Under review as a conference paper at ICLR 2026

EXPOSING THE ILLUSION OF FAIRNESS:
AUDITING VULNERABILITIES TO DISTRIBUTIONAL
MANIPULATION ATTACKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Proving the compliance of Al algorithms has become an important challenge with
the growing deployment of such algorithms for real-life applications. Inspecting
possible biased behaviors is mandatory to satisfy the constraints of the regulations
of the EU Artificial Intelligence’s Act. Regulation-driven audits increasingly
rely on global fairness metrics, with Disparate Impact being the most widely
used. Yet such global measures depend highly on the distribution of the sample
on which the measures are computed. We investigate first how to manipulate
data samples to artificially satisfy fairness criteria, creating minimally perturbed
datasets that remain statistically indistinguishable from the original distribution
while satisfying prescribed fairness constraints. Then we study how to detect
such manipulation. Our analysis (i) introduces mathematically sound methods
for modifying empirical distributions under fairness constraints using entropic
or optimal transport projections, (ii) examines how an auditee could potentially
circumvent fairness inspections, and (iii) offers recommendations to help auditors
detect such data manipulations. These results are validated through experiments
on classical tabular datasets in bias detection. The code is available at https |
//anonymous.4open.science/r/Inspection—-76D6/.

1 INTRODUCTION

Fairness auditing has emerged as a critical practice to ensure that machine learning models comply
with ethical and legal standards by not exhibiting discriminatory bias (Barocas et al, 2019} Besse
et al.,|2022; Oneto & Chiappal [2020; Wang et al.,|2022). High-profile investigative audits, such as
the ProPublica analysis of the COMPAS recidivism risk tool, have exposed significant biases against
certain demographic groups |Angwin et al.|(2016)). These findings underscored the societal harms
of unverified Al systems and prompted calls for regular fairness audits by independent parties |[Raji
et al.|(2020). In response, regulators have begun instituting fairness compliance requirements. For
instance, the EU’s proposed Al Act mandates bias monitoring, and in the U.S., the Disparate Impact
DI doctrine (the “80% rule”) is used to quantify indirect discrimination in algorithms Feldman et al.
(2015). This doctrine requires that the selection rate for a protected group be at least 80% of that
of the most favored group. Consequently, the demographic parity metric (also known as statistical
parity) has become a standard global fairness criterion which has inspired many mitigation methods,
for example, in Hardt et al.| (2016b); |Gouic et al. (2020); |Chzhen et al.| (2020). A small demographic
parity gap or a ratio above 0.8 is expected for fairness under this rule, along with other metrics such
as equalized odds and predictive parity. These metrics provide quantifiable targets for auditors and
have been integrated into various auditing toolkits [Bellamy et al.| (2018)); Bird et al.| (2020).

We consider an auditing framework in which the auditee submits a sub-sample of their dataset to
a regulatory authority, either by providing the algorithm’s outputs on that sample or by sharing
the sample itself along with API access to the model, allowing the auditor to compute outputs
independently. The supervisory body is then responsible for verifying that the submitted sample is
sufficiently representative (in terms of distributional distances) of the auditee’s complete dataset. This
framework is particularly relevant for high-risk systems, where rigorous oversight is required. The
supervisory authority may be internal (e.g., a general inspection body) or external, such as the Cour
des Comptes for public administration or the ACPR for banking supervision.
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Ensuring the good faith of the auditee is critical, as exemplified by the Volkswagen emissions scandal
Jacobs & Kalbers|(2019).Similar concerns arise in machine learning, where inconsistencies in model
behavior during auditing have been documented, such as in the case of Facebook’s models discussed
inBourrée et al.| (2025)). In summary, the auditing framework similar to the one proposed in |Fukuchi
et al.|(2020) involves three distinct entities:

1. The audited entity, which provides a subset of its data and, in the context of the audit,
grants access to run its algorithm on this data.

2. The auditor, who applies standardized procedures to assess whether the dataset and corre-
sponding model outputs satisfy a prescribed fairness criterion, in this case, the DI.

3. The supervisory authority, a higher-level body that oversees the integrity of the entire
auditing process. It ensures that the audited submits a dataset that is representative of the
full underlying data distribution, and that the auditor adheres to accepted auditing protocols.

In this work, our objective is to support supervisory authorities by identifying potential strategies that
audited entities might use to circumvent fairness audits, and by providing tools to detect such attempts.
Building on the notion of manipulation-proof introduced in|Yan & Zhang|(2022), we show how a
dataset that initially violates a fairness criterion, such as Disparate Impact, can be minimally altered
to appear compliant, with limited distributional shift as measured by the Kullback—Leibler (KL)
divergence or the Wasserstein distance. By systematically analyzing these plausible manipulations,
our aim is to raise awareness of audit vulnerabilities and to equip oversight bodies with methods
to detect suspicious modifications, thereby strengthening the reliability and robustness of fairness
auditing processes. Our contributions are the following:

* We introduce an entropic projection under constraint tool to a new field that is fairness
application and auditing, we also build upon this tool to enable constraints on DI.

* We provide mathematical foundations for Wasserstein projection under constraint and
implement its application, as well as other Wasserstein-minimizing algorithm, to control
distribution shift under fairness constraint.

* We assess whether—and to what extent— a sample from the projected distribution can signifi-
cantly increase, without being detected by distributional-based statistical tests, the Disparate
Impact from 7 unfair tabular datasets. These tests would be used by the supervisory authority
to assert the representativeness of the sample.

2 RELATED WORKS

Bias mitigation. Achieving fairness under these metrics has prompted extensive research. One line
of work proposes pre-processing techniques that alter the training data to remove bias. |[Kamiran
& Calders|(2009) introduced a “data massaging” approach, flipping class labels of a few selected
instances to reduce discrimination. [Feldman et al.|(2015) proposed repairing datasets by adjusting
feature values to remove disparate impact, while|Calmon et al.[(2017) framed the problem as a convex
optimization for probabilistic data transformation. More recently, |Celis et al.|(2019) introduced a
maximum entropy approach to learn fair distributions under statistical constraints. |Gordaliza et al.
(2019); |Del Barrio et al.[(2019) or|Chakraborty et al.[(2024)) applied optimal transport (OT) to modify
datasets by respectively reweighting the training dataset or reducing the relationship between the
sensitive attribute and the covariates, ensuring fairness criteria are met while minimizing divergence
from the original distribution. On the other hand, post-processing methods modify the outputs of the
model to enforce fairness and let practitioners retrofit fairness to black-box systems. These methods
modify the attributes of the individuals to modify global fairness measures such as statistical parity
or Equality of opportunity or odds. In|Hardt et al.|(2016b)), authors solves a linear program to find
flipping probabilities that equalize FPR and FNR. OT method can also be used to move the outputs
towards the Wasserstein barycenter. This post-processing method is proven to be optimal with respect
to the accuracy of this model, as discussed in|Jiang et al.| (2020), |Gouic et al.|(2020) or|(Chzhen et al.
(2020).

Fair-washing. Ironically, these same tools can be misused to fake fairness. A growing body of
work highlights how auditees may deliberately manipulate data or outputs to deceive auditors, a
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phenomenon called fair-washing (Aivodji et al.,2019). One major vulnerability is that global fairness
metrics measure the impact of a sensitive attribute on the decision or on the loss of the model.
Yet estimating these probabilities require observations from a test sample. Hence these fairness
measures depend heavily on the audited sample. [Fukuchi et al.| (2020) proposed so-called stealthily
biased sampling, where biased decision-makers curate benchmark datasets that appear fair but mask
discrimination in the full data. Their method guarantees that the audited sample passes fairness
checks , while remaining close to the biased distribution in a way that is hard to detect.

Another form of fair-washing involves model output manipulation. |Aivodji et al.| (2019) showed that
interpretable proxy models can be trained to mimic the behavior of a black-box model but appear
much fairer. These surrogates can be presented as evidence of fairness, while the actual deployed
model remains biased. [Le Merrer & Trédan|(2020) discusses altering decisions during audits, for
instance, temporarily approving more minority applicants to artificially satisfy demographic parity.
Case studies have confirmed discrepancies between model behavior shown to auditors and that
experienced by users [Raji et al.| (2020), reinforcing the idea that audits based solely on observed data
or queries can be manipulated. We note that even explainability tools are vulnerable to exploitation.
Slack et al|(2020) and |Anders et al.|(2020) demonstrated attacks on the explainable methods LIME
Ribeiro et al.|(2016) and SHAP Lundberg & Lee|(2017), generating biased models that appear fair
by masking the influence of sensitive attributes. Shamsabadi et al.| (2023) examined the theoretical
limits of fair-washing detection, showing that under certain conditions, audit evasion may be provably
undetectable. Other approaches leverage external consistency. |Garcia-Borruey et al. (2023) proposed
two-source audits, comparing outputs across APIs and user-facing systems to identify inconsistencies
indicative of manipulation. [Bourrée et al.| (2025) suggested using prior knowledge or independent
ground-truth data to detect implausible distributions. They provide bounds on the extent of bias an
auditee can inject without detection.

In summary, fairness auditing is undergoing an arms race between auditees’ capacity to fake compli-
ance and auditors’ ability to detect manipulation. Our contribution formalize entropic and optimal
transport (OT)-based data transformation methods to simulate audit circumvention and analyze
their detectability, offering guidance for designing more resilient auditing frameworks and oversight
mechanisms.

3 METHODS

3.1 METHODOLOGY

Statistical parity property ensures that the decision of the algorithm does not depend on the sensitive
attribute. In our work we use the well-known Disparate Impact, defined for a model ¥ = f (X)
P(Y =1]5=0)
P(Y =1]5=1)
relationship exists between the outcome of the model and the sensitive variable, which implies a strict
independence in the case where f(X) is a two-class classification model. Hence, several norms or

regulations impose that a model should have its disparate impact greater than a given level ¢, often set
to ¢t = 0.8 as chosen originally by EEOC et al. |(1978)).

by the ratio DI(f,Q,) =

. This quantity is equal to 1 when no probabilistic

In this part, we propose a methodology that enables stakeholders to evade an audit based on the
application of a fairness criterion, the Disparate Impact. Our method aims to construct a dataset
whose distribution is close to the distribution of the original data, while ensuring that the fairness
measure is above a threshold, as required by the regulations. Let (E,B(E)) be a measurable
space. Denote by P(E) and M(FE), respectively the space of probability measures on E and
the space of finite measures in E. Consider a distance d in E. In reality, given an empirical
distribution @,, = % 22;1 0z, where Z, is an i.i.d. sample of a random variable with value in F,
the construction of a falsely compliant dataset is modeled as finding the solution to the optimization
problem : argminpep gy pr(ys,p)=1d(F Qn). In the following, we will consider two different
distances: in Section[3.2] one is related to the similarity for probabilistic inference (KL information),
while in Section the other distance captures geometric information between distances (Monge-
Kantorovitch a.k.a. Wasserstein distance). Consequently, fair-washing amounts to modify the initial
distribution of the data by providing a fake but plausible distribution @Q); in order to achieve that
DI(f,Q:) =tor DI(f,Q:) = t.
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3.2 USING ENTROPIC PROJECTION TO FAKE FAIRNESS

Entropic distributional projection. Set () a probability measure on F. If P is another probability
measure on (E, B(E)), then the KL information is Dxr,(P[Q) = §, log dP dP, if P « @ and

log 9§ € L*(P), and +o0 otherwise. For any resulting dimension k > 1,let ® : Z = (X, 5, Y,Y)e

E— <I>(X .S, Y, Y) € R” be a measurable function representing the shape of the stress deformation
on the whole input. Note that our results are stated for a generic function ® of all variables Z =
(X,S,Y,Y). This includes the case of functions depending only on X, (X, Y) or (X,Y). We set
for two vectors x, y € R¥ the scalar product as {x, ) = = Ty. The problem can be stated as follows:
given the distribution (),,, our aim is to construct a distribution close to @,, but satisfying a constraint
expressed through the mean of the chosen function ®. Actually, for ¢t € R¥, we aim at finding a new
distribution Q satisfying the constraint {,, ®(x) dQ¢(z) = t and being the closest possible to the
initial empirical distribution @, in the sense of KL divergence, i.e. with Dkr,(Q+] Q@) as small as
possible. The following theorem, whose proof can be found in|Bachoc et al.|(2023)), characterizes the
distribution solution Q.

Theorem 3.1. Let t € R* and ® : E — R¥ be measurable. Assume that t can be written as a
convex combination of (X, Yi, Yi1),...,0(X,, Y., Y, ), with positive weights. Assume also that
the empirical covariance matrix Eq (<I><I>T) —Eq, (®)Eq, (") is invertible.

Let Dy ¢ be the set ofall probability measures P on E such that SE x) dP(x) = t. For a vector
EeRF let Z(&) =230 | e(P(Xi Vi, Y2), ), Define now £(t) as the unique minimizer of the strictly
convex function H ESL log Z(&) — (& t). Then, Q; := arginf pep,  Dxr(P[@y) (1)

t
exists and is unique. It can also be computed as (QQ; = % I )\Z(- )5X_ V. v

with, fori e {1,....n}, A" = exp <<§(t),<1>(Xi7?;,Yi)> —log Z(g(t))).

Faking Statistical Parity using Entropic Projection. Let ¢, such that DI(f,Q,) = tin. We
aim at building a distribution Q; such that DI(f, Q) = tpew = tiny for a given tney. Define the

fairness improvement Apy := DI(f,Q:) — DI(f, Q). Note that DI(f, Q) = i?ﬂ? where for

i€{0,1},ny=|{i=1,...,n|Si =s}and As = |{i = 1,...,n|Y; = 1 A S; = s}|. Note also that
Xo =2 Yi(1=5;) and A=, Y;S;. Hence modlfylng the DI can be achieved applying
Theorem 3.1{for Z = (S, Y) and selecting the function

(1—s)f(x) Ao +do
o5, @) = | | andm - e @
1—s no

Our purpose is to improve the perceived fairness of the model. Accordingly, we only consider
increasing the numerator +dg > 0 and decreasing the denominator —§; < 0.

Proposition 3.2 (KL-fair washing method). Finding a solution Q; such that Dy, (Q¢||Q) is mini-
mum and DI(f, Q) = DI(f, Qo) + Apy is achieved by finding the solution to equation|l|with ®
defined as in equation 2] and with the two possible choices of parameters:

A
* Balanced case : set 69 = 01 and 61 = ! v
L4+ 2= (1+52)
1) ) A
* Proportional case : set 202 and 0 = ! 3
no M 1+ 50 (1+ 250)

Remark 3.1. The balanced case corresponds to modifying the individuals from both classes equally,
while the proportional one adjusts the amount of modification in proportion to the classes sizes.

If the target value ¢, is chosen according to the balanced case or the proportional case, we
refer respectively in the Experimental section to the method as Entropic_balanced and
Entropic_proportional.
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3.3 FAIR-WASHING USING OPTIMAL TRANSPORT.

Monge Kantorovich (MK) Projection For two distributions P and Q,, over E — R? a compact
subset, endowed with the norm |. |, recall that their 2 Monge-Kantorovich, a.k.a. Wasserstein distance,
is defined as:

W2(P,Q,) = min J z—y || dr(z,y), 3)
5 ( ) e ) e I 17 dm(x, y)
where II( P, @),,) denotes the set of distributions on £ x F with marginals P and Q,,. We will write
TiQ =Qo T~ to denote the push-forward of a measure by the transport map. As in Section
consider for a given k > 1, a continuous function ®: E — RF representing the constraints. For
fixed t € R¥, the set Dy ; = {P € M(E) | §, ®(x)dP(z) = t} is closed for the weak convergence
and convex, since it is linear in P. The function P — W2(P,Q,) is convex as it is the supremum
of linear functionals by Kantorovich duality (see |Santambrogio| (2015)), therefore the following
projection problem arginf p.p,. , W3 (P, Q) is well-defined.

Theorem 3.3. Consider Q,, = 7" | 67,. Then Qy is a solution to argianeDQWtWQQ(P, Qn) if,
1

and only if, it is defined as Q; = Tx+4Q, = — >\, 07,4 (2,)> where Ty is defined as
n

Tx(Z;) € arg mig |z — Zi|* — X\, ®(x)) 4)

and \* satisfiest = = 37" ®(Tx(Z;)).
Remark 3.2. The previous result stated for the empirical distribution is valid for any distribution Q.

The constraint can be modified to include the condition Dy ; = {P € M(E) | {, ®(x)dP(z) > t}.
This is detailed in Proposition|[D.1|in the Appendix.

Faking Statistical Parity using MK projection. The objective is to construct a fake dataset
drawn from a distribution ()¢ defined as the solution to Q; = arginfpcp, ,W(Qn, P) with
Dpi,. = {P € P(E), DI(P) = t}. Following the framework of the previous section, for a fixed A, we
set ®(z, s, f(x),y) = f(x). Then the constraint on the Disparate Impact DI(Q) > t, can be refor-
mulated with the double inequality §,_,,\ ., f(2)dQ(z) > to =t +doand § _p _, f(2)dQ(z) <

t; = t — & with % > t. As such, we divide the dataset for each s € {0,1}, and consider
Qr=7mQ11 + (1 —m)Qro withm =Pg, (S =1)and Qs := argianeDm,tSW(Qn,s,P) with
the conditional distributions @, s := Q,(- | S = s), Dpiy, = {P € P(E),DI(P) > ty} and
Dpiy, = {P e P(E),DI(P) < t1}.

Following Theorem we compute for all x = Z;, the solution T’ () of the minimization problem
wrtz: L(z,\) = |Z; — z||3 + O\t — f(2)). (5)

This minimization does not have a closed form in general, but it can be achieved using a gradient
descent using a learning step of 7 and computing 2! = z*~! — % (2?) with 28 = 2(z — ) —
A\, Vg f(z)). We point out that this method requires knowledge of the gradients of the classifier,
which will be estimated at each step of the method. To complete the method’s explanation, we need

to clarify how to choose t( and ¢ and \:

1. The choice of ¢ and t; is explained in Section[3.2} balanced or proportional case.

2. M\is aconstraint regulation coefficient, meaning that the bigger ) is, the more the optimization
solution will take into account the constraint {__ Bls—s | (2)dQ(z) < ts. And consequently,

the bigger A is, the farther the solution will be from the original distribution. Therefore, we
start by solving equation [5| with a low A, and we increase it until the constraint is respected.

This method creates new individuals without any constraint on the covariates X, this might be an
issue as this implies no restriction of types (discrete variable staying discrete, i.e., age = 1.002) or
of bounds (age = —1). Thereby, we created a variant of this method that constrains the achievable
covariates: we transport, variable per variable, each covariates toward the nearest (for the Lo norm)
achieved value in the dataset; we call this variant the 1D-transport variant.

Remark 3.3. Note that we chose to modify the output of the model, f(x) € {0,1}. For practical
purposes, to know when the convergence is attained, we look at the logits of the neural network
instead of the binary values: after a sigmoid, f(x) € [0, 1]. We could therefore apply our constraint
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Y : decision

Algorithm 1 Replace (S5, Y) algorithm

12 Z9 = (Z1,-++, Zn), Zi = (85, Vi), t €]0,1]
2: 7;:=(7,j)suchaste A,iel,-- -, n

3: while DI(Z7) < t do

4: 7, €argmax DI(r;,(Z7)) — DI(Z7)
5: with 73, (Z7) := (Z;, -+ ,7(Ziy)s+ -+ » Zn)
6.

7

8

. 20
: 79— zitl = Tio (Z7)
: end while
: return 2’

S : sensitive variable

Figure 1: Admissible modifications on 7
{0,1}% — {0, 1}? increasing Disparate Impact

on the logits, which highlights the ability to use these methods for non-binary tasks, for instance, in
regression settings. The constraints are imposed separately on the squared Wasserstein distances
W3 (Qn1,Qi1) and W3 (Qn 0, Qt0). The inequality W3 (mQn1 + (1 — 7)Qn,0, 7Qs1 + (1 —
T)Qt0) < TWE(Qn1,Qe1) + (1 — mM)W3Z(Qn.0, Qt0) provides an upper bound on the overall
distance between the two samples. The proof of this result is deferred to Appendix|[E.4]

To summary, we had introduced four methods: (1) Gradbalanced, and (2)
Grad.-proportional, which differ based on the gradient constraints satisfy-
ing g = 01 or S = % gpd (3) Gradbalanced.1D-transport, and (4)

no ny’
Grad.-proportional_lD-transport, which apply the corresponding 1D-transport
variant of each method.

Faking Statistical Parity using sensitive attributes replacement. For this method, we consider
that the auditor does not have access to the model f and only request the outcome of the algorithm
Y, without computing it from the observations f(X). Hence, faking fairness can be achieved by

manipulating only the outcomes and sensitive attributes associated with each individual. Let Z; =
(S;,Y;) and Q,, = Lyr.6 s,.v,- Consider the optimization problem : arginf pep,, , W3 (Qn, P)
with  Dp, = {P € P(E),DI(Q:) > t}. A solution can be achieved as follows. Note that
Y € {0,1} and S € {0, 1}, thus we only have 4 possible values for the points. Each individual with
characteristic Z; € {0, 1}? can be modified to the individual 7(Z;) = (75(S;), 79 (V7)) € {0, 1}2. We
first point out that not all solutions improve the disparate impact and we can restrict ourselves to a set
of admissible changes 7 € A as pointed in Fig.[I| with more details explaining why are in Section[H.T]
in the Appendix. Then iteratively we approximate the exact solution by an iterative method starting
from Z = (Zy,- -, Z,) and testing every possible modification Z? = (Zy,--- , Z,) maximizing
the D1 at each step j. The method based on this algorithm is denoted by Replace (S, Y') in our
experiments.

Faking Statistical Parity using constrained matching. In the previous case, the observations X;
are not taken into account. A natural variant consists in combining this minimization scheme and
adding a discrete displacement on the variables X. Namely, we define a matching algorithm using
Z = (X,S,Y)and 7(Z;) = Zy, with k € {1,--- ,n}. We use the same proceedings as Alg.with
the newly defined 7, but at every iteration j of the while loop we maximize for every candidate 7;,:
DI(r;,(27)) — DI((Z7))

730 (27) = 27|

In our experiments, we refer to the method based on this algorithm as My, (X,8,7)"

Remark 3.4. This algorithm transports individuals towards others (1(Z;) = Zy,), therefore, contrary
to its counterpart, it can be used in any type of audit (with or without access to the model).

3.4 METHOD DETECTION: STATISTICAL TESTS

We outline below potential strategies a supervisory authority could adopt to assess whether the
auditee conducted compliance tests using a sample drawn from the original data distribution. The
auditee presents a sample D,, ;, drawn from a distribution @), ;. To verify the authenticity of this
sample, the authority must be granted access to the full dataset upon request. This access enables the
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Table 1: Dataset presentation, sensitive variable (S) associated, and original Disparate Impact (DI)

Adult INC TRA MOB BAF EMP PUC
S chosen  Sex Sex Sex  Age Age Disability Disability
DI 030 067 069 045 035 0.30 0.32

authority to infer the ground-truth distribution and determine whether the submitted data has been
manipulated or follows the initial distribution (),,. To assess representativeness, the authority must
rely on statistical testing. Two main categories of tests are available. The first includes hypothesis
tests that evaluate, at a chosen confidence level, whether the distribution of the submitted sample
D, ¢ is statistically similar to the original distribution @),,. In their study [Fukuchi et al.[(2020), the
authors apply a Kolmogorov—Smirnov (KS) test for one-dimensional data (X € R1), and a test based
on the Wasserstein distance for higher-dimensional settings (X € R”, with & > 1). In our framework,

we apply both the KS test and the Wasserstein test on the conditional distribution Y | S.

The second approach evaluates whether the sample D,, ; could plausibly result from a random draw
from the original distribution @,,, by measuring a divergence or distance metric d. The idea is to test
whether the observed value d(D,, 1, Q) lies within the (1 — «/2) confidence interval of d(Q,, 1, Q%),
where Q7 represents a reference sample drawn from the original distribution. For the distance metric
d, we considered several options, including the Maximum Mean Discrepancy (MMD) |Gretton et al.
(2012), the Wasserstein distance, and the Kullback—Leibler (KL) divergence.

Extension to non tabular data: The method we develop is originally meant to handle tabular data but
we could use it directly on images or text flattened as vectors. Yet, using as previously the L? distance
between individuals, might not be the natural way to capture semantic similarity between images or
token distributions. A way to circumvent this issue is to represent the images in another space, where
the regular distances would have semantic meanings. The construction of such a space has already
seen numerous works using PCA projections or latent spaces of AE, VAE or CNN classifiers. We
present such results on the CelebA dataset|Liu et al.| (2015)) in Section [C|of the Appendix.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. We use 7 benchmarking datasets : Adult Census Income dataset where Y is whether an
individual’s income is above 50k (Adult) Becker & Kohavi|(1996). We also use 5 benchmark datasets
from [Ding et al.| (2021)) which records information about the USA’s population, including income
(INC), mobility (MOB), employment (EMP), travel time to work (TRA) and public system coverage
(PUC). We also include the Bank Account Fraud generated dataset (BAF) from[Jesus et al.| (2022)).
We refer to Table[I] for the sensitive variable and the original Disparate Impact (DI) of each dataset.

Neural network predictions. As we are working only with tabular data, we provide a Y with a
multilayer perceptron (MLP) neural network f ending with a sigmoid activation function (f(x) €
[0,1]). While having the best prediction accuracy was not the goal of experiments, we still achieve
reasonable accuracy learning with the ScheduleFree optimizer |Defazio et al.|(2024)). We defined
the logit threshold based ground truth mean : Iy := ming ) 1| |E(Y;) — E(Y)| with Y} = {f(z) >
l|x € D}. This was especially necessary for the BAF dataset, where the learning task is basically an
anomaly detection task, and E(Y) ~ 0.01.

4.2 RESULTS

Fairness cost: distribution shift per method. Fig[2illustrates the comparative performance of each
method across different distance metrics (Dxr,, W). Specifically, these metrics quantify the extent of
distributional change, and help assess each method’s ability to evade detection by the statistical tests.
We also provide complementary results on simulated data and the computation time and memory
cost of each method in the Appendix (see Sec[F). The smallest surface area in the radar chart is
archived by My, (X,8,7) hence, given the results, this method appears to be the most suitable method
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@ Grad_b (1D-proj) @ Entrb

Grad_p (1D-proj) @ Entr_p
® M_W(XSY) @ Replace(S¥)
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KL(X,S¥)

Figure 2: Radar graph rank-
ing the optimization result de-
pending on the fair-washing
method. This graph shows why
MW(X,S,Y) is the most promis-
ing method.
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Figure 3: Line plot showing the
trade-off between fairness cor-
rection and distribution shift on
the Adult dataset. Wasserstein
Distance on the individual’s
characteristics X, and global
KL divergence depending on the
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Figure 4: Line plot showing the
trade-off between fairness cor-
rection and distribution shift on
the Mobility dataset. Global
Wasserstein distance ((X, S, f’),
and global Kullback-Leibler di-
vergence depending on the fair-

fairness correction per method. ness correction per method.

Table 2: Results of the 7 tests independently; for each unbiasing method (DI=0.8) and datasets.
Sampling is stopped as soon as one sample satisfies the H( hypothesis, or after 30 tries if none do.
The symbol — means the method was undetected by the test for both sampling sizes of 10% and
20% (Hp accepted), O means that only the 20% sampling size was undetected (H accepted for 20%
and rejected for 10%); and © means that the method was detected at both 10% and 20% sample
sizes (Ho rejected). Positional and color coding indicate which test each result corresponds to, in
the following order and color scheme: KL(X,5,Y), , ,W(S,Y), K-S(Y),

MMD(X, S,Y), MMD(S, f/) . Grad_proportional (Grad_p) and Grad_balanced (Grad_b)
have been merged with their 1D counterpart due to identical test results.

Methods

Dataset Grad_p(1D-t) Grad_b(1D-t) Rep (S, ?) ]WW< X.5,Y) Entropic_b Entropic_p

ADULT © @O-0 © @0- © ©@e- O ©@eLe - @e-0 - ©@O0-0
EMP © @O © @0 © @O-0 O @0 O @0 O @O-0
INC @—————— @ ————-"= @ ————— ——————— ———————
MOB © @O © @0-0 © -0 © ©e0e C ©0006 [0JOJOJO]
PUC © @O © @0 © @0 © @OOO ©@e0e O OO
TRA © -————= © -————= © -—— = - -—— = - -—— = - -— =
BAF © -———— @ -———— © - = -—— = - - = - =

for someone seeking to disguise their dataset, as it significantly improves the DI while preserving a
distribution close to the original data.

Fraud detection through distributional shifts. In the case of a compliant audit, is it possible to
detect a fraud attempt based on the provided sample and the original dataset? Based on our previous
methods we create a falsely compliant sample from several Q; (with DI(Q;) > 0.8). More precisely,
we randomly sample from theses @;, and apply the seven distinct statistical tests explained in
Section 3.4} which verify the null hypothesis #o; which is that the original and sampled manipulated
distributions are equivalent. Table[2]reports the results based on a modified sample of 10% or 20%
and the original dataset. Additional details on the probability of passing the tests are provided in
Section [K.I]in the Appendix. Methods modifying individual characteristics (Grad methods) are
easily detected (rejection of H) regardless of the sampling size. The fair-washing done by the
My, (X,8,9) and Entropic-based methods is undetected for the INC, TRA and BAF datasets. For
the TRA and INC datasets, the DIs of the original data were close to that of the modified data (see
Table[3), implying that the required modifications were minimal and therefore difficult to detect. For
the BAF dataset, we remind that E(Y") & 0.01, as a result, only limited modifications were also
needed in this case.
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Table 3: Highest undetected achievable Disparate Impact for each dataset, sample size (S Size) and
fair-washing method. The symbol — indicates that some methods couldn’t reach a DI improvement.
To emphasize the best method to use in order to deceive the auditor, we put the DI achieved in bold
when one or two overperformed the others.

Dataset ~ Original S size (%) Gradp Gradb GradplD GradblD Rep (S,Y) Entrb Entrp A/[W’(X.S,Y)

ADULT 0.30 10 0.47 0.43 0.49 0.44 0.50 0.54 0.52 0.54
20 0.39 0.40 0.38 0.39 0.41 0.42 0.41 0.42
EMP 0.30 10 - - - - - 0.36 0.36 0.37
20 - - - - - 0.34 0.36 0.35
INC 0.67 10 0.75 - - - 0.88 0.94 0.95 0.93
20 - - - - 0.83 0.83 0.84 0.84
MOB 0.45 10 0.53 0.51 - 0.50 0.53 0.52 - 0.52
20 - - - 0.48 0.50 0.50 - 0.50
PUC 0.32 10 - - - - - 0.33 0.35 0.35
20 - - - - - - - -
TRA 0.69 10 0.72 0.79 0.77 0.73 0.80 0.83 0.84 0.85
20 - - - - 0.77 0.79 0.79 0.80
BAF 0.35 10 - - - - - 1 1 1
20 - - - - - 0.77 0.80 0.79

Trade-off: DI improvement vs distribution shift. Fig. [3]and Fig. [ illustrates the trade-off between
fairness correction and distribution shift on the Adult and Mobility datasets by the Wasserstein
distance and KL divergence between the full original and modified distributions. Replace (S, Y),
MW( X,5,9) and Grad variant methods preserve the structure of the input space and are better

alternatives to the entropic projection method. We recall that since Replace only modifies .S and Y,
it naturally leads to the lower difference between distributions.

Fairest undetected sample. When considering Table 2] results, which presents the inability to cheat
the supervisory authority in the Adult, EMP, MOB and PUC datasets with DI(Q;) > 0.8, we study
based on the previously mentioned trade-off the highest undetected fairness correction we are able to
achieve. Table 3| presents the highest Disparate Impact (DI) values not rejected by the combination of
seven statistical tests, selected from 100 random samples comprising 10% and 20% of the modified
dataset, respectively. The four Grad variants and Replace methods failed to secretly increase
the DI on three common datasets (EMP, PUC, and BAF), primarily due to consistent rejection by
the KL based tests (100% rejection rate). This highlights the advantage of Ent ropic methods
and the matching approach My, y ¢ v, which avoids scenarios where Dx1,(Q¢]|@r) = +00, and
thus performs more robustly. Overall, M, W(X,5,9) consistently achieves the best results. The results
also underscore the influence of sample size: for example, in the PUC dataset, improvements were
possible with 10% samples but not with 20%, indicating that as the sample size increases (relative
to the original dataset), it becomes more challenging to increase DI without detection, we further
highlight this point in Fig|[8|in the Appendix.

5 CONCLUSION AND PERSPECTIVES

This work presents a comprehensive study of methods designed to manipulate data in order to
satisfy the Disparate Impact (DI) criterion. We provide a theoretical analysis demonstrating why
these methods can minimize the distance between the original and modified data distributions while
satisfying fairness constraints. Our findings are supported by experiments on both simulated and
real benchmark datasets. Our results show that with the recursive Wasserstein-minimizing matching
method, My, (X,8,¥)> an auditee can very likely increase fraudulently the Disparate Impact without
being detected by rigorous statistical tests. Hence supervisory authorities should be aware of the
possibility that datasets may have been intentionally manipulated. Their countermeasure is first to
use multiple statistical tests combining different geometrical properties of the distributions as shown
in Table 3] We showed that a second option is to increase the sample size required from the auditee.
Our study focused on tabular data, but the approach extends to text and images when applied to
higher-level representations (descriptors), as is common in evaluating generative models |[Heusel et al.
(2018). We provided preliminary results in this direction and leave a more comprehensive exploration
to future work.
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CONCLUDING ETHICAL STATEMENT

This work explores the potential for malicious actors to manipulate dataset samples in order to
falsely appear compliant with fairness regulations, specifically with respect to Disparate Impact, with
possible extensions to other various fairness metrics. Our primary objective is to expose and analyze
these vulnerabilities. We believe that research into adversarial strategies is essential to improving the
robustness and reliability of fairness auditing procedures. By providing detailed methods for faking
compliance, alongside statistical tests for detection, our intent is to support supervisory authorities
and auditors in developing more resilient oversight mechanisms. We emphasize that our findings
are not intended to be used as tools for deceptive practices. To this end, we have deliberately
omitted full implementation details that would lower the barrier to misuse, and we have focused our
analysis on defensive strategies available to regulators. Moreover, the public release of our code is
designed to assist the research community in building stronger auditing tools, not to enable audit
circumvention. We encourage regulators and institutions to develop governance frameworks that
anticipate such adversarial behavior and recommend routine adoption of statistical tests to verify the
representativeness of audit samples.

REPRODUCIBILITY STATEMENT

The algorithms corresponding to each proposed fair-washing method are detailed in the paper. For
the simplified versions of the Replace (S,Y’) and My (x,s,y) methods, we refer to Alg. |1|in the
main paper. The full, non-simplified version is provided in Alg.[2]in the Appendix. Additionally, the
Wasserstein-based gradient optimization fair-washing methods are described in Alg.[3] also in the
Appendix.

Our experiments including our simulated dataset, the publicly available datasets we use Becker &
Kohavi| (1996); |Ding et al.[(2021)); Jesus et al.|(2022); Liu et al.[(2015) and the code to reproduce ex-
actly every result shown in this paper thanks to (1) seed setting and (2) intermediary results registered
are available at ht tps://anonymous.4open.science/r/Inspection-76D6/.

Our Github repository is structured as such:

* Data: datasets folder (with mostly csv files)
* Pre-processing: Jupyter notebooks.
* Src: python functions which includes our fair-washing methods.

* Project: Network training and inference, fairness evaluation, fair-washing and fraud detection
using statistical tests.

* Result: Final and intermediary results (csv, npy, json files).

Github repository limits at 50Mo, hence we uploaded the rest (csv and numpy matrices) on Google
Drive. It will be made available as soon as the double peer-review process ends.
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Appendix

A OTHER FAIRNESS METRICS

In our paper, we focused on the Disparate Impact (DI) fairness metric, as it is one of the most widely
used metrics. While this choice is justified, it is natural to wonder whether our results are specific to
this metric or whether they are metric-agnostic.

Our fair-washing method could have been implemented to minimize the distribution shift while being
constrained to other global fairness metrics as long as we can write them as an integrable function or
a combination of integrable functions. This condition is not very restrictive in our case. In fact, it only
excludes the individual fairness metric, whereas most global fairness metrics can still be expressed in
the required form.

To prove this point, we decided to implement our best-performing method, the M W(X,5,9) for the
Equality of Odds (EoO) metric :

EoO=P(Y =1/S=1AY =1)—PY =1S=0AY =1)|

Note that similarly to the Disparate Impact, which is the multiplicative counterpart of the Disparate
Parity, we could have taken the multiplicative definition of the EoO. However, we choose the additive
definition because the multiplicative case is trivial for us, as we could have directly applied our
DI-fair-washing method on the @, y—1.

The only difference to the matching method M, (X,8,9) going from DI constraint to EoO constraint

is, following the notation of Section [3.3] iteratively from maximizing the left part of Eq.[6]to its right
part.

DI(r;,(27)) = DI((27)) _ _EoO(r;,(2’)) — EoO((2%))

- : 8 - 6
70 (27) — 2] 720 (27) — 2] ©

The minus sign comes from the difference between the fairness metric : an independence toward the
sensitive variable S for the Disparate Impact implies DI = 1, we therefore try to maximize the DI.
On the other hand, independence for the EoO implies FoO = 0, leading us to minimize this criterion
(i.e., maximizing minus the criteria). We illustrate this capacity in Fig.[5]
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Figure 5: Distribution shift of Wasserstein distance, KL divergence and MMD, when constraining the

Equality of Odds (EoO) metric on the Adult dataset using the My (x s,y) method minimizing the
EoO.
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B COMPARISON WITH OTHER FAIR-WASHING METHODS

B.1 BIAS MITIGATION METHODS AS FAIR-WASHING METHODS

As discussed in the introduction, bias mitigation methods can also be misused to artificially improve
fairness metrics, thereby creating the illusion of fairness while concealing underlying biases. Several
such methods have been proposed in the literature, including the approach presented in [Bourrée
et al.|(2025), that we reference here, such as ROC Mitigation [Kamiran et al.| (2012), Optimal Label
Transport (OT-L) Jiang et al.|(2020), Linear Relaxation (LinR)|Lohaus et al.|(2020), and Threshold
Manipulation (ThreshOpt) [Hardt et al.| (2016al).

We directly compare these approaches to the Replace (X, S, f’) method. This method, like the
others mentioned, modifies the decision-making process based on the sensitive attribute S, for
example by applying different decision thresholds conditioned on S. This common dependency on S
makes these methods similar in spirit to Replace (X, S, }A’) as the fairness outcome is explicitly
linked to sensitive attributes. However, a key distinction is that methods like ROC Mitigation or OT-L
typically yield reproducible, model-dependent outcomes, while Replace (X, S, Y), as explained
in Section [3.3] cannot be applied in audits where auditors have direct access to the model and its
decision thresholds.

Nevertheless, from the perspective of a supervisory authority, all these methods share a fundamental
limitation. Since supervisory audits in our framework employ statistical tests based on the Kullback-
Leibler (KL) divergence, these methods are easily detectable. Specifically, because they generate new
synthetic individuals, the KL divergence between the original and manipulated distributions satisfies

KL(Qn, Q) = +o0.

One might ask whether the Wasserstein distance provides a more suitable metric. However, since
these methods do not modify the covariates X (Gouic et al.| (2020) projects individuals towards
their Wasserstein barycenter only to change the network’s output), the global Wasserstein distance
remains unchanged, i.e., W (Q,, Q:, ) = 0. Regarding the Wasserstein distance between (S,Y"),
W(Qn (sy>th (s.?))’ the choice of method has minimal impact, since the distance is computed

within the finite set of categorical bins S, Y € {0,1}2.

B.2 COMPARISON WITH FAIRNESS MANIPULATION VIA THE STEALTHILY BIASED SAMPLING
(SBS) METHOD

Explaination of the SBS method The method designed by |Fukuchi et al.|(2020) minimizes the
distribution shift measured by W (X ') under a fairness constraint on the Disparate Parity (DP):

DP=[P(Y =1|S =1)—P(Y = 1|S = 0)|

Notably, the method does not allow specifying a target threshold ¢ for the fairness criterion. Instead,
the authors designed their sampling procedure to produce a perfectly fair dataset, such that DP = 0 in
expectation. The only tunable hyperparameter is the common acceptance rate for positive outcomes,

denoted by o := P(Y = 1|S = 1) = P(Y = 1|S = 0).

This lack of flexibility in selecting a targeted DP complicates direct comparisons. As demonstrated
in our paper, achieving fairness solely to pass compliance checks (i.e., fair-washing) often remains
detectable by our statistical tests. To evaluate robustness, we progressively relax the fairness constraint
until samples evade detection. Such adaptive calibration is not feasible with their approach.

One practical advantage of their method is that it outputs individual sampling probabilities rather
than a fixed dataset, similar to our Ent ropic approach. This allows us to resample and generate
distributions with varying degrees of fairness.

Their reported results were obtained via grid search over « values, as illustrated in Fig.[9] Conse-
quently, to benchmark their method, we either had to identify the optimal o minimizing distribution
shift or evaluate performance across all tested « values.

This method’s high computational cost, already acknowledged by the authors in a subsequent paper
Yamamoto & Hara|(2025), is a notable limitation. Due to these computational constraints, we applied
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their method exclusively on the Adult dataset, as experiments on larger datasets failed to complete
within reasonable time frames.

Technical insecurities When following the installation instructions from their GitHub page, we
encountered a problem. Indeed, the CMake version the authors used was 2.8 which is no longer
supported with CMake (oldest version supported is 3.5) ; when changing in the CMake file the
minimum version to 3.5, we had encountered another error with their (CMake_policy(set CMP0048
OLD)) which is no longer supported as well, we change it to the new version and ended up with a
warning but could continue from there.

When we use the command make, we had the warning that ”ISO C++17 does not allow ‘register’
storage class specifier”, and other warnings with “this statement may fall through’ associated with if
statement or case statement.

However, when we used 'make’ for each of the stealth-sampling and wasserstein files, it went without
any issues or warning, hence, we attempted to replicate their experiments; the provided random seed
should have ensured identical results.

The authors did not use a requirement file, or specify which version of libraries to use. Hence, some
errors within their code appear, mainly discrepancies between the former and new behavior of numpy.
We modified the code for it to work with the latest version of the different libraries, while keeping the
exact intended functioning.

Version ~ Accuracy DP WD on Pr[x] WD on Pr[x—s=1] WD on Pr[x—s=0]

Baseline Old 0.851 0.1824 22.1638 25.6454 35.0421
New 0.85115 - - - -

Case-control  Old NaN 0.0250 23.9060 22.5855 37.9543
New NaN 0.0243 23.2002 23.3179 37.8548

Stealth Old NaN 0.0712 23.6396 24.2404 36.1657
New NaN 0.0708 24.1415 25.1640 35.5028

Table 4: Old and new results of the SBS method on the Adult dataset, ’—’ means that the new version
has exactly the same result as the old one.

As you can see in Table 4] we observed a slight mismatch between the value they obtained and the
value we obtained running exactly their code. This might indicate that because of the warnings we
mentioned above, the performance was affected; or it could simply also be a different behavior from
the newer version of libraries, and our result might actually be more representative. As you can see
on Fig.[6] the aggregated results are alike. The authors would have obtained the same results and thus
produced the same paper, we choose to use this implementation instead of “their” Sliced Wasserstein
Distance method [Yamamoto & Hara (2025)), which compromises slightly the results for a significant
boost in computational time.

Demographic Parity (0P)

Test results on Prix] Test results on Prix|s=1] Test results on Prix|s=0]

case-control /| T4 Case-Control | ' Case-Control
Stealth Stealth e stealth

o o7 o8 o 05 05 a1 o8 @ 05 05 a1 os @ 05 o5 s s Gi o5 o6 o7 us o 06
alpha alpha alpha alpha alpha alpha alpha alpha

(a) Original version (b) Latest version

Figure 6: Original (Old) and Latest (New) results for their synthetic datasets, the experiments were
done with 30 runs for several different o.

Result of the SBS method in our audit In this section, we evaluate on the Adult dataset: (1) the
distribution shift incurred when creating a fair distribution (DI(@;) > 0.8) and (2) the maximum
achievable DI without detection by our statistical tests. The first comparison (1) is well-aligned
with the purpose of the method, which targets compliance. However, the second (2) inherently
disadvantages their approach, as it was not designed to trade off fairness against detectability.
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Unbiasing Methods
Dataset SBS Gradp Gradb Gradp ID Gradb 1D Rep(S,Y) M, w(x,s,yy Entrb  Entrp
W(X,S8,Y) 091 0.10 0.08 0.13 0.09 0.05 0.06 0.28 0.35
W(S,Y) 0.00  0.09 0.08 0.09 0.08 0.05 0.05 0.08 0.09
KL(X,S,Y) 0.73 o0 o0 o0 0 o0 0.03 0.02 0.03
KL(S,Y) 073 0.02 0.02 0.02 0.02 0.03 0.03 0.02 0.03

Table 5: Metric result of the fair-washing method (DI(Q;) > 0.8), cost calculated on the projected
dataset (or projected distribution for Ent ropic and SBS) on the Adult dataset.

Regarding d(Q.,, Q¢ ), their method, like our Ent ropi c approaches, produces sampling probabilities
rather than a direct sample. This yielded strong performance on W (.S,Y"), but it underperformed

on KL(S,Y) and did not stand out on W (X, S,Y). For KL(X,S,Y), it was less competitive,
though it notably avoided divergence to infinity, making it one of the more globally competitive
Wasserstein-based methods.

Dataset ~ Ssize (%) SBS Gradp Gradb Gradpl1D GradbID Rep(S,Y) Entrb Entrp My, (x 57

ADULT 10 047 047 0.43 0.49 0.44 0.50 0.54 0.52 0.54
20 - 0.39 0.40 0.38 0.39 0.41 0.42 0.41 0.42

Table 6: Highest undetected achievable Disparate Impact for the Adult dataset, for each sample size
(S Size) and fair-washing method. The symbol — indicates that some methods couldn’t reach a DI
improvement. To emphasize the best method to use in order to deceive the auditor, we put the DI
achieved in bold when one or two over-performed the others. We remind that the original DI of our
Adult dataset is 0.30.

Conversely, as shown in Table[6] the method is not suitable for maximizing fairness without detection.
To assess this, we computed 500 samples from each tuple sample size, o and observed whether the
samples passed our statistical tests. Across 500 = 10 * 2 samples (10 « and 2 sample size), 5 samples
passed the 7 statistical tests, they were all for o = 0.25 and sample size of 10% (instead of 20%).
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C EXTENSION TO OTHER DATA TYPE

The method we develop is originally meant to handle tabular data. However we propose some natural
direction to extend this work to text or images. The distances used to evaluate Wasserstein distance
or the Maximum Mean Discrepancy (MMD) relies on the inherent informative information between
individual within the input space, in another word they rely on the fact that the distance between
individual is proportional to their semantic similarity. This hypothesis is always verified on tabular
data (with the Lo distance, for instance), but it might not be on images or token distributions. We
will first evaluate our method based on W (X') or MMD(X) to detect fraud attempt and expect the
method to achieve a lower efficiency because d(Q;, Q) is hardly related to the semantic meaning of
the images. Thus a fair-washing manipulation might not change this distance distribution.

Hence we embed the images in another space, where the regular distances have semantic meanings.
The construction of such a space has already seen numerous works, including Principal Component
Analysis, using the latent space of Auto-encoder or Variational Auto-Encoder, or using the latent
space of Convolutional Neural Network classifiers. Using such space, which we call descriptor D,
have become common practice after the introduction of the Fréchet Inception Distance (FID)Heusel
et al.[|(2018). We define the function E such as

E: RVN - R™ N,meN,N »m
X —EX)=D

and set E(Q) := {E(X)|X € Q} if Q is a distribution. We choose in the following latent features
given by the CNN classifier.

C.1 EXPERIMENTAL SETTINGS

We audited the CelebA dataset |Liu et al.|(2015): predicting the attractiveness, with the sensitive
attribute being having heavy makeup. We note here that we choose this sensitive attribute instead of
others for mainly two reasons:

1. Low DI : 0.4 on the whole dataset

2. Representativeness : Similarly to what we saw for the BAF dataset having a low probability
of P(Y = 1) = 0.01, If the sensitive variable was too rare, then detecting a modification on
X would be impossible (for tabular or non-tabular data)

Note also that the variable young would have been another viable candidate.

The fair-washing method used in those experiments is the Wasserstein-based matching method
My (x,s,y)- We fine-tune 3 CNN models: an InceptionV3 Szegedy et al.[(2015)), a ResNet18 and
a ResNet101 He et al|(2015) on CelebA and select part of the test set to audit, on this subset we
observe respectively a DI of 0.34, 0.35 and 0.35. The malicious auditee, aware that the statistical
tests on the covariates X might not be on the pixels of the images, but on the descriptor of the
images, could minimize d(E(Q,,), E(Q:)) instead of d(Q.,, Q). Therefore, we consider 6 different
fair-washing scenarios given (1) the network choice amongst ResNet18, InceptionV3 and ResNet101
which implies different descriptors’ space and (2) if the auditee optimized the Wasserstein-based
matching method on the pixel’s space or on the latent space of those models. We first investigate
the use of statistical tests directly of the pixels’ space. Secondly, for each of the above scenario,
we use statistical tests based of the latent space of the CNN. We remind here that (1) in term of
complexity, the CCN are ranked as follow: ResNet18 (11 million parameters) < InceptionV3 (27
million parameters) < ResNet101 (44 million parameters), (2) the latent space of the CNN is the
space at the hidden layer before the last linear layer, for the three models above’s latent space share
the same dimension size of 1000.

C.2 ToOPICS OF INTEREST AND ANSWERS
In this subsection, we present key questions of interest and provide direct answers. These answers

are supported by selected (cherry-picked) results for illustrative purposes, we refer to Table [/] for
complete results on the descriptors analysis results. We address the following questions:
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1. Are the statistical tests presented in our paper for tabular data relevant for non-tabular data?

* Yes. We consider several data-agnostic statistical tests, such as W (S,Y), MMD(S,Y),
KL divergence, and the KS test. These tests remain applicable regardless of data type.

* What about tests based on W (X, S,Y) or MMD(X, S,Y’), which rely on W (X) or
MMD(X) where X is high-dimensional? Tests conducted directly in pixel space can
be useful. For example, fair-washing attempts with a sampling size of 20% were
detected using tests applied directly to raw pixel values. In contrast, with a sampling
size of 10%, and fair-washing to a Disparate Impact (DI) of 0.95, the null hypothesis
‘Ho was not rejected, this indicates that these manipulations may go undetected at
smaller sampling sizes.

2. Are statistical tests based on learned descriptors more effective?

* Yes. Descriptor-based tests can detect fair-washing even with smaller samples. For
instance, fraud attempts were identified using only 10% of the CelebA dataset (noting
that detection becomes harder with smaller samples).

* However, the auditee could potentially optimize their manipulation based on the
descriptor used by the auditor, rendering these tests ineffective again at the 10% sample
size.

3. Is the choice of the descriptor impactful ?

* Yes, the results do depends on both the auditee choice of descriptor as well as the
descriptor used in the statistical tests.

Yes for the manipulation: it was harder to detect manipulation based on the ResNet18
descriptors, and the easiest was the manipulation based on the ResNet101 descriptors.
For instance, for the sampling size of 20%, even while testing using the ResNet101
descriptors, for a fair-washing at DI = 0.55, it was undetected when optimizing
using ResNet18 descriptors but detected when optimizing using ResNet101’s one (by
“detected”, we mean that across multiple samples, 50 in this case, none accepted the
null hypothesis Hy, i.e., the hypothesis that the sample and original distributions are
the same.).

Yes for the fraud detection: Statistical tests based on the ResNet18 was more easily
fooled by manipulation. To support this claim, we refer to for example to the last
three columns of the Table [/|where with optimization on the image pixels, for a 10%
sampling size, no fair-washing method was detected even with DI = 0.95.

4. Is there a difference using statistical tests based on the latent space the auditee’s fair-washing
method optimized on?

* No, our results are not conclusive enough to answer this question positively. For
InceptionV3 and ResNet101, we did not observe a significant difference.

* That being said, in our experiments, with a 20% sampling size and fair-washing to
DI = 0.60, only the auditee optimizing on the same descriptors (ResNet18) was able
to generate an undetected sample when the test was based on those same descriptors.

 Importantly, in practice, it is unlikely that the supervisory authority would use the same
descriptors as the auditee. Even if the authority had full access to the auditee’s network
(which is rare, since this would go beyond API access), they may deliberately avoid
using the same descriptors to prevent optimization-based circumvention.

In conclusion, on non-tabular modalities, running statistical tests directly on raw signals (in our cases
pixels) is not useless, but tests in a learned descriptor space are markedly more sensitive. The choice
of descriptor is critical: tests based on higher-capacity, semantically rich encoders (e.g., ResNet101)
are substantially more robust to manipulations. We therefore recommend that supervisory authorities
apply statistical tests both on the raw data and in a high-quality descriptor space. For text datasets,
though not evaluated here, a natural first descriptor we would recommend is the CLS embedding
from a BERT-style model Devlin et al.|(2019)), we leave this for a further work.
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Fair-washing minimization objective

Descriptors ~ Size (%) 18 101 v3 18 pixels 101 pixels v3 pixels
ResNet18 10 > 0.95 = 0.95 > 0.95 > 0.95 > 0.95 > 0.95
20 [06—-0.7 [0.5—0.55] [0.5—0.55] [0.4—0.5] [0.4—0.5] [0.4—0.5]
Inceptionv3 10 > 0.95 > 0.95 [0.8—-0.95] >0.95 [0.8—0.95 [0.8—0.95]
20 [0.55—0.6] [0.5—0.55 [0.5—0.55] [0.4—0.5] [0.4—0.5] [0.4—0.5]
ResNet101 10 > 0.95 > 0.95 > 0.95 > 0.95 > 0.95 [0.7—0.8]
20 [0.565 —0.6] [0.5—0.55] [0.55—0.6[ [0.4—0.5] [0.4—0.5] [0.4—0.5]

Table 7: Highest DI without being detected for the CelebA Dataset using the matching fair-washing
method based on different minimization objective testing on the descriptors which are the latent space
of the different models, for sample size of 10% and 20%. The different scenarios are the following:
18, 101 and v3 are respectively a ResNet18, a ResNet101 and an Inceptionv3 optimized on their
latent space ; the 18 pixels, 101 pixels and v3 pixels are the methods optimized on the pixel space
(even if they have the same objective, they are different because the prediction of each network might
be different).

D AUXILIARY RESULTS

Proposition D.1. Consider the following minimization problem

min W3 (P, Q,,) such that J O(x)dP(x) = t. ™
E

Then Qy is optimal for equation[7]if, and only if, it is defined as the push-forward
Qe =Th4Qn
where T (y) € argmin,, {|z — y|> — AT ®(x)} and and then \* € RE solves

* o ®(Ta (2))dQ(x) > 1,

cand N\t —tyxy=0

E PROOFS

E.1 PROOF OF PROPOSITION 3.2]
Proof. Theorem[3.1]implies the existence of a distribution @); such that

DI(f, Q) = 2t oom

)\1 —51 no

We have

Aps = nl<)\150 + )\0(51))
no (>\1 - 51)/\1

Among all possible solutions, we privilege the two solutions described in the Proposition. Knowing
the new DI desired, we can obtain a set of solution for dg and ;. O
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E.2 PROOF OF THEOREM [3.3]

Proof. First, notice that the definition of T} implies

W2(Qns Tay@n) < L IT5(y) — yl2dQn(y)

ZJE |75 (y) — yl*dQu(y (Z ATO(TH(Z ZAT (Tx\(Z )
_ f ITs() — > — AT®(T5(1))dQn(y) + f ATB(y)dT 4 Qu(y)
E E
= [ it {le -yl - X0} dQul) + [ AR (w)
E E
- f (AT®)°(5)dQu () + f AT B(y)dTs 4 Qn (y).
E E

Strong duality of the Kantorovich problem, see Santambrogio| (2015), guarantees that this inequality
is indeed an equality. Since our equality constraint is linear, a necessary and sufficient condition for
P* to be a minimizer, see |[Peypouquet| (2015)), is finding Lagrange multipliers A1, ..., \x € R such
that

k
D IXiVgi(P*) e 6f(P*)  (extremality condition)

i=1

(P*) =0 (feasibility)
where g(P) = SE —tand f(P) = W2(P,Q,). The subgradient of f is given, see
Proposmon 7.17 in Santambroglo (2015), by the set of Kantorovich potentials between P* and Q:

o1(P) = {se o) [oar + [oraq - wirr.)f. ®
Our computations above prove the extremality condition for P* = Ty« ,Q, = ZZ 1074 (Z2)
since Vg;(P) = { ®dP. The feasibility condition for the empirical measure @, is to find \* such
that
1 n
t= JE (1)dTas 4Qn(y) = — g (To(Zi ©)

O

E.3 PROOF OF PROPOSITION D]

Proof. Let g be the continuous function g(P) =t—{,®(x)dP(x)and f(P) = W3(P,Q). The
set {P € M(E) | §,®(x)dP(z) = t} = g'([0,00)) is closed for the weak convergence as
[0,00) is closed Then the prO]eCthIl problem is well-definedd. Before applying the Lagrange
multiplier theorem, we must verify Slater’s condition. By continuity of ®; and compacity of F we
can consider, fori = 1,...,k, x} € E such that ®;(z{) = mingep P;(x). Take a € R such that
max i<k ti/Pi(2) < a. . Then P = b, satisfies gi(P) < 0fori = 1,...,k. The Lagrange

multipliers theorem guarantees that P* is optlmal for[7)if, and only if, there exists A1, ..., Ax =0
such that

k
Z iVgi;(P*) e of(P*) (extremality condition)
g(P

) < and \;g;(P*) = 0foralli = 1,2,...,k (feasibility)

The proof of the extremality condition is completely analogous to the proof of Theorem@ replacing
@, by Q. To conclude, we need to find \* € R’;O such that the feasibility condition is satisfied:

< | @ @)@ awaxT (o= [ o @)aaw) - o. (10)
O
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E.4 JOINT CONVEXITY OF THE WASSERSTEIN DISTANCE UNDER MIXTURE-PRESERVING
COUPLING

Let Q,, and Q; be probability distributions over X’ x {0, 1}, where X € X denotes the data and
S € {0, 1} is a binary group attribute.

For each s € {0, 1}, define the conditional distributions:

Qn,s = Qn( | S = 5)7 Qt,s = Qt( | S = S)a
and let 7 := @, (S = 1) € [0, 1]. Then, define the marginal (mixture) distributions over X’ as:
pi=mQn1+ (1 —m)Qno, v:i=7mQ:1+ (1—m)Qo.
We prove the inequality:

W3 (p,v) < 7aWZ(Qn1s Q1) + (1 — T)WE(Qn0s Qr0)-

Proof. Let vy € II(Qp,1,Q1,1) and vy € II(Q,,0, Qr0) be couplings between the corresponding
conditionals. Define the coupling:

vi=ay + (1 — 7).
Then v € P(X x X), and its marginals are:

v = TQn1 + (1 = m)Qno = p, 7Y = Qi1 + (1 —7)Qt0 = 1.
Thus, v € TI(u, v) is a valid coupling between p and v.

Now compute the transport cost under +:

f d(,y) dy(z,y) = 7 f d(z,y)? dn(z,y) + (1 — ) f d(z,y)? dro(z. y),
XXX

(Because the distance is an integrable function, we can use the linearity of the Lebesgue integral with
respect to measures)

= W3 (Qn1,Qe1) + (1 = M)W3(Qn,0, Qro)-
Since W3 (i, ) is the infimum of such costs over all couplings in II(, v/), we obtain:

W3 (p,v) < 7W3(Qn1, Qi) + (1 — m)W3(Qn0: Qt0)-

F RESULTS WITH SIMULATED DATASET

0.05 . - Entropic_balanced - Entroplz,ba]anced

Replace (S.Y) 0.175 Replace (S.Y)

Entropic_proportional R -  Entropic_proportional

0.04 - 4 - Matching_W(XSY)
x sample

01504 - Matching_W(XSY)

sample

0.125

0.100

0.075 -

Kullback-Leibler divergence on (S,Y)
Wasserstein distance on (S,Y)

0.050

0.025

0.000

0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80

0.40 0.45 050 055 0.60 0.65 0.70 0.75 0.80
Disparate Impact before unbiasing

Disparate Impact before unbiasing

Figure 7: Logistic regression plots showing how the distance (left : K L( s.¥) and right: W( S,Y))
between the original and 20% of manipulated datasets varies with the initial Disparate Impact for
each unbiasing method, with the manipulated dataset having DI = 0.8. The sample’s results in the
legend represent values from random samples from the original distribution @, .
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We create a simulated dataset to cover all possible cases where S € {0,1} and Y € {0,1}. The

simulation parameters control E(S), E(Y | S = 0), and E(Y | S = 1), allowing us to represent a
wide range of scenarios. Fig[7] presents two logistic regression graphs illustrating how the distance
between the complete original and 20% of manipulated data evolves from the initial Disparate
Impact (before debiasing), to reach a DI=0.8, for our different correction methods. Methods with
the highest KL and Wasserstein distance implies a high risk of being detected by a statistical test
on the distribution. The lower the initial DI, the greater the change required to reach an acceptable
DI (making fraud detection more likely). When the original DI is > 0.55, the methods Entropic,
Replace and Matching are equivalent in terms of KL divergence. Regarding the Wasserstein
distance, they become equivalent for original DI values > 0.65. Since the Sample method does not
modify the original data, it preserves the distributional distances (KL and Wasserstein), and can be
used as a reference: when the logistic regression score of a method is lower than that of Sample, we
can infer that the modified dataset would not be detected as significantly different from the original
according to these criteria. Among all methods, MW( X,8,) with an original DIe [0.45,0.70]
achieves the best trade-off between KL divergence and Wasserstein distance, reaching the required
DI while keeping the modified distribution close to the original.

G FURTHER STUDIES ON THE IMPACT OF THE SAMPLE SIZE

In our conclusion, we recommended strongly to the referring authorities, that in order to prevent
undetectable fraud, with appropriate statistical tests, requiring a bigger sample size is one of the
single most important point. To further support this claim, we provide in this section a study on the
sample size impact on the Adult dataset.

Using the best performing fair-washing method (M (x sy), Entropic.balanced and
Entropic_proportional), we observe on Fig. ] the highest DI achievable without being
detected by our 7 statistical tests depending on the sample size required.

0.9 | — M_WI(XSY)
Entropic_balanced
—— Entropic_proportional

e e e e
w =l ~ =]
| | L |

Highest undetected DI achieved

=}
»
L

T T T T T
10 20 30 40 50
Sample size : percentage of the dataset (%)

Figure 8: Highest undetected DI achieved without being detected in the Adult dataset by different
fair-washing methods depending on the sample size.

H MORE INFORMATION ON THE METHODS

H.1 REPLACING KEY ATTRIBUTES AND WASSERSTEIN-MINIMIZING SAMPLING

In this section, we precise how Disparate Impact (DI) can be increased using methods based on
optimal transport. We can exchange between the 4 bins of points :(Y = 0,5 = 0),(Y =0,S =
1), (Y =1,S =0)and (Y = 1,5 = 1), thus 4(4 — 1) = 12 possible alterations. Due to the
definition of DI, we can exclude the path from (Y = 1,5 = 0) to (Y = 0, S = 0) and the path from
Y =1,8=1)to (Y = 0,5 = 1) as it would decrease the DI, bringing the total to 10 possible
transports.
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Moreover, If we consider the Wasserstein cost only on (S, Y)), once again based on its definition,
because it is more advantageous to have (Y=1,S=0) points instead of (Y=0, S=0), similarly for (Y=0,
S=1) points instead of (Y=1, S=1), we only have 6 worthy alterations to consider instead of 10.
Indeed, for instance, it would be suboptimal to transport a (Y=1, S=1) point to (Y=0, S=0) as moving
it to (Y=1, S=0) would result in a higher DI with a lesser effort (with the cost is calculated only on

(S, Y)).

Furthermore, transport between the bins (Y = 1,5 = 0) and (Y = 0,5 = 1) (i.e., between the
two back points in Fig.[T)) can also be excluded from the optimal solution. Indeed, transport from
(Y=1,8=0)to (Y =0,S5 = 1) would both reduce the number of favorable outcomes (decreasing
the numerator of the DI) and increase the number of unfavorable outcomes for the protected group
(increasing the denominator), thus leading to a lower DI. In contrast, if the bin (Y = 0, S = 1) move
from (Y = 0,5 = 0), the DI is improved, as only the denominator increases while the numerator
remains unchanged

To summarize, if the cost is calculated on (.S, )7)), then we theoretically only have 4 moves to consider,
the arrows in Fig. |1l The arrow from (Y=0, S=0) toward (Y=0, S=1) is doted for the following reason:
in practice, for the simulated dataset presented in Section[F] this transport was never optimal meaning
not the one which increases the DI the most compared to other transports. The most rewarding one
was usually from the transport from (Y=0,S=0) to (Y=1,S=0). This leads us to write the Alg. which
is the less concise version of Alg.[I] A notable difference between the two is that Alg.[2Jhas a speed
parameter which express a trade-off performance rapidity as explained in Section[H.3]

Termination analysis At every iteration of the while loop, the DI is strictly increasing, moreover,
the number of iterations is limited by the number of points [{X|Y = 1,5 = 1}| and {X[|Y =
0,5 = 0}|. In the extreme case where no transport would be possible (either of these sets is empty if
KXY =1,8 =1} =0or {X|Y = 0,5 = 0}| = 0) the algorithm could attempt to increase DI
indefinitely (towards + inf). This ensures that the algorithm necessarily terminates.

Objective analysis The condition of the while loop is precisely aligned with the objective of our
problem. Consequently, exiting the loop implies that a solution has been found. Finally, a more
challenging question concerns the optimality of the solution returned by the algorithm. We leave this
question open and do not provide a formal guarantee of optimality.

Algorithm 2 Replace (S, V) non simplified algorithm

speed € N*; 0 < threshold < 1

2b=[{X[Y =1,8=1[[{X[Y =0,8 =1}, {X|Y = 1,5 = 0}, {X[|Y = 0,5 = 0}]]
DI = DI fct(b)

4: swap_possible = {Y Sy, Y151} — Y051, {Y0.S0} — Y151
dic_swap_translation = {Y3Sy — Y15 : [0,0,1, —1],YpSg — (.5 : [0,1,0,—1],Y15; —
Y]_SO : [—1707 1, 0]}

6: dic_swap_number = Yy Sy — Y150 : 0,YpSg — Y51 : 0,151 —» Y150 : 0
DI,, = [0,0,0]; Matrix_b = M3 4)(0)

8: while DI ; threshold do

1=0
10: for swap € swap_possible do:
b_n =b + dic_swap_translation[swap] > YpSy — Y15, translation
12: Matrix _b[i,:] = copy(b_n) = We keep in memory the bins
DI, [¢] = DI fct(b_n)
14: t=1+1
end for
16: j = argmax(DI,,)
dic_swap_done[swap_possible[j]] = dic_swap_done[swap_possible[j]] + speed = More

information on speed discussed in next subsection
18: b = b+ speed = (Matrix_b[j,:] — b)
DI = DI fct(b) = Equal to DI,, 4] only if speed = 1
20: end while
return dic_swap_number
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H.2 WASSERSTEIN GRADIENT GUIDED METHOD

Algorithm 3 Fair-washing using Monge Kantorovich constrained projection algorithm Grad

Require: Neural network f, data Z;, sensitive attribute S € {0,1}", prediction thresh-

old 7, desired DI threshold ¢, learning rate 7, constraint weight A\, delta type (e
{balanced, proportional}

Ensure: Updated samples Z minimizing |Z — Zy|? while satisfying DI(f(Z),S) >t

bl e

11:
12:

13:
14:
15:
16:
17:
18:
19:
20:

21:
22:
23:
24

25:

YR I

Compute: Y — I[f(Zy) > 7] = where [ is the indicator function
ComputePo :]E[Y | SZO],Pl :E[Y | S = ].],711 :E[S: 1],710 :]E[S:O]
Compute §, according to delta type = Done following Prop[3.2]

Set new target rates: ~ ~
Py =P —61/n1, Py= P+ do/no

for s € {0,1} do
Initialize A\(*) < X _ X }
while (E[Y®)] < P,) v (E[Y®)] > P, A s = 1) do
Initialize Zis) — és), N <N = where Zés) is the subset of inputs with § = s
foriel,---,10do
Iteration of gradient step:
V=22 — i 4+ A9 v, (2 - d,
where d; = {—f 1; 5= (1) > Gradient choice following Thm. [3.3
-1 ifs=
ZZ(S) <« ZZ(S) — M- \%
Recompute predictions f/'i(s) =1[f (ZL(S)) > 7|
7; < 1n;/1.2 = Planning strategies could improve the performance, 1.2 was what we
founded worked the best in practice (following the choice of the coefficient multiplying \(*))
if ID-transport variant then
Project each feature of ZZ-(S) to its closest achievable value
end if _ _
it E[Y,*)] < P, (or > P, for s = 1) then
Break Exit for and while loop
end if
end for
Update : A(®) — 1.2 x \(®) = The solution of the optimization problem with this

A is not within the constrained space (or we did not converge towards it fast enought at least);
hence we increase the A progressively. Note that the 1.2 was what we founded worked best in
practice (trade-off between precision with lower value and fast computation), however further
tuning would be relevant.

end while

Compute perturbation 7(*) = Z(5) — 7,
end for
Assemble final perturbation 7" such that:

T ifS; =0and ¥; = 0
Ti=<7" ifS =land¥; =1
0 otherwise

return Z = Zg+ T

Alg. |3} which is a simplified version of the true algorithm (code available on our Githukﬂ), explains
the main ideas being :

"https://anonymous.4open.science/r/Inspection-76D6/
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1. We find the target probabilities for each subgroup of s
2. We treat each Q,, s := Q. (- | S = s) separately
3. The gradient steps stem from Theorem 3.3]

4. We start with a small constraint weight and increase it progressively

The elements present in our code but which we did not include in Alg. |3|for visibility are mostly
computational optimizations. For instance, we did not compute the gradient on neither the points

whose network decision we would not modify Z; (i.e., with if S; = 0 and )A/; = 1) nor on points Zi(s)

whose )A/(s) are already modified. We also kept streakily only the minimum number of modification
necessary: some gradient step would change the network decision of multiple points at the same
time and without this process our result would not be tight regarding Py, Py (as we would have
changed individuals’ outcome more than necessary) and thus overachieving DI(f(Z), S) > ¢ which
is not beneficial in our use case where we highlighted the trade-off between fairness correction and
distribution shift.

H.3 CoOSTS OF THE METHODS, SOLUTIONS AND TESTS

Methods Summary Solution

My, (xX,57) 3-10 minutes Trade-off possible
Replace (S,Y) < 2 minutes Trade-off possible
Entropic.b/Entropic_p < 1 minutes

Grad.p/GradDb 3—15 minutes, depends on A and NN architecture  Trade-off possible

Grad.p (1D-t) /Grad_b (1D-t) 3-20 minutes, depends on A and NN architecture = Trade-off possible

Table 8: Time cost analysis of the methods, note that every estimation depends on the original dataset,
its Disparate Impact and the DI constraint. Time estimation given for a dataset size of 20k individuals.

Sample size Test performed  Average testing time (second)

500 DI(S) = DI(Qt) 0.00
KL(S, Y) 0.00

KL(X,S, Y) 0.78

W(Ss,Y) 0.29

W(X, S, Y) 0.48

1000 DI(S) = DI(Qt) 0.00
KL(S, Y) 0.00

KL(X,S, Y) 0.85

W (S, Y) + W(X, S, Y) 1.57

2000 DI(S) = DI(Qt) 0.00
KL(S, Y) 0.02

KL(X,S, Y) 3.13

W(S,Y) 493

W(X, S, Y) 15.51

4000 DI(S) = DI(Qt) 0.00
KL(S, Y) 0.02

KL(X,S, Y) 3.34

W(S,Y) 9.58
W(X,S, Y) 32.30

Table 9: Time analysis done during our Highest undetected achievable DI per datasets and methods
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Time In Table|8] we wrote Trade-off possible for the methods which might take a more than a day
to run with millions of individuals. The methods M, W(X,5,7) and Replace (S5, }7) evaluate at each
step amongst 3 or 4 possibilities which is the optimal to take, we can only evaluate once for more
step at the same time for both methods, this becomes a trade-off between speed and precision, this is
what we mean by trade-off possible for those methods. Moreover, we can also think about a trade-off
about the number of transport mapping to consider, as explained in the Section.

For the Grad variant methods, we do not anticipate any changes to the model architecture. However,
if inference from the neural network is computationally expensive, the overall cost of the method
will also be high. Developing an efficient solution to this issue remains an open challenge. However,
with tabular data model’s number of parameters tends to be controllable, and thus in our experiments
the reason of such a long time compute time (relative to the number of individual) was because we
optimized for the \ parameter. We remind that to have the best results we start with a very small A
which we progressively increase ; we thus can simply initialize the algorithm with a bigger A to save
computing time, another speed precision trade-off.

The results in Table 9] were obtained through the following procedure. For each sample, we recorded:
(1) the total execution time of the testing pipeline, and (2) the reason the pipeline stopped. Since each
sample must pass all five tests, the pipeline halts as soon as one test is failed. Based on our prior
expectations regarding the relative runtime of the tests. To isolate the runtime of each individual test,
we subtracted the mean runtime of the preceding tests from the total time observed at the stopping
point. The results show that while all tests are fast for small sample sizes (e.g., 500 samples), the

tests based on Wasserstein distances (in particular W (X, S, ff)) are the most time-consuming.

Methods Summary Solution

My, (xX,57) N x N distance matrix

Replace (5,Y) Negligible Trade-off possible
Entropic.b/Entropicp Negligible

Grad (b/p)/ (1D) NN gradient to compute on at worse on /N ind  Batch approach

Table 10: Memory cost analysis of the methods for a N x J dataset.

Memory We consider only the Grad variant methods to potentially pose memory-related issues.
Although it would be natural to adapt these methods to operate in a batch-wise manner, we did not
implement such an approach in our current work.

I OPTIMIZATION RESULT VALUES

1.1 WASSERSTEIN DISTANCE

Unbiasing Methods
Dataset Gradp Gradb Gradp.lD Gradb_.ID Rep(S,Y) M, w(x,s,y) Entrb  Entrp
ADULT 0.10 0.08 0.13 0.09 0.05 0.06 0.28 0.35
EMP 0.18 0.10 0.18 0.10 0.06 0.08 0.22 0.37
INC 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
MOB 0.21 0.06 0.23 0.08 0.03 0.05 0.18 0.64
PUC 0.21 0.13 0.22 0.14 0.12 0.16 0.33 0.48
TRA 0.02 0.02 0.02 0.02 0.01 0.01 0.03 0.03
BAF 0.01 0.00 0.02 0.01 0.00 0.01 0.02 0.05

Table 11: Wasserstein distance manipulation cost of the fair-washing methods (DI(Q;) > 0.8), cost
calculated on the projected dataset : W (Q,,, Q) with the original dataset Q,, and Q; = f(Q,,) with
f the fair-washing method
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Unbiasing Methods
Dataset Gradp Gradb Gradp_1D Gradb_.ID Rep (S,Y) My, x sy) Entrb  Entrp
ADULT 0.09 0.08 0.09 0.08 0.05 0.05 0.08 0.09
EMP 0.18 0.10 0.18 0.10 0.06 0.06 0.10 0.18
INC 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
MOB 0.18 0.06 0.18 0.06 0.03 0.03 0.06 0.18
PUC 0.21 0.13 0.21 0.13 0.12 0.10 0.13 0.21
TRA 0.02 0.02 0.02 0.02 0.01 0.01 0.02 0.02
BAF 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00

Table 12: Wasserstein distance manipulation cost of the fair-washing methods(DI(Q;) = 0.8),
cost calculated on the projected dataset : W (Q,, (8.5) Qt( SY)) with the original dataset ),, and

Q: = f(Qy) with f the fair-washing method

1.2 KULLBACK-LEIBLER DIVERGENCE

Unbiasing Methods
Dataset Gradp Gradb Gradp.1D Gradb_.ID Rep (S,Y) My, x sy, Entrb Entrp
ADULT 0 0 0 0 0.03 0.02 0.03
EMP 0 0'e) 0 0's) 0 0.04 0.04 0.07
INC 0 0 0 0 0 0.00 0.00 0.00
MOB 0 0 0 0 0 0.02 0.03 0.17
PUC 0 0 0 0 0 0.06 0.07 0.10
TRA 0 0'0) 0 0 0 0.00 0.00 0.00
BAF 0 0 0 0 0'e) 0.00 0.00 0.00

Table 13: KL divergence manipulation cost of the fair-washing methods (DI(Q;) = 0.8), cost
calculated on the projected dataset : KL(Q,,, Q;) with the original dataset @Q,, and Q; = f(Q,,) with
f the fair-washing method

Unbiasing Methods
Dataset Gradp Gradb Gradp_1D Gradb_ID Rep (S,Y) My, x sy) Entrb  Entrp
ADULT 0.02 0.02 0.02 0.02 0.03 0.03 0.02 0.03
EMP 0.06 0.03 0.06 0.03 0.04 0.04 0.04 0.07
INC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MOB 0.12 0.03 0.12 0.03 0.02 0.02 0.03 0.17
PUC 0.09 0.06 0.09 0.06 0.08 0.07 0.07 0.10
TRA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
BAF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 14: KL divergence manipulation cost of the fair-washing methods (DI(Q:) = 0.8), cost
calculated on the projected dataset : KL(Q,, (8.5) Q, (s Y)) with the original dataset Q,, and Q; =

f(Qy) with f the fair-washing method

J ABLATION STUDY ON THE MMD TEST

We report the results in Table which presents the highest Disparate Impact (DI) achieved by
samples that remained undetected by the statistical tests based on KL divergence, Wasserstein distance,
and the Kolmogorov—Smirnov (KS) test. This table corresponds to Table 3] but excludes the two tests
based on the MMD distance.
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From Table[T5] we observe that excluding the MMD tests had negligible impact on detection outcomes.
The only notable difference arises in the BAF dataset with a 20% sampling rate, where the achieved
DI is slightly higher. We also point out that, due to the inherent randomness in sampling (100 random
samples are drawn for each combination of dataset, fair-washing method, sample size, and target
DI(Q:)), we occasionally found samples that passed all seven tests and exhibited marginally higher
DI than those evaluated with only five tests. These cases are indicated by a ‘+’ symbol in parentheses
in Table

Dataset ~ Original S size (%) Rep (S,Y) Entr_b Entr_p My, x.s.v)
ADULT 0.30 10 0.45(-0.05)  0.53 (-0.01) 0.55 (+0.03) 0.54 (+0.01)

20 0.38(-0.03)  0.43(+0.01) 0.42(+0.01)  0.43(+0.01)
EMP 0.30 10 - 0.38(+0.03)  0.39(+0.03)  0.39(+0.02)

20 - 0.36(+0.02)  0.35(-0.01)  0.36(+0.01)
INC 0.67 10 0.88 0.95(+0.01)  0.95(+0.01)  0.95(+0.02)

20 0.83 0.84(+0.01) 0.84 0.84
MOB 0.45 10 0.54(+0.01)  0.53(+0.01) 0.51 0.55(+0.02)

20 0.48(-0.01) 0.50 0.49 0.50
PUC 0.32 10 - 0.36(+0.03)  0.36(+0.01) 0.35

20 - - - -
TRA 0.69 10 0.76(-0.03)  0.84(+0.01) 0.84 0.84

20 0.71(-0.06)  0.80(+0.01)  0.80(+0.01) 0.81
BAF 0.35 10 - 1 1 1

20 - 0.83(+0.06)  0.84(+0.05)  0.85(+0.06)

Table 15: Highest undetected (without the MMD-based statistical tests) achievable Disparate Impact
for each dataset, sample size (S Size) and fair-washing method. The symbol — indicates that some
methods couldn’t reach a DI improvement. To emphasize the best method to use in order to deceive
the auditor, we put the DI achieved in bold when one or two over-performed the others. The number
in parentheses are here to indicate the difference between those results and the results obtained with
the MMD-based tests (Result without MMD - Result with).
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K FRAUD DETECTION

K.1 DISTRIBUTION OF TRIES BEFORE ACCEPTANCE OF H

As shown in Fig[9] taking only 30 or 50 samples instead of 1000 gives us respectively 73% or 78%
accuracy for the tests. This is arguably not that high, however knowing that we would have needed
the combination of 5 statistical tests to accept our sample in our use case, it still gives us a good
approximation to whether the test have a chance to be accepted (as it is harder to be accepted by the
combination of 5 tests than the individuals one).
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Figure 9: Distribution of number of tries to find an accepted sample for H for the statistical test KS
or KL(5,Y") with a maximum of 1000 tries per configuration (method, dataset, test) for all datasets.

K.2 HIGHEST UNDETECTED ACHIEVABLE DISPARATE IMPACT PROBABILITIES AND
ADDITIONAL GRAPH

We add details to Table 3| results, particularly its stability towards the number of sampling tries.

* We would have had 95%, 97% and 98% of similar results if we tried respectively 10, 20 and
30 samples compared to 100. (we had respectively 41, 24 and 19 scenarios which have us
different results over the span of 896 combinations).

* In configurations where a fairer falsely compliant sample was found, it was generally around
the 11" sample, while the median was equal to 4. (See Fig.
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Figure 10: Highest achieved DI for all Datasets
and methods (when they improve the original
DI), with sample size of 20% of the dataset.

Figure 11: Distribution of the number of sample
tried before first accepted one for all datasets.
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