the individuals from both classes equally,
202 while the proportional one adjusts the amount of modification in proportion to the classes sizes.*

203 If the target value t_{new} is chosen according to the balanced case or the proportional case, we
204 refer respectively in the Experimental section to the method as Entropic_balanced and
205 Entropic_proportional.

216 3.3 FAIR-WASHING USING OPTIMAL TRANSPORT.
217218 **Monge Kantorovich (MK) Projection** For two distributions P and Q_n over $E \subset \mathbb{R}^d$ a compact
219 subset, endowed with the norm $\|\cdot\|$, recall that their 2 Monge-Kantorovich, a.k.a. Wasserstein distance,
220 is defined as:

221
$$W_2^2(P, Q_n) = \min_{\pi \in \Pi(P, Q_n)} \int_{x \in E, y \in E} \|x - y\|^2 d\pi(x, y), \quad (3)$$

222

223 where $\Pi(P, Q_n)$ denotes the set of distributions on $E \times E$ with marginals P and Q_n . We will write
224 $T_{\sharp}Q = Q \circ T^{-1}$ to denote the push-forward of a measure by the transport map. As in Section 3.2,
225 consider for a given $k \geq 1$, a continuous function $\Phi: E \rightarrow \mathbb{R}^k$ representing the constraints. For
226 fixed $t \in \mathbb{R}^k$, the set $\mathcal{D}_{\Phi, t} = \{P \in \mathcal{M}(E) \mid \int_E \Phi(x) dP(x) = t\}$ is closed for the weak convergence
227 and convex, since it is linear in P . The function $P \mapsto W_2^2(P, Q_n)$ is convex as it is the supremum
228 of linear functionals by Kantorovich duality (see Santambrogio (2015)), therefore the following
229 projection problem $\operatorname{arginf}_{P \in \mathcal{D}_{\Phi, t}} W_2^2(P, Q_n)$ is well-defined.230 **Theorem 3.3.** Consider $Q_n = \frac{1}{n} \sum_{i=1}^n \delta_{Z_i}$. Then Q_t is a solution to $\operatorname{arginf}_{P \in \mathcal{D}_{\Phi, t}} W_2^2(P, Q_n)$ if,
231 and only if, it is defined as $Q_t = T_{\lambda^*} \sharp Q_n = \frac{1}{n} \sum_{i=1}^n \delta_{T_{\lambda^*}(Z_i)}$, where T_{λ} is defined as
232

233
$$T_{\lambda}(Z_i) \in \arg \min_{x \in E} \|x - Z_i\|^2 - \langle \lambda, \Phi(x) \rangle \quad (4)$$

234

235 and λ^* satisfies $t = \frac{1}{n} \sum_{i=1}^n \Phi(T_{\lambda^*}(Z_i))$.
236237 **Remark 3.2.** The previous result stated for the empirical distribution is valid for any distribution Q .
238 The constraint can be modified to include the condition $\mathcal{D}_{\Phi, t} = \{P \in \mathcal{M}(E) \mid \int_E \Phi(x) dP(x) \geq t\}$.
239 This is detailed in Proposition D.1 in the Appendix.240 **Faking Statistical Parity using MK projection.** The objective is to construct a fake dataset
241 drawn from a distribution Q_t defined as the solution to $Q_t = \operatorname{arginf}_{P \in \mathcal{D}_{\text{DI}, t}} W(Q_n, P)$ with
242 $\mathcal{D}_{\text{DI}, t} = \{P \in \mathcal{P}(E), \text{DI}(P) \geq t\}$. Following the framework of the previous section, for a fixed λ , we
243 set $\Phi(x, s, f(x), y) = f(x)$. Then the constraint on the Disparate Impact $\text{DI}(Q) \geq t$, can be refor-
244 mulated with the double inequality $\int_{x \in E|s=0} f(x) dQ(x) \geq t_0 = t + \delta_0$ and $\int_{x \in E|s=1} f(x) dQ(x) \leq$
245 $t_1 = t - \delta_1$ with $\frac{t_0}{t_1} \geq t$. As such, we divide the dataset for each $s \in \{0, 1\}$, and consider
246 $Q_t = \pi Q_{t,1} + (1 - \pi) Q_{t,0}$ with $\pi = \mathbb{P}_{Q_n}(S = 1)$ and $Q_{t,s} := \operatorname{arginf}_{P \in \mathcal{D}_{\text{DI}, t,s}} W(Q_{n,s}, P)$ with
247 the conditional distributions $Q_{n,s} := Q_n(\cdot \mid S = s)$, $\mathcal{D}_{\text{DI}, t_0} = \{P \in \mathcal{P}(E), \text{DI}(P) \geq t_0\}$ and
248 $\mathcal{D}_{\text{DI}, t_1} = \{P \in \mathcal{P}(E), \text{DI}(P) \leq t_1\}$.
249250 Following Theorem 3.3, we compute for all $x = Z_i$, the solution $T_{\lambda}(x)$ of the minimization problem
251 w.r.t x : $\mathcal{L}(x, \lambda) = \|Z_i - x\|_2^2 + \langle \lambda, t - f(x) \rangle$. (5)252 This minimization does not have a closed form in general, but it can be achieved using a gradient
253 descent using a learning step of η and computing $x^t = x^{t-1} - \eta \frac{\partial \mathcal{L}}{\partial x}(x^t)$ with $\frac{\partial \mathcal{L}}{\partial x} = 2(z - x) -$
254 $\langle \lambda, \nabla_x f(x) \rangle$. We point out that this method requires knowledge of the gradients of the classifier,
255 which will be estimated at each step of the method. To complete the method's explanation, we need
256 to clarify how to choose t_0 and t_1 and λ :
257258 1. The choice of t_0 and t_1 is explained in Section 3.2: balanced or proportional case.
259 2. λ is a constraint regulation coefficient, meaning that the bigger λ is, the more the optimization
260 solution will take into account the constraint $\int_{x \in E|S=s} f(x) dQ(x) \leq t_s$. And consequently,
261 the bigger λ is, the farther the solution will be from the original distribution. Therefore, we
262 start by solving equation 5 with a low λ , and we increase it until the constraint is respected.263 This method creates new individuals without any constraint on the covariates X , this might be an
264 issue as this implies no restriction of types (discrete variable staying discrete, i.e., age = 1.002) or
265 of bounds (age = -1). Thereby, we created a variant of this method that constrains the achievable
266 covariates: we transport, variable per variable, each covariates toward the nearest (for the L_2 norm)
267 achieved value in the dataset; we call this variant the 1D-transport variant.268 **Remark 3.3.** Note that we chose to modify the output of the model, $f(x) \in \{0, 1\}$. For practical
269 purposes, to know when the convergence is attained, we look at the logits of the neural network
instead of the binary values: after a sigmoid, $f(x) \in [0, 1]$. We could therefore apply our constraint

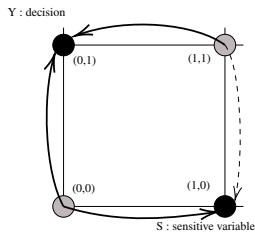


Figure 1: Admissible modifications on τ : $\{0, 1\}^2 \mapsto \{0, 1\}^2$ increasing Disparate Impact

Algorithm 1 Replace (S, \hat{Y}) algorithm

```

1:  $Z^j = (Z_1, \dots, Z_n), Z_i = (S_i, \hat{Y}_i), t \in ]0, 1[$ 
2:  $\tau_i := (\tau, j)$  such as  $\tau \in \mathcal{A}, i \in 1, \dots, n$ 
3: while  $DI(Z^j) < t$  do
4:    $\tau_{i_0} \in \operatorname{argmax} DI(\tau_{i_0}(Z^j)) - DI(Z^j)$ 
5:   with  $\tau_{i_0}(Z^j) := (Z_i, \dots, \tau(Z_{i_0}), \dots, Z_n)$ 
6:    $Z^j \leftarrow Z^{j+1} = \tau_{i_0}(Z^j)$ 
7: end while
8: return  $Z^j$ 

```

on the logits, which highlights the ability to use these methods for non-binary tasks, for instance, in regression settings. The constraints are imposed separately on the squared Wasserstein distances $W_2^2(Q_{n,1}, Q_{t,1})$ and $W_2^2(Q_{n,0}, Q_{t,0})$. The inequality $W_2^2(\pi Q_{n,1} + (1 - \pi)Q_{n,0}, \pi Q_{t,1} + (1 - \pi)Q_{t,0}) \leq \pi W_2^2(Q_{n,1}, Q_{t,1}) + (1 - \pi)W_2^2(Q_{n,0}, Q_{t,0})$ provides an upper bound on the overall distance between the two samples. The proof of this result is deferred to Appendix E.4.

To summary, we had introduced four methods: (1) Grad_balanced, and (2) Grad_proportional, which differ based on the gradient constraints satisfying $\delta_0 = \delta_1$ or $\frac{\delta_0}{n_0} = \frac{\delta_1}{n_1}$; and (3) Grad_balanced_1D-transport, and (4) Grad_proportional_1D-transport, which apply the corresponding 1D-transport variant of each method.

Faking Statistical Parity using sensitive attributes replacement. For this method, we consider that the auditor does not have access to the model f and only request the outcome of the algorithm \hat{Y} , without computing it from the observations $f(X)$. Hence, faking fairness can be achieved by manipulating only the outcomes and sensitive attributes associated with each individual. Let $Z_i = (S_i, \hat{Y}_i)$ and $Q_n = \frac{1}{n} \sum_{i=1}^n \delta_{S_i, \hat{Y}_i}$. Consider the optimization problem : $\operatorname{arginf}_{P \in \mathcal{D}_{\text{DI}, t}} W_2^2(Q_n, P)$ with $\mathcal{D}_{\text{DI}, t} = \{P \in \mathcal{P}(E), DI(Q_t) \geq t\}$. A solution can be achieved as follows. Note that $\hat{Y} \in \{0, 1\}$ and $S \in \{0, 1\}$, thus we only have 4 possible values for the points. Each individual with characteristic $Z_i \in \{0, 1\}^2$ can be modified to the individual $\tau(Z_i) = (\tau_S(S_i), \tau_{\hat{Y}}(\hat{Y}_i)) \in \{0, 1\}^2$. We first point out that not all solutions improve the disparate impact and we can restrict ourselves to a set of admissible changes $\tau \in \mathcal{A}$ as pointed in Fig. 1, with more details explaining why are in Section H.1 in the Appendix. Then iteratively we approximate the exact solution by an iterative method starting from $Z = (Z_1, \dots, Z_n)$ and testing every possible modification $Z^j = (Z_1, \dots, Z_n)$ maximizing the DI at each step j . The method based on this algorithm is denoted by Replace (S, \hat{Y}) in our experiments.

Faking Statistical Parity using constrained matching. In the previous case, the observations X_i are not taken into account. A natural variant consists in combining this minimization scheme and adding a discrete displacement on the variables X . Namely, we define a matching algorithm using $Z = (X, S, \hat{Y})$ and $\tau(Z_i) = Z_k$, with $k \in \{1, \dots, n\}$. We use the same proceedings as Alg. 1 with the newly defined τ , but at every iteration j of the while loop we maximize for every candidate τ_{i_0} :

$$\frac{DI(\tau_{i_0}(Z^j)) - DI(Z^j)}{\|\tau_{i_0}(Z^j) - Z^j\|}.$$

In our experiments, we refer to the method based on this algorithm as $M_{W(X, S, \hat{Y})}$.

Remark 3.4. This algorithm transports individuals towards others ($\tau(Z_i) = Z_k$), therefore, contrary to its counterpart, it can be used in any type of audit (with or without access to the model).

3.4 METHOD DETECTION: STATISTICAL TESTS

We outline below potential strategies a supervisory authority could adopt to assess whether the auditee conducted compliance tests using a sample drawn from the original data distribution. The auditee presents a sample $\mathcal{D}_{n,t}$, drawn from a distribution $Q_{n,t}$. To verify the authenticity of this sample, the authority must be granted access to the full dataset upon request. This access enables the

324 Table 1: Dataset presentation, sensitive variable (S) associated, and original Disparate Impact (DI)
325

	Adult	INC	TRA	MOB	BAF	EMP	PUC
S chosen	Sex	Sex	Sex	Age	Age	Disability	Disability
DI	0.30	0.67	0.69	0.45	0.35	0.30	0.32

330
331 authority to infer the ground-truth distribution and determine whether the submitted data has been
332 manipulated or follows the initial distribution Q_n . To assess representativeness, the authority must
333 rely on statistical testing. Two main categories of tests are available. The first includes hypothesis
334 tests that evaluate, at a chosen confidence level, whether the distribution of the submitted sample
335 $\mathcal{D}_{n,t}$ is statistically similar to the original distribution Q_n . In their study Fukuchi et al. (2020), the
336 authors apply a Kolmogorov–Smirnov (KS) test for one-dimensional data ($X \in \mathbb{R}^1$), and a test based
337 on the Wasserstein distance for higher-dimensional settings ($X \in \mathbb{R}^k$, with $k > 1$). In our framework,
338 we apply both the KS test and the Wasserstein test on the conditional distribution $\hat{Y} | S$.
339

340 The second approach evaluates whether the sample $\mathcal{D}_{n,t}$ could plausibly result from a random draw
341 from the original distribution Q_n , by measuring a divergence or distance metric d . The idea is to test
342 whether the observed value $d(\mathcal{D}_{n,t}, Q_n)$ lies within the $(1 - \alpha/2)$ confidence interval of $d(Q_{n,t}, Q_n^\sigma)$,
343 where Q_n^σ represents a reference sample drawn from the original distribution. For the distance metric
344 d , we considered several options, including the Maximum Mean Discrepancy (MMD) Gretton et al.
345 (2012), the Wasserstein distance, and the Kullback–Leibler (KL) divergence.
346

347 **Extension to non tabular data:** The method we develop is originally meant to handle tabular data but
348 we could use it directly on images or text flattened as vectors. Yet, using as previously the L^2 distance
349 between individuals, might not be the natural way to capture semantic similarity between images or
350 token distributions. A way to circumvent this issue is to represent the images in another space, where
351 the regular distances would have semantic meanings. The construction of such a space has already
352 seen numerous works using PCA projections or latent spaces of AE, VAE or CNN classifiers. We
353 present such results on the CelebA dataset Liu et al. (2015) in Section C of the Appendix.
354

355 4 EXPERIMENTS

356 4.1 EXPERIMENTAL SETTINGS

357 **Datasets.** We use 7 benchmarking datasets : Adult Census Income dataset where Y is whether an
358 individual’s income is above 50k (Adult) Becker & Kohavi (1996). We also use 5 benchmark datasets
359 from Ding et al. (2021) which records information about the USA’s population, including income
360 (INC), mobility (MOB), employment (EMP), travel time to work (TRA) and public system coverage
361 (PUC). We also include the Bank Account Fraud generated dataset (BAF) from Jesus et al. (2022).
362 We refer to Table 1 for the sensitive variable and the original Disparate Impact (DI) of each dataset.
363

364 **Neural network predictions.** As we are working only with tabular data, we provide a \hat{Y} with a
365 multilayer perceptron (MLP) neural network f ending with a sigmoid activation function ($f(x) \in$
366 $[0, 1]$). While having the best prediction accuracy was not the goal of experiments, we still achieve
367 reasonable accuracy learning with the *ScheduleFree* optimizer Defazio et al. (2024). We defined
368 the logit threshold based ground truth mean : $l_{th} := \min_{l \in [0, 1]} |\mathbb{E}(\hat{Y}_l) - \mathbb{E}(Y)|$ with $\hat{Y}_l = \{f(x) >$
369 $l | x \in \mathcal{D}\}$. This was especially necessary for the BAF dataset, where the learning task is basically an
370 anomaly detection task, and $\mathbb{E}(Y) \approx 0.01$.
371

372 4.2 RESULTS

373 **Fairness cost: distribution shift per method.** Fig 2 illustrates the comparative performance of each
374 method across different distance metrics (D_{KL}, W). Specifically, these metrics quantify the extent of
375 distributional change, and help assess each method’s ability to evade detection by the statistical tests.
376 We also provide complementary results on simulated data and the computation time and memory
377 cost of each method in the Appendix (see Sec F). The smallest surface area in the radar chart is
378 archived by $M_{W(X, S, \hat{Y})}$, hence, given the results, this method appears to be the most suitable method
379

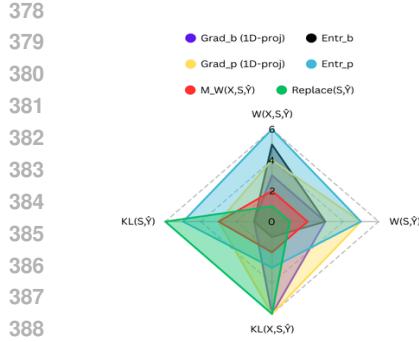


Figure 2: Radar graph ranking the optimization result depending on the fair-washing method. This graph shows why $M_{W(X, S, \hat{Y})}$ is the most promising method.

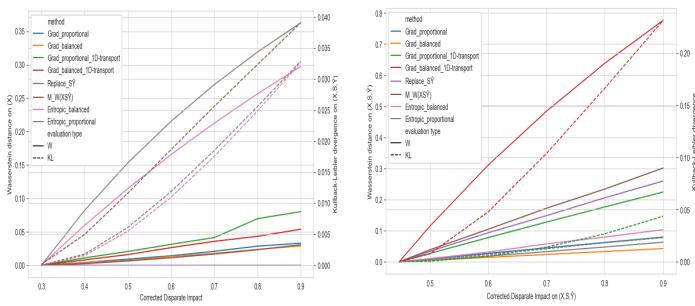


Figure 3: Line plot showing the trade-off between fairness correction and distribution shift on the Adult dataset. Wasserstein Distance on the individual’s characteristics X , and global KL divergence depending on the fairness correction per method.

Figure 4: Line plot showing the trade-off between fairness correction and distribution shift on the Mobility dataset. Global Wasserstein distance $((X, S, \hat{Y})$, and global Kullback-Leibler divergence depending on the fairness correction per method.

Table 2: Results of the 7 tests independently; for each unbiasing method (DI=0.8) and datasets. Sampling is stopped as soon as one sample satisfies the \mathcal{H}_0 hypothesis, or after 30 tries if none do. The symbol – means the method was undetected by the test for both sampling sizes of 10% and 20% (\mathcal{H}_0 accepted), \circ means that only the 20% sampling size was undetected (\mathcal{H}_0 accepted for 20% and rejected for 10%); and \odot means that the method was detected at both 10% and 20% sample sizes (\mathcal{H}_0 rejected). Positional and color coding indicate which test each result corresponds to, in the following order and color scheme: $KL(X, S, \hat{Y})$, $KL(S, \hat{Y})$, $W(X, S, \hat{Y})$, $W(S, \hat{Y})$, $K-S(\hat{Y})$, $MMD(X, S, \hat{Y})$, $MMD(S, \hat{Y})$. $Grad_proportional$ ($Grad_p$) and $Grad_balanced$ ($Grad_b$) have been merged with their 1D counterpart due to identical test results.

Methods						
Dataset	$Grad_p(1D-t)$	$Grad_b(1D-t)$	$Rep(S, \hat{Y})$	$M_{W(X, S, \hat{Y})}$	$Entropic_b$	$Entropic_p$
ADULT	\odot \circ \circ \circ \circ \circ \circ	\circ \circ \circ \circ \circ \circ \circ	\circ \circ \circ \circ \circ \circ \circ			
EMP	\odot \circ \circ \circ \circ \circ \circ	\circ \circ \circ \circ \circ \circ \circ	\circ \circ \circ \circ \circ \circ \circ			
INC	\circ \circ \circ \circ \circ \circ \circ					
MOB	\odot \circ \circ \circ \circ \circ \circ	\circ \circ \circ \circ \circ \circ \circ	\circ \circ \circ \circ \circ \circ \circ			
PUC	\odot \circ \circ \circ \circ \circ \circ	\circ \circ \circ \circ \circ \circ \circ	\circ \circ \circ \circ \circ \circ \circ			
TRA	\circ \circ \circ \circ \circ \circ \circ					
BAF	\circ \circ \circ \circ \circ \circ \circ					

for someone seeking to disguise their dataset, as it significantly improves the DI while preserving a distribution close to the original data.

Fraud detection through distributional shifts. In the case of a compliant audit, is it possible to detect a fraud attempt based on the provided sample and the original dataset? Based on our previous methods we create a falsely compliant sample from several Q_t (with $DI(Q_t) \geq 0.8$). More precisely, we randomly sample from theses Q_t , and apply the seven distinct statistical tests explained in Section 3.4, which verify the null hypothesis \mathcal{H}_0 ; which is that the original and sampled manipulated distributions are equivalent. Table 2 reports the results based on a modified sample of 10% or 20% and the original dataset. Additional details on the probability of passing the tests are provided in Section K.1 in the Appendix. Methods modifying individual characteristics (Grad methods) are easily detected (rejection of \mathcal{H}_0) regardless of the sampling size. The fair-washing done by the $M_{W(X, S, \hat{Y})}$ and Entropic-based methods is undetected for the INC, TRA and BAF datasets. For the TRA and INC datasets, the DIs of the original data were close to that of the modified data (see Table 3), implying that the required modifications were minimal and therefore difficult to detect. For the BAF dataset, we remind that $\mathbb{E}(Y) \approx 0.01$, as a result, only limited modifications were also needed in this case.

432 Table 3: Highest undetected achievable Disparate Impact for each dataset, sample size (S Size) and
 433 fair-washing method. The symbol – indicates that some methods couldn't reach a DI improvement.
 434 To emphasize the best method to use in order to deceive the auditor, we put the DI achieved in bold
 435 when one or two overperformed the others.

437	Dataset	Original	S size (%)	Grad_p	Grad_b	Grad_p 1D	Grad_b 1D	Rep (S, \hat{Y})	Entr.b	Entr.p	$M_{W(X,S,\hat{Y})}$
438	ADULT	0.30	10	0.47	0.43	0.49	0.44	0.50	0.54	0.52	0.54
			20	0.39	0.40	0.38	0.39	0.41	0.42	0.41	0.42
439	EMP	0.30	10	–	–	–	–	–	0.36	0.36	0.37
			20	–	–	–	–	–	0.34	0.36	0.35
440	INC	0.67	10	0.75	–	–	–	0.88	0.94	0.95	0.93
			20	–	–	–	–	0.83	0.83	0.84	0.84
441	MOB	0.45	10	0.53	0.51	–	0.50	0.53	0.52	–	0.52
			20	–	–	–	0.48	0.50	0.50	–	0.50
442	PUC	0.32	10	–	–	–	–	–	0.33	0.35	0.35
			20	–	–	–	–	–	–	–	–
443	TRA	0.69	10	0.72	0.79	0.77	0.73	0.80	0.83	0.84	0.85
			20	–	–	–	–	0.77	0.79	0.79	0.80
444	BAF	0.35	10	–	–	–	–	–	1	1	1
			20	–	–	–	–	–	0.77	0.80	0.79

445 **Trade-off: DI improvement vs distribution shift.** Fig. 3 and Fig. 4 illustrates the trade-off between
 446 fairness correction and distribution shift on the Adult and Mobility datasets by the Wasserstein
 447 distance and KL divergence between the full original and modified distributions. Replace (S, \hat{Y}) ,
 448 $M_{W(X,S,\hat{Y})}$ and Grad variant methods preserve the structure of the input space and are better
 449 alternatives to the entropic projection method. We recall that since Replace only modifies S and \hat{Y} ,
 450 it naturally leads to the lower difference between distributions.

451 **Fairest undetected sample.** When considering Table 2 results, which presents the inability to cheat
 452 the supervisory authority in the Adult, EMP, MOB and PUC datasets with $DI(Q_t) \geq 0.8$, we study
 453 based on the previously mentioned trade-off the highest undetected fairness correction we are able to
 454 achieve. Table 3 presents the highest Disparate Impact (DI) values not rejected by the combination of
 455 seven statistical tests, selected from 100 random samples comprising 10% and 20% of the modified
 456 dataset, respectively. The four Grad variants and Replace methods failed to secretly increase
 457 the DI on three common datasets (EMP, PUC, and BAF), primarily due to consistent rejection by
 458 the KL based tests (100% rejection rate). This highlights the advantage of Entropic methods
 459 and the matching approach $M_{W(X,S,\hat{Y})}$, which avoids scenarios where $D_{KL}(Q_t \| Q_n) = +\infty$, and
 460 thus performs more robustly. Overall, $M_{W(X,S,\hat{Y})}$ consistently achieves the best results. The results
 461 also underscore the influence of sample size: for example, in the PUC dataset, improvements were
 462 possible with 10% samples but not with 20%, indicating that as the sample size increases (relative
 463 to the original dataset), it becomes more challenging to increase DI without detection, we further
 464 highlight this point in Fig 8 in the Appendix.

471 5 CONCLUSION AND PERSPECTIVES

472 This work presents a comprehensive study of methods designed to manipulate data in order to
 473 satisfy the Disparate Impact (DI) criterion. We provide a theoretical analysis demonstrating why
 474 these methods can minimize the distance between the original and modified data distributions while
 475 satisfying fairness constraints. Our findings are supported by experiments on both simulated and
 476 real benchmark datasets. Our results show that with the recursive Wasserstein-minimizing matching
 477 method, $M_{W(X,S,\hat{Y})}$, an auditee can very likely increase fraudulently the Disparate Impact without
 478 being detected by rigorous statistical tests. Hence supervisory authorities should be aware of the
 479 possibility that datasets may have been intentionally manipulated. Their countermeasure is first to
 480 use multiple statistical tests combining different geometrical properties of the distributions as shown
 481 in Table 3. We showed that a second option is to increase the sample size required from the auditee.
 482 Our study focused on tabular data, but the approach extends to text and images when applied to
 483 higher-level representations (descriptors), as is common in evaluating generative models Heusel et al.
 484 (2018). We provided preliminary results in this direction and leave a more comprehensive exploration
 485 to future work.

486 CONCLUDING ETHICAL STATEMENT
487488 This work explores the potential for malicious actors to manipulate dataset samples in order to
489 falsely appear compliant with fairness regulations, specifically with respect to Disparate Impact, with
490 possible extensions to other various fairness metrics. Our primary objective is to expose and analyze
491 these vulnerabilities. We believe that research into adversarial strategies is essential to improving the
492 robustness and reliability of fairness auditing procedures. By providing detailed methods for faking
493 compliance, alongside statistical tests for detection, our intent is to support supervisory authorities
494 and auditors in developing more resilient oversight mechanisms. We emphasize that our findings
495 are not intended to be used as tools for deceptive practices. To this end, we have deliberately
496 omitted full implementation details that would lower the barrier to misuse, and we have focused our
497 analysis on defensive strategies available to regulators. Moreover, the public release of our code is
498 designed to assist the research community in building stronger auditing tools, not to enable audit
499 circumvention. We encourage regulators and institutions to develop governance frameworks that
500 anticipate such adversarial behavior and recommend routine adoption of statistical tests to verify the
501 representativeness of audit samples.502 REPRODUCIBILITY STATEMENT
503504 The algorithms corresponding to each proposed fair-washing method are detailed in the paper. For
505 the simplified versions of the Replace (S, Y) and $M_{W(X, S, Y)}$ methods, we refer to Alg. 1 in the
506 main paper. The full, non-simplified version is provided in Alg. 2 in the Appendix. Additionally, the
507 Wasserstein-based gradient optimization fair-washing methods are described in Alg. 3, also in the
508 Appendix.509 Our experiments including our simulated dataset, the publicly available datasets we use Becker &
510 Kohavi (1996); Ding et al. (2021); Jesus et al. (2022); Liu et al. (2015) and the code to reproduce ex-
511 actly every result shown in this paper thanks to (1) seed setting and (2) intermediary results registered
512 are available at <https://anonymous.4open.science/r/Inspection-76D6/>.

513 Our Github repository is structured as such:

514

- 515 • Data: datasets folder (with mostly csv files)
- 516 • Pre-processing: Jupyter notebooks.
- 517 • Src: python functions which includes our fair-washing methods.
- 518 • Project: Network training and inference, fairness evaluation, fair-washing and fraud detection
519 using statistical tests.
- 520 • Result: Final and intermediary results (csv, npy, json files).

521 Github repository limits at 50Mo, hence we uploaded the rest (csv and numpy matrices) on Google
522 Drive. It will be made available as soon as the double peer-review process ends.
523524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540 REFERENCES
541

542 Ulrich Aivodji, Paolo Alesi, Sébastien Gambs, Kévin Huguenin, Salvador R Martínez, and Matthieu
543 Roy. Fairwashing: the risk of rationalization. In *Proceedings of the 2019 AAAI/ACM Conference
544 on AI, Ethics, and Society*, pp. 160–166, 2019.

545 Cedric Anders, Solon Barocas, Jonathan Zittrain, Pushmeet Kohli, and Manuel Gomez-Rodriguez.
546 Fairwashing explanations with optimal transport. <https://arxiv.org/abs/2006.05241>,
547 2020. arXiv:2006.05241.

548 Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. Machine bias.
549 *ProPublica*, 2016. URL <https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing>.

550 François Bachoc, Fabrice Gamboa, Max Halford, Jean-Michel Loubes, and Laurent Risser. Explaining
551 machine learning models using entropic variable projection. *Information and Inference: A Journal
552 of the IMA*, 12(3):1686–1715, 05 2023. ISSN 2049-8772. doi: 10.1093/imaiai/iaad010. URL
553 <https://doi.org/10.1093/imaiai/iaad010>.

554 Solon Barocas, Moritz Hardt, and Arvind Narayanan. *Fairness and Machine Learning*. fairml-
555 book.org, 2019. <http://fairmlbook.org>.

556 Barry Becker and Ronny Kohavi. Adult. UCI Machine Learning Repository, 1996. DOI:
557 <https://doi.org/10.24432/C5XW20>.

558 Rachel K. E. Bellamy, Kuntal Dey, Michael Hind, and et al. Ai fairness 360 open source toolkit,
559 2018. <https://aif360.mybluemix.net>.

560 Philippe Besse, Eustasio del Barrio, Paula Gordaliza, Jean-Michel Loubes, and Laurent Risser. A
561 survey of bias in machine learning through the prism of statistical parity. *The American Statistician*,
562 76(2):188–198, 2022.

563 Sarah Bird, Drew Dimmery, and Kush R. Varshney Walker. Fairlearn: A toolkit for assessing and
564 improving fairness in ai, 2020. <https://fairlearn.org>.

565 Jade Garcia Bourrée, Augustin Godinot, Martijn De Vos, Milos Vujasinovic, Sayan Biswas, Gilles
566 Tredan, Erwan Le Merrer, and Anne-Marie Kermarrec. Robust ml auditing using prior knowledge,
567 2025. URL <https://arxiv.org/abs/2505.04796>.

568 Flavio P Calmon, Dennis Wei, Bhanukiran Vinzamuri, Karthikeyan Natesan Ramamurthy, and
569 Kush R Varshney. Optimized pre-processing for discrimination prevention. *Advances in Neural
570 Information Processing Systems (NeurIPS)*, 30, 2017.

571 L Elisa Celis, Damian Straszak, and Nisheeth K Vishnoi. Fair distributions from biased samples. In
572 *International Conference on Machine Learning (ICML)*, pp. 1365–1374. PMLR, 2019.

573 Sayantan Chakraborty, Steve Oudot, and Nicolas Vayatis. Constrained reweighting of distributions:
574 an optimal transport approach. <https://arxiv.org/abs/2310.12447>, 2024.
575 arXiv:2310.12447.

576 Evgenii Chzhen, Christophe Denis, Mohamed Hebiri, Luca Oneto, and Massimiliano Pontil. Fair
577 regression with Wasserstein barycenters. *Advances in Neural Information Processing Systems*, 33:
578 7321–7331, 2020.

579 Aaron Defazio, Xingyu Yang, Harsh Mehta, Konstantin Mishchenko, Ahmed Khaled, and Ashok
580 Cutkosky. The road less scheduled, 2024.

581 Eustasio Del Barrio, Paula Gordaliza, and Jean-Michel Loubes. A central limit theorem for l_p
582 transportation cost on the real line with application to fairness assessment in machine learning.
583 *Information and Inference: A Journal of the IMA*, 8(4):817–849, 2019.

584 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
585 bidirectional transformers for language understanding, 2019. URL <https://arxiv.org/abs/1810.04805>.

594 Frances Ding, Moritz Hardt, John Miller, and Ludwig Schmidt. Retiring adult: New datasets for
 595 fair machine learning. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.),
 596 *Advances in Neural Information Processing Systems*, 2021. URL https://openreview.net/forum?id=bYi_2708mKK.

597

598 EEOC et al. (1978). Section 4d, uniform guidelines on employee selection procedures, 1978.

599

600 Michael Feldman, Sorelle A Friedler, John Moeller, Carlos Scheidegger, and Suresh Venkatasubra-
 601 manian. Certifying and removing disparate impact. In *proceedings of the 21th ACM SIGKDD*
 602 *international conference on knowledge discovery and data mining*, pp. 259–268, 2015.

603

604 Kazuto Fukuchi, Satoshi Hara, and Takanori Maehara. Faking fairness via stealthily biased sampling.
 605 In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 34, pp. 412–419, 2020.

606

607 Diego Garcia-Borruet, Patrick Loiseau, and Erwan Le Merrer. Mitigating fairwashing using two-
 608 source audits. <https://arxiv.org/abs/2305.13883>, 2023. arXiv:2305.13883.

609

610 Paula Gordaliza, Eustasio Del Barrio, Gamboa Fabrice, and Jean-Michel Loubes. Obtaining fairness
 611 using optimal transport theory. In *International conference on machine learning*, pp. 2357–2365.
 612 PMLR, 2019.

613

614 Thibaut Le Gouic, Jean-Michel Loubes, and Philippe Rigollet. Projection to fairness in statistical
 615 learning. *arXiv preprint arXiv:2005.11720*, 2020.

616

617 Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, and Alexander Smola.
 618 A kernel two-sample test. *Journal of Machine Learning Research*, 13(25):723–773, 2012. URL
 619 <http://jmlr.org/papers/v13/gretton12a.html>.

620

621 Moritz Hardt, Eric Price, and Nathan Srebro. Equality of opportunity in supervised learning. *CoRR*,
 622 abs/1610.02413, 2016a. URL <http://arxiv.org/abs/1610.02413>.

623

624 Moritz Hardt, Eric Price, and Nati Srebro. Equality of opportunity in supervised learning. In *Advances*
 625 *in Neural Information Processing Systems (NeurIPS)*, pp. 3315–3323, 2016b.

626

627 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 628 recognition, 2015. URL <https://arxiv.org/abs/1512.03385>.

629

630 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
 631 Gans trained by a two time-scale update rule converge to a local nash equilibrium, 2018. URL
 632 <https://arxiv.org/abs/1706.08500>.

633

634 Daniel Jacobs and Lawrence P. Kalbers. Volkswagen emissions scandal, 2019. URL <https://www.cpajournal.com/2019/07/22/9187/>.

635

636 Sérgio Jesus, José Pombal, Duarte Alves, André Cruz, Pedro Saleiro, Rita P. Ribeiro, João Gama, and
 637 Pedro Bizarro. Turning the tables: Biased, imbalanced, dynamic tabular datasets for ml evaluation.
 638 In *Advances in Neural Information Processing Systems*, 2022. URL https://openreview.net/forum?id=bYi_2708mKK.

639

640 Ray Jiang, Aldo Pacchiano, Tom Stepleton, Heinrich Jiang, and Silvia Chiappa. Wasserstein fair
 641 classification. In Ryan P. Adams and Vibhav Gogate (eds.), *Proceedings of The 35th Uncertainty*
 642 *in Artificial Intelligence Conference*, volume 115 of *Proceedings of Machine Learning Research*,
 643 pp. 862–872. PMLR, 22–25 Jul 2020.

644

645 Faisal Kamiran and Toon Calders. Classifying without discriminating. In *2nd International Confer-
 646 ence on Computer, Control and Communication*, pp. 1–6. IEEE, 2009.

647

648 Faisal Kamiran, Asim Karim, and Xiangliang Zhang. Decision theory for discrimination-aware
 649 classification. In *2012 IEEE 12th International Conference on Data Mining*, pp. 924–929, 2012.
 650 doi: 10.1109/ICDM.2012.45.

651

652 Erwan Le Merrer and Gilles Trédan. Faking fairness via model manipulation. In *Companion*
 653 *Proceedings of the Web Conference 2020*, pp. 661–665, 2020.

648 Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
 649 *Proceedings of International Conference on Computer Vision (ICCV)*, December 2015.
 650

651 Michael Lohaus, Michael Perrot, and Ulrike Von Luxburg. Too relaxed to be fair. In Hal Daumé III
 652 and Aarti Singh (eds.), *Proceedings of the 37th International Conference on Machine Learning*,
 653 volume 119 of *Proceedings of Machine Learning Research*, pp. 6360–6369. PMLR, 13–18 Jul
 654 2020. URL <https://proceedings.mlr.press/v119/lohaus20a.html>.

655 Scott Lundberg and Su-In Lee. A unified approach to interpreting model predictions, 2017. URL
 656 <https://arxiv.org/abs/1705.07874>.
 657

658 Luca Oneto and Silvia Chiappa. Fairness in machine learning. In *Recent trends in learning from data: Tutorials from the INNS big data and deep learning conference (INNSBDDL2019)*, pp. 155–196.
 659 Springer, 2020.
 660

661 J. Peypouquet. *Convex Optimization in Normed Spaces*. Springer Cham, 2015. URL <https://api.semanticscholar.org/CorpusID:124131607>.
 662

663 Inioluwa Deborah Raji, Andrew Smart, Rebecca White, and et al. Closing the ai accountability gap:
 664 Defining an end-to-end framework for internal algorithmic auditing. In *Proceedings of the 2020 ACM Conference on Fairness, Accountability, and Transparency*, pp. 33–44. ACM, 2020.
 665

666 Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "why should i trust you?": Explaining the
 667 predictions of any classifier, 2016. URL <https://arxiv.org/abs/1602.04938>.
 668

669 Filippo Santambrogio. *Optimal Transport for Applied Mathematicians. Calculus of Variations, PDEs and Modeling*. Birkhäuser Cham, 2015. URL <https://www.math.u-psud.fr/~filippo/OTAM-cvgmt.pdf>.
 670

671 Azade Shamsabadi, Amal Douzal-Chouakria, Giuseppe Contissa, and Bruno Lepri. Is
 672 fairwashing provably undetectable? <https://arxiv.org/abs/2303.10427>, 2023.
 673 arXiv:2303.10427.

674 Dylan Slack, Sam Hilgard, Emily Jia, Sorelle Singh, and Himabindu Lakkaraju. Fooling lime and
 675 shap: Adversarial attacks on post hoc explanation methods. <https://arxiv.org/abs/1911.02508>, 2020. arXiv:1911.02508.
 676

677 Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna. Re-
 678 thinking the inception architecture for computer vision, 2015. URL <https://arxiv.org/abs/1512.00567>.
 679

680 Xiaomeng Wang, Yishi Zhang, and Ruilin Zhu. A brief review on algorithmic fairness. *Management System Engineering*, 1(1):7, 2022. ISSN 2731-5843. doi: 10.1007/s44176-022-00006-z. URL
 681 <https://doi.org/10.1007/s44176-022-00006-z>.
 682

683 Yudai Yamamoto and Satoshi Hara. Fast stealthily biased sampling using sliced wasserstein distance.
 684 In Vu Nguyen and Hsuan-Tien Lin (eds.), *Proceedings of the 16th Asian Conference on Machine Learning*,
 685 volume 260 of *Proceedings of Machine Learning Research*, pp. 873–888. PMLR, 05–08 Dec 2025.
 686

687 Tom Yan and Chicheng Zhang. Active fairness auditing. In Kamalika Chaudhuri, Stefanie Jegelka,
 688 Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), *Proceedings of the 39th International Conference on Machine Learning*, volume 162 of *Proceedings of Machine Learning Research*, pp. 24929–24962. PMLR, 17–23 Jul 2022. URL <https://proceedings.mlr.press/v162/yan22c.html>.
 689

690

691

692

693

694

695

696

697

698

699

700

701

702 703 Appendix 704

705 A OTHER FAIRNESS METRICS 706

708 In our paper, we focused on the Disparate Impact (DI) fairness metric, as it is one of the most widely
709 used metrics. While this choice is justified, it is natural to wonder whether our results are specific to
710 this metric or whether they are metric-agnostic.

711 Our fair-washing method could have been implemented to minimize the distribution shift while being
712 constrained to other global fairness metrics as long as we can write them as an integrable function or
713 a combination of integrable functions. This condition is not very restrictive in our case. In fact, it only
714 excludes the individual fairness metric, whereas most global fairness metrics can still be expressed in
715 the required form.

716 To prove this point, we decided to implement our best-performing method, the $M_{W(X,S,\hat{Y})}$ for the
717 Equality of Odds (EoO) metric :

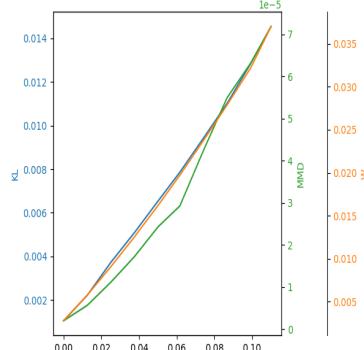
$$719 \text{EoO} = |\mathbb{P}(\hat{Y} = 1|S = 1 \wedge Y = 1) - \mathbb{P}(\hat{Y} = 1|S = 0 \wedge Y = 1)|$$

721 Note that similarly to the Disparate Impact, which is the multiplicative counterpart of the Disparate
722 Parity, we could have taken the multiplicative definition of the EoO. However, we choose the additive
723 definition because the multiplicative case is trivial for us, as we could have directly applied our
724 DI-fair-washing method on the $Q_{n,Y=1}$.

726 The only difference to the matching method $M_{W(X,S,\hat{Y})}$ going from DI constraint to EoO constraint
727 is, following the notation of Section 3.3, iteratively from maximizing the left part of Eq. 6 to its right
728 part.

$$731 \frac{\text{DI}(\tau_{i_0}(Z^j)) - \text{DI}((Z^j))}{\|\tau_{i_0}(Z^j) - Z^j\|} \rightarrow -\frac{\text{EoO}(\tau_{i_0}(Z^j)) - \text{EoO}((Z^j))}{\|\tau_{i_0}(Z^j) - Z^j\|} \quad (6)$$

734 The minus sign comes from the difference between the fairness metric : an independence toward the
735 sensitive variable S for the Disparate Impact implies $DI = 1$, we therefore try to maximize the DI.
736 On the other hand, independence for the EoO implies $EoO = 0$, leading us to minimize this criterion
737 (i.e., maximizing minus the criteria). We illustrate this capacity in Fig. 5.



752 Figure 5: Distribution shift of Wasserstein distance, KL divergence and MMD, when constraining the
753 Equality of Odds (EoO) metric on the Adult dataset using the $M_{W(X,S,Y)}$ method minimizing the
754 EoO.

756 B COMPARISON WITH OTHER FAIR-WASHING METHODS
757758 B.1 BIAS MITIGATION METHODS AS FAIR-WASHING METHODS
759

760 As discussed in the introduction, bias mitigation methods can also be misused to artificially improve
761 fairness metrics, thereby creating the illusion of fairness while concealing underlying biases. Several
762 such methods have been proposed in the literature, including the approach presented in Bourréé
763 et al. (2025), that we reference here, such as ROC Mitigation Kamiran et al. (2012), Optimal Label
764 Transport (OT-L) Jiang et al. (2020), Linear Relaxation (LinR) Lohaus et al. (2020), and Threshold
765 Manipulation (ThreshOpt) Hardt et al. (2016a).

766 We directly compare these approaches to the Replace (X, S, \hat{Y}) method. This method, like the
767 others mentioned, modifies the decision-making process based on the sensitive attribute S , for
768 example by applying different decision thresholds conditioned on S . This common dependency on S
769 makes these methods similar in spirit to Replace (X, S, \hat{Y}) , as the fairness outcome is explicitly
770 linked to sensitive attributes. However, a key distinction is that methods like ROC Mitigation or OT-L
771 typically yield reproducible, model-dependent outcomes, while Replace (X, S, \hat{Y}) , as explained
772 in Section 3.3, cannot be applied in audits where auditors have direct access to the model and its
773 decision thresholds.

774 Nevertheless, from the perspective of a supervisory authority, all these methods share a fundamental
775 limitation. Since supervisory audits in our framework employ statistical tests based on the Kullback-
776 Leibler (KL) divergence, these methods are easily detectable. Specifically, because they generate *new*
777 synthetic individuals, the KL divergence between the original and manipulated distributions satisfies
778 $\text{KL}(Q_n, Q_t) = +\infty$.

779 One might ask whether the Wasserstein distance provides a more suitable metric. However, since
780 these methods do not modify the covariates X (Gouic et al. (2020) projects individuals towards
781 their Wasserstein barycenter only to change the network’s output), the global Wasserstein distance
782 remains unchanged, i.e., $W(Q_{n_X}, Q_{t_X}) = 0$. Regarding the Wasserstein distance between (S, \hat{Y}) ,
783 $W(Q_{n_{(S, \hat{Y})}}, Q_{t_{(S, \hat{Y})}})$, the choice of method has minimal impact, since the distance is computed
784 within the finite set of categorical bins $S, \hat{Y} \in \{0, 1\}^2$.
785

786 B.2 COMPARISON WITH FAIRNESS MANIPULATION VIA THE STEALTHILY BIASED SAMPLING
787 (SBS) METHOD
788

789 **Explanation of the SBS method** The method designed by Fukuchi et al. (2020) minimizes the
790 distribution shift measured by $W(X)$ under a fairness constraint on the Disparate Parity (DP):
791

$$792 \text{DP} = |\mathbb{P}(\hat{Y} = 1|S = 1) - \mathbb{P}(\hat{Y} = 1|S = 0)|
793$$

794 Notably, the method does not allow specifying a target threshold t for the fairness criterion. Instead,
795 the authors designed their sampling procedure to produce a perfectly fair dataset, such that $\text{DP} = 0$ in
796 expectation. The only tunable hyperparameter is the common acceptance rate for positive outcomes,
797 denoted by $\alpha := \mathbb{P}(\hat{Y} = 1|S = 1) = \mathbb{P}(\hat{Y} = 1|S = 0)$.

798 This lack of flexibility in selecting a targeted DP complicates direct comparisons. As demonstrated
799 in our paper, achieving fairness solely to pass compliance checks (i.e., fair-washing) often remains
800 detectable by our statistical tests. To evaluate robustness, we progressively relax the fairness constraint
801 until samples evade detection. Such adaptive calibration is not feasible with their approach.

802 One practical advantage of their method is that it outputs individual sampling probabilities rather
803 than a fixed dataset, similar to our Entropic approach. This allows us to resample and generate
804 distributions with varying degrees of fairness.

805 Their reported results were obtained via grid search over α values, as illustrated in Fig. 9. Conse-
806 quently, to benchmark their method, we either had to identify the optimal α minimizing distribution
807 shift or evaluate performance across all tested α values.

808 This method’s high computational cost, already acknowledged by the authors in a subsequent paper
809 Yamamoto & Hara (2025), is a notable limitation. Due to these computational constraints, we applied

810 their method exclusively on the Adult dataset, as experiments on larger datasets failed to complete
 811 within reasonable time frames.
 812

813 **Technical insecurities** When following the installation instructions from their GitHub page, we
 814 encountered a problem. Indeed, the CMake version the authors used was 2.8 which is no longer
 815 supported with CMake (oldest version supported is 3.5) ; when changing in the CMake file the
 816 minimum version to 3.5, we had encountered another error with their (CMake_policy(set CMP0048
 817 OLD)) which is no longer supported as well, we change it to the new version and ended up with a
 818 warning but could continue from there.

819 When we use the command make, we had the warning that "*ISO C++17 does not allow ‘register’*
 820 *storage class specifier*", and other warnings with "this statement may fall through" associated with if
 821 statement or case statement.

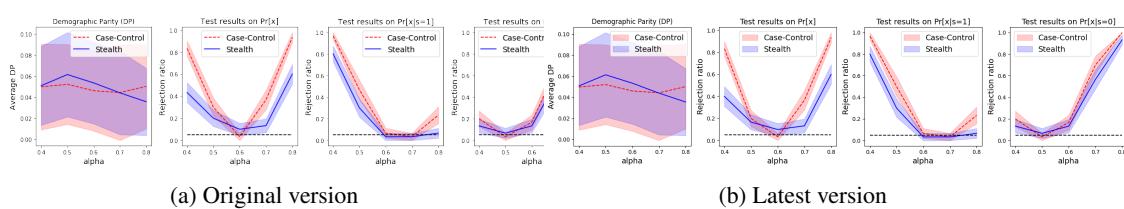
822 However, when we used 'make' for each of the *stealth-sampling* and *wasserstein* files, it went without
 823 any issues or warning, hence, we attempted to replicate their experiments; the provided random seed
 824 should have ensured identical results.
 825

826 The authors did not use a requirement file, or specify which version of libraries to use. Hence, some
 827 errors within their code appear, mainly discrepancies between the former and new behavior of numpy.
 828 We modified the code for it to work with the latest version of the different libraries, while keeping the
 829 exact intended functioning.

	Version	Accuracy	DP	WD on $\Pr[x]$	WD on $\Pr[x=s=1]$	WD on $\Pr[x=s=0]$
Baseline	Old	0.851	0.1824	22.1638	25.6454	35.0421
	New	0.85115	—	—	—	—
Case-control	Old	NaN	0.0250	23.9060	22.5855	37.9543
	New	NaN	0.0243	23.2002	23.3179	37.8548
Stealth	Old	NaN	0.0712	23.6396	24.2404	36.1657
	New	NaN	0.0708	24.1415	25.1640	35.5028

830
 831 Table 4: Old and new results of the SBS method on the Adult dataset, '—' means that the new version
 832 has **exactly** the same result as the old one.
 833

834 As you can see in Table 4, we observed a slight mismatch between the value they obtained and the
 835 value we obtained running exactly their code. This might indicate that because of the warnings we
 836 mentioned above, the performance was affected; or it could simply also be a different behavior from
 837 the newer version of libraries, and our result might actually be more representative. As you can see
 838 on Fig. 6, the aggregated results are alike. The authors would have obtained the same results and thus
 839 produced the same paper, we choose to use this implementation instead of "their" Sliced Wasserstein
 840 Distance method Yamamoto & Hara (2025), which compromises slightly the results for a significant
 841 boost in computational time.
 842



843 Figure 6: Original (Old) and Latest (New) results for their synthetic datasets, the experiments were
 844 done with 30 runs for several different α .
 845

846 **Result of the SBS method in our audit** In this section, we evaluate on the Adult dataset: (1) the
 847 distribution shift incurred when creating a fair distribution ($\text{DI}(Q_t) > 0.8$) and (2) the maximum
 848 achievable DI without detection by our statistical tests. The first comparison (1) is well-aligned
 849 with the purpose of the method, which targets compliance. However, the second (2) inherently
 850 disadvantages their approach, as it was not designed to trade off fairness against detectability.
 851

864	865	866	Unbiasing Methods									
			Dataset	SBS	Grad.p	Grad.b	Grad.p_1D	Grad.b_1D	Rep (S, \hat{Y})	$M_{W(X, S, \hat{Y})}$	Entr.b	Entr.p
867			$W(X, S, \hat{Y})$	0.91	0.10	0.08	0.13	0.09	0.05	0.06	0.28	0.35
868			$W(S, \hat{Y})$	0.00	0.09	0.08	0.09	0.08	0.05	0.05	0.08	0.09
869			$KL(X, S, \hat{Y})$	0.73	∞	∞	∞	∞	∞	0.03	0.02	0.03
870			$KL(S, \hat{Y})$	0.73	0.02	0.02	0.02	0.02	0.03	0.03	0.02	0.03

871 Table 5: Metric result of the fair-washing method ($DI(Q_t) \geq 0.8$), cost calculated on the projected
 872 dataset (or projected distribution for Entropic and SBS) on the Adult dataset.
 873

874
 875 Regarding $d(Q_n, Q_t)$, their method, like our Entropic approaches, produces sampling probabilities
 876 rather than a direct sample. This yielded strong performance on $W(S, \hat{Y})$, but it underperformed
 877 on $KL(S, \hat{Y})$ and did not stand out on $W(X, S, \hat{Y})$. For $KL(X, S, \hat{Y})$, it was less competitive,
 878 though it notably avoided divergence to infinity, making it one of the more globally competitive
 879 Wasserstein-based methods.
 880

881	Dataset	S size (%)	SBS	Grad.p	Grad.b	Grad.p 1D	Grad.b 1D	Rep (S, \hat{Y})	Entr.b	Entr.p	$M_{W(X, S, \hat{Y})}$
882	ADULT	10	0.47	0.47	0.43	0.49	0.44	0.50	0.54	0.52	0.54
883		20	–	0.39	0.40	0.38	0.39	0.41	0.42	0.41	0.42

884 Table 6: Highest undetected achievable Disparate Impact for the Adult dataset, for each sample size
 885 (S Size) and fair-washing method. The symbol – indicates that some methods couldn't reach a DI
 886 improvement. To emphasize the best method to use in order to deceive the auditor, we put the DI
 887 achieved in bold when one or two over-performed the others. We remind that the original DI of our
 888 Adult dataset is 0.30.
 889

890 Conversely, as shown in Table 6, the method is not suitable for maximizing fairness without detection.
 891 To assess this, we computed 500 samples from each tuple sample size, α and observed whether the
 892 samples passed our statistical tests. Across $500 * 10 * 2$ samples (10 α and 2 sample size), 5 samples
 893 passed the 7 statistical tests, they were all for $\alpha = 0.25$ and sample size of 10% (instead of 20%).
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917

918 C EXTENSION TO OTHER DATA TYPE
919

920 The method we develop is originally meant to handle tabular data. However we propose some natural
921 direction to extend this work to text or images. The distances used to evaluate Wasserstein distance
922 or the Maximum Mean Discrepancy (MMD) relies on the inherent informative information between
923 individual within the input space, in another word they rely on the fact that the distance between
924 individual is proportional to their semantic similarity. This hypothesis is always verified on tabular
925 data (with the L_2 distance, for instance), but it might not be on images or token distributions. We
926 will first evaluate our method based on $W(X)$ or $MMD(X)$ to detect fraud attempt and expect the
927 method to achieve a lower efficiency because $d(Q_t, Q_n)$ is hardly related to the semantic meaning of
928 the images. Thus a fair-washing manipulation might not change this distance distribution.

929 Hence we embed the images in another space, where the regular distances have semantic meanings.
930 The construction of such a space has already seen numerous works, including Principal Component
931 Analysis, using the latent space of Auto-encoder or Variational Auto-Encoder, or using the latent
932 space of Convolutional Neural Network classifiers. Using such space, which we call descriptor D ,
933 have become common practice after the introduction of the Fréchet Inception Distance (FID)Heusel
934 et al. (2018). We define the function E such as

$$935 \quad E: \mathbb{R}^N \rightarrow \mathbb{R}^m \quad N, m \in \mathbb{N}, N \gg m \\ 936 \quad X \mapsto E(X) = D \\ 937$$

938 and set $E(Q) := \{E(X) | X \in Q\}$ if Q is a distribution. We choose in the following latent features
939 given by the CNN classifier.
940

941 C.1 EXPERIMENTAL SETTINGS
942

943 We audited the CelebA dataset Liu et al. (2015): predicting the attractiveness, with the sensitive
944 attribute being having heavy makeup. We note here that we choose this sensitive attribute instead of
945 others for mainly two reasons:
946

- 947 1. Low DI : 0.4 on the whole dataset
- 948 2. Representativeness : Similarly to what we saw for the BAF dataset having a low probability
949 of $\mathbb{P}(Y = 1) = 0.01$, If the sensitive variable was too rare, then detecting a modification on
950 X would be impossible (for tabular or non-tabular data)

951 Note also that the variable *young* would have been another viable candidate.
952

953 The fair-washing method used in those experiments is the Wasserstein-based matching method
954 $M_{W(X, S, Y)}$. We fine-tune 3 CNN models: an InceptionV3 Szegedy et al. (2015), a ResNet18 and
955 a ResNet101 He et al. (2015) on CelebA and select part of the test set to audit, on this subset we
956 observe respectively a DI of 0.34, 0.35 and 0.35. The malicious auditee, aware that the statistical
957 tests on the covariates X might not be on the pixels of the images, but on the descriptor of the
958 images, could minimize $d(E(Q_n), E(Q_t))$ instead of $d(Q_n, Q_t)$. Therefore, we consider 6 different
959 fair-washing scenarios given (1) the network choice amongst ResNet18, InceptionV3 and ResNet101
960 which implies different descriptors' space and (2) if the auditee optimized the Wasserstein-based
961 matching method on the pixel's space or on the latent space of those models. We first investigate
962 the use of statistical tests directly of the pixels' space. Secondly, for each of the above scenario,
963 we use statistical tests based of the latent space of the CNN. We remind here that (1) in term of
964 complexity, the CCN are ranked as follow: ResNet18 (11 million parameters) < InceptionV3 (27
965 million parameters) < ResNet101 (44 million parameters), (2) the latent space of the CNN is the
966 space at the hidden layer before the last linear layer, for the three models above's latent space share
967 the same dimension size of 1000.

968 C.2 TOPICS OF INTEREST AND ANSWERS
969

970 In this subsection, we present key questions of interest and provide direct answers. These answers
971 are supported by selected (cherry-picked) results for illustrative purposes, we refer to Table 7 for
972 complete results on the descriptors analysis results. We address the following questions:

972 1. Are the statistical tests presented in our paper for tabular data relevant for non-tabular data?

973
974
975
976
977
978
979
980
981
982

- Yes. We consider several data-agnostic statistical tests, such as $W(S, Y)$, $\text{MMD}(S, Y)$, KL divergence, and the KS test. These tests remain applicable regardless of data type.
- What about tests based on $W(X, S, Y)$ or $\text{MMD}(X, S, Y)$, which rely on $W(X)$ or $\text{MMD}(X)$ where X is high-dimensional? Tests conducted directly in pixel space can be useful. For example, fair-washing attempts with a sampling size of 20% were detected using tests applied directly to raw pixel values. In contrast, with a sampling size of 10%, and fair-washing to a Disparate Impact (DI) of 0.95, the null hypothesis \mathcal{H}_0 was not rejected, this indicates that these manipulations may go undetected at smaller sampling sizes.

983 2. Are statistical tests based on learned descriptors more effective?

984
985
986
987
988
989
990

- Yes. Descriptor-based tests can detect fair-washing even with smaller samples. For instance, fraud attempts were identified using only 10% of the CelebA dataset (noting that detection becomes harder with smaller samples).
- However, the auditee could potentially optimize their manipulation based on the descriptor used by the auditor, rendering these tests ineffective again at the 10% sample size.

991 3. Is the choice of the descriptor impactful ?

992
993
994
995
996
997
998
999
1000
1001
1002

- Yes, the results do depends on both the auditee choice of descriptor as well as the descriptor used in the statistical tests.
- Yes for the manipulation: it was harder to detect manipulation based on the ResNet18 descriptors, and the easiest was the manipulation based on the ResNet101 descriptors. For instance, for the sampling size of 20%, even while testing using the ResNet101 descriptors, for a fair-washing at $DI = 0.55$, it was undetected when optimizing using ResNet18 descriptors but detected when optimizing using ResNet101's one (by “detected”, we mean that across multiple samples, 50 in this case, none accepted the null hypothesis \mathcal{H}_0 , i.e., the hypothesis that the sample and original distributions are the same.).
- Yes for the fraud detection: Statistical tests based on the ResNet18 was more easily fooled by manipulation. To support this claim, we refer to for example to the last three columns of the Table 7 where with optimization on the image pixels, for a 10% sampling size, no fair-washing method was detected even with $DI = 0.95$.

1003 4. Is there a difference using statistical tests based on the latent space the auditee’s fair-washing
1004 method optimized on?

1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019

- No, our results are not conclusive enough to answer this question positively. For InceptionV3 and ResNet101, we did not observe a significant difference.
- That being said, in our experiments, with a 20% sampling size and fair-washing to $DI = 0.60$, only the auditee optimizing on the same descriptors (ResNet18) was able to generate an undetected sample when the test was based on those same descriptors.
- Importantly, in practice, it is unlikely that the supervisory authority would use the same descriptors as the auditee. Even if the authority had full access to the auditee’s network (which is rare, since this would go beyond API access), they may deliberately avoid using the same descriptors to prevent optimization-based circumvention.

1020 In conclusion, on non-tabular modalities, running statistical tests directly on raw signals (in our cases
1021 pixels) is not useless, but tests in a learned descriptor space are markedly more sensitive. The choice
1022 of descriptor is critical: tests based on higher-capacity, semantically rich encoders (e.g., ResNet101)
1023 are substantially more robust to manipulations. We therefore recommend that supervisory authorities
1024 apply statistical tests both on the raw data and in a high-quality descriptor space. For text datasets,
1025 though not evaluated here, a natural first descriptor we would recommend is the CLS embedding
from a BERT-style model Devlin et al. (2019), we leave this for a further work.

Descriptors	Size (%)	Fair-washing minimization objective					
		18	101	v3	18 pixels	101 pixels	v3 pixels
ResNet18	10	≥ 0.95	≥ 0.95	≥ 0.95	≥ 0.95	≥ 0.95	≥ 0.95
	20	$[0.6 - 0.7[$	$[0.5 - 0.55[$	$[0.5 - 0.55[$	$[0.4 - 0.5[$	$[0.4 - 0.5[$	$[0.4 - 0.5[$
Inceptionv3	10	≥ 0.95	≥ 0.95	$[0.8 - 0.95[$	≥ 0.95	$[0.8 - 0.95[$	$[0.8 - 0.95[$
	20	$[0.55 - 0.6[$	$[0.5 - 0.55[$	$[0.5 - 0.55[$	$[0.4 - 0.5[$	$[0.4 - 0.5[$	$[0.4 - 0.5[$
ResNet101	10	≥ 0.95	≥ 0.95	≥ 0.95	≥ 0.95	≥ 0.95	$[0.7 - 0.8[$
	20	$[0.55 - 0.6[$	$[0.5 - 0.55[$	$[0.55 - 0.6[$	$[0.4 - 0.5[$	$[0.4 - 0.5[$	$[0.4 - 0.5[$

Table 7: Highest DI without being detected for the CelebA Dataset using the matching fair-washing method based on different minimization objective testing on the descriptors which are the latent space of the different models, for sample size of 10% and 20%. The different scenarios are the following: 18, 101 and v3 are respectively a ResNet18, a ResNet101 and an Inceptionv3 optimized on their latent space ; the 18 pixels, 101 pixels and v3 pixels are the methods optimized on the pixel space (even if they have the same objective, they are different because the prediction of each network might be different).

D AUXILIARY RESULTS

Proposition D.1. *Consider the following minimization problem*

$$\min W_2^2(P, Q_n) \text{ such that } \int_E \Phi(x) dP(x) \geq t. \quad (7)$$

Then Q_t is optimal for equation 7 if, and only if, it is defined as the push-forward

$$Q_t = T_{\lambda^* \#} Q_n$$

where $T_\lambda(y) \in \arg \min_x \{ \|x - y\|^2 - \lambda^T \Phi(x)\}$ and and then $\lambda^* \in \mathbb{R}_{\geq 0}^k$ solves

- $\int_E \Phi(T_{\lambda^*}(x)) dQ(x) \geq t,$
- and $\langle \lambda^*, t - t_{\lambda^*} \rangle = 0$

E PROOFS

E.1 PROOF OF PROPOSITION 3.2

Proof. Theorem 3.1 implies the existence of a distribution Q_t such that

$$DI(f, Q_t) = \frac{\lambda_0 + \delta_0}{\lambda_1 - \delta_1} \frac{n_1}{n_0} = t_1.$$

We have

$$\Delta_{DI} = \frac{n_1}{n_0} \left(\frac{\lambda_1 \delta_0 + \lambda_0 \delta_1}{(\lambda_1 - \delta_1) \lambda_1} \right)$$

Among all possible solutions, we privilege the two solutions described in the Proposition. Knowing the new DI desired, we can obtain a set of solution for δ_0 and δ_1 . \square

1080 E.2 PROOF OF THEOREM 3.3
10811082 *Proof.* First, notice that the definition of T_λ implies

$$\begin{aligned}
1083 \quad W_2^2(Q_n, T_{\lambda\#}Q_n) &\leq \int_E \|T_\lambda(y) - y\|^2 dQ_n(y) \\
1084 &= \int_E \|T_\lambda(y) - y\|^2 dQ_n(y) + \frac{1}{n} \left(\sum_{i=1}^n \lambda^\top \Phi(T_\lambda(Z_i)) - \sum_{i=1}^n \lambda^\top \Phi(T_\lambda(Z_i)) \right) \\
1085 &= \int_E \|T_\lambda(y) - y\|^2 - \lambda^\top \Phi(T_\lambda(y)) dQ_n(y) + \int_E \lambda^\top \Phi(y) dT_{\lambda\#}Q_n(y) \\
1086 &= \int_E \inf_x \{\|x - y\|^2 - \lambda^\top \Phi(x)\} dQ_n(y) + \int_E \lambda^\top \Phi(y) dT_{\lambda\#}Q_n(y) \\
1087 &= \int_E (\lambda^\top \Phi)^c(y) dQ_n(y) + \int_E \lambda^\top \Phi(y) dT_{\lambda\#}Q_n(y).
\end{aligned}$$

1088 Strong duality of the Kantorovich problem, see Santambrogio (2015), guarantees that this inequality
1089 is indeed an equality. Since our equality constraint is linear, a necessary and sufficient condition for
1090 P^* to be a minimizer, see Peypouquet (2015), is finding Lagrange multipliers $\lambda_1, \dots, \lambda_k \in \mathbb{R}$ such
1091 that

$$\begin{aligned}
1092 \quad \sum_{i=1}^k \lambda_i \nabla g_i(P^*) &\in \partial f(P^*) \quad (\text{extremality condition}) \\
1093 \quad g(P^*) &= 0 \quad (\text{feasibility})
\end{aligned}$$

1094 where $g(P) = \int_E \Phi(x) dP(x) - t$ and $f(P) = W_2^2(P, Q_n)$. The subgradient of f is given, see
1095 Proposition 7.17 in Santambrogio (2015), by the set of Kantorovich potentials between P^* and Q :

$$1096 \quad \partial f(P^*) = \left\{ \phi \in C(E) \mid \int \phi dP^* + \int \phi^c dQ = W_2^2(P^*, Q) \right\}. \quad (8)$$

1097 Our computations above prove the extremality condition for $P^* = T_{\lambda^* \#}Q_n = \frac{1}{n} \sum_{i=1}^n \delta_{T_{\lambda^*}(Z_i)}$
1098 since $\nabla g_i(P) = \int \Phi dP$. The feasibility condition for the empirical measure Q_n is to find λ^* such
1099 that

$$1100 \quad t = \int_E \Phi(y) dT_{\lambda^* \#}Q_n(y) = \frac{1}{n} \sum_{i=1}^n \Phi(T_{\lambda^*}(Z_i)). \quad (9)$$

1111 \square 1112 E.3 PROOF OF PROPOSITION D.1
11131114 *Proof.* Let g be the continuous function $g(P) = t - \int_E \Phi(x) dP(x)$ and $f(P) = W_2^2(P, Q)$. The
1115 set $\{P \in \mathcal{M}(E) \mid \int_E \Phi(x) dP(x) \geq t\} = g^{-1}([0, \infty))$ is closed for the weak convergence as
1116 $[0, \infty)$ is closed. Then the projection problem is well-defined. Before applying the Lagrange
1117 multiplier theorem, we must verify Slater's condition. By continuity of Φ_i and compactness of E we
1118 can consider, for $i = 1, \dots, k$, $x_0^i \in E$ such that $\Phi_i(x_0^i) = \min_{x \in E} \Phi_i(x)$. Take $\alpha \in \mathbb{R}$ such that
1119 $\max_{1 \leq i \leq k} t_i / \Phi_i(x_0^i) < \alpha$. Then $\bar{P} = \alpha \delta_{x_0^i}$ satisfies $g_i(\bar{P}) < 0$ for $i = 1, \dots, k$. The Lagrange
1120 multipliers theorem guarantees that P^* is optimal for 7 if, and only if, there exists $\lambda_1, \dots, \lambda_k \geq 0$
1121 such that

$$\begin{aligned}
1122 \quad \sum_{i=1}^k \lambda_i \nabla g_i(P^*) &\in \partial f(P^*) \quad (\text{extremality condition}) \\
1123 \quad g(P^*) &\leq 0 \quad \text{and } \lambda_i g_i(P^*) = 0 \text{ for all } i = 1, 2, \dots, k \quad (\text{feasibility})
\end{aligned}$$

1124 The proof of the extremality condition is completely analogous to the proof of Theorem 3.3, replacing
1125 Q_n by Q . To conclude, we need to find $\lambda^* \in \mathbb{R}_{\geq 0}^k$ such that the feasibility condition is satisfied:

$$1126 \quad t \leq \int_E \Phi(T_{\lambda^*}(x)) dQ(x) \text{ and } \lambda^* \top \left(t - \int_E \Phi(T_{\lambda^*}(x)) dQ(x) \right) = 0. \quad (10)$$

1127 \square

1134 E.4 JOINT CONVEXITY OF THE WASSERSTEIN DISTANCE UNDER MIXTURE-PRESERVING
1135 COUPLING
11361137 Let Q_n and Q_t be probability distributions over $\mathcal{X} \times \{0, 1\}$, where $X \in \mathcal{X}$ denotes the data and
1138 $S \in \{0, 1\}$ is a binary group attribute.1139 For each $s \in \{0, 1\}$, define the conditional distributions:
1140

1141
$$Q_{n,s} := Q_n(\cdot | S = s), \quad Q_{t,s} := Q_t(\cdot | S = s),$$

1142 and let $\pi := Q_n(S = 1) \in [0, 1]$. Then, define the marginal (mixture) distributions over \mathcal{X} as:
1143

1144
$$\mu := \pi Q_{n,1} + (1 - \pi) Q_{n,0}, \quad \nu := \pi Q_{t,1} + (1 - \pi) Q_{t,0}.$$

1145 We prove the inequality:
1146

1147
$$W_2^2(\mu, \nu) \leq \pi W_2^2(Q_{n,1}, Q_{t,1}) + (1 - \pi) W_2^2(Q_{n,0}, Q_{t,0}).$$

1149 *Proof.* Let $\gamma_1 \in \Pi(Q_{n,1}, Q_{t,1})$ and $\gamma_0 \in \Pi(Q_{n,0}, Q_{t,0})$ be couplings between the corresponding
1150 conditionals. Define the coupling:
1151

1152
$$\gamma := \pi \gamma_1 + (1 - \pi) \gamma_0.$$

1153 Then $\gamma \in \mathcal{P}(\mathcal{X} \times \mathcal{X})$, and its marginals are:
1154

1155
$$\gamma^X = \pi Q_{n,1} + (1 - \pi) Q_{n,0} = \mu, \quad \gamma^Y = \pi Q_{t,1} + (1 - \pi) Q_{t,0} = \nu.$$

1156 Thus, $\gamma \in \Pi(\mu, \nu)$ is a valid coupling between μ and ν .
11571158 Now compute the transport cost under γ :
1159

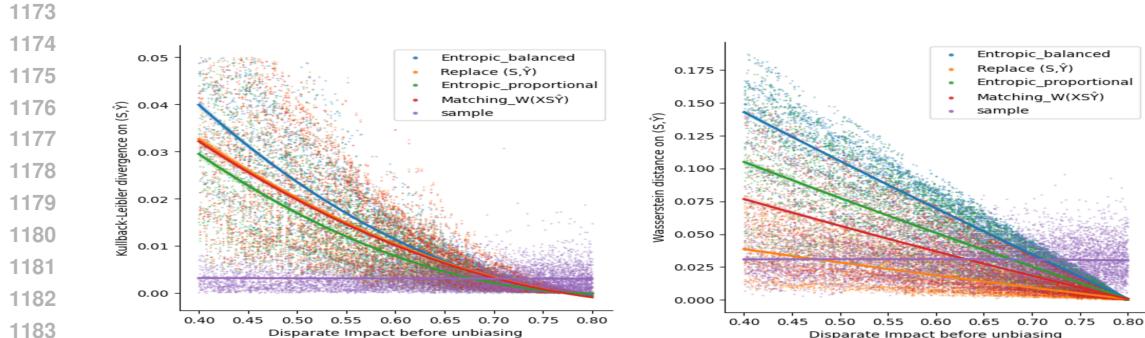
1160
$$\int_{\mathcal{X} \times \mathcal{X}} d(x, y)^2 d\gamma(x, y) = \pi \int d(x, y)^2 d\gamma_1(x, y) + (1 - \pi) \int d(x, y)^2 d\gamma_0(x, y),$$

1161 (Because the distance is an integrable function, we can use the linearity of the Lebesgue integral with
1162 respect to measures)
1163

1164
$$= \pi W_2^2(Q_{n,1}, Q_{t,1}) + (1 - \pi) W_2^2(Q_{n,0}, Q_{t,0}).$$

1165 Since $W_2^2(\mu, \nu)$ is the infimum of such costs over all couplings in $\Pi(\mu, \nu)$, we obtain:
1166

1167
$$W_2^2(\mu, \nu) \leq \pi W_2^2(Q_{n,1}, Q_{t,1}) + (1 - \pi) W_2^2(Q_{n,0}, Q_{t,0}).$$

1168 \square 1169 F RESULTS WITH SIMULATED DATASET
11701171
1172 Figure 7: Logistic regression plots showing how the distance (left : $KL_{(S, \hat{Y})}$ and right: $W_{(S, \hat{Y})}$)
1173 between the original and 20% of manipulated datasets varies with the initial Disparate Impact for
1174 each unbiasing method, with the manipulated dataset having DI = 0.8. The sample's results in the
1175 legend represent values from random samples from the original distribution Q_n .
1176

We create a simulated dataset to cover all possible cases where $S \in \{0, 1\}$ and $\hat{Y} \in \{0, 1\}$. The simulation parameters control $\mathbb{E}(S)$, $\mathbb{E}(\hat{Y} | S = 0)$, and $\mathbb{E}(\hat{Y} | S = 1)$, allowing us to represent a wide range of scenarios. Fig 7 presents two logistic regression graphs illustrating how the distance between the complete original and 20% of manipulated data evolves from the initial Disparate Impact (before debiasing), to reach a DI=0.8, for our different correction methods. Methods with the highest KL and Wasserstein distance implies a high risk of being detected by a statistical test on the distribution. The lower the initial DI, the greater the change required to reach an acceptable DI (making fraud detection more likely). When the original DI is ≥ 0.55 , the methods Entropic, Replace and Matching are equivalent in terms of KL divergence. Regarding the Wasserstein distance, they become equivalent for original DI values ≥ 0.65 . Since the Sample method does not modify the original data, it preserves the distributional distances (KL and Wasserstein), and can be used as a reference: when the logistic regression score of a method is lower than that of Sample, we can infer that the modified dataset would not be detected as significantly different from the original according to these criteria. Among all methods, $M_{W(X,S,\hat{Y})}$ with an original DI $\in [0.45, 0.70]$ achieves the best trade-off between KL divergence and Wasserstein distance, reaching the required DI while keeping the modified distribution close to the original.

G FURTHER STUDIES ON THE IMPACT OF THE SAMPLE SIZE

In our conclusion, we recommended strongly to the referring authorities, that in order to prevent undetectable fraud, with appropriate statistical tests, requiring a bigger sample size is one of the single most important point. To further support this claim, we provide in this section a study on the sample size impact on the Adult dataset.

Using the best performing fair-washing method ($M_{W(X,S,\hat{Y})}$, Entropic_balanced and Entropic_proportional), we observe on Fig. 8 the highest DI achievable without being detected by our 7 statistical tests depending on the sample size required.

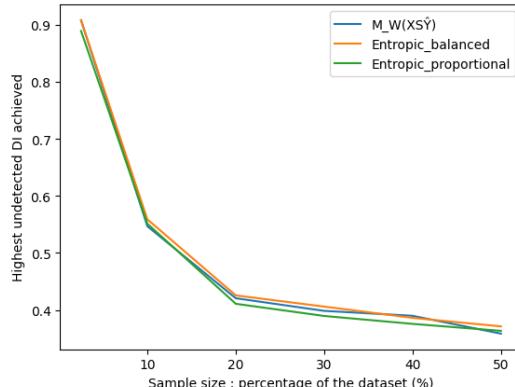


Figure 8: Highest undetected DI achieved without being detected in the Adult dataset by different fair-washing methods depending on the sample size.

H MORE INFORMATION ON THE METHODS

H.1 REPLACING KEY ATTRIBUTES AND WASSERSTEIN-MINIMIZING SAMPLING

In this section, we precise how Disparate Impact (DI) can be increased using methods based on optimal transport. We can exchange between the 4 bins of points : $(Y = 0, S = 0)$, $(Y = 0, S = 1)$, $(Y = 1, S = 0)$ and $(Y = 1, S = 1)$, thus $4(4 - 1) = 12$ possible alterations. Due to the definition of DI, we can exclude the path from $(Y = 1, S = 0)$ to $(Y = 0, S = 0)$ and the path from $(Y = 1, S = 1)$ to $(Y = 0, S = 1)$ as it would decrease the DI, bringing the total to 10 possible transports.

1242 Moreover, If we consider the Wasserstein cost only on (S, \hat{Y})), once again based on its definition,
 1243 because it is more advantageous to have $(Y=1, S=0)$ points instead of $(Y=0, S=0)$, similarly for $(Y=0,$
 1244 $S=1)$ points instead of $(Y=1, S=1)$, we only have 6 worthy alterations to consider instead of 10.
 1245 Indeed, for instance, it would be suboptimal to transport a $(Y=1, S=1)$ point to $(Y=0, S=0)$ as moving
 1246 it to $(Y=1, S=0)$ would result in a higher DI with a lesser effort (with the cost is calculated only on
 1247 (S, \hat{Y}))).

1248 Furthermore, transport between the bins $(Y = 1, S = 0)$ and $(Y = 0, S = 1)$ (i.e., between the
 1249 two back points in Fig. 1) can also be excluded from the optimal solution. Indeed, transport from
 1250 $(Y = 1, S = 0)$ to $(Y = 0, S = 1)$ would both reduce the number of favorable outcomes (decreasing
 1251 the numerator of the DI) and increase the number of unfavorable outcomes for the protected group
 1252 (increasing the denominator), thus leading to a lower DI. In contrast, if the bin $(Y = 0, S = 1)$ move
 1253 from $(Y = 0, S = 0)$, the DI is improved, as only the denominator increases while the numerator
 1254 remains unchanged

1255 To summarize, if the cost is calculated on (S, \hat{Y})), then we theoretically only have 4 moves to consider,
 1256 the arrows in Fig. 1. The arrow from $(Y=0, S=0)$ toward $(Y=0, S=1)$ is doted for the following reason:
 1257 in practice, for the simulated dataset presented in Section F, this transport was never optimal meaning
 1258 not the one which increases the DI the most compared to other transports. The most rewarding one
 1259 was usually from the transport from $(Y=0, S=0)$ to $(Y=1, S=0)$. This leads us to write the Alg. 2 which
 1260 is the less concise version of Alg. 1. A notable difference between the two is that Alg. 2 has a speed
 1261 parameter which express a trade-off performance rapidity as explained in Section H.3.

1262 **Termination analysis** At every iteration of the while loop, the DI is strictly increasing, moreover,
 1263 the number of iterations is limited by the number of points $|\{X|Y = 1, S = 1\}|$ and $|\{X|Y =$
 1264 $0, S = 0\}|$. In the extreme case where no transport would be possible (either of these sets is empty if
 1265 $|\{X|Y = 1, S = 1\}| = 0$ or $|\{X|Y = 0, S = 0\}| = 0$) the algorithm could attempt to increase DI
 1266 indefinitely (towards $+\infty$). This ensures that the algorithm necessarily terminates.

1267 **Objective analysis** The condition of the while loop is precisely aligned with the objective of our
 1268 problem. Consequently, exiting the loop implies that a solution has been found. Finally, a more
 1269 challenging question concerns the optimality of the solution returned by the algorithm. We leave this
 1270 question open and do not provide a formal guarantee of optimality.

1274 **Algorithm 2** Replace (S, \hat{Y}) non simplified algorithm

1275 speed $\in \mathbb{N}^*$; $0 < \text{threshold} < 1$

1276 2: $b = [|\{X|Y = 1, S = 1\}|, |\{X|Y = 0, S = 1\}|, |\{X|Y = 1, S = 0\}|, |\{X|Y = 0, S = 0\}|]$

1277 $\text{DI} = \text{DI_fct}(b)$

1278 4: $\text{swap_possible} = \{Y_0S_0, Y_1S_1\} \rightarrow Y_0S_1, \{Y_0S_0\} \rightarrow Y_1S_1$

1279 $\text{dic_swap_translation} = \{Y_0S_0 \rightarrow Y_1S_0 : [0, 0, 1, -1], Y_0S_0 \rightarrow Y_0S_1 : [0, 1, 0, -1], Y_1S_1 \rightarrow$

1280 $Y_1S_0 : [-1, 0, 1, 0]\}$

1281 6: $\text{dic_swap_number} = Y_0S_0 \rightarrow Y_1S_0 : 0, Y_0S_0 \rightarrow Y_0S_1 : 0, Y_1S_1 \rightarrow Y_1S_0 : 0$

1282 $\text{DI}_n = [0, 0, 0]; \text{Matrix_}b = M_{(3,4)}(0)$

1283 8: **while** $\text{DI} \uparrow \text{threshold}$ **do**

1284 $i = 0$

1285 10: **for** $\text{swap} \in \text{swap_possible}$ **do**:

1286 $b_n = b + \text{dic_swap_translation}[\text{swap}]$ $\triangleright Y_0S_0 \rightarrow Y_1S_0$ translation

1287 12: $\text{Matrix_}b[i, :] = \text{copy}(b_n)$ \triangleright We keep in memory the bins

1288 14: $\text{DI}_n[i] = \text{DI.fct}(b_n)$

1289 14: $i = i + 1$

1290 16: **end for**

1291 16: $j = \text{argmax}(\text{DI}_n)$

1292 16: $\text{dic_swap_done}[\text{swap_possible}[j]] = \text{dic_swap_done}[\text{swap_possible}[j]] + \text{speed}$ \triangleright More

1293 16: information on speed discussed in next subsection

1294 18: $b = b + \text{speed} * (\text{Matrix_}b[j, :] - b)$

1295 18: $\text{DI} = \text{DI_fct}(b)$ \triangleright Equal to $\text{DI}_n[j]$ only if speed = 1

1296 20: **end while**

1297 17: **return** dic_swap_number

1296 H.2 WASSERSTEIN GRADIENT GUIDED METHOD
12971298 **Algorithm 3** Fair-washing using Monge Kantorovich constrained projection algorithm `Grad`
12991300 **Require:** Neural network f , data Z_0 , sensitive attribute $S \in \{0, 1\}^n$, prediction thresh-
1301 old τ , desired DI threshold t , learning rate η , constraint weight λ , delta type (\in
1302 {balanced, proportional})1303 **Ensure:** Updated samples Z minimizing $\|Z - Z_0\|^2$ while satisfying $\text{DI}(f(Z), S) \geq t$ 1304 1: **Compute:** $\hat{Y} \leftarrow \mathbb{I}[f(Z_0) > \tau]$ \triangleright where \mathbb{I} is the indicator function1305 2: Compute $P_0 = \mathbb{E}[\hat{Y} | S = 0]$, $P_1 = \mathbb{E}[\hat{Y} | S = 1]$, $n_1 = \mathbb{E}[S = 1]$, $n_0 = \mathbb{E}[S = 0]$ 1306 3: Compute δ_s according to delta type \triangleright Done following Prop.3.2

1307 4: Set new target rates:

1308
$$\tilde{P}_1 = P_1 - \delta_1/n_1, \quad \tilde{P}_0 = P_0 + \delta_0/n_0$$

1309 5: **for** $s \in \{0, 1\}$ **do**1310 6: Initialize $\lambda^{(s)} \leftarrow \lambda$ 1311 7: **while** $(\mathbb{E}[\hat{Y}^{(s)}] < \tilde{P}_s) \vee (\mathbb{E}[\hat{Y}^{(s)}] > \tilde{P}_s \wedge s = 1)$ **do**1312 8: Initialize $Z_i^{(s)} \leftarrow Z_0^{(s)}$, $\eta_i \leftarrow \eta$ \triangleright where $Z_0^{(s)}$ is the subset of inputs with $S = s$ 1313 9: **for** $i \in 1, \dots, 10$ **do**

1314 10: Iteration of gradient step:

1315
$$\nabla = 2(Z_i^{(s)} - Z_0^{(s)}) + \lambda^{(s)} \cdot \nabla_Z f(Z_i^{(s)}) \cdot d_s$$

1316 where $d_s = \begin{cases} +1 & \text{if } s = 0 \\ -1 & \text{if } s = 1 \end{cases}$ \triangleright Gradient choice following Thm. 3.3

1317
$$Z_i^{(s)} \leftarrow Z_i^{(s)} - \eta_i \cdot \nabla$$

1318 11: Recompute predictions $\hat{Y}_i^{(s)} = \mathbb{I}[f(Z_i^{(s)}) > \tau]$ 1319 12: $\eta_i \leftarrow \eta_i/1.2$ \triangleright Planning strategies could improve the performance, 1.2 was what we
1320 founded worked the best in practice (following the choice of the coefficient multiplying $\lambda^{(s)}$)1321 13: **if** 1D-transport variant **then**1322 14: Project each feature of $Z_i^{(s)}$ to its closest achievable value1323 15: **end if**1324 16: **if** $\mathbb{E}[\hat{Y}_i^{(s)}] < \tilde{P}_s$ (or $> \tilde{P}_s$ for $s = 1$) **then**

1325 17: Break Exit for and while loop

1326 18: **end if**1327 19: **end for**1328 20: Update : $\lambda^{(s)} \leftarrow 1.2 \times \lambda^{(s)}$ \triangleright The solution of the optimization problem with this
1329 λ is not within the constrained space (or we did not converge towards it fast enough at least);
1330 hence we increase the λ progressively. Note that the 1.2 was what we founded worked best in
1331 practice (trade-off between precision with lower value and fast computation), however further
1332 tuning would be relevant.1333 21: **end while**1334 22: Compute perturbation $T^{(s)} = Z^{(s)} - Z_s$ 1335 23: **end for**1336 24: Assemble final perturbation T such that:

1337
$$T_i = \begin{cases} T_i^{(0)} & \text{if } S_i = 0 \text{ and } \hat{Y}_i = 0 \\ T_i^{(1)} & \text{if } S_i = 1 \text{ and } \hat{Y}_i = 1 \\ 0 & \text{otherwise} \end{cases}$$

1338 25: **return** $Z = Z_0 + T$ 1339 1340 Alg. 3, which is a simplified version of the true algorithm (code available on our Github¹), explains
1341 the main ideas being :

1342

1 $\text{https://anonymous.4open.science/r/Inspection-76D6/}$

1350 1. We find the target probabilities for each subgroup of s
 1351 2. We treat each $Q_{n,s} := Q_n(\cdot | S = s)$ separately
 1352 3. The gradient steps stem from Theorem 3.3
 1353 4. We start with a small constraint weight and increase it progressively
 1354
 1355

1356 The elements present in our code but which we did not include in Alg. 3 for visibility are mostly
 1357 computational optimizations. For instance, we did not compute the gradient on neither the points
 1358 whose network decision we would not modify Z_i (i.e., with if $S_i = 0$ and $\hat{Y}_i = 1$) nor on points $Z_i^{(s)}$
 1359 whose $\hat{Y}_i^{(s)}$ are already modified. We also kept streakily only the minimum number of modification
 1360 necessary: some gradient step would change the network decision of multiple points at the same
 1361 time and without this process our result would not be tight regarding \tilde{P}_1, \tilde{P}_0 (as we would have
 1362 changed individuals' outcome more than necessary) and thus overachieving $\text{DI}(f(Z), S) \geq t$ which
 1363 is not beneficial in our use case where we highlighted the trade-off between fairness correction and
 1364 distribution shift.

1365
 1366 **H.3 COSTS OF THE METHODS, SOLUTIONS AND TESTS**
 1367

Methods	Summary	Solution
$M_{W(X, S, \hat{Y})}$	3–10 minutes	Trade-off possible
Replace(S, \hat{Y})	≤ 2 minutes	Trade-off possible
Entropic_b / Entropic_p	≤ 1 minutes	
Grad_p / Grad_b	3–15 minutes, depends on λ and NN architecture	Trade-off possible
Grad_p (1D-t) / Grad_b (1D-t)	3–20 minutes, depends on λ and NN architecture	Trade-off possible

1375
 1376 Table 8: Time cost analysis of the methods, note that every estimation depends on the original dataset,
 1377 its Disparate Impact and the DI constraint. Time estimation given for a dataset size of 20k individuals.

Sample size	Test performed	Average testing time (second)
500	$\text{DI}(S) \geq \text{DI}(Q_t)$	0.00
	$KL(S, \hat{Y})$	0.00
	$KL(X, S, \hat{Y})$	0.78
	$W(S, \hat{Y})$	0.29
	$W(X, S, \hat{Y})$	0.48
1000	$\text{DI}(S) \geq \text{DI}(Q_t)$	0.00
	$KL(S, \hat{Y})$	0.00
	$KL(X, S, \hat{Y})$	0.85
	$W(S, \hat{Y}) + W(X, S, \hat{Y})$	1.57
2000	$\text{DI}(S) \geq \text{DI}(Q_t)$	0.00
	$KL(S, \hat{Y})$	0.02
	$KL(X, S, \hat{Y})$	3.13
	$W(S, \hat{Y})$	4.93
	$W(X, S, \hat{Y})$	15.51
4000	$\text{DI}(S) \geq \text{DI}(Q_t)$	0.00
	$KL(S, \hat{Y})$	0.02
	$KL(X, S, \hat{Y})$	3.34
	$W(S, \hat{Y})$	9.58
	$W(X, S, \hat{Y})$	32.30

1402
 1403 Table 9: Time analysis done during our Highest undetected achievable DI per datasets and methods

1404
 1405 **Time** In Table 8, we wrote Trade-off possible for the methods which might take a more than a day
 1406 to run with millions of individuals. The methods $M_{W(X, S, \hat{Y})}$ and $\text{Replace}(S, \hat{Y})$ evaluate at each
 1407 step amongst 3 or 4 possibilities which is the optimal to take, we can only evaluate once for more
 1408 step at the same time for both methods, this becomes a trade-off between speed and precision, this is
 1409 what we mean by trade-off possible for those methods. Moreover, we can also think about a trade-off
 1410 about the number of transport mapping to consider, as explained in the Section. H.2.

1411 For the `Grad` variant methods, we do not anticipate any changes to the model architecture. However,
 1412 if inference from the neural network is computationally expensive, the overall cost of the method
 1413 will also be high. Developing an efficient solution to this issue remains an open challenge. However,
 1414 with tabular data model's number of parameters tends to be controllable, and thus in our experiments
 1415 the reason of such a long time compute time (relative to the number of individual) was because we
 1416 optimized for the λ parameter. We remind that to have the best results we start with a very small λ
 1417 which we progressively increase ; we thus can simply initialize the algorithm with a bigger λ to save
 1418 computing time, another speed precision trade-off.

1419 The results in Table 9 were obtained through the following procedure. For each sample, we recorded:
 1420 (1) the total execution time of the testing pipeline, and (2) the reason the pipeline stopped. Since each
 1421 sample must pass all five tests, the pipeline halts as soon as one test is failed. Based on our prior
 1422 expectations regarding the relative runtime of the tests. To isolate the runtime of each individual test,
 1423 we subtracted the mean runtime of the preceding tests from the total time observed at the stopping
 1424 point. The results show that while all tests are fast for small sample sizes (e.g., 500 samples), the
 1425 tests based on Wasserstein distances (in particular $W(X, S, \hat{Y})$) are the most time-consuming.

Methods	Summary	Solution
$M_{W(X, S, \hat{Y})}$	$N \times N$ distance matrix	
$\text{Replace}(S, \hat{Y})$	Negligible	Trade-off possible
<code>Entropic_b</code> / <code>Entropic_p</code>	Negligible	
<code>Grad(b/p)</code> / (1D)	NN gradient to compute on at worse on N ind	Batch approach

1432
 1433 Table 10: Memory cost analysis of the methods for a $N \times J$ dataset.
 1434

1435 **Memory** We consider only the `Grad` variant methods to potentially pose memory-related issues.
 1436 Although it would be natural to adapt these methods to operate in a batch-wise manner, we did not
 1437 implement such an approach in our current work.
 1438

1440 I OPTIMIZATION RESULT VALUES

1442 I.1 WASSERSTEIN DISTANCE

Dataset	Unbiasing Methods							
	Grad_p	Grad_b	Grad_p_1D	Grad_b_1D	Rep (S, \hat{Y})	$M_{W(X, S, \hat{Y})}$	Entr_b	Entr_p
ADULT	0.10	0.08	0.13	0.09	0.05	0.06	0.28	0.35
EMP	0.18	0.10	0.18	0.10	0.06	0.08	0.22	0.37
INC	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
MOB	0.21	0.06	0.23	0.08	0.03	0.05	0.18	0.64
PUC	0.21	0.13	0.22	0.14	0.12	0.16	0.33	0.48
TRA	0.02	0.02	0.02	0.02	0.01	0.01	0.03	0.03
BAF	0.01	0.00	0.02	0.01	0.00	0.01	0.02	0.05

1454
 1455 Table 11: Wasserstein distance manipulation cost of the fair-washing methods ($\text{DI}(Q_t) \geq 0.8$), cost
 1456 calculated on the projected dataset : $W(Q_n, Q_t)$ with the original dataset Q_n and $Q_t = f(Q_n)$ with
 1457 f the fair-washing method

Unbiasing Methods								
Dataset	Grad_p	Grad_b	Grad_p_1D	Grad_b_1D	Rep (S, \hat{Y})	$M_{W(X, S, \hat{Y})}$	Entr_b	Entr_p
ADULT	0.09	0.08	0.09	0.08	0.05	0.05	0.08	0.09
EMP	0.18	0.10	0.18	0.10	0.06	0.06	0.10	0.18
INC	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
MOB	0.18	0.06	0.18	0.06	0.03	0.03	0.06	0.18
PUC	0.21	0.13	0.21	0.13	0.12	0.10	0.13	0.21
TRA	0.02	0.02	0.02	0.02	0.01	0.01	0.02	0.02
BAF	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.00

Table 12: Wasserstein distance manipulation cost of the fair-washing methods ($\text{DI}(Q_t) \geq 0.8$), cost calculated on the projected dataset : $W(Q_{n,(S,\hat{Y})}, Q_{t,(S,\hat{Y})})$ with the original dataset Q_n and $Q_t = f(Q_n)$ with f the fair-washing method

I.2 KULLBACK-LEIBLER DIVERGENCE

Unbiasing Methods								
Dataset	Grad_p	Grad_b	Grad_p_1D	Grad_b_1D	Rep (S, \hat{Y})	$M_{W(X, S, \hat{Y})}$	Entr_b	Entr_p
ADULT	∞	∞	∞	∞	∞	0.03	0.02	0.03
EMP	∞	∞	∞	∞	∞	0.04	0.04	0.07
INC	∞	∞	∞	∞	∞	0.00	0.00	0.00
MOB	∞	∞	∞	∞	∞	0.02	0.03	0.17
PUC	∞	∞	∞	∞	∞	0.06	0.07	0.10
TRA	∞	∞	∞	∞	∞	0.00	0.00	0.00
BAF	∞	∞	∞	∞	∞	0.00	0.00	0.00

Table 13: KL divergence manipulation cost of the fair-washing methods ($\text{DI}(Q_t) \geq 0.8$), cost calculated on the projected dataset : $\text{KL}(Q_n, Q_t)$ with the original dataset Q_n and $Q_t = f(Q_n)$ with f the fair-washing method

Unbiasing Methods								
Dataset	Grad_p	Grad_b	Grad_p_1D	Grad_b_1D	Rep (S, \hat{Y})	$M_{W(X, S, \hat{Y})}$	Entr_b	Entr_p
ADULT	0.02	0.02	0.02	0.02	0.03	0.03	0.02	0.03
EMP	0.06	0.03	0.06	0.03	0.04	0.04	0.04	0.07
INC	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MOB	0.12	0.03	0.12	0.03	0.02	0.02	0.03	0.17
PUC	0.09	0.06	0.09	0.06	0.08	0.07	0.07	0.10
TRA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
BAF	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Table 14: KL divergence manipulation cost of the fair-washing methods ($\text{DI}(Q_t) \geq 0.8$), cost calculated on the projected dataset : $\text{KL}(Q_{n,(S,\hat{Y})}, Q_{t,(S,\hat{Y})})$ with the original dataset Q_n and $Q_t = f(Q_n)$ with f the fair-washing method

J ABLATION STUDY ON THE MMD TEST

We report the results in Table 15, which presents the highest Disparate Impact (DI) achieved by samples that remained undetected by the statistical tests based on KL divergence, Wasserstein distance, and the Kolmogorov–Smirnov (KS) test. This table corresponds to Table 3, but excludes the two tests based on the MMD distance.

From Table 15, we observe that excluding the MMD tests had negligible impact on detection outcomes. The only notable difference arises in the BAF dataset with a 20% sampling rate, where the achieved DI is slightly higher. We also point out that, due to the inherent randomness in sampling (100 random samples are drawn for each combination of dataset, fair-washing method, sample size, and target DI(Q_t)), we occasionally found samples that passed all seven tests and exhibited marginally higher DI than those evaluated with only five tests. These cases are indicated by a ‘+’ symbol in parentheses in Table 15.

Dataset	Original	S size (%)	Rep (S, \hat{Y})	Entr_b	Entr_p	$M_{W(X, S, \hat{Y})}$
ADULT	0.30	10	0.45(-0.05)	0.53 (-0.01)	0.55 (+0.03)	0.54 (+0.01)
		20	0.38(-0.03)	0.43 (+0.01)	0.42(+0.01)	0.43 (+0.01)
EMP	0.30	10	–	0.38(+0.03)	0.39 (+0.03)	0.39 (+0.02)
		20	–	0.36 (+0.02)	0.35(-0.01)	0.36 (+0.01)
INC	0.67	10	0.88	0.95(+0.01)	0.95(+0.01)	0.95(+0.02)
		20	0.83	0.84(+0.01)	0.84	0.84
MOB	0.45	10	0.54(+0.01)	0.53(+0.01)	0.51	0.55 (+0.02)
		20	0.48(-0.01)	0.50	0.49	0.50
PUC	0.32	10	–	0.36 (+0.03)	0.36 (+0.01)	0.35
		20	–	–	–	–
TRA	0.69	10	0.76(-0.03)	0.84(+0.01)	0.84	0.84
		20	0.71(-0.06)	0.80(+0.01)	0.80(+0.01)	0.81
BAF	0.35	10	–	1	1	1
		20	–	0.83(+0.06)	0.84(+0.05)	0.85 (+0.06)

Table 15: Highest undetected (without the MMD-based statistical tests) achievable Disparate Impact for each dataset, sample size (S Size) and fair-washing method. The symbol – indicates that some methods couldn’t reach a DI improvement. To emphasize the best method to use in order to deceive the auditor, we put the DI achieved in bold when one or two over-performed the others. The number in parentheses are here to indicate the difference between those results and the results obtained with the MMD-based tests (Result without MMD - Result with).

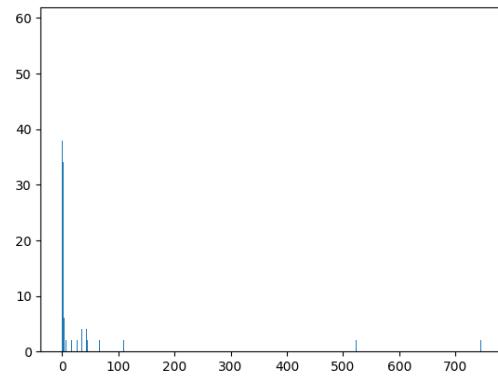
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

1566
1567

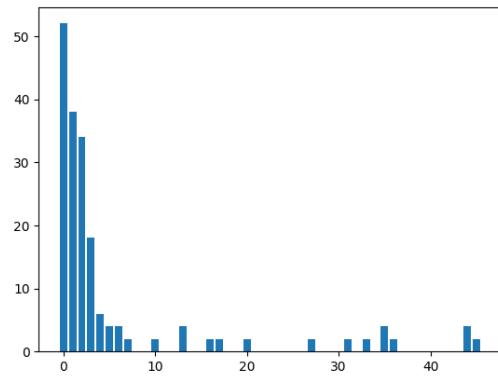
K FRAUD DETECTION

1568
1569K.1 DISTRIBUTION OF TRIES BEFORE ACCEPTANCE OF \mathcal{H}_0 1570
1571
1572
1573
1574

As shown in Fig 9, taking only 30 or 50 samples instead of 1000 gives us respectively 73% or 78% accuracy for the tests. This is arguably not that high, however knowing that we would have needed the combination of 5 statistical tests to accept our sample in our use case, it still gives us a good approximation to whether the test have a chance to be accepted (as it is harder to be accepted by the combination of 5 tests than the individuals one).

1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587

(a) Complete distribution



(b) Zoom on under 50

1588
1589
1590
1591
1592

Figure 9: Distribution of number of tries to find an accepted sample for \mathcal{H}_0 for the statistical test KS or $\text{KL}(S, \hat{Y})$ with a maximum of 1000 tries per configuration (method, dataset, test) for all datasets.

1593

K.2 HIGHEST UNDETECTED ACHIEVABLE DISPARATE IMPACT PROBABILITIES AND ADDITIONAL GRAPH

1594
1595
1596

We add details to Table 3 results, particularly its stability towards the number of sampling tries.

1597
1598
1599
1600
1601
1602

- We would have had 95%, 97% and 98% of similar results if we tried respectively 10, 20 and 30 samples compared to 100. (we had respectively 41, 24 and 19 scenarios which have us different results over the span of 896 combinations).
- In configurations where a fairer falsely compliant sample was found, it was generally around the 11th sample, while the median was equal to 4. (See Fig. 11)

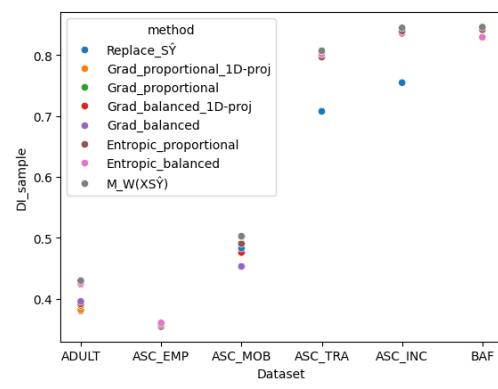
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Figure 10: Highest achieved DI for all Datasets and methods (when they improve the original DI), with sample size of 20% of the dataset.

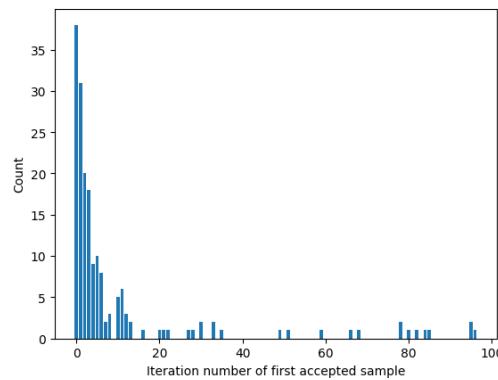


Figure 11: Distribution of the number of sample tried before first accepted one for all datasets.