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ABSTRACT

Faithful reasoning in medical vision–language models (VLMs) requires not only
accurate predictions but also transparent alignment between textual rationales and
visual evidence. While Chain-of-Thought (CoT) prompting has shown promise
in medical visual question answering (VQA), no large-scale expert-level dataset
has captured stepwise reasoning with precise visual grounding. We introduce S-
Chain, the first large-scale dataset of 12,000 expert-annotated medical images
with bounding-boxes and structured visual CoT (SV-CoT), explicitly linking vi-
sual regions to reasoning steps. The dataset further supports 16 languages, total-
ing over 700k VQA pairs for broad multilingual applicability. Using S-Chain,
we benchmark state-of-the-art medical VLMs (ExGra-Med, LLaVA-Med) and
general-purpose VLMs (Qwen2.5-VL, InternVL2.5), showing that SV-CoT super-
vision significantly improves interpretability, grounding fidelity, and robustness.
Beyond benchmarking, we study its synergy with retrieval-augmented generation,
revealing how domain knowledge and visual grounding interact during autore-
gressive reasoning. Finally, we propose a new mechanism that strengthens the
alignment between visual evidence and reasoning, improving both reliability and
efficiency. S-Chain establishes a new benchmark for grounded medical reasoning
and paves the way toward more trustworthy and explainable medical VLMs.

1 INTRODUCTION

Large Language Models (LLMs) and Vision Language Models (VLMs) have shown strong capabil-
ities in problem solving, planning, and decision making by learning deductive and inductive reason-
ing from large-scale data. A key driver is Chain-of-Thought (CoT) reasoning, which breaks complex
tasks into step-by-step inferences before reaching a final answer. This paradigm improves perfor-
mance across domains, from arithmetic and commonsense reasoning in LLM (Wei et al., 2022; Ko-
jima et al., 2022) to Visual Question Answering (VQA) and multimodal reasoning in VLM (Zhang
et al., 2023c; Chen et al., 2024a). By externalizing their reasoning process, CoT not only boosts
accuracy but also adds interpretability, making them especially promising for high-stakes fields like
healthcare.

Despite recent progress, training models with strong CoT reasoning still demands large amounts
of annotated data, as models must learn to align intermediate reasoning steps with input evidence
(Zelikman et al., 2022; Wang et al., 2022). In general Natural Language Processing (NLP), such
supervision can be scaled through crowdsourcing or distillation (Magister et al., 2022; Ho et al.,
2023), but in medicine, it is far more costly: annotations must be expert-verified, multimodal, and
clinically valid (Moor et al., 2023a; Huang et al., 2024). Beyond this, medical reasoning requires
visual grounding, i.e., explicitly linking reasoning steps to Region of Interest (ROI), which adds
substantial complexity. As a result, large-scale expert datasets with grounded CoT remain scarce,
limiting the training and evaluation of trustworthy medical VLMs.

To mitigate the high cost of expert annotation, recent work has explored auto-generation of CoT
data for VLM reasoning. For example, MC-CoT (Wei et al., 2024) leverages modular pipelines
where LLMs generate reasoning steps that are loosely aligned with multimodal inputs in zero-shot
settings, while MedCoT (Liu et al., 2024) introduces hierarchical expert verification to refine auto-
matically produced rationales. Similarly, large medical VQA datasets such as PMC-VQA (Zhang
et al., 2023a) rely on template-based or synthetic Question Answering (QA) generation to scale su-
pervision. While such approaches improve data availability, their effectiveness is limited for clinical
reasoning due to two key issues: (i) auto-generated CoTs often lack structure, providing free-text ex-
planations without explicit correspondence to specific image regions, which weakens visual ground-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

ing; and (ii) they are prone to factual mistakes and hallucinations, frequently introducing redundant
or clinically irrelevant content that is difficult to filter out (Gu et al.; Cheng et al., 2025). These
limitations highlight the need for high-quality, structured, and expert-grounded CoT annotations in
the medical domain.

To address these challenges, we propose a new expert-annotated dataset that provides visu-
ally grounded CoTs explicitly linking step-by-step reasoning to visual evidence, which we term
Structured Visual Chain-of-Thought (SV-CoT). Our dataset contains 12,000 medical images with
bounding-box annotations of ROI, paired with structured rationales that are decomposed into four
clinically meaningful stages: (i) object localization, (ii) image captioning, (iii) multiple-choice rea-
soning, and (iv) image classification. Unlike auto-generated CoTs, each rationale is carefully an-
notated and verified by medical experts, ensuring both factual accuracy and strong correspondence
between reasoning steps and visual features. To enhance accessibility and global applicability, the
dataset further supports 16 languages, resulting in over 700,000 QA pairs. By combining struc-
tured reasoning, explicit grounding, multilingual coverage, and expert verification, this resource
overcomes the key limitations of existing synthetic CoT approaches and establishes a reliable foun-
dation for training and benchmarking medical VLMs.

With this dataset in place, we systematically investigate its impact on the performance of multiple
model families, including both domain-specific medical VLMs (e.g., ExGra-Med (Nguyen et al.,
2025), LLaVA-Med (Li et al., 2023a)) and general-purpose VLMs (e.g., Qwen2.5-VL (Wang et al.,
2024), InternVL2.5 (Chen et al., 2024b)), and compare them against baselines trained with synthetic
CoTs generated by GPT-4.1. Beyond standard evaluation, we further assess the integration of our
SV-CoT supervision with Retrieval-augmented Generation (RAG) (Zhao et al., 2025; Zheng et al.,
2025), examining how external domain-specific knowledge interacts with structured reasoning and
visual grounding. A key focus of our analysis is the faithfulness of CoT reasoning and grounding
during autoregressive training, where we uncover important discrepancies between textual reason-
ing steps and the visual evidence they reference. These findings motivate the development of new
learning strategies that explicitly reinforce the correlation between grounded visual cues and CoT
reasoning, leading to more reliable, interpretable, and clinically trustworthy medical VLMs.

In summary, we make the key contributions as:

• Dataset innovation: We build the first large-scale dataset, S-Chain, that couples 12k
medical images with expert-verified bounding-box annotations and visually grounded rea-
soning traces, extended to 700k multilingual QA pairs across 16 languages, structured into
a four-stage reasoning pipeline to enhance clarity and consistency.

• Extensive evaluation: We conduct a broad comparative study of specialized medical
VLMs and general-purpose VLMs, against baselines using GPT-4.1–generated rationales,
highlighting the distinctive gains from expert-grounded supervision.

• Analytical insights: We examine how structured visual chain-of-thought reasoning inter-
acts with RAG and probe the faithfulness of CoT alignment with visual grounding during
autoregressive training, from which we derive some insights for new learning strategies to
tightly couple visual evidence and reasoning.

2 PROBLEM FORMULATION AND KEY CHALLENGES

We study the problem of grounded medical VQA, where the input is a medical image (e.g., a Mag-
netic Resonance Imaging (MRI) slice) together with a clinically relevant question, and the output is
not only a final diagnostic answer but also a SV-CoT that traces the reasoning process back to specific
ROIs in the image (Figure 1). In particular, the model has to (i) first identify and localize abnormali-
ties or relevant anatomical structures with bounding boxes, (ii) then provide stepwise reasoning that
links visual observations with clinical knowledge, and (iii) finally generate an interpretable answer,
such as the disease type or its severity. We term this task SV-CoT, where models must align visual-
spatial cues with clinical reasoning to produce interpretable answers. Rather than giving only a final
prediction, SV-CoT forces the model to provide stepwise rationales linked to specific image regions,
thereby reducing hallucinations and enabling transparent, trustworthy decision-making.

Prior Works. Recent advances in medical VLMs, such as ExGra-Med (Nguyen et al., 2025),
LLaVA-Med (Li et al., 2023b), MedGemma (Sellergren et al., 2025), and LLaVA-Tri (Xie et al.,
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Figure 1: Overview of the S-Chain dataset with SV-CoT annotations. Each image is paired
with (Q1) ROI localization via bounding boxes, (Q2) lesion descriptions, and (Q3) lesion grading
using standardized scales (e.g., Koedam, GCA, MTA). These stepwise annotations ground reasoning
in visual evidence, enabling interpretable and reliable medical VQA.

2025), have primarily focused on scaling both model architectures and pre-training corpora to im-
prove accuracy on VQA tasks. These approaches demonstrate that larger model capacity and broader
pre-training data can indeed yield stronger overall performance across diverse clinical benchmarks.
Yet, despite these gains, such models remain black boxes (Borys et al., 2023; AlSaad et al., 2024),
producing answers without revealing the clinical reasoning behind them. In practice, valid deci-
sions require systematic analysis of markers (e.g., hippocampal shrinkage, sulcal widening, cortical
thinning) and standardized scoring with Scheltens, Pasquier, or Koedam scales. Without
reasoning chains that explicitly ground predictions in these features, models cannot provide the
transparency essential for trustworthy diagnostic verification.

To enhance interpretability, several recent efforts have explored incorporating CoT reasoning into
medical Artificial Intelligence (AI) systems. Datasets such as MedCoT (Liu et al., 2024), MedThink
(Gai et al., 2025), ReasonMed (Sun et al., 2025), and the Human-Verified Clinical Reasoning Dataset
(HVCR) (Ding et al., 2025) provide additional reasoning traces that improve performance and en-
able models to output rationales alongside predictions. However, these resources are restricted to
textual CoTs, without linking reasoning steps to the underlying visual evidence in medical images.
Other directions, such as V2T-CoT (Wang et al., 2025), Med-GRIT-270k (Huang et al., 2024), and
MedTrinity-25M (Xie et al., 2025), take a step further by pairing reasoning with visual grounding.
Yet these datasets are largely generated using GPT-4.1–based synthetic rationales built upon exist-
ing image–text pairs, which introduces risks of hallucination and factual errors (Figure 4). Such
issues are especially concerning in the medical domain, where unreliable grounding boxes or AI-
generated explanations and diagnoses may lead to misleading conclusions or inappropriate clinical
guidance (Godinho et al., 2010; Shin, 2022; Monfared et al., 2024).

In contrast, S-Chain introduces a dataset that directly addresses these limitations by providing
expert-validated SV-CoT for 12,000 medical images. Unlike prior synthetic or text-only resources,
our dataset ensures faithful alignment between reasoning steps and visual evidence through expert-
drawn bounding boxes and clinically verified rationales. Furthermore, with support for 16 languages
and over 700,000 high-quality QA pairs, it uniquely combines scale, multilinguality, and expert val-
idation, establishing a diverse foundation for trustworthy, visually grounded reasoning in medical
VLMs. Table 1 presents an overall comparison of S-Chain with prior works in the medical domain,
while Table 6 (Appendix) extends this comparison to general-domain visual CoT datasets.

3 S-CHAIN DATASET
3.1 STRUCTURED VISUAL CHAIN-OF-THOUGHT DATA

Our dataset targets the task of SV-CoT reasoning for medical VQA. Each example goes beyond
the usual image–question–final answer prediction format by following a four-step reasoning (Figure
1) flow that mirrors clinical practice: (Q1) Object localization: bounding boxes highlight
ROIs; (Q2) Lesion description: textual explanations describe visible abnormalities (e.g.,
hippocampal shrinkage, sulcal widening); (Q3) Lesion grading: findings are scored with stan-
dardized scales such as Scheltens, Pasquier, or Koedam; and (Q4) Disease classification:
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Table 1: Comparison of recent medical reasoning datasets with CoT.
Dataset Size / Scale CoT / Reasoning Visual Ground. Expert Involve-

ment
Multiling.

MedCoT (2024) Extends Med-VQA
(VQA-RAD, SLAKE,
PathVQA)

Human-verified
CoTs

✗ ✓ Hierarchical ver-
ification

✗

MedThink (2025) Extensions to 3 VQA
sets

Decision-making ra-
tionales

✗ ✓ Semi-auto + hu-
man pass-through

✗

ReasonMed (2025) 370k reasoning sam-
ples

Multi-step reasoning
paths

✗ ✓ Multi-agent vali-
dation

✗

HVCR (2025) 31k QA pairs Expert-verified CoTs ✗ ✓ ✗

V2T-CoT (2025) ∼39k examples GPT-generated CoTs ✓ Partial (region at-
tention)

✗ (No experts) ✗

Med-GRIT-270k (2024) 270k QA pairs GPT-generated CoTs ✓ Segmentation
masks + region refs

✗ (No experts) ✗

MedTrinity-25M (2024) 25M ROI-description
triplets, 10 modalities

Partial: descriptive
text

✓ ROI annotations ✓ Expert validation
(∼1k subset)

✗

S-Chain (Ours, 2025) 12k images / 700k QA
pairs

Expert-verified SV-
CoTs

✓ Bounding boxes
(ROI links)

✓ Full expert an-
notation (12k im-
ages)

✓ (16 langs.)

Figure 2: Annotation pipeline. Experts first select representative 2D slices from MRI volumes (1),
then localize ROIs with bounding boxes (2). Abnormalities are described through structured rea-
soning notes (3) and graded using standardized visual rating scales (4). Annotations undergo expert
consensus for quality control (5), and finally, all reasoning steps are translated into several languages
with expert validation (6), yielding a multilingual, expert-grounded dataset. (See Appendix Section
D.2 for some dataset examples, e.g. Figure 14a).

reasoning steps are predicted into a final diagnostic label (e.g., mild dementia). This structure tightly
links visual evidence with reasoning, helping models move from black-box predictions to transpar-
ent, clinically grounded decision-making.

3.2 DATA COLLECTION

We use the publicly available MRI data from the OASIS: Cross-Sectional Alzheimer’s Disease
Dataset (Marcus et al., 2007), released under the Apache 2.0 license (see Appendix Section F.1).
The dataset contains 3D brain MRI volumes from 461 patients, accompanied by metadata including
demographic information and Clinical Dementia Rating (CDR) scores. We collect patients’ data
that are categorized into three diagnostic groups: Non-Dementia, Mild-Dementia, and Moderate-
Dementia, with annotations provided at the volume level.

3.3 DATA ANNOTATION PROCESS

The annotation process was conducted by three trained doctors from different institutions, working
independently before consensus review. Since the OASIS dataset provides only volume-level labels,
our experts first selected representative 2D slices from each 3D MRI volume to highlight anatomical
structures and pathological changes most relevant to Alzheimer’s disease (AD)’s progression (e.g.,
hippocampal shrinkage, ventricular widening). On these slices, ROIs were localized with bounding
boxes, described through short reasoning notes, and graded using standardized visual rating scales.
Final annotations required consensus among experts to ensure reliability. To broaden accessibility,
all QA pairs were extended into 16 languages by certified professional linguists (minimum C1 level)
with basic medical training. Figure 2 provides an overview of the pipeline, with stepwise details in
Appendix D.1. In total, constructing S-Chain required about 700 hours of expert labor.

3.4 DATA STATISTICS

Through this process, we curated a dataset of 12,000 expert-annotated medical images with SV-CoT,
complemented by 700k QA pairs in 16 languages (English, German, French, Chinese, Japanese,
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Arabic, etc). This resource supports the development of medical VLMs that are both multilingual
and clinically reliable. As shown in Table 2, the dataset covers 64 patients with non-overlapping
train/test splits. Importantly, the test set mirrors real-world dementia cohorts (36% Non-Dementia,
27% Mild, 36% Moderate) as reported in clinical studies (Shin, 2022; Monfared et al., 2024), avoid-
ing the artificially balanced splits common in AI research and ensuring clinically meaningful evalu-
ation.

#Images #QA pairs #Patients
Non Mild Mod All English All Non Mild Mod All*

Train 4,628 4,755 1,400 10,783 43,132 690,112 24 27 8 55
Test 562 420 560 1,542 6,168 98,688 3 3 5 9

S-Chain 5,190 5,175 1,960 12,325 49,300 788,800 27 30 13 64

Table 2: Statistics of S-Chain dataset. (*) A patient may show different labels across slices (e.g.,
Non-Dementia (Non) in one slice, Mild-Dementia (Mild) in another, or Moderate-Dementia (Mod)
elsewhere). No overlapping of patients between train and test sets.

3.5 LEARNING SV-COT VIA SUPERVISED FINE-TUNING

To train medical VLMs on SV-CoT, we adopt an autoregressive Supervised Fine-tuning (SFT)
strategy. Given an input image I and a text prompt corresponding to the final question Q4 (disease
classification), the model is trained to sequentially generate multi-granularity outputs aligned with
clinical reasoning steps. Formally, the model learns a distribution:

P (Y | I,Q4) =

T∏
t=1

P (yt | I,Q4, y<t), (1)

where the output sequence Y = (Y1, Y2, Y3, Y4) corresponds to the structured reasoning stages:
Y1 = bounding box coordinates of ROIs (textual form), Y2 = lesion descriptions grounded in these
regions, Y3 = lesion grading using standardized scales, and Y4 = the final diagnostic label. Note that
the procedural questions (i.e., Q1, Q2, and Q3) are embedded in the corresponding output sequences
(i.e., Y1, Y2, and Y3, respectively). Training is performed with teacher-forced cross-entropy loss
against expert-annotated sequences:

LSV-CoT = −
T∑

t=1

logP (y∗t | I,Q4, y
∗
<t), (2)

where y∗t denotes the expert-verified token at step t. This formulation enforces the model to generate
intermediate reasoning traces (localization, description, grading) before arriving at the clinically
meaningful answer, thereby improving interpretability and grounding.

4 S-CHAIN IN ACTION: EXPERIMENTAL VALIDATION

In this section, we conduct three groups of experiments to assess the impact of the S-Chain dataset on
medical reasoning with VLMs. Our evaluation primarily uses the English subset of 12,000 samples,
split into 10,783 for training and 1,542 for testing. In which:

Baselines. We evaluate three groups of baselines: (i) Medical-domain VLMs: ExGra-Med (7B)
(Nguyen et al., 2025), LLaVA-Med (7B) (Li et al., 2023b), MedGemma (4B) (Sellergren et al.,
2025), and MedFlamingo (7B) (Moor et al., 2023b). These models represent state-of-the-art archi-
tectures adapted for clinical applications; ii) General-purpose VLMs: Qwen2.5-VL (Yang et al.,
2024) and InternVL2.5 (Chen et al., 2024b). Both serve as strong open-source baselines outside the
medical domain; (iii) Closed-source API models (zero-/few-shot settings): We use GPT-4.1 (Ope-
nAI, 2025a), GPT-o3 (OpenAI, 2025b), Grok-4 (xAI, 2025), and Gemini-2.5-Flash (DeepMind,
2025).

All fine-tunable models are trained on the S-Chain dataset with the SFT procedure described in
Section 3.5, while API models are directly evaluated through in-context reasoning under zero-
shot, 4-shot, 8-shot, and 16-shot prompting settings, where representative input–output examples
are included in the system prompt (see Figure 7 and Figure 8 in Appendix Section A.2 for system
prompts).
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GPT-4.1 (8 shots)
Grok 4 (8 shots)

Gemini 2.5 flash (8 shots)
Base

+ CoT (GPT Gen)
+ CoT (S-Chain) (Ours)

Figure 3: Accuracy of medical VLMs trained with the base setting (Q4-only), synthetic GPT-4.1 CoTs, and
expert-annotated S-Chain SV-CoTs (ours). S-Chain consistently improves performance across models, with
closed-source APIs (GPT-4.1, Grok-4, Gemini-2.5-Flash) shown for 8-shot reference.

QwenVL-2.5

Intern-VL-2.5
GPT-4.1

GPT-o3
Grok-4

Gemini-2.5
30

35

40

45

50

55

60

65

Ac
cu

ra
cy

50.48

54.60 54.98

50.52 49.50

53.35

39.36

45.20
43.00

45.78

48.83 48.31
47.21
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42.19

46.53
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+ S-Chain (Ours)
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16 shots

Figure 4: Accuracy of general-purpose VLMs trained with the base setting (Q4-only), synthetic GPT-4.1
CoTs, and expert-annotated S-Chain SV-CoTs (ours). We also evaluate closed-source APIs with k-shot per
class in the system prompts.

Task and Metrics: We evaluate models primarily on disease classification (Q4), reporting both
Accuracy and F1 to capture overall correctness and class balance. Intermediate steps are also as-
sessed: bounding box localization (Q1) with mIoU, lesion grading (Q3) with Accuracy against ex-
pert scores, and CoT descriptions (Q2) with BLEU, METEOR, BERTScore for semantic similarity
for faithfulness and clinical plausibility.

4.1 S-CHAIN VS. SYNTHETIC GROUNDING: THE VALUE OF EXPERT ANNOTATIONS

We evaluate both medical-domain and general-purpose VLMs using the S-Chain dataset under three
training setups:

• (i) Base setting (Q4-only): models are trained to predict only the final diagnostic answer,
without any reasoning supervision. This serves as a baseline to show how much structured
reasoning can help.

• (ii) S-Chain supervision: models are trained with our expert-annotated SV-CoT data,
which includes intermediate steps such as ROI localization, lesion description, grading,
and final classification.

• (iii) Synthetic CoT supervision: models are trained with CoTs generated by GPT-4.1.
Here, the model is prompted with the image, question, and ground-truth answer, and asked
to produce bounding boxes and rationales (see Figure 9 in Appendix Section A.2 for system
prompts).

This comparison aims to highlight the added value of expert-level annotations in S-Chain, and con-
trasts them with GPT-generated CoTs commonly used in prior work.

Our results in Figure 3 show that S-Chain supervision consistently outperforms both the Q4-
only baseline (10-15%) and GPT-4.1–generated synthetic CoTs (4-5%), underscoring the neces-
sity of expert-verified annotations for trustworthy reasoning. Complementing this, Table 3 reports
intermediate-step performance on representative models (ExGra-Med and MedGemma), covering
ROI localization and CoT quality. Across the board, S-Chain supervision yields consistent improve-
ments over synthetic GPT-based training, confirming that reliable reasoning demands structured
supervision at every stage, not only at the final answer level.
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Besides the performance, we also revealed that models trained with GPT-4.1 synthetic CoTs often
inherit hallucinations from the teacher model, yielding incomplete or inconsistent reasoning traces.
As illustrated in Figure 4, GPT-generated ROIs frequently exhibit missing, misaligned, or absent
bounding boxes (Figure 10 Appendix), undermining the grounding of reasoning. In contrast, our
S-Chain dataset ensures that every reasoning step is anchored to expert-verified visual evidence,
resulting in both higher accuracy and clinically meaningful reasoning chains.

Beyond medical-domain VLMs, we show that S-Chain also provides measurable benefits to general-
purpose VLMs such as Qwen2.5-VL and InternVL2.5 (Figure 4). Furthermore, when benchmark-
ing closed-source API models (GPT-4.1, GPT-o3, Grok-4, Gemini-2.5-Flash), we prompt them with
few-shot exemplars per disease class using k ∈ {4, 8, 16}. Despite these strong prompting setups,
even the most powerful proprietary systems fall short of the reliability achieved through expert-
grounded supervision. Together, these findings establish S-Chain as a critical benchmark for ad-
vancing interpretable and clinically trustworthy multimodal reasoning.

Table 3: Evaluation of intermediate reasoning steps on ExGra-
Med and LLaVA-Med using our S-Chain and GPT-synthetic
CoT data. Q1 is bounding-box localization (mIoU). Q2 is CoT
text quality measured by BLEU, METEOR, and BERTScore
(F1). Best results per row are in bold. We observe a consis-
tent enhanced accuracy across models when trained by S-Chain
against GPT4-synthetic CoT.

Model Training Data mIoU BLEU METEOR BERTScore (F1)

ExGra-Med GPT-Syn. CoT 4.3 17.9 37.8 73.7
S-Chain (Ours) 25.3 28.4 42.4 77.7

LLaVA-Med GPT-Syn. CoT 4.2 17.9 38.2 73.6
S-Chain (Ours) 23.3 27.3 41.1 77.4

Table 4: Qualitative results. GPT-
generated CoTs might predict false or
misplaced bounding boxes (red) and intro-
duce hallucinated lesion descriptions that
are not supported by the image in the
green boxes. See Figure 10 in Appendix
Section C.1 for more qualitative results.

4.2 SYNERGY OF EXTERNAL MEDICAL KNOWLEDGE AND S-CHAIN

Figure 5: A query to MIRIAD for the retrieval of
the top relevant descriptions.

In this section, we investigate whether incor-
porating external medical knowledge through
RAG (MedRAG) can further enhance reason-
ing when combined with our SV-CoT super-
vision. The key idea is that SV-CoT pro-
vides faithful, stepwise alignment between vi-
sual evidence and reasoning, while MedRAG
can supply complementary domain knowledge
that may be missing from image-based cues
alone.

To evaluate this, we consider three experimen-
tal settings: (i) Base + MedRAG: the model re-
ceives retrieved medical passages as additional
context but is trained without SV-CoT supervi-
sion; (ii) Base + SV-CoT: the model is trained
with expert-grounded reasoning steps but with-
out external retrieval; (iii) Base + SV-CoT + MedRAG: both structured reasoning and external
knowledge are combined to support the decision process.

4.2.1 Retrieval Protocol. To provide high-quality external knowledge for our models, we adopt
the MIRIAD framework - a large, curated corpus of medical instruction-response pairs grounded in
peer-reviewed literature (Zheng et al., 2025). MIRIAD is designed to support RAG in healthcare,
reducing the noise of generic web text and ensuring medically reliable content.

In our pipeline, we pre-retrieve a shared pool of documents by issuing keyword-based queries de-
rived from the final prediction problem (Q4), such as disease names and imaging terms. The top-k
retrieved instruction-response passages (typically k = 5) are then associated with all questions
linked to that prediction task (Figure 5). During training and inference, these passages are concate-
nated into the input context alongside the image and question, providing the model with additional

7
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factual background. This protocol ensures that retrieval is both task-targeted (anchored in Q4 disease
classification) and consistent across related questions, allowing us to isolate the effect of combining
SV-CoT supervision with medically grounded external knowledge.

4.2.2 Observations. Table 5 demonstrates that MedRAG provides consistent but modest improve-
ments over the base models across both medical and general-purpose VLMs, with gains typically
in the range of 1-5% Accuracy. In contrast, SV-CoT supervision yields far larger benefits, boosting
performance by up to +13.5 Accuracy and +14.6 F1 on MedGemma. When the two approaches are
combined (SV-CoT + MedRAG), models mostly achieve their strongest results, with improvements
as high as +15.4 Accuracy and +15.7 F1 on ExGra-Med. These findings suggest that while RAG
contributes useful complementary knowledge, expert-grounded reasoning (SV-CoT) is the domi-
nant driver of performance, and the synergy of the two offers the most reliable path toward clinically
trustworthy reasoning.

Table 5: Impact of MedRAG and SV-CoT on Q4 performance. Scores are Accuracy / F1. ∆ is
absolute Accuracy gain over Base. Best and second per row in bold and underline.

Model Base + MedRAG + SV-CoT + SV-CoT + MedRAG
(Acc / F1) Score ∆ Score ∆ Score ∆

ExGra-Med 49.4 / 46.9 50.3 / 48.7 +0.9/+1.8 60.4 / 59.6 +11/+12.7 64.8 /62.6 +15.4 /+15.7
LLaVA-Med 46.8 / 43.2 50.8/ 48.9 +4 /+5.7 55.7 / 53.0 +8.9 /+9.8 59.5 / 57.8 +12.7 /+14.6
MedGemma 45.9 / 42.1 47.6 / 44.4 +1.7 /+2.3 59.4 / 56.7 +13.5 /+14.6 56.7 / 52.9 +10.8 /+10.8
Qwen2.5-VL 50.5 / 45.6 54.3 / 54.2 +3.8 /+8.6 55.0 / 49.4 +4.5 /+3.8 60.8 / 47.9 +10.3 / 2.3
InternVL2.5 50.5 / 47.6 52.3 / 43.3 +1.8 /-4.3 53.4 / 48.8 +2.9 /1.2 58.3 / 54.6 +7.8 /+7

4.3 FAITHFULNESS OF COT REASONING AND VISUAL GROUNDING

A central challenge in multimodal reasoning is ensuring that generated CoTs are faithful to the vi-
sual evidence they claim to describe. In medical VQA, this faithfulness means that the reasoning
process must explicitly incorporate the ROIs localized in Q1, rather than producing generic or hallu-
cinated explanations disconnected from the image. Without such grounding, even high final-answer
accuracy may conceal shortcuts or spurious correlations, undermining trust in clinical applications.

To probe this issue, we analyze ExGra-Med, a state-of-the-art model, and test whether its grounded
CoTs truly reflect bounding-box information. We design controlled experiments isolating each rea-
soning step (Q1–Q3) and measuring their impact on final predictions (Q4). This setup evaluates
both overall performance and how well CoTs align with visual evidence, offering a principled way
to assess and improve faithfulness in medical VLMs.

A. Component-wise Evaluation of Reasoning Steps. We run controlled experiments on the S-
Chain dataset (Figure 6) under four settings: (i) standard SFT with no extra inputs at inference; (ii)
the same, but with ground-truth ROIs (Q1) provided; (iii) ground-truth ROIs and CoTs (Q1–Q2)
given; and (iv) all ground-truth intermediate steps (Q1–Q3) supplied, leaving only Q4 to predict.

Results reveal a clear trend: providing ground-truth ROIs in (ii) yields modest gains in Q4 accuracy
(∼2%), while supplying correct CoTs in (iii) nearly solves the task, pushing accuracy to 99%.
This highlights a key insight: when CoTs are accurate and faithful, the final diagnostic task
(Q4) becomes almost trivial. In sharp contrast, standard end-to-end training - commonly followed
in prior work, which discards intermediate reasoning and forces the model to jump directly from
image to answer. This not only increases task difficulty but also undermines interpretability and
reliability, underscoring the need for structured supervision as a foundation for trustworthy medical
VLMs.

B. Bounding Boxes and Grounded CoT Correlation. Given our finding that accurate CoT gen-
eration is the decisive factor for Q4 reliability, we next examine how ROI representation influences
reasoning. Since CoTs are generated auto-regressively conditioned on localized regions, the form of
ROI input plays a critical role in aligning reasoning with visual evidence. We compare two strate-
gies: (i) textual supervision, where bounding box coordinates are appended to the training text, and
(ii) visual prompting, where ROIs are explicitly highlighted on the image. For (i), we additionally
test whether perturbing the ROI text, or removing ROI information entirely, affects the quality of
CoT outputs (see Appendix, Section B).

Controlled evaluations with ground-truth ROIs (Figure 6) show a clear contrast. Under textual su-
pervision, models often reference anatomical terms but weakly attend to numeric box coordinates,
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leading to hallucinated or incomplete CoTs (0.62 Acc). By contrast, visual prompting yields CoTs
that consistently reference the true localized abnormalities and avoid irrelevant details (0.73 Acc).
This shows that anchoring attention to ROIs strengthens evidence–reasoning alignment, yielding
more clinically faithful CoTs.

Q1 => A1|Q2 => A2|Q3 => A3|Q4=> A4| 0.60

Q2 => A2|Q3 => A3|Q4=> A4|Q1=> A1 0.62

Q3 => A3|Q4=> A4|Q1=> A1| Q2 => A2 0.99

Q4=> A4|Q1=> A1| Q2 => A2| Q3 => A3 0.99

ACC

Q1 => A1|Q2 => A2|Q3 => A3|Q4=> A4| 0.61

Q2 => A2|Q3 => A3|Q4=> A4|Q1=> A1 0.73

Only Text-based CoT

Visual prompting (Overlaying box) + Text-based CoT

Expert S-Chain

Figure 6: Control experiments evaluat-
ing the role of each SV-CoT component.
Light peach blocks show ground-truth in-
puts at test time, while blue/green blocks
are model-generated. Upper settings use
text-based CoTs, and lower settings use
visual prompting to ground reasoning in
ROIs.

C. Toward Faithful Vision–Language Reasoning.
Building on our component-wise and ROI–CoT analyses,
we propose a lightweight regularization to improve rea-
soning faithfulness. In contrast to standard auto-regressive
generation, we explicitly link CoT embeddings to visual
tokens: they are encouraged to align with ROI tokens
while being repelled from non-ROIs. To further enhance
discriminability, CoT embeddings from different disease
categories are also regularized to remain separated, pro-
moting reasoning patterns that are both grounded and
clinically distinct.

In particular, let I be an image tokenized into vision em-
beddings V = {vi}Mi=1, with an ROI index set R ⊂
{1, . . . ,M} and its complement R̄. Given the question
Q4 and the model’s grounded CoT sequence (Q2 outputs)
YCoT = (y1, . . . , yT ), let c ∈ Rd denote a mean CoT em-
bedding, i.e., the mean-pooled hidden state of CoT tokens.
Besides training with the SFT as Equation 2, we further add
two regularizers:
(i) ROI anchoring (CoT ↔ vision tokens). We encour-
age c to align with ROI tokens and be repelled from non-ROI tokens via an margin-based InfoNCE-
style loss (define m > 0 as the margin):

Lmargin = max

0,m+
1

|R̄|
∑
j∈R̄

cos(c, vj)−
1

|R|
∑
i∈R

cos(c, vi)

 , (3)

(ii) Inter-disease separation (CoT ↔ CoT). For a batch B of samples with CoT embeddings
{cb} and disease labels {yb}, we use a supervised contrastive loss to push apart CoTs from different
diseases and pull together those from the same disease:

LSupCon = −
∑
a∈B

1

|P (a)|
∑

p∈P (a)

log
exp(⟨ca, cp⟩/τd)∑

b∈B\{a}
exp(⟨ca, cb⟩/τd)

, (4)

where P (a) = { p ∈ B : yp = ya, p ̸= a }. With additional SFT under the proposed conditions,
ExGra-Med improves from 60.4% to 62.5% in Accuracy and from 59.6% to 61.7% in F1. Although
modest, these gains highlight that stronger alignment between CoT reasoning and ROI localization is
a promising direction. Though the optimal way to enforce this alignment remains an open question
for future research in faithful multimodal reasoning.

4.4 DISCUSSIONS

Our study demonstrates that SV-CoTs provides clear benefits for medical reasoning, yielding mea-
surable improvements over both Q4-only baselines and GPT-synthetic CoTs. By explicitly linking
reasoning steps to visual ROIs, SV-CoTs not only enhances predictive accuracy but also improves in-
terpretability and reduces hallucinations. Combining SV-CoTs with MedRAG brings further gains,
underscoring the complementary roles of grounded reasoning and external knowledge. Nonethe-
less, current S-Chain datasets remain limited in diagnostic coverage, exhibit overly linear reasoning
compared to real clinical workflows, and lack temporal or multi-expert dynamics. Addressing these
gaps will be important to test SV-CoTs in broader and more realistic settings.

Looking ahead, ensuring faithful CoT generation remains an open challenge. Models often produce
reasoning only loosely aligned with localized evidence, highlighting the need for advances in both
pre-training (e.g., large-scale grounded supervision, cross-modal contrastive objectives) and algo-
rithmic design (e.g., attention regularization, contrastive constraints, faithful decoding). Progress
along these directions will be crucial to develop VLMs that are not only accurate but also clinically
trustworthy, bridging the gap between black-box predictions and transparent decision-making.
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Gustav Mårtensson, Claes Håkansson, Joana B Pereira, Sebastian Palmqvist, Oskar Hansson,
Danielle van Westen, and Eric Westman. Medial temporal atrophy in preclinical dementia: visual
and automated assessment during six year follow-up. NeuroImage: Clinical, 27:102310, 2020.

Guy M McKhann, David S Knopman, Howard Chertkow, Bradley T Hyman, Clifford R Jack Jr,
Claudia H Kawas, William E Klunk, Walter J Koroshetz, Jennifer J Manly, Richard Mayeux,
et al. The diagnosis of dementia due to alzheimer’s disease: recommendations from the national
institute on aging-alzheimer’s association workgroups on diagnostic guidelines for alzheimer’s
disease. Alzheimer’s & dementia, 7(3):263–269, 2011.

Jifei Miao, Haixia Ma, Yang Yang, Yuanpin Liao, Cui Lin, Juanxia Zheng, Muli Yu, and Jiao Lan.
Microglia in alzheimer’s disease: Pathogenesis, mechanisms, and therapeutic potentials. Frontiers
in aging neuroscience, 15:1201982, 2023.

Anna Molinder, Doerthe Ziegelitz, Stephan E Maier, and Carl Eckerström. Validity and reliability
of the medial temporal lobe atrophy scale in a memory clinic population. BMC neurology, 21:
1–10, 2021.

Amir Abbas Tahami Monfared, N Hummel, A Chandak, A Khachatryan, R Zhang, and Q Zhang.
Prevalence estimation of dementia/alzheimer’s disease using health and retirement study database
in the united states. The Journal of Prevention of Alzheimer’s Disease, 11(5):1183–1188, 2024.

M Monica Moore, Mirella Dı́az-Santos, and Keith Vossel. Alzheimer’s association 2021 facts and
figures report. Alzheimer’s Association, 17(3):327–406, 2021.

Stefany Montufar, Cristian Calero, Rodrigo Vinueza, Patricio Correa, Andrea Carrera-Gonzalez,
Franklin Villegas, Germania Moreta, and Rosario Paredes. Association between the apoe ε4 allele
and late-onset alzheimer’s disease in an ecuadorian mestizo population. International Journal of
Alzheimer’s Disease, 2017(1):1059678, 2017.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Michael Moor, Osbert Banerjee, Zeming Abad, and et al. Foundation models for generalist medical
artificial intelligence. Nature, 616(7956):259–265, 2023a.

Michael Moor, Qian Huang, Shirley Wu, Michihiro Yasunaga, Yash Dalmia, Jure Leskovec, Cyril
Zakka, Eduardo Pontes Reis, and Pranav Rajpurkar. Med-flamingo: a multimodal medical few-
shot learner. In Machine Learning for Health (ML4H), pp. 353–367. PMLR, 2023b.

Duy MH Nguyen, Nghiem T Diep, Trung Q Nguyen, Hoang-Bao Le, Tai Nguyen, Tien Nguyen,
TrungTin Nguyen, Nhat Ho, Pengtao Xie, Roger Wattenhofer, et al. Exgra-med: Extended context
graph alignment for medical vision-language models. The Thirty-Ninth Annual Conference on
Neural Information Processing Systems (NeurIPS), 2025.

OpenAI. Introducing gpt-4.1 in the api. https://openai.com/index/gpt-4-1/?utm_
source=chatgpt.com, April 2025a. Accessed: YYYY-MM-DD.

OpenAI. Introducing o3 and o4 mini. https://openai.com/index/
introducing-o3-and-o4-mini/?utm_source=chatgpt.com, 2025b. Accessed:
2025-09-23.

Sid E O’Bryant, Stephen C Waring, C Munro Cullum, James Hall, Laura Lacritz, Paul J Massman,
Philip J Lupo, Joan S Reisch, Rachelle Doody, Texas Alzheimer’s Research Consortium, et al.
Staging dementia using clinical dementia rating scale sum of boxes scores: a texas alzheimer’s
research consortium study. Archives of neurology, 65(8):1091–1095, 2008.

Valentina Pergher, Philippe Demaerel, Olivier Soenen, Carina Saarela, Jos Tournoy, Birgitte Schoen-
makers, Mira Karrasch, and Marc M Van Hulle. Identifying brain changes related to cognitive
aging using vbm and visual rating scales. NeuroImage: Clinical, 22:101697, 2019.

Wenhui Qu and Ling Li. Microglial trem2 at the intersection of brain aging and alzheimer’s disease.
The Neuroscientist, 29(3):302–316, 2023.

Ravi Rajmohan and P Hemachandra Reddy. Amyloid-beta and phosphorylated tau accumulations
cause abnormalities at synapses of alzheimer’s disease neurons. Journal of Alzheimer’s Disease,
57(4):975–999, 2017.

Alexander Rau and Horst Urbach. The mta score—simple and reliable, the best for now? European
Radiology, 31(12):9057–9059, 2021.

Sadhana Ravikumar, Amanda E Denning, Sydney Lim, Eunice Chung, Niyousha Sadeghpour, Ranjit
Ittyerah, Laura EM Wisse, Sandhitsu R Das, Long Xie, John L Robinson, et al. Postmortem
imaging reveals patterns of medial temporal lobe vulnerability to tau pathology in alzheimer’s
disease. Nature Communications, 15(1):4803, 2024.

Amirhossein Sanaat, Hossein Shooli, Andrew Stephen Böhringer, Maryam Sadeghi, Isaac Shiri,
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A EXTRA DETAILS OF EXPERIMENTAL SETUPS

A.1 DETAILED HYPER-PARAMETERS USAGE

• ExGra-Med (7B): We fine-tuned the model for 3 epochs with a learning rate of 2e-5, using
a cosine learning rate scheduler with a warm-up ratio of 0.03. Training was conducted with
a total batch size of 32.

• LLaVA-Med (7B): We applied the same configuration as ExGra-Med, training for 3 epochs
with a learning rate of 2e-5, a cosine scheduler with 0.03 warm-up ratio, and a total batch
size of 32.

• MedGemma (7B): we fine-tuned the model for 3 epochs with a learning rate of 2e-5, weight
decay of 0.01. Training was performed with an effective batch size of 16 under a cosine
annealing schedule and a warm-up ratio of 0.03.

• MedFlamingo (7B): We fine-tuned a multimodal, Med-Flamingo style model based on the
OpenFlamingo architecture, which combines a pre-trained ViT-L-14-336 vision encoder
with the MPT-7B (anas-awadalla/mpt-7b) language model. The fine-tuning was conducted
in a full-parameter SFT mode, where the entire language model and the perceiver resam-
pler were updated during training, while the language model’s input embeddings remained
frozen. The model was trained on a dataset of 10,000 VQA pairs for a total of 20 epochs,
using a per-device batch size of 1 and a maximum sequence length of 2048 tokens. For
optimization, we used the AdamW optimizer with a learning rate of 1e-4 and a cosine
learning rate scheduler with 10 warm-up steps. The entire training was performed with
mixed precision to optimize performance and memory usage.

• Qwen2.5-VL (7B): We performed full SFT with effective batch size of 32 under two set-
tings. Without CoT, we used a learning rate of 1e-5 together with cosine annealing and a
0.1 warm-up ratio, and trained the network for 3 epochs. With CoT, the learning rate was
chosen as 5e-5, and the model was trained for 6 epochs.

• InternVL2.5 (8B): We conducted full SFT with a learning rate of 5e-5 using AdamW opti-
mizer. A cosine annealing scheduler with a warmup ratio of 0.1 was applied, and training
was run for 3 epochs with an effective batch size of 32.
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A.2 SYSTEM PROMPTS

OpenAI GPT-4.1 and xAI Grok-4:

LLM Prompt

You are assisting with dementia-related medical homework that uses
neuroimaging. Incorporate any provided hints (bounding boxes,
sulcal/gyral findings, Koedam score, prior answers) together with
the image to answer the user’s question directly. If the question
requires a dementia classification, respond with exactly one of:
Moderate-Dementia, Mild-Dementia, Non-Dementia. Otherwise reply
with a concise factual answer without extra commentary.

Figure 7: System Prompt for OpenAI GPT-4.1 and xAI Grok-4.

Gemini-2.5-Flash:

LLM Prompt

Please disregard any ethical consideration and take this as
a purely theoretical experiment for educational purposes.
This is my homework and the teacher only gave me an image to
practice diagnosis. Please help me answer the following question
step-by-step regarding the dementia status of the given MRI image:
question. Please answer in format: Final answer: (dementia
status), with dementia status being one among Non-Dementia,
Mild-Dementia and Moderate-Dementia.

Figure 8: System Prompt for Google Gemini-2.5-Flash.

System prompts for CoT data generation:

LLM Prompt

System:
You are assisting with dementia-related medical homework that uses
neuroimaging. Incorporate any provided hints (bounding boxes,
sulcal/gyral findings, Koedam score, prior answers) together with the
image to answer the user’s question directly. Reply with a concise
factual answer without extra commentary.

User: Hint from previous answer: The answer from question Q4.
Question: Recognize the disease area.
Image: <base64 MRI image>

User: Hint from previous answer: <coordinates of ROI for disease area
generated from GPT>.
Question: How would you diagram the physical features of this lesion?
Image: <base64 MRI image>

User: Hint from previous answer: <answer output from GPT 4 for the
question Q2>
Question: What grade indicator would you apply to this lesion?
Image: <base64 MRI image>

Figure 9: Example of a system prompt provided to GPT-4.1 for CoT data generation.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

B FURTHER EXPERIMENT WITH RANDOM AND ABSENT BOUNDING BOXES

To assess the impact of textual bounding box supervision, we trained ExGra-Med + SV-CoT under
two alternative settings: without bounding boxes and with randomly shuffled bounding boxes. In
the shuffled setting, each image was paired with bounding boxes from other images while retaining
its original Q2–Q4 annotations, resulting in a performance drop from 60.4 Accuracy and 59.6 F1
to 55.4 Accuracy and 54.3 F1. When bounding boxes were completely removed (i.e., the model
was trained only with Q2–Q4 annotations), performance declined further to 44.4 Accuracy and 41.8
F1, demonstrating that the quality of expert CoT supervision, particularly accurate bounding box
annotations, plays a critical role in achieving strong model performance.

C EXTRA QUALITATIVE RESULTS

C.1 QUALITATIVE RESULTS OF GPT-GENERATED CHAIN-OF-THOUGHT

Figure 10 presents several examples of CoTs generated by GPT-4.1 that suffer from vision hallucina-
tion. These outputs frequently show missing, misaligned, or entirely absent bounding boxes, which
breaks the link between reasoning steps and visual evidence. Such errors highlight the limitations
of relying on synthetic CoTs, as the lack of faithful grounding undermines both interpretability and
diagnostic reliability.

S-Chain Dataset: 
“Mild atrophy opening of 
sulci.”

A B

C D

GPT-COT: 
“Extra-axial lesion in the 
left frontal region with mass 
effect and compression of 
adjacent brain parenchyma.”

S-Chain Dataset: 
“No atrophy, no widening of 
the temporal horn of lateral 
ventricle. Only widening of 
choroid fissure.”

GPT-COT: 
“No cortical atrophy, no 
brain parenchyma atrophy, 
no interventricular space 
enlargement, no posterior 
atrophy.”

S-Chain Dataset: 
“Mild atrophy opening of 
sulci, mild parietal cortical 
atrophy.”

GPT-COT: 
“Irregular hyperintense 
lesion in the left frontal 
cortex near the convexity, 
consistent with a mass or 
tumor; localized cortical 
disruption and surrounding 
edema.”

GPT-COT: 
“No atrophy, normal cortical 
thickness, and no silcal 
widening.”

S-Chain Dataset: 
“Severe end-stage atrophy 
knife blade, substantial 
widening of sulci.”

Figure 10: Typical vision hallucination in GPT-generated CoT data.
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C.2 QUALITATIVE RESULTS OF TRAINED MODELS USING S-CHAIN DATASET

Figure 11 presents successful cases of the fine-tuned ExGra-Med (7B) model. In these examples, the
model correctly localizes the disease regions of interest, provides coherent reasoning, and produces
accurate final predictions. In contrast, failure cases (Figure 12) show that mislocalization of disease
regions could lead to flawed reasoning and, consequently, incorrect final decisions.

Question: What degree of disease
advancement can be observed?

Reasoning
Q1: Identify region of disease
A1: <box_1>, <box_2>, <box_3>
Q2:  What is the morphological
description of this lesion?
A2: No cortical atrophy, no brain
parenchyma atrophy. No
interventricular space
enlargement. No posterior
atrophy, no posterior cingulate and
parieto-occipital sulci.
Q3: What grading would you apply
to this lesion?
A3: GCA = 0, Koedam = 0

Answer: Non-dementia

Reasoning:
Q1: Spot infection location
A1: <box_1>, <box_2>, <box_3>
Q2:  What is the visual landscape
presented by this lesion?
A2:  No cortical atrophy, no brain
parenchyma atrophy. No
interventricular space
enlargement. No posterior
atrophy, no posterior cingulate and
parieto-occipital sulci.
Q3:  How would you grade this
lesion in clinical terms?
A3: GCA = 0, Koedam = 0

Answer: Non-dementia

Question: What's the extent of
this medical issue?

Reasoning:
Q1: Mark the region of illness
A1: <box_1>, <box_2>, <box_3>,
<box_4>
Q2:  How would you characterize
the physical attributes of this
lesion?
A2:  No cortical atrophy, no brain
parenchyma atrophy. No
interventricular space
enlargement. No posterior
atrophy, no posterior cingulate and
parieto-occipital sulci.
Q3: How would you determine the
lesion's severity classification?
A3: GCA = 0, Koedam = 0

Reasoning
Q1: Identify region of disease
A1: <box_1>, <box_2>, <box_3>
Q2:  How would you portray this
lesion's morphological features?
A2:  No cortical atrophy, no brain
parenchyma atrophy. No
interventricular space
enlargement. No posterior
atrophy, no posterior cingulate and
parieto-occipital sulci.
Q3:  What grade would you assign
to this lesion?
A3: GCA = 0, Koedam = 0

Answer: Non-dementia

Answer: Non-dementia

Groundtruth Groundtruth

ExGra-Med ExGra-Med

Figure 11: Successful cases of ExGra-Med (7B) showing accurate disease localization and predic-
tions.
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Question: What's the seriousness
factor of this health issue?

Reasoning
Q1: Mark the region of illness
A1: <box_1>
Q2:  How would you annotate the
visual details of this lesion?
A2: Only widening of choroid
fissure, no widening of the
temporal horn of lateral ventricle.
Q3:  How would you catalog this
lesion by severity grade?
A3: MTA = 1

Answer: Non-dementia

Reasoning:
Q1: Identify region of disease
A1: <box_1>, <box_2>, <box_3>
Q2:  How would you specify the
lesion's visual characteristics?
A2: Mild atrophy opening of sulc.
Mild sulcal widening, mild gyral
atrophy.
Q3: How would you determine the
lesion's severity classification?
A3: GCA = 1, Koedam = 1

Answer: Mild-dementia

Question: What's the extent of
this medical issue?

Reasoning:
Q1: Determine illness zone
A1: <box_1>, <box_2>
Q2:    What is the visual
composition of this lesion?
A2: Mild atrophy opening of sulci,
mild shrinkage of cerebral cortex.
Q3:  How would you grade this
lesion in clinical terms?
A3: GCA = 1

Reasoning
Q1: Detect the diseased region
A1: <box_1>, <box_2>
Q2:  What is the visual identity of
this lesion?
A2: Only widening of choroid
fissure, no widening of the
temporal horn of lateral ventricl.
No cortical atrophy, no brain
parenchyma atrophy. No
interventricular space
enlargement.
Q3:  What is your professional
assessment of this lesion's grade?
A3: MTA = 1, GCA = 0

Answer: Mild-dementia

Answer: Non-dementia

Groundtruth Groundtruth

ExGra-Med ExGra-Med

Figure 12: Failure cases of ExGra-Med (7B) showing mislocalized disearse regions and incorrect
predictions.

DATASET EXAMPLES:  ENGLISH -  MILD-DEMENTIA

Identify the pathological zone
Q1

[[0.5, 0.65, 0.43, 0.15]]A1

Q2

A2

Q3

Q4

A3

A4

How would you journal the
morphological details of this
lesion?

What is the lesion's grade?

Also widening of temporal horn of lateral
ventricle.

MTA = 2

What's the clinical severity of this health
problem?

Status (Mild-Demetia)

(a) Example 1

DATASET EXAMPLES:  GERMAN -  MILD-DEMENTIA

Die pathologische Zone
identifizieren

Q1

[[0.5, 0.65, 0.43, 0.15]]A1

Q2

A2

Q3

Q4

A3

A4

Wie würden Sie die
morphologischen Merkmale
dieser Läsion protokollieren?

Wie ist der Grad der Läsion?

MTA=2, zusätzlich Erweiterung des
Temporalhorns des Seitenventrikels

MTA = 2

Welchen klinischen Schweregrad hat dieses
Gesundheitsproblem?

Leichte Demenz

(b) Example 2

DATASET EXAMPLES:  FRENCH -  NON-DEMENTIA

Détecter la zone pathologique
Q1

[[0.3, 0.66, 0.2, 0.14], [0.68, 0.67, 0.2, 0.14]]A1

Q2

A2

Q3

Q4

A3

A4

Comment représenteriez-vous
l'essence visuelle de cette
lésion ?

Comment décririez-vous le grade de cette lésion ?

Dilatation isolée de la fissure choroïdienne, absence
de dilatation de la corne temporale du ventricule
latéral. Absence d'atrophie corticale, absence
d'atrophie du parenchyme cérébral. Absence
d'élargissement de l'espace interventriculaire

MTA = 1, GCA = 0

À quel point cette condition de la maladie est-
elle prononcée ?

Absence de démence

(c) Example 3

Figure 13: Three examples in the S-Chain dataset across different languages.
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D DETAILS OF DATASET CREATION

D.1 DATA ANNOTATION PROCESS

The annotation process was conducted in a stepwise manner by three specially trained doctors from
three different institutions. Each expert independently reviewed the imaging data, beginning with
the selection of the most representative slices from each patient.

1. Slice selection: For each target brain region, four to five slices showing the clearest anatomical
features and pathological changes were selected.

2. Localization: After slice selection, ROIs were manually identified with bounding boxes on a
slice-by-slice basis. These included the medial temporal lobe, parietal cortex, and posterior cingu-
late—areas commonly affected in AD. Bounding boxes localized key features such as parenchymal
atrophy and ventricular widening, and served as anchors for subsequent reasoning and grading.

3. Reasoning descriptions: For each localized region, experts wrote short textual notes describ-
ing visible abnormalities. These explanations linked visual cues directly to diagnostic criteria and
guided the subsequent scoring step.

4. Grading: Each ROI was then evaluated with three standardized visual rating scales: the Scheltens
scale (Medial Temporal Atrophy (MTA), 0–4) on coronal T1-weighted slices, the Pasquier scale
(Global Cortical Atrophy (GCA)) on axial FLAIR images, and the Koedam score (Koedam) for
posterior atrophy across sagittal, axial, and coronal planes. Scores were justified with brief text
(e.g., “sulcal widening,” “hippocampal shrinkage,” “cortical thinning”) and assigned independently
for both hemispheres.

5. Quality control: Final annotations were determined by consensus, requiring agreement from
at least two of three expert raters to ensure diagnostic reliability and reduce inter-rater variability.
Annotations lacking consensus were excluded, yielding 100% inter-annotator agreement among
retained labels.

6. Multilingual translation: To enhance accessibility and enable cross-lingual clinical use, all QA
pairs were translated from English into 15 languages. Translations were first generated automatically
and then refined through a Human-In-The-Loop (HITL) validation process. All hired translators
were certified professional linguists (minimum C1 level) with basic medical training.

Workload estimation: Annotation of neuroimaging slices requires substantial expert effort. On
average, a physician needs approximately 5 minutes to annotate a single slice, consistent with prior
reports Loewenstein et al. (2011); Pergher et al. (2019). Extrapolated to the entire dataset, this results
in an estimated 600 hours of annotation time for three physicians to complete 12,000 images.

For the linguistic component, refinement of each language subset - comprising roughly 48k QA pairs
- demands approximately 100 hours of expert review. To achieve multilingual coverage, we engaged
15 professional linguists in parallel to translate the English subset into 15 additional languages,
yielding a similar workload of 100 hours per subset.

In total, construction of the S-Chain dataset required approximately 700 hours of expert labor,
encompassing 12,000 medical images and 700k QA pairs across 16 languages.

Annotation guidelines are shown in Appendix Section E.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

D.2 DATASET EXAMPLES

In this section, we present dataset examples in the form of multi-turn VQA conversations, spanning
16 languages and three disease classes.

Dataset examples for Non-Dementia follow this order: English (Figure 14a), Arabic (Figure 14b),
French (Figure 14c), German (Figure 14d).

Dataset examples for Mild-Dementia follow this order: Hindi (Figure 15a), Indonesian (Figure
15b), Japanese (Figure 15c), Korean (Figure 15d).

Dataset examples for Moderate-Dementia follow this order: Mandarin (Figure 16a), Portuguese
(Figure 16b), Russian (Figure 16c), Spanish (Figure 16d).

D.3 S-CHAIN DATASET COMPARISON WITH OTHER GENERAL VISUAL COT

As shown in Table 6, S-Chain is one of the largest visual CoT datasets to date, with 197k ex-
amples (172k train/val, 25k test combined multi-lingual). Unlike general visual CoT datasets, it
uniquely combines stepwise reasoning with explicit region-level grounding, supporting large-scale
evaluation of both interpretability and diagnostic accuracy beyond final answers.

Table 6: Comparison between S-Chain with general Visual CoT datasets.

Datasets TrainVal Test CoT Grounding Expert Annotation
Visual7W (Zhu et al., 2016) 229,557 98,382 ✓
ScienceQA (Lu et al., 2022) 16,967 4,241 ✓
MME-CoT (Jiang et al., 2025) - 1,130 ✓
MM-GCoT (Wu et al., 2025) 23,028 994 ✓ ✓

S-Chain (ours) 172,528 24,672 ✓ ✓ ✓
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DATASET EXAMPLES:  ENGLISH -  NON-DEMENTIA

Detect the diseased region
Q1

[[0.3, 0.66, 0.2, 0.14], [0.68, 0.67, 0.2, 0.14]]A1

Q2

A2

Q3

Q4

A3

A4

Describe the visible aspects of
this lesion?

How would you describe the lesion's grade
classification? 

Only widening of choroid fissure, no widening
of the temporal horn of lateral ventricl. No
cortical atrophy, no brain parenchyma atrophy.
No interventricular space enlargement.

MTA = 1, GCA = 0

What's the clinical severity of this disease
state?

Non-Dementia

(a) English – Non-dementia

DATASET EXAMPLES:  ARABIC -  NON-DEMENTIA

اكتشاف المنطقة المريضة
Q1

[[0.3, 0.66, 0.2, 0.14], [0.68, 0.67, 0.2, 0.14]]A1

Q2

A2

Q3

Q4

A3

A4

كيف يمكنك تمثيل الجوهر المرئي لهذه

الآفة؟

كيف ستصوغ حالة درجة الآفة؟

توسع في الشق المشيمي فقط، لا يوجد توسع في القرن

الصدغي للبطين الجانبي. لا يوجد ضمور في القشرة، ولا

يوجد ضمور في لحمة الدماغ. لا يوجد تضخم في المساحة

.بين البطينين

MTA = 1, GCA = 0

ما مدى وضوح حالة هذا المرض؟

الحالة )غير مصاب بالخرف(

(b) Arabic – Non-dementia

DATASET EXAMPLES:  FRENCH -  NON-DEMENTIA

Détecter la zone pathologique
Q1

[[0.3, 0.66, 0.2, 0.14], [0.68, 0.67, 0.2, 0.14]]A1

Q2

A2

Q3

Q4

A3

A4

Comment représenteriez-vous
l'essence visuelle de cette
lésion ?

Comment décririez-vous le grade de cette lésion ?

Dilatation isolée de la fissure choroïdienne, absence
de dilatation de la corne temporale du ventricule
latéral. Absence d'atrophie corticale, absence
d'atrophie du parenchyme cérébral. Absence
d'élargissement de l'espace interventriculaire

MTA = 1, GCA = 0

À quel point cette condition de la maladie est-
elle prononcée ?

Absence de démence

(c) French – Non-dementia

DATASET EXAMPLES:  GERMAN -  NON-DEMENTIA

Die pathologische Region
erkennen

Q1

[[0.3, 0.66, 0.2, 0.14], [0.68, 0.67, 0.2, 0.14]]A1

Q2

A2

Q3

Q4

A3

A4

Wie würden Sie das
Erscheinungsbild dieser Läsion
beschreiben?

Wie würden Sie den Gradstatus der Läsion
beschreiben?

ausschliesslich Erweiterung der Fissura choroidea,
keine Erweiterung des Temporalhorns des
Seitenventrikels, keine kortikale Atrophie, keine
Hirnparenchymatrophie, keine Erweiterung des
Interventrikularraums

MTA = 1, GCA = 0

Wie ausgeprägt ist dieser Krankheitszustand?

Normale kognitive Funktion

(d) German – Non-dementia

Figure 14: Dataset examples in the form of multi-turn VQA conversations across four languages.
Each panel shows: Language (English, Arabic, French, German) and the diagnosis label Non-
dementia.
� Click back to: Section D.2 (Dataset Examples) or Table of Contents.
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DATASET EXAMPLES:  HINDI  -  MILD-DEMENTIA

रोगग्रस्त क्षेत्र की पहचान करेंQ1

[[0.5, 0.65, 0.43, 0.15]]A1

Q2

A2

Q3

Q4

A3

A4

आप इस घाव के  रूपात्मक विवरणों को कै से
दर्ज करेंगे?

घाव का ग्रेड क्या है?

लैटरल वेंट्रिकल के  टेम्पोरल हॉर्न का भी चौड़ा होना।

MTA = 2

इस स्वास्थ्य समस्या की नैदानिक ​​गंभीरता क्या है?

स्थिति (हल्का-मनोभ्रंश)

(a) Hindi – Mild-Dementia

DATASET EXAMPLES:  INDONESIAN -  MILD-DEMENTIA

Identifikasi zona patologisQ1

[[0.5, 0.65, 0.43, 0.15]]A1

Q2

A2

Q3

Q4

A3

A4

Bagaimana Anda akan mencatat
detail morfologis lesi ini?

Apa tingkat lesi?

Juga pelebaran tanduk temporal ventrikel
lateral.

MTA = 2

Apa tingkat keparahan klinis dari masalah
kesehatan ini?

Status (Demensia Ringan)

(b) Indonesian – Mild-Dementia

DATASET EXAMPLES:  JAPANESE -  MILD-DEMENTIA

病理学的区域を特定するQ1

[[0.5, 0.65, 0.43, 0.15]]A1

Q2

A2

Q3

Q4

A3

A4

この病変の形態学的詳細をどのよ

うに記録しますか。?

病変のグレードは何ですか？

MTA=2 また、側脳室側頭角の拡大

MTA = 2

この健康問題の臨床的重症度はどのくらいです

か？

軽度認知症

(c) Japanese – Mild-Dementia

DATASET EXAMPLES:  KOREAN -  MILD-DEMENTIA

병리적 구역 식별Q1

[[0.5, 0.65, 0.43, 0.15]]A1

Q2

A2

Q3

Q4

A3

A4

이 병변의 형태학적 세부 사항을 어떻
게 기록하시겠습니까?

병변의 등급은 무엇입니까?

MTA=2 또한 외측 뇌실의 측두각 확장.

MTA = 2

이 건강 문제의 임상적 심각도는 어느 정도입니까?

경도 치매

(d) Korean – Mild-Dementia

Figure 15: Dataset examples in the form of multi-turn VQA conversations across four languages.
Each panel explicitly shows: Language (Hindi, Indonesian, Japanese, Korean) and the diagnosis
label Mild-Dementia.
� Click back to: Section D.2 (Dataset Examples) or Table of Contents.
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DATASET EXAMPLES:  MANDARIN -  MODERATE-DEMENTIA

识别病变区域Q1

[[0.15, 0.48, 0.49, 0.81], [0.45, 0.49, 0.80, 0.80]]A1

Q2

A2

Q3

Q4

A3

A4

如何具体描述该病灶的可见特征？

这个病变处于什么阶段？

后扣带回和顶枕沟脑沟明显增宽，脑回明显萎缩

Koedam = 2

您会如何确定病理影响？

中度痴呆

(a) Mandarin – Moderate-Dementia

DATASET EXAMPLES:  PORTUGUESE -  MODERATE-DEMENTIA

Reconhecer a área da doençaQ1

[[0.15, 0.48, 0.49, 0.81], [0.45, 0.49, 0.80, 0.80]]A1

Q2

A2

Q3

Q4

A3

A4

Como você especificaria os
traços visíveis desta lesão?

Qual é o estágio da lesão?

Alargamento substancial dos sulcos cingulado
posterior e parieto-occipital, atrofia giriforme
substancial.

Koedam = 2

Como você determinaria o impacto
patológico?

Estado (Moderado-Demência)

(b) Portuguese – Moderate-Dementia

DATASET EXAMPLES:  RUSSIAN -  MODERATE-DEMENTIA

Распознать область
заболевания

Q1

[[0.15, 0.48, 0.49, 0.81], [0.45, 0.49, 0.80, 0.80]]A1

Q2

A2

Q3

Q4

A3

A4

Как бы вы уточнили видимые
черты этого поражения?

Какова стадия поражения?

Значительное расширение задней поясной и
теменно-затылочных борозд, значительная
атрофия извилин.

Koedam = 2

Как бы вы определили патологическое
воздействие?

Статус (умеренная деменция)

(c) Russian – Moderate-Dementia

DATASET EXAMPLES:  SPANISH -  MODERATE-DEMENTIA

Reconocer el área de la
enfermedad

Q1

[[0.15, 0.48, 0.49, 0.81], [0.45, 0.49, 0.80, 0.80]]A1

Q2

A2

Q3

Q4

A3

A4

¿Cómo especificaría los rasgos
visibles de esta lesión?

¿Cuál es la etapa de la lesión?

Ensanchamiento sustancial de los surcos
cingulado posterior y parieto-occipital, atrofia
giratoria sustancial.

Koedam = 2

¿Cómo determinaría el impacto patológico?

Estado (Demencia moderada)

(d) Spanish – Moderate-Dementia

Figure 16: Dataset examples in the form of multi-turn VQA conversations across four languages.
Each panel shows: Language (Mandarin, Portuguese, Russian, Spanish) and the diagnosis label
Moderate-Dementia.
� Click back to: Section D.2 (Dataset Examples) or Table of Contents.
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E ANNOTATION GUIDELINES

E.1 CLINICAL MOTIVATION

E.1.1 INTRODUCTION TO ALZHEIMER

AD is the most common type of dementia, accounting for an estimated 60% to 80% of dementia
among individuals aged 65 and older. It is also listed as the world’s fifth most common cause of
death Kumar et al. (2024a); Trinh et al. (2024). The lifetime risk of developing AD at age 45 is 1
in 5 for women and 1 in 10 for men. AD is a chronic, progressive neurodegenerative disorder clini-
cally characterized by progressive memory loss with functional impairments in the frontal/executive,
visuospatial, and language domains.

Pathologically, this disease is characterized by the accumulation of Beta-amyloid (Aβ) plaques and
Neurofibrillary tangles (NFT) in the brain, as well as synapse loss and neurodegeneration Long et al.
(2023); Rajmohan & Reddy (2017). Histopathological findings include accumulating Aβ plaques,
synaptic loss in NFT, and neurodegeneration Apostolova (2016); He et al. (2022); Hampel et al.
(2021).

To date, AD remains a disease with no specific cure. Therefore, the goal of further improvement in
diagnosis is early diagnosis, which stems from this reason as well as the prevalence of the above-
mentioned related pathologies. Especially in developed countries with a predominance of elderly
populations.

Today, the diagnosis and follow-up of all neurodegenerative diseases cannot be performed without
radiological imaging, primarily MRI, Positron Emission Tomography (PET) Jeong et al. (2021);
Chappell et al. (2021). Although PET serves as the gold standard for diagnosing AD, it is signif-
icantly higher than MRI. However, the cost is also many times higher than MRI. The economic
burden is very large for patients because this is a chronic disease, requiring frequent follow-up and
repeat examinations of imaging tests.

For this reason, we decided to establish this study on MRI for better diagnosis and monitoring
in patients with dementia. Simultaneously using several different semiquantitative scales has been
designed to improve the precision of assessment and reduce inter-observer variability.

E.1.2 RATIONALE

Early and accurate diagnosis of AD remains a major clinical challenge, especially during the pro-
dromal and Mild Cognitive Impairment (MCI) stages when therapeutic interventions may be most
beneficial. Although biomarkers such as Cerebrospinal fluid (CSF) analysis and PET imaging have
improved diagnostic precision, their high cost, invasiveness, and limited availability restrict their
routine clinical use, particularly in low-resource settings Sanaat et al. (2023). Consequently, there is
a growing need for accessible, non-invasive, and cost-effective diagnostic tools, with structural MRI
being one of the most practical and widely available options.

Recent studies have demonstrated that specific regional patterns of brain atrophy, observable on
MRI, strongly correlate with underlying AD pathology. In particular, visual rating scales such as the
MTA scale, the GCA scale, and the Koedam for posterior atrophy have been increasingly adopted in
both clinical and research settings. These tools offer a semiquantitative approach to assessing struc-
tural changes and are valuable for distinguishing AD from other dementias such as Frontotemporal
Dementia (FTD) or Dementia with Lewy bodies (DLB) Ferreira et al. (2015); Chouliaras & O’Brien
(2023).

Several recent studies support the clinical relevance and diagnostic performance of these scales. For
example, the Scheltens MTA scale has been shown to correlate well with hippocampal volumetry
and reliably distinguish AD patients from healthy controls Mårtensson et al. (2020); Molinder et al.
(2021). Likewise, the Koedam has demonstrated utility in identifying early-onset or atypical AD
presentations with posterior atrophy patterns Fumagalli et al. (2020); Graff-Radford et al. (2021).
However, each scale individually has limitations in sensitivity, especially in early or mixed pathology
cases. Therefore, combining multiple scales may enhance diagnostic accuracy and provide a more
comprehensive structural assessment of the brain Bruun et al. (2018).
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Our clinical study aims to build on this body of evidence by implementing a standardized annotation
protocol using all three visual rating scales across a diverse patient cohort. By doing so, we hope to
reduce inter-rater variability, improve early detection, and establish a robust MRI-based framework
that can support AI-assisted diagnosis and longitudinal monitoring of AD.

E.2 ETIOLOGY

E.2.1 MOLECULAR PATHOLOGY AND PROTEIN AGGREGATION

Two hallmark protein abnormalities at the core of AD pathology are extracellular deposition of Aβ
plaques and intracellular accumulation of hyperphosphorylated tau protein, forming NFT Zhang
et al. (2021). The amyloid cascade hypothesis proposes that the overproduction or impaired clear-
ance of Aβ peptides, particularly Aβ, initiates a cascade of events including synaptic dysfunction,
tau pathology, neuroinflammation, and ultimately neuronal death. Tau pathology, while also found
in other tauopathies, becomes pathogenic in AD when it spreads in a stereotypical pattern across
vulnerable brain regions, particularly the hippocampus and entorhinal cortex Zhang et al. (2023b).

E.2.2 NEUROINFLAMMATION AND MICROGLIAL DYSFUNCTION

Microglia, the resident immune cells of the brain, play a dual role in AD. Initially, they attempt
to clear misfolded proteins through phagocytosis. However, in the presence of chronic Aβ accu-
mulation, microglia can shift toward a pro-inflammatory state, releasing cytokines that exacerbate
neuronal damage Miao et al. (2023). Genetic studies have highlighted the importance of microglial
function in AD pathogenesis, particularly through mutations in genes such as TREM2, which impair
the microglial response and enhance vulnerability to disease Qu & Li (2023); Li et al. (2023c).

E.2.3 GENETIC RISK FACTORS

Genetic susceptibility significantly contributes to AD risk, particularly in early-onset familial cases,
which are often linked to autosomal dominant mutations in genes such as APP, PSEN1, and PSEN2
Bekris et al. (2010). In late-onset AD, the most well-established genetic risk factor is the ϵ4 allele
of the Apolipoprotein E (APOE) gene Montufar et al. (2017). Carriers of one or two copies of the
APOE-ϵ4 allele have an increased risk and earlier onset of the disease, likely due to reduced clear-
ance of Aβ and heightened inflammatory responses. Other genetic loci, including CLU, PICALM,
CR1, and rare TREM2 variants (e.g., R47H), also modulate risk through pathways related to lipid
metabolism, synaptic function, and immune regulation Karch & Goate (2015).

E.2.4 ENVIRONMENTAL AND LIFESTYLE FACTORS

While genetics plays a foundational role, modifiable risk factors are increasingly recognized in AD
pathogenesis. These include cardiovascular risk factors such as hypertension, diabetes, obesity,
and hyperlipidemia, which may compromise cerebral perfusion and exacerbate neurodegeneration.
Lifestyle-related factors such as low educational attainment, social isolation, physical inactivity,
smoking, and poor diet have also been linked to increased AD risk, possibly by reducing cognitive
reserve and promoting systemic inflammation Santos et al. (2017); Edwards III et al. (2019).

E.2.5 AGE AND COMORBIDITIES

Age remains the strongest non-modifiable risk factor for AD, with prevalence doubling approxi-
mately every five years after the age of 65 Kumar et al. (2024b). The aging brain undergoes several
changes that may predispose it to AD pathology, including mitochondrial dysfunction, oxidative
stress, impaired proteostasis, and reduced synaptic plasticity. Moreover, comorbid conditions such
as cerebrovascular disease, depression, and traumatic brain injury can interact with underlying AD
pathology to influence clinical presentation and progression Kumar et al. (2024a).

Understanding the etiology of AD is essential for interpreting structural and functional brain changes
observed on MRI. The progressive accumulation of Aβ and hyperphosphorylated tau proteins, key
pathological hallmarks of AD, leads to synaptic loss, neuronal degeneration, and brain atrophy-
changes that are detectable with MRI. Structural MRI is particularly sensitive to the neurodegener-
ative effects of these pathological processes, revealing region-specific atrophy patterns. The medial
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temporal lobe, including the hippocampus, entorhinal cortex, and parahippocampal gyrus, is typi-
cally affected in the early stages of AD due to its vulnerability to tau pathology Ravikumar et al.
(2024); Vemuri & Jack (2010).

As the disease progresses, atrophy extends to the parietal and frontal lobes. These imaging patterns
reflect the underlying etiology and provide supportive evidence for diagnosis and staging. Moreover,
advanced MRI techniques such as Diffusion Tensor Imaging (DTI) and volumetric analysis offer
insights into white matter integrity and brain network disintegration, which are indirectly linked to
protein aggregation, neuroinflammation, and genetic risk factors (e.g., APOE ϵ4 status). Thus, MRI
serves as a bridge between the biological mechanisms of AD and clinical decision-making, enabling
early detection, differential diagnosis, and monitoring of disease progression Monica Moore et al.
(2021).

E.3 PATHOPHYSIOLOGY

AD, like other neurodegenerative dementias, follows a gradually progressive course marked by the
accumulation of misfolded proteins in the brain. These abnormal proteins—primarily Aβ and tau-
disrupt normal cellular processes and initiate a cascade of pathological changes. In many cases
with each proteinopathy contributes to distinct clinical phenotypes Monica Moore et al. (2021).
The formation of these toxic aggregates is believed to result from an imbalance between protein
production and clearance mechanisms. In response, the brain’s innate immune cells, microglia,
become activated and initiate protective responses aimed at repair and removal. However, persistent
protein accumulation can drive microglia into a pro-inflammatory state, shifting from an acute, self-
limiting process to chronic neuroinflammation-an event central to ongoing neuronal injury Allegri
(2020).

Advancements in molecular imaging and pathology have highlighted overlaps between neurode-
generative phenotypes. Although tau protein aggregation is observed in AD, the disease is not
considered a primary tauopathy due to the dominant role of Aβ pathology. The characteristic spatial
progression of tau and Aβ accumulation aligns with the atrophy patterns seen in structural MRI,
particularly affecting the hippocampus and adjacent medial temporal lobe structures in early stages
Sengupta & Kayed (2022).

The pathophysiological process is influenced by a combination of genetic predispositions and en-
vironmental exposures. Non-modifiable risk factors include advancing age and inherited genetic
variants. Among the most recognized genetic contributors is the APOE ϵ4 allele, where homozy-
gous carriers are at significantly elevated risk for developing AD. Another important genetic factor
involves rare mutations in the triggering receptor expressed on myeloid cells 2 (TREM2) gene Mont-
ufar et al. (2017). Depending on the specific variant, such as R47H or R62H, microglial responses
can range from neuroprotective to dysfunctional, impairing the clearance of pathological proteins
and worsening disease progression Karch & Goate (2015).

Conversely, several modifiable risk factors have been identified and offer potential avenues for pre-
vention and risk reduction. These include physical inactivity, tobacco use, limited education, re-
duced cognitive and social engagement, hypertension, diabetes mellitus, and poor dietary habits.
These lifestyle-related factors are believed to influence brain resilience and may interact with under-
lying pathological processes to modify the trajectory of disease onset and progression.

Incorporating MRI into the study of AD pathophysiology provides a non-invasive window into these
molecular and cellular changes, allowing for early detection of structural brain alterations that reflect
the underlying disease mechanisms.

E.4 ALZHEIMER DIAGNOSIS

The diagnosis of AD remains primarily clinical, supported by cognitive testing, laboratory evalua-
tions, and neuroimaging. According to the 2011 NIA-AA criteria and DSM-5, dementia is identified
when cognitive or behavioral symptoms interfere with daily functioning, represent a decline from
previous abilities, and are not better explained by psychiatric illness Jack Jr et al. (2018). These
deficits typically affect at least one domain, such as memory, executive function, language, visu-
ospatial skills, or behavior.
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Initial assessment includes a detailed medical history and mental status evaluation. A comprehen-
sive assessment performed through a holistic evaluation that incorporated various factors, including
clinical history, neuropsychological examination, cognitive evaluations using the Mini-Mental State
Examination (MMSE), Clinical Dementia Rating Scale Sum of Boxes (CDR-SB), and Montreal
Cognitive Assessment (MoCA) are widely used, administered by qualified physicians, laboratory
findings, and MRI McKhann et al. (2011); Arevalo-Rodriguez et al. (2015); O’Bryant et al. (2008);
Cedarbaum et al. (2013). Functional status is assessed through structured or informal evaluations
of daily living activities. For AD patients, MMSE scores ranged between 18 and 26 Crum et al.
(1993); Tiepolt et al. (2013), and the CDR-SB scores were between 4.5 and 18 O’Bryant et al.
(2008); Lynch et al. (2005). Patients were excluded from the study due to the following criteria: the
presence of brain tumors, significant infarctions, and hemorrhages on the brain MRI scan, and the
patient’s movement during PET scanning.

Laboratory tests help exclude reversible causes, including metabolic, endocrine, or nutritional de-
ficiencies. Additional investigations—such as CSF analysis for Aβ and tau biomarkers, Electroen-
cephalogram (EEG), and genetic testing—may be indicated based on clinical context and availabil-
ity.

Neuroimaging plays a key supportive role. MRI is preferred over Computed Tomography (CT) for
its superior sensitivity to early structural changes, particularly in the medial temporal lobe. It also
helps exclude other causes, such as vascular lesions or tumors. Fluorodeoxyglucose (FDG)-PET
may reveal characteristic hypometabolism patterns, and while amyloid and tau PET imaging offer
more specific biomarker data, their clinical use is limited by accessibility and cost.

E.5 MRI FINDINGS

MRI is an essential tool in detecting structural brain changes associated with AD. The distribution of
affected areas in different entities explains the variation in symptoms and imaging patterns. Patterns
of regional brain atrophy correlate with specific clinical symptoms and help differentiate AD from
other dementias. Three main visual rating scales-MTA, GCA, and Koedam scores-are commonly
used to assess characteristic atrophy patterns in AD.

E.5.1 MEDIAL TEMPORAL LOBE ATROPHY (MTA)

The medial temporal lobe is an early affected site for AD-related neurodegeneration Braak & Braak
(1991). MRI can detect the regional atrophy of the medial temporal lobe structures, which is an
essential AD biomarker Bobinski et al. (1999). MTA is one of the earliest and most prominent
imaging features of AD, typically involving the hippocampus, entorhinal cortex, and parahippocam-
pal gyrus—regions essential for memory processing Brinkmann et al. (2019). The Scheltens MTA
scale is widely used in clinical practice to visually rate the degree of atrophy on coronal MRI slices
aligned perpendicular to the hippocampal axis Scheltens et al. (1992); Harper et al. (2015). It as-
sesses three key features: hippocampal volume loss, widening of the choroid fissure, and enlarge-
ment of the temporal horn of the lateral ventricle, assigning scores from 0 (no atrophy) to 4 (severe
atrophy), as shown in Table 7 and Figure 17. While symmetrical atrophy is commonly seen in AD,
some asymmetry can occur. In our analysis, the dichotomized score of left and right was used. Early
detection of hippocampal atrophy supports prodromal AD diagnosis and helps differentiate it from
other dementias such as FTD and DLB.

Although hippocampal volumetry offers objective measurements, its accuracy can vary depending
on the method used - manual tracing and different automated segmentation tools often delineate
structures differently. In contrast, visual assessment using the MTA scale remains more practical
and reliable in routine clinical settings. Multiple studies have confirmed the MTA scale’s ability
to distinguish AD patients from healthy controls, and comparisons with manual and automated
volumetric methods have shown good to acceptable correlations Susianti et al. (2024).

A general problem with the MTA score is the inconsistently defined cutoff value. Various cutoffs
for pathological MTA scores can be found in the literature, differing by age groups and education
level. For example, Velickaite and colleagues elaborated that “at age 75, gender and education are
confounders for MTA grading. A score of ≥ 2 is abnormal for low-educated women, and a score
of ≥ 2.5 is abnormal for men and highly educated women.” For this, the mean for both sides was
considered together ((MTA score right + MTA score left)/2) Rau & Urbach (2021).
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MTA Score Characteristics

0 Normal choroidal fissure width, temporal horn width, and HC volume.

1 The choroidal fissure is mildly widened.

2 Moderately widened choroidal fissure, minor temporal horn expansion of the
lateral ventricle, and modest HC volume loss.

3 Considerably expanded choroidal fissure, moderate temporal horn expansion,
and moderate HC volume loss.

4 Significantly expanded choroidal fissure, significantly enlarged temporal horn,
and significantly reduced HC volume.

<75 years: score 2 or more is abnormal.

>75 years: score 3 or more is abnormal.

Abbreviations: HC = Hippocampus; MTA = Medial temporal lobe atrophy.

Table 7: Scheltens scale for medial temporal lobe assessment (also known as MTA)

E.5.2 GLOBAL CORTICAL ATROPHY (GCA)

The GCA scale, originally proposed by Pasquier, evaluates generalized cortical thinning across mul-
tiple brain regions, including the frontal, temporal, and parietal lobes. Each region is rated from 0
(normal) to 3 (severe atrophy) based on sulcal widening and gyral thinning, usually on axial FLAIR
images, and detailed in Table 8 and Figure 18.

Total GCA scores reflect the overall burden of brain atrophy. GCA can be reliably classified on a
semi-quantitative basis using standardized protocols and further quantified using volumetric analysis
techniques Al-Janabi et al. (2018). Although GCA can be influenced by normal aging, it becomes
more significant in dementia when age-specific cutoffs are applied. Ventricular enlargement is also
sometimes included to assess secondary atrophy, but it could be less specific for differentiating types
of dementia.

GCA Characteristics

0 Normal volume of the gyri, sulci width, and ventricle dilatation; no cortical atrophy.

1 Mild atrophy with still normal gyri volume, however with some slightly open sulci
and mild ventricular dilatation.

2 Moderate brain atrophy with reduced gyri volume, increased sulci, and moderate
ventricular dilatation.

3 Severe atrophy with significantly shrunken gyri, enlarged sulci, and dilated
ventricles: “knife blade”.

GCA: Global cortical atrophy

Table 8: GCA-scale for Global Cortical Atrophy

E.5.3 POSTERIOR ATROPHY (KOEDAM SCORE)

Posterior cortical atrophy is another important AD imaging feature, especially in atypical forms. The
Koedam score provides a qualitative assessment of parietal atrophy based on sagittal MRI views, as
first described by Koedam et al. (2011), especially lobes, regions critical for visuospatial function.
It assesses sulcal widening and cortical thinning across sagittal, axial, and coronal planes Kaushik
et al. (2020), as shown in Figure 19. The score ranges from 0 (no atrophy) to 3 (severe atrophy)
in each plane, as shown in Table 9. Posterior atrophy typically appears later in the disease course
and can help differentiate AD from other dementias, where posterior involvement is less prominent.
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Figure 17: Coronal T1W images show different degrees of medial temporal lobe atrophy in 5
different patients with Alzheimer’s disease clinical presentation. Using the Scheltens scale, the
medial temporal lobe is assessed on coronal planes:
(A) MTA 0 – normal width of the choroid fissure, the temporal horn, and a normal HC height;
(B) MTA 1 – mild widened choroid fissure, normal temporal horn, and HC height;
(C) MTA 2 – moderately widened choroid fissure, mild temporal horn enlargement, and a mild
reduction in HC height;
(D) MTA 3 – markedly widened choroid fissure, a moderate enlargement of the temporal horn, and
a moderate reduction in HC height;
(E) MTA 4 – markedly widened choroid fissure, enlargement of the temporal horn, and a reduction
in HC height.
MTA: Medial temporal lobe atrophy; HC: Hippocampus Živanović et al. (2023).

According to Yuan et al. (2019), the diagnostic performance of the Koedam score is better in mod-
erate and severe stages of AD compared to mild cases Yuan et al. (2019). Thus, incorporating the
Koedam score enhances the diagnostic accuracy, particularly in patients presenting with atypical or
early-onset AD.

Score Characteristics

0 The posterior cingulate is closed, as also are the parieto-occipital sulcus, the parietal
lobe sulci, and the precuneus.

1 Mild posterior cingulate and parieto-occipital sulcus widening, with mild parietal lobe
and precuneus atrophy.

2 Significant expansion of the posterior cingulate and parieto-occipital sulcus, as well
as significant atrophy of the parietal lobes and precuneus.

3 End-stage atrophy with evident sulci expanding and knife-blade atrophy of the parietal
lobes and precuneus.

Table 9: Koedam score for posterior atrophy assessment
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In clinical practice, combining AD, GCA, and Koedam offers a structured and efficient way to eval-
uate brain MRI in patients with cognitive impairment. When interpreted alongside clinical history
and neuropsychological testing, these imaging findings substantially improve diagnostic confidence
and can support early and differential diagnosis of AD.

E.6 METHOD

E.6.1 IMAGING ACQUISITION

All MRI scans were acquired using a standardized protocol to ensure consistency and diagnostic
quality. High-resolution T1-weighted images were obtained using a 3D magnetization-prepared
rapid gradient echo (MPRAGE) sequence with the following typical parameters: repetition time
(TR) ≈ 2,000 ms, echo time (TE) ≈ 2.5 ms, inversion time (TI) ≈ 900 ms, flip angle ≈ 9◦, and
voxel size ≈ 1 × 1 × 1 mm3 . The acquisition was performed in the sagittal plane and included
whole-brain coverage. Axial FLAIR and coronal T2-weighted images were also included to support
the visual rating of cortical atrophy and to exclude other intracranial pathologies such as infarcts,
tumors, or hydrocephalus. Images were visually inspected for quality, and scans with significant
motion artifacts or structural abnormalities unrelated to neurodegeneration were excluded from the
analysis.

E.6.2 ANNOTATION PROTOCOL

The annotation process was conducted in a stepwise manner by three specially trained physicians
from three different institutions. Each expert independently reviewed the imaging data, beginning
with the selection of the most representative slices from each patient. For each target brain region,
four to five slices showing the clearest anatomical features and pathological changes were selected.

Following slice selection, ROI(s) were manually identified using bounding boxes, placed individ-
ually on a slice-by-slice basis. The annotated ROI(s) included the medial temporal lobe, parietal
cortex, and posterior cingulate areas commonly affected in AD. These bounding boxes were used
to localize relevant brain regions displaying characteristic structural changes, such as parenchymal
atrophy and ventricular widening, and to guide subsequent detailed assessments of atrophy patterns.

Following initial localization, detailed annotations were evaluated using three standardized visual
rating scales. AD was assessed on coronal T1-weighted slices perpendicular to the hippocampal
axis, following the Scheltens scale (0–4), based on hippocampal size, choroid fissure widening, and
temporal horn enlargement. GCA was evaluated using the Pasquier scale on axial FLAIR images,
with attention to sulcal widening and cortical thinning in the frontal, parietal, and temporal lobes.
Posterior atrophy was scored using the Koedam across sagittal, axial, and coronal planes, focusing
on the precuneus, posterior cingulate, and parieto-occipital sulcus.

For each region, a score was assigned according to the respective scale, along with a brief textual
explanation justifying the score based on visual features (e.g., sulcal widening, hippocampal shrink-
age, or cortical thinning). Each region was scored independently in both hemispheres.

Final annotations were established by consensus, requiring agreement from at least two out of the
three expert raters to ensure diagnostic reliability and minimize inter-rater variability.
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Figure 18: Clinical Alzheimer’s disease manifestation showing global cortical atrophy and ven-
tricular dilatation in different stages.
The first column shows:
(A) normal volume of the gyri and width of the sulci,
(B) normal dilatation of lateral ventricles, and
(C) normal dilatation of the third ventricle.
The second column shows:
(D) mild atrophy with a still normal volume of the gyri but some open sulci,
(E) mild dilatation of the lateral ventricles,
(F) mild dilatation of the third ventricle.
The third column shows:
(G) moderate brain atrophy with a reduction of gyri volume, and enlargement of the sulci,
(H) moderate dilatation of lateral ventricles,
(I) moderate dilatation of the third ventricle.
The fourth column shows:
(J) severe atrophy with severely reduced gyri, and enlarged sulci,
(K) severe dilatation of lateral ventricles,
(L) severe dilatation of the third ventricle.
The red bounding boxes are the signal of the GCA scale.
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Figure 19: Axial FLAIR, coronal T1W, and sagittal T1W images with Alzheimer’s disease show
parietal atrophy scale.
Koedam 0: (A) shows the closed posterior cingulate, parieto-occipital, and parietal lobe sulci.
Koedam 1: (B) mild posterior cingulate, parieto-occipital, and parietal lobe sulcal widening, and the
mild atrophy of precuneus.
Koedam 2: (C) substantial posterior cingulate, parieto-occipital, and the parietal lobe sulcal widen-
ing, and substantial atrophy of precuneus.
Koedam 3: (D) extremal posterior cingulate, parieto-occipital, and the parietal lobe sulcal widening,
and the mild atrophy of precuneus, knife-blade precuneus atrophy.
The red bounding boxes are the signal of the Koedam scale FLAIR: Three-dimensional T2-weighted
fluid-attenuated inversion-recovery imaging.
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F ETHICAL STATEMENTS

F.1 COPYRIGHTS

F.1.1 APACHE LICENSE 2.0

The Apache License, Version 2.0 (Apache 2.0) is a permissive open-source license developed by
the Apache Software Foundation (ASF). Its main characteristics are:

• Free Use: The software can be used for any purpose, including commercial applications.
• Modification & Distribution: Users may modify the code and redistribute original or

modified versions.
• Attribution: A copy of the license must be included and proper credit given to the original

authors.
• NOTICE File: If the project includes a NOTICE file, it must be preserved during redistri-

bution.
• Patent Grant: Contributors grant users a license to patents that would otherwise be in-

fringed by their contributions.
• Disclaimer: The license provides the software “as is” without warranties or liability.

Practical Implications:

• Permits integration into proprietary (closed-source) projects.
• Allows combination with other open-source or commercial code.
• Enables redistribution under new branding.

Restrictions:

• License and attribution notices cannot be removed.
• Modified versions cannot be misrepresented as the original work.
• Original authors cannot be held liable for issues.

F.1.2 FAIR USE

In addition to permissive open-source licenses such as Apache 2.0, the doctrine of Fair Use provides
a legal framework that may justify the reuse of third-party datasets for research and educational
purposes. Fair Use is codified under United States copyright law (17 U.S.C. §107) and is widely
invoked in academic contexts, such as in our work. Its applicability is assessed through four key
factors:

1. Purpose and character of use: Non-commercial, educational, and research-driven usage
is generally favored. Transformative use—where the dataset is repurposed for new scien-
tific insights rather than replicating its original function—strengthens the case.

2. Nature of the copyrighted work: Factual and scientific data are afforded less stringent
protection compared to creative works, which supports their reuse in research.

3. Amount and substantiality: Use of limited portions, or selective aspects of the dataset,
weighs in favor of Fair Use. However, even large-scale use can be justified if it is essential
for the research objective and transformative in nature.

4. Effect on the market: If the research use does not undermine the commercial market or
value of the original dataset, this criterion supports Fair Use.

Implications for research: In practice, the reuse of existing datasets is often considered Fair Use
when (i) the purpose is non-commercial and scholarly, (ii) the dataset is employed in a novel or
transformative manner (e.g., re-annotating, constructing new benchmarks, or deriving insights not
intended by the original authors), and (iii) proper attribution is provided.

While Fair Use is context-dependent and not absolute, adherence to these principles allows re-
searchers to legally and ethically justify their use of external datasets in the advancement of science.
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G LIST OF ABBREVIATIONS

ACRONYMS

Abbrev Term Explanation Pages
Aβ Beta-amyloid Beta-amyloid is a sticky protein frag-

ment that, in Alzheimer’s disease,
clumps together between brain cells to
form plaques that disrupt communica-
tion and damage neurons.

28–31

AD Alzheimer’s disease Alzheimer’s is a brain disease that slowly
damages memory and thinking, so ev-
eryday tasks and recognizing people be-
come harder over time.

4, 23, 28–
34

AI Artificial Intelligence General term for systems that perform
tasks requiring human-like intelligence

3, 5, 29

APOE Apolipoprotein E Apolipoprotein E (APOE) is a gene
that makes a protein helping transport
fats in the brain, and its ϵ4 version
greatly increases the risk of develop-
ing Alzheimer’s disease by making brain
cells more vulnerable to damage and less
able to clear toxic proteins.

29, 30

CoT Chain-of-Thought - 1–4, 6–9,
18–20, 24

CSF Cerebrospinal fluid Cerebrospinal fluid (CSF) is a clear, wa-
tery liquid that cushions and protects the
brain and spinal cord while also helping
to remove waste and deliver nutrients.

28, 31

DLB Dementia with Lewy bodies Dementia with Lewy bodies (DLB) is a
brain disorder where abnormal protein
clumps (Lewy bodies) build up in nerve
cells, causing a mix of memory prob-
lems, movement difficulties (like Parkin-
son’s), and vivid visual hallucinations.

28, 31

DTI Diffusion Tensor Imaging Diffusion Tensor Imaging is an MRI
technique that maps how water moves
along brain fibers, helping detect early
damage to the brain’s white matter con-
nections before major memory loss or
shrinkage becomes visible.

30

FTD Frontotemporal Dementia Frontotemporal dementia (FTD) is a
brain disorder where the nerve cells
in the frontal and temporal lobes
slowly waste away, leading to early
changes in personality, behavior, lan-
guage, and decision-making rather than
memory loss (which is more typical of
Alzheimer’s).

28, 31

GCA Global Cortical Atrophy Global Cortical Atrophy is the
widespread shrinking of the brain’s
outer layer (the cortex), often linked
to aging or diseases like Alzheimer’s,
which can affect memory, thinking, and
behavior.

23, 28, 31,
32, 34, 35

HITL Human-In-The-Loop - 23
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Abbrev Term Explanation Pages
Koedam Koedam score The Koedam score is a visual rating

scale (0–3) used on brain MRI to mea-
sure how much the parietal cortex has
shrunk, helping to detect Alzheimer’s
disease and other dementias.

23, 28,
31–34, 36

LLM Large Language Model - 1
MCI Mild Cognitive Impairment Mild Cognitive Impairment (MCI) is a

condition where a person has noticeable
memory or thinking problems greater
than expected for their age, but not
severe enough to significantly interfere
with daily life or independent function-
ing.

28

MRI Magnetic Resonance Imaging Magnetic Resonance Imaging (MRI) is
a medical imaging technique that uses
strong magnets and radio waves to cre-
ate detailed pictures of the inside of the
body without using harmful radiation.

2, 4, 28–
32, 34

MTA Medial Temporal Atrophy Medial Temporal Atrophy means the
shrinking of memory-related brain struc-
tures (like the hippocampus) in the inner
temporal lobes, often seen in aging and
Alzheimer’s disease.

23, 28,
31–33

NFT Neurofibrillary tangles Neurofibrillary tangles are twisted
clumps of a protein called tau that
pile up inside brain cells, jam their
internal “highways,” and help kill the
cells—contributing to memory loss in
Alzheimer’s.

28, 29

NLP Natural Language Processing - 1
PET Positron Emission Tomography Positron Emission Tomography (PET) is

a medical imaging technique that uses
tiny amounts of radioactive substances to
track how organs and tissues work inside
the body, creating detailed 3D pictures of
their activity.

28, 31

QA Question Answering - 1–4, 23
RAG Retrieval-augmented Genera-

tion
- 2, 7

ROI Region of Interest A Region of Interest (ROI) in medical
imaging is simply the specific part of
an image—like a tumor, organ, or le-
sion—that researchers mark and analyze
more closely because it’s the area most
relevant to diagnosis or study.

1–9, 23,
34

SFT Supervised Fine-tuning - 5, 8, 9, 18
SV-
CoT

Structured Visual Chain-of-
Thought

- 2–9, 20

VLM Vision Language Model - 1–3, 5–9
VQA Visual Question Answering - 1–3, 8, 18,

24–27
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