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Abstract

Images contain objects with deformable boundaries, such as the contours of a hu-
man face, yet attention operators act on square windows. This mixes features from
perceptually unrelated regions, which can degrade the quality of a denoiser. One
can exclude pixels using an estimate of perceptual groupings, such as superpixels,
but the naive use of superpixels can be theoretically and empirically worse than
standard attention. Using superpixel probabilities rather than superpixel assign-
ments, this paper proposes soft superpixel neighborhood attention (SNA) which
interpolates between the existing neighborhood attention and the naive superpixel
neighborhood attention. This paper presents theoretical results showing SNA is the
optimal denoiser under a latent superpixel model. SNA outperforms alternative lo-
cal attention modules on image denoising, and we compare the superpixels learned
from denoising with those learned with superpixel supervision.1

1 Introduction

The attention mechanism is attributed to meaningful benchmark improvements in deep neural
networks [1]. While the initial attention mechanism acted globally, recent methods operate on
local neighborhoods, which requires less computation and reduces the chance of learning spurious
correlations [2]. Neighborhood attention (NA) transforms each pixel using its surrounding square
neighborhood of pixels. In reality, this square neighborhood is merely an implementation convenience.
Natural images contain objects with non-rigid boundaries, such as the contours of a human face or the
outlines of text. To account for these deformations, this paper proposes a new local attention module
that re-weights the attention map according to low-level perceptual groups, or “superpixels” [3],
named soft superpixel neighborhood attention (SNA).

Theory from vision science posits that humans view scenes according to perceptual groups (e.g.
Gestalt principles) [4]. Superpixels are one such formulation of perceptual groupings, and they create
a deformable, boundary-preserving segmentation of an image [3]. Since deep learning models can
learn spurious correlations, operations that utilize perceptual groups should principally help a network
learn desirable correlations. Despite the deformable neighborhood shapes, applying attention with a
superpixel estimate is straightforward. However, this naive approach is theoretically worse than NA
for some superpixel shapes and sensitive to errors in the superpixel estimate. To address these issues,
we propose thinking beyond using a single superpixel estimate.

While recent works use the maximum likelihood (ML) superpixel estimate [6, 7], many superpixel
formations are equally likely. Figure 1 depicts three samples from a (slightly modified) recent BASS
superpixel model [5]. Many of the boundaries seem arbitrary and change among the samples, while
some remain fixed. No single superpixel segmentation is the absolute “best”. This is not a deficiency
of the particular method to estimate superpixels, but rather a drawback of using a point estimate.

1Code for this project is available at https://github.com/gauenk/spix_paper
2For educational value, hyperparameters are modified to create more boundaries.
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Figure 1: The Ambiguity of Superpixels. This figure compares three superpixel estimates from a
recent method named BASS. [5]2While all three samples achieve a similar segmentation quality,
some regions are different, and some are almost identical. Since no single segmentation is the “best”,
this suggests that superpixel assignments are not as important as superpixel probabilities.

This paper presents a theoretically grounded approach to account for the ambiguity of superpixel
assignments within an attention module. We consider this ambiguity in our derivation by re-weighting
the empirical data distribution with superpixel probabilities. While standard superpixel models assume
a fixed prior probability, this paper supposes each pixel has a separate prior superpixel probability.
Under this new model, we find the optimal denoiser is the proposed SNA module.

Contributions. In summary, this paper presents a rigorous way to incorporate superpixels into an
attention module. By modeling image pixels with distinct superpixel probabilities, we find the soft
superpixel neighborhood attention (SNA) module is the optimal denoiser. We empirically show the
SNA module outperforms NA within a single-layer denoising network by 1 − 2 dB PSNR. We
compare the superpixels learned for denoising with superpixels learned using supervised training [8].

2 Related Works

Non-Local Methods. Classical image restoration methods transform a pixel using its neighborhood
based on pairwise similarities [9–11]. Some early deep learning models incorporate non-local
modules with deep learning models for image restoration [12–17]. Once attention was introduced to
the computer vision community, later methods drew analogies to between attention and non-local
methods [18–20].

Attention. While attention modules followed the same form as non-local methods, they were origi-
nally presented as a disconnected idea [1, 21]. Attention’s primary issue was originally computation,
and subsequent research efforts proposed efficient alternatives [22–25, 2]. These alternatives often
compute attention across a smaller region, and use a deep network’s depth to disperse information
globally. Neighborhood attention (NA) is implemented with an efficient, custom CUDA kernel to
search a square window and is among the fastest methods [2]. The square window is theoretically
more desirable than asymmetrical alternatives, such as SWIN [22].

Superpixels. Superpixels embody the concept of perceptual groupings, which suggests that humans
first group smaller objects together and then aggregate this information to understand the whole
image [3]. There are many methods to model these superpixels [26, 27]. SLIC is a state-of-the-art,
classical superpixel method and is explained in Section 3.1 [26]. Superpixels have been applied
extensively outside of deep learning literature [28–32]. Superpixels have not been employed as widely
since the advent of deep learning, but recent methods have started incorporating them [6, 7]. A recent
method, referred to as the superpixel sampling network (SSN), presents a supervised learning method
to sample using segmentation labels [8]. The loss function of SSN is related to the idea of superpixel
pooling, which we use to evaluate superpixel probabilities in Section 5.3 [33, 34].

Non-Parametric Density Estimation. The derivation of the optimal denoiser using latent superpixels
closely resembles the problem of mixture-based non-parametric density estimation [35]. This paper
does not address important statistical issues, such as identifiability.
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Figure 2: Each Pixel is Connected to Nine Superpixels. This figure illustrates the anatomy of the
SLIC superpixels. The left-most figure illustrates how superpixels are conceptually distributed across
a grid on the input image with stride Ssp. The right figure illustrates a single pixel is connected to (at
most) nine centroids.

3 Preliminaries

3.1 SLIC Superpixels

In this paper, an image (x) has height (H), width (W), and features (F ) with shape HW × F .
Conceptually, superpixels are evenly spaced across the image according to the stride denoted Ssp.
The superpixel stride (Ssp) determines the number of superpixels, S = HW/S2

sp (see Fig 2). SLIC
superpixels consist of superpixel means (µ̂ with shape S × F ), intra-superpixel precision (η̂ =
[η̂app η̂shape] with shape S × 2), the probability each pixel belongs to each superpixel (π̂ with shape
HW × S), and the superpixel assigned to each pixel (ŝ with shape HW). SLIC estimates these
quantities using Lloyd’s algorithm (similar to k-means) [26]. Following recent works, each pixel is
connected to at most nine superpixels [8].

Presently, we describe how SLIC superpixel probabilities are computed. Let the distances between
pixels and superpixel means be written as a matrix D of shape HW×S and let D(i,s) = ∥xi−µs∥22
if the two are connected and infinity otherwise. A difference between the indices is written D̃(i,s) =
∥[ix iy]− [sx sy]∥22. Superpixel probabilities are computed as,

π̂(i) = σ(−η̂i,appD
(i) − η̂i,shapeD̃

(i)) (1)

where η̂i,app, η̂i,shape > 0 enforce consistency across appearance (app) and shape. The estimated
superpixel probabilities are the conditional probability pixel i is assigned to superpixel s, p(si =
s|xi) = π̂(i,s). A superpixel segmentation (ŝ) is formed by assigning each pixel’s cluster label to
their most similar superpixel; ŝi = argmaxs π̂

(i,s). These quantities are estimates (note the ĥats) of
latent parameters, which is a modeling assumption discussed in Section 4.2.

3.2 Superpixel Pooling

The attention module proposed in this paper will learn superpixel probabilities, but standard superpixel
evaluation only considers a point estimate. To augment the standard superpixel benchmarks, we follow
recent works and compare superpixel probabilities with superpixel pooling [8, 5, 34]. A matrix z has
size HW ×C for C segmentation classes, and superpixel probabilities (π̂) have size HW ×S. Then,
the probabilities are re-normalized, π̃(i,s) = π̂(i,s)/

∑HW
j=1 π̂(j,s). Finally, the superpixel pooling

operation is written,

z̃sp-pooled = π̂π̃⊺z (2)

In this paper, the vector z is either an image (C = F is the number of channels) or a segmentation
label. A recent method, named the Superpixel Sampling Network (SSN), proposes learning task-
specific superpixels with this superpixel pooling loss [8]. Their loss function trains a network to
estimate superpixel probabilities by comparing the original and pooled vectors. In Section 5.3, we
compare the quality of superpixels learned within an SNA-denoising network and those learned using
the SSN loss on the BSD500 dataset [36].
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Figure 3: Superpixel Neighborhood Attention. The yellow region represents the attention window
and the red contours are a superpixel boundary. NA considers all pixels, mixing the dissimilar orange
and blue pixels. H-SNA considers only pixels within its own superpixel, which is too few pixels for
denoising. SNA excludes the dissimilar blue pixels but retains the similar orange pixels.

3.3 Neighborhood Attention

Let a noisy input image be denoted x with shape HW × F . The queries (q), keys (k), and values
(v) project the image x from dimension F to D, written as q = xWq,k = xWk,v = xWv.
Neighborhood attention (NA) computes the output of the attention operator using pixels within a
square neighborhood around pixel i, denoted N (i) [2]. A standard neighborhood of size 7 × 7 is
among the fastest available attention methods. The attention scale controls the shape of the attention
weights, λat ≥ 0. The output and attention weights are computed below,

f
(i)
NA(x) =

∑
j∈N (i)

wi,jvj , wi,j =
exp (λatd(qi,kj))∑

j′∈N (i) exp (λatd(qi,kj′))
(3)

As an additional baseline, this paper augments the standard NA by learning the attention parameter for
each pixel. Specifically, each pixel’s attention scale is the output of a deep network, λ(i)

at = g
(i)
ϕ,Deep(x).

Further details are described in Section 4.5.

4 Approach

4.1 Superpixel Neighborhood Attention

Hard Superpixel Neighborhood Attention (H-SNA). Perceptual groupings, such as superpixels,
segment pixels into a boundary-preserving partition of the image. These boundaries account for sharp
changes in pixel intensity, so using these segmentations as masks can remove perceptually unrelated
information. Supplemental Section A.2 formalizes this intuition. H-SNA is a naive implementation of
this concept. For a fixed query pixel (i), a neighboring pixel (j) is masked if its estimated superpixel
does not match the query’s superpixel, ŝi ̸= ŝj . The function is written as,

f
(i)
H-SNA(x; ŝ) =

∑
j∈N (i)

wi,jvj , wi,j =
1[ŝi = ŝj ] · exp (λatd(qi,kj))∑

j′∈N (i) 1[ŝi = ŝj′ ] · exp (λatd(qi,kj′))
(4)

Soft Superpixel Neighborhood Attention (SNA). There are two problems with H-SNA. First,
H-SNA is unstable when the number of pixels sharing the same superpixel label within the local
neighborhood is small. Examples include snake-like tendrils and superpixels that consist of small,
disconnected regions (see Section A.2). The second problem with H-SNA is its high sensitivity to
improper superpixel estimation. Erroneous ML estimates of superpixels have a dramatic effect on
quality. To mitigate both issues, we propose soft superpixel neighborhood attention (SNA), which
uses superpixel probabilities instead of superpixel assignments,

f
(i)
SNA(x; π̂) =

∑
j∈N (i)

wi,jvj , wi,j =
exp (λatd(qi,kj))

∑S
s=1 π̂

(i,s)π̂(j,s)∑
j′∈N (i) exp (λatd(qi,kj′))

∑S
s=1 π̂

(i,s)π̂(j′,s)
(5)
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Figure 4: The Latent Superpixel Model. The latent
superpixel model assumes superpixel probabilities are
sampled for each image pixel. This figure illustrates
the data-generating process. The leftmost image al-
lows the reader to visually compare the similarities
among superpixels by representing each pixel by its
most likely superpixel means. Informally, this looks
like a “low-resolution image”. The superpixels and
image pixels are sampled as usual.

Importantly, the sum over all superpixels contains only 9 non-zero terms (see Section 3.1). The shape
of the superpixel probabilities allows SNA to interpolate between NA and H-SNA. To be specific,
the superpixel probabilities may be flat to match NA, π̂(i,s) ≈ 1

9 , or the superpixel may be sharp to
match H-SNA, π̂(i,s) ≈ 1[s = s∗]. This control over the shape of the superpixel probabilities allows
SNA to be better than both H-SNA and NA on average.

4.2 The Latent Superpixel Model

Properly incorporating superpixels into attention requires rethinking the relationship between super-
pixels and images. While superpixels are usually presented with a generative model for images, this
model is used only to estimate superpixel assignments. In contrast, this paper uses the data-generating
process itself to derive the form of our proposed attention module. Our process is slightly different
from standard literature. Ordinarily, all pixels share a single prior superpixel probability. In this paper,
the superpixel probabilities are sampled for each image pixel.

For each image pixel, our generative model samples (1) superpixel probabilities π ∼ p(π), (2)
superpixel assignments si ∼ p(si|π(i)), and (3) pixel values x|s ∼ p(x|s). Figure 4 illustrates this
proposed latent variable model. Note that SLIC estimated these quantities (recall the hats: ŝ, π̂),
but assumes a different data generating model. While the distribution of pixels given the superpixel
assignments is unknown, the new model is useful for theoretical analysis. We use it to derive the form
of our proposed attention module (Sec 4.3), and to compare the theoretical error between SNA, NA,
and H-SNA (Sec A.2).

4.3 SNA is the Optimal Denoiser under the Latent Superpixel Model

The optimal denoiser is the function that minimizes the mean-squared error between the denoised
pixel and the original pixel value. Following similar derivations [37], minimizing this expectation
with respect to an unknown denoiser (D) is possible because of our chosen model for the unknown
data density. Say we have a sample, x, s,π ∼ p(x, s,π). Then we approximate p(xi|si),

p̂(xi|si) =
M∑

m=1

p(m|si)p(xi|m) =
9

M

M∑
m=1

p(si|m)δ(xi − xm) (6)

since p(si) = 1
9 , and p(m) = 1

M . By re-weighting with superpixel probabilities, rather than
superpixel assignments, our estimate does not depend on ambiguous superpixel labels. The expected
loss of a denoiser is computed over the factorized joint density of the Gaussian-corrupted pixels, noise-
free pixels, superpixel assignments, and superpixel probabilities: p(x̃i|xi)p̂(xi|si)p(si|π(i))p(π).

Claim 1 The optimal denoiser to the following optimization problem is soft superpixel neighbor-
hood attention (SNA) when the qkv-transforms are identity, the attention scale is fixed to λat =

1
2σ2 ,

and the samples used to estimate the data density come from a neighborhood surrounding pixel i,

f
(i)
SNA(x̃;π) = D∗(x̃i;π, σ) = argmin

D
E
[
∥D(x̃i;π, σ)− xi∥2

]
(7)
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Figure 6: Estimating Superpixel Probabilities. The superpixel probabilities are learned during
training using one of these two methods. The left method uses a shallow UNet followed by a softmax
layer with nine channels (gϕ,Deep). The right method estimates hyperparameters to be used within
SLIC iterations (gϕ,SLIC).

See Supplemental Section A.1 for the proof. In practice, the error of a denoiser depends on the
sampled data, and in this paper, the data is limited to a neighborhood surrounding the query point.
Section A.2 analyzes this limited neighborhood.

4.4 Normalization for Restricted Connectivity

Figure 5: Artifacts in Attention. This
attention map visualizes the unnormal-
ized superpixel weights for neighbors,
j ∈ N (i). The restricted connectivity
leads to sharp cut-offs in the superpixel
weights. To create this figure, π(k,s) =
1/9 if pixel k is connected to superpix-
els s and zero otherwise. White pixels
indicate the region sums to 1, while grey
regions sum to values less than 1.

SLIC [26] and SNN [8] connect each pixel to (at most)
nine superpixels. Therefore, some pixels within a neigh-
borhood may only connect to a subset of superpixels that
connect to the query index. This sharp cut-off in con-
nectivity creates artifacts within the attention map since
the number of non-zero superpixel probabilities for some
neighbors is fewer than nine. These artifacts are due to
our choice of superpixel algorithms [26, 8] rather than
a limitation of our attention module. To correct these ar-
tifacts for the attention map associated with pixel i, we
re-normalize the adjacent superpixel probabilities to one;
π(j,s) → π(j,s)/

∑
s′∈C(i) π

(j,s′), where C(i) is the set of
superpixels connected to pixel index i. Figure 5 illustrates
the attention maps with and without the normalization
step.

4.5 Estimating Superpixel Probabilities

SNA re-weights the attention map using superpixel probabilities, which are estimated from noisy
images, π ≈ π̂ = g·(x). This paper forgoes considering theoretical concerns (such as identifiability)
and uses ad-hoc estimates of these probabilities with two deep networks, depicted in Figure 6.

The first method estimates the marginal probabilities directly from a deep network, π̂ = gϕ,Deep(x).
The second method estimates the superpixel parameters controlling the balance between appearance
and shape with a deep network, which is then fed into differentiable SLIC iterations [8] (Section 3.1):
π̂ = gϕ,SLIC(x, η̂) where [η̂app η̂shape] = g̃ϕ,SLIC(x). This model is abbreviated as π̂ = gϕ,SLIC(x).
The number of SLIC iterations is fixed to 5, following a recent paper [7]. These networks are two-layer
UNets [38].

4.6 Learnable Attention Scale

Using a network similar to the ones used to estimate superpixel probabilities, all attention modules
are augmented to serve as another baseline. The augmentation replaces the fixed attention scale with
learnable attention scales for each pixel, λat = gϕ,Attn(x). The network architecture is identical to
gϕ,Deep except for the final layer, which outputs one channel rather than nine. This baseline empirically
demonstrates the theoretical argument from Supplemental Section A.3; even when modulating the
attention scale, NA cannot robustly reject dissimilar pixels.
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5 Experiments

This section demonstrates the impressive benefit of superpixel neighborhood attention compared to
standard neighborhood attention. To verify whether the improvement is due to the proposed method,
we compare several variations of both attention methods. Section 5.2 compares different attention
modules within a simple network architecture on Gaussian denoising, which empirically verifies the
theoretical findings in Sections 4.3 and A.2. Section 5.3 compares the superpixel probabilities learned
from the denoising loss function with superpixels learned through supervised training. Supplemental
Section B.1 includes ablation experiments.

5.1 Experimental Setup

Our experiments use a simple denoising network with larger auxiliary networks to highlight the role
of the learned superpixel probabilities and attention scale parameters. The denoising network contains
only projection layers and a single attention module. To keep the extracted features simple, the only
interaction between neighboring pixels is through the attention layer. The project matrices project the
input RGB image from three to six dimensions dimension. The full network is written,

ŷDeno = Simple Networkθ,ϕ(x) = fAttn (xW0, gϕ(xW0))W1 + xW0W1 (8)

The primary network parameters are denoted θ = [W0,W1], and gϕ(·) is the auxiliary deep network
from Section 4.5. The primary network consists of only 200 parameters (θ), and the auxiliary networks
contain about 4.4k or 8.8k parameters (ϕ). We train each network for 800 epochs using a batch size
of 2 on the BSD500 dataset [36] using a learning rate of 2 · 10−4 with a decay factor of 1/2 at epochs
300 and 600. The network is optimized with Adam [39]. The code is implemented in Python using
Pytorch, Numpy, Pandas, and CUDA and run using two NVIDIA Titan RTX GPUs and one RTX 3090
Ti GPU [40–43]. Testing datasets are Set5 [44], BSD100 [36], Urban100 [45], and Manga109 [46].

5.2 Gaussian Denoising

This subsection empirically verifies the utility of SNA on Gaussian denoising. The Charbonnier
loss is used for denoiser training, LDeno =

√
∥ŷDeno − y∥2 + ε2 (ε = 10−3) [47]. By default, the

window size is 15× 15, the fixed SLIC precision is ten, and the fixed attention scale is one.

Table 1 presents the quantitative results. The SNA module achieves far better denoising quality than
NA, even when NA can learn its attention scale. As an extreme example, the PSNR at σ = 30 of the
left-most SNA column is about 2.8 dB better than standard NA (2nd NA column). If comparison
is restricted to models with the same number of parameters, the PSNR at σ = 30 of the the fourth
SNA column is about 1.8 dB better than the augmented NA (1st NA column). For a fixed budget of
network parameters, SNA yields a higher quality denoiser than NA.

Figure 7 shows SNA is qualitatively superior to NA. The first row shows that SNA produces less
grainy images than NA. The bottom two rows show that NA mixes perceptually unrelated information.
In the second row, NA outputs a red-orange semi-transparent mist surrounding the orange-red rock. In
the third row of the NA results, the white zebra stripes are shaded darker than the clean image when
the attention scale is learned, and contain white speckles if fixed. See Section B.2 for more examples.

Learning the attention scale improves standard NA and SNA+gϕ,Deep at higher noise intensities. How-
ever, it degrades model quality when superpixels are estimated with SLIC iterations (SNA+gϕ,SLIC ).
Perhaps this quality drop is simply due to network architecture and/or the flow of information. Since
the network that learns the attention parameter is only given a noisy image, the simple model strug-
gles to coordinate with the denoising network, which uses multiple SLIC iterations. SLIC iterations
explicitly compute pairwise distances, which cannot be learned with the shallow model.

A limitation of the proposed SNA module is the additional computation compared to NA. SNA
amounts to re-weighting the attention map produced by a neighborhood search, so SNA is necessarily
more compute-intensive than NA. The bottom four rows of Table 1 show SNA is 15 - 22 times
slower than NA. While this increase is significant, we believe the numbers reported in this paper are
overly pessimistic. Our implementation of SNA has not been optimized, and future development can
dramatically reduce the wall-clock time. One way to reduce wall-clock time is to read more efficiently
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Table 1: Image Denoising [PSNR↑/SSIM↑]. The denoising quality of each network is averaged
across images from Set5 [44], BSD100 [36], Urban100 [45], and Manga109 [46]. The SNA module
is quantitatively superior to NA, even when NA’s attention scales are learned with a deep network.
However, NA is over 20 times faster than SNA and consumes 13 times less memory. A major
contribution of NA is efficiency, while the code for this paper’s proposed SNA module has not been
optimized. Time and memory usage are reported for a single image of size 128× 128.

Attn. SNA H-SNA NA [2]
Learn λat
Sp. Model gϕ,Deep gϕ,SLIC gϕ,Deep gϕ,SLIC gϕ,SLIC

σ
10

31.96
0.869

32.08
0.871

32.07
0.865

32.19
0.871

30.88
0.810

30.87
0.850

31.10
0.850

20 29.01
0.838

28.72
0.815

28.77
0.819

29.08
0.804

25.56
0.630

27.12
0.774

26.96
0.743

30 27.70
0.805

26.94
0.777

27.25
0.764

27.51
0.763

22.37
0.512

25.69
0.743

24.91
0.687

Deno Params (θ) 195 195 195 195 195 195 195
Aux Params (ϕ) 8.8k 8.8k 4.4k 4.4k 0 4.4k 0
Fwd Time (ms) 30.20 45.05 27.06 40.58 28.86 4.64 2.08
Bwd Time (ms) 38.72 80.93 40.00 51.35 32.54 6.06 4.67
Fwd Mem (GB) 1.90 2.30 1.87 2.28 1.96 0.23 0.21
Bwd Mem (GB) 3.27 3.68 3.25 3.66 3.13 0.27 0.25

Figure 7: Denoised Examples [PSNR↑]. This figure compares the quality of denoised images using
the Simple Network and noise intensity σ = 20. The attention scale (λat) is either fixed or learned
with a deep network. In both cases, the NA module mixes perceptually dissimilar information, while
the SNA module excludes dissimilar regions. See Section B.2 for more examples.

from global CUDA memory [43]. Anecdotally, the naive implementations of NA are 500% to 1500%
slower than their recently optimized alternatives.

5.3 Inspecting the Learned Superpixel Probabilities

This subsection investigates how the superpixels learned from denoising compare with superpixels
learned from explicit supervised superpixel training [8]. We observe a collaborative relationship
between superpixel probabilities for denoising and superpixel pooling. We observe an adversarial
relationship between the superpixels for denoising and boundary adherence. Generally, learning
superpixels that improve superpixel benchmarks decreases their utility for denoising.
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Table 2: Supervised Superpixel Training Impacts Denoiser Quality. This table compares the
denoising quality of SNA networks trained with both a denoising loss term and an SSN loss term,
Lfinal = LDeno + LSSN. The SSN Label “None” indicates only a denoising loss is used. Pixel labels
marginally improve the denoising quality, suggesting a cooperative relationship between these
optimization problems. Segmentation labels degrade the denoising, suggesting the best superpixels
for boundary adherence are not the best superpixels for image denoising. Time and memory usage
are reported for a single 128× 128 image.

SSN Label PSNR/SSIM Fwd/Bwd Time (ms) Fwd/Bwd Mem (GB)
None 32.77/0.879 33 0.5
Pix 32.78/0.889 62 6.3
Seg 30.14/0.798 86 6.3

Table 3: Evaluating Superpixel Quality. Training an SNA attention module on denoising learns
superpixel probabilities with comparable quality to explicitly training superpixels. The ASA and BR
metrics evaluate the ML superpixel estimate. The PSNR and SSIM metrics evaluate the quality of the
superpixel pooled image.
SSN Label Image Pixels Segmentation

Loss LDeno LSSN LSSN LSSN + LDeno LSSN LSSN LSSN + LDeno
σ 10 0 10 10 0 10 10

ASA 0.954 0.952 0.946 0.947 0.961 0.958 0.951
BR 0.771 0.774 0.752 0.751 0.855 0.824 0.754

PSNR 27.08 31.02 29.89 29.41 21.56 22.20 25.31
SSIM 0.811 0.934 0.886 0.883 0.553 0.574 0.737

To compare the different training regimes for learning superpixel probabilities, an SNA network
is fully trained with a combination of two loss functions. One loss is the denoising loss (LDeno).
The second loss is the SSN loss function, which computes the difference between a target vector
and its superpixel-pooled transformation (see Section 3.2 for super-pixel pooling) [8]. Specifically,
LSSN = L(ẑsp-pool, z) where L is the cross-entropy loss for a segmentation label and the mean-
squared-error for image pixels. The superpixel stride for all methods is fixed to Ssp = 14. Each
network estimates superpixels using SLIC iterations, and the attention scale is fixed to one (if
applicable). Evaluation is computed on the test set of BSD500 [36].

The Achievable Segmentation Accuracy (ASA) and Boundary Recall (BR) scores evaluate the quality
of the maximum likelihood superpixel assignment. The ASA score measures the upper bound on
the achievable accuracy of any segmentation method, and the BR measures the boundary align-
ment between the superpixels and a segmentation. The superpixels are processed with a connected
components algorithm before computing ASA and BR scores. To qualitatively compare the learned
superpixel probabilities, we follow recent literature and compare the superpixel pooled images [5].
Images are compared against their superpixel pooled images using PSNR and SSIM.

Table 2 evaluates the denoising quality, Table 3 quantitatively evaluates the superpixel quality, and
Figure 8 qualitatively evaluates the superpixel pooling quality. We observe a harmony between the
denoising loss and pixel pooling loss terms. Combining the two terms yields slightly improved
denoising, as reported in the first two rows of Table 2. The first, third, and fourth columns of Table 3
show the ML superpixel quality is similar, but the boundary recall is slightly worse when combining
the two. The superpixel pooling quality increases by 2.33 dB PSNR when combined compared to
only denoising. The second and last columns of Figure 8 qualitatively compare the pooled images.

We observe a disharmony between the superpixel probabilities useful for denoising and those trained
on segmentation labels. Table 2 reports a 2.6 dB PSNR drop in denoising quality. The first two
rows of Table 3 report training with segmentation labels yields the best ML superpixel estimates,
matching related works [8]. However, the superpixel pooling quality is poor. This suggests boundary
detection is distinct from denoising and pixel pooling.
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Figure 8: Comparing Superpixel Probabilites via Superpixel Pooling [PSNR↑]. This figure
uses superpixel pooling to qualitatively compare superpixel probabilities learned with different loss
functions. Learning superpixel probabilities with only a denoising loss yields better superpixel pooling
than supervised learning with segmentation labels. However, jointly training superpixel probabilities
for denoising and image superpixel pooling improves denoising and pooling quality, which suggests
a useful relationship between the two tasks.

SNA NA

Expression FLOPs Memory FLOPs Memory

exp(λat q
⊺
i kj) O(F · HW ·K2) O(HW ·K2) O(F · HW ·K2) O(HW ·K2)

exp(λat q
⊺
i kj)

∑S
s=1 π

(i,s)π(j,s) O(9 · HW ·K2) O(2 · HW ·K2)

wi,j =
exp(λat q

⊺
i kj)

∑S
s π(i,s)π(j,s)∑

j′∈N(i) exp(λat q
⊺
i kj′ )

∑S
s π(i,s)π(j′,s) O(HW ·K2) O(HW ·K2) O(HW ·K2) O(HW ·K2)∑

j∈N (i) wi,jvj O(F · HW ·K2) O(F · HW) O(F · HW ·K2) O(F · HW)

Total FLOPs & Peak Memory O([2F + 10] · HW ·K2) O(F · HW + 3 · HW ·K2) O([2F + 1] · HW ·K2) O(F · HW + 2 · HW ·K2)

Table 4: Computational Complexity. This table reports the FLOPs and memory consumption for
Equations 3 and 5. Constant terms are retained to clarify the differences between SNA and NA.
The second row re-weights the attention map using superpixel probabilities, and it is the extra step
distinguishing SNA from NA. This incurs an extra O(9·HW·K2) FLOPs and requires O(2·HW·K2)
memory. However, SNA’s additional complexity does not scale with the number of features (F).

5.4 Comparing Computational Complexity

Table 4 compares the FLOPs and memory consumption of SNA and NA from Equations 3 and 5. Let
the neighborhood window size be written |N (i)| = K2. In summary, the FLOPs estimate for SNA and
NA is O([2F+10]·HWK2) and O([2F+1]·HWK2), respectively. The peak memory consumption
for SNA and NA is O(HWF + 2HWK2) and O(NF +HWK2), respectively. Importantly, SNA’s
additional complexity does not scale with the number of features (F). Since the number of features is
a significant factor in the computational cost of an attention operator, it is sensible to believe SNA can
be used efficiently within large-scale deep neural networks. To be concrete, if the number of features
is 128, then there is less than a 4% percent increase in FLOPs from NA to SNA.

6 Discussion

This paper presents the soft superpixel neighborhood attention (SNA) module as an alternative to
neighborhood attention (NA). SNA accounts for deformable boundaries of objects. The key modeling
assumption is that superpixel probabilities vary per pixel, and we find SNA is the optimal denoiser
under this model. For a fixed budget of network parameters, SNA achieves a significantly better
denoising quality than NA within a single-layer neural network. While SNA does require more
computation than NA, SNA’s computation does not scale with features which suggests SNA can be
used efficiently within large-scale deep neural networks.
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A Additional Method Details and Proofs

A.1 Soft Superpixel Attention is the Optimal Denoiser

The latent superpixel model assumes the following data-generating process for each image pixel,

Sample superpixel probabilities π ∼ p(π) (9)

Sample the superpixel assignment given the probabilities si|π(i) ∼ p(si|π(i)) (10)
Sample the image pixel given the superpixel assignment x|s ∼ p(x|s) (11)

We will construct a denoiser that depends on the superpixel probabilities rather than the superpixel
assignment. Our derivation is inspired by [37]. Only the form of p(si|π(i)) = Categorical(si;π(i))
is known, and p(π) will not impact our final answer. So we only need to estimate the unknown
density, p(x|s). To do this, we approximate p(x|s) from a sample (x, s,π),

p̂(xi|si) =
M∑

m=1

p(m|si)p(xi|m) =
9

M

M∑
m=1

p(si|m)δ(xi − xm) (12)

where p(si|m) = π(m,si). By re-weighting the empirical density with superpixel probabilities, rather
than superpixel assignments, our estimate does not depend on the ambiguous superpixel labels.
Notice if the superpixel probabilities are independent of the sample index, then the usual weighting is
recovered, p(m|si) = p(m) = 1

M . Next, the pixels are corrupted with Gaussian noise,

p̂σ(x̃i|si) =
[
p̂(·|si) ∗ N (·; 0, σ2I)

]
(x̃i) =

∫
RF

p̂(x0|si)N (x0 − x̃i; 0, σ
2I)dx0 (13)

=
9

M

M∑
m=1

p(si|m)

∫
RF

δ(x0 − xm)N (x0; x̃i, σ
2I)dx0 =

9

M

M∑
m=1

p(si|m)N (xm; x̃i, σ
2I)

(14)

Let the denoiser be a function of the noise intensity and superpixel probabilities, D(x̃i;σ,π). The
expected error of the denoiser is taken with respect to the density p̂σ(x̃i|si)p(si|π(i))p(π),

E
[
∥D(x̃i;σ,π)− xi∥2

]
(15)

= Ep(π)

[
9

M

S∑
s=1

p(s|π(i))

∫
RF

M∑
m=1

p(s|m)N (xm; x̃i, σ
2I)∥D(x̃i;σ,π)− xm∥2dx̃i

]
(16)

= Ep(π)

[
9

M

∫
RF

M∑
m=1

S∑
s=1

p(s|π(i))p(s|m)N (x̃i;xm, σ2I)∥D(x̃i;σ,π)− xm∥2︸ ︷︷ ︸
=:L(D;x̃i,σ,π)

dx̃i

]
(17)

Note p(si = s|π(i)) → p(s|π(i)) for clarity. The expectation can be minimized by minimizing each
integrand for fixed a fixed noisy pixel (x̃) and superpixel probability (π). Since the integrand is a
sum of convex functions, the problem is convex and the solution is the point where the gradient is
equal to zero.

0 = ∇D(x̃i;σ,π)L(D; x̃i, σ,π) = 2

M∑
m=1

N (x̃i;xm, σ2)

S∑
s=1

p(s|π(i))p(s|m) [D∗(x̃i;σ,π)− xm]

(18)
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In general, the optimal denoiser is written as,

D∗(x̃i;σ,π) =

M∑
m=1

xm
N (x̃i,xm, σ2)

∑S
s=1 p(s|π(i))p(s|m)∑M

m′=1 N (x̃i;xm′ , σ2)
∑S

s=1 p(s|π(i))p(s|m′)
(19)

By construction, the probability of a particular sample’s superpixel assignment is written p(s|m) =
π(m,s). When the samples are restricted to a neighborhood surrounding pixel i, one can write the
denoiser as the following expression,

D∗(x̃i;σ,π) =
∑

j∈N (i)

xj

exp
(
− 1

2σ2 ∥x̃i − xj∥
)∑S

s=1 π
(i,s)π(j,s)∑

j′∈N (i) exp
(
− 1

2σ2 ∥x̃i − xj′∥
)∑S

s=1 π
(i,s)π(j′,s)

(20)

This is soft superpixel neighborhood attention when the samples are restricted to a neighborhood
surrounding pixel i, the qkv-transforms are identity, and the attention scale is fixed, λat =

1
2σ2 .

Presently, we highlight where our per-pixel superpixel probabilities are used in the proof. In Equa-
tion 19, the probability p(s|π) depends on the sampled superpixel probabilities π. When denoising
image pixel index i, we have p(s|π) = π(i,s). However, under the standard model with a shape
superpixel probability prior, p(s|π) does not depend on the particular pixel index. This reduces
Equation 20 to a superpixel re-weighting term that does not depend on superpixel information from
pixel i, which would be strange. We did experimentally try out this alternative re-weighting scheme,
and its denoising quality matches NA.

Finally, we discuss a conceptual rationale for sampling superpixel probabilities for each image pixel.
The introduction (Sec 1) explains that superpixel assignment is an ambiguous classification task.
There are many qualitatively “good” superpixel assignments, and often superpixel boundaries can
be modified without impacting the overall quality. This suggests superpixel probabilities are more
important than superpixel assignments. However, working with p(x|π) is more challenging than
working with p(x|s). So in this paper, we still work with p(x|s) but design the denoiser to depend
on the probabilities π to circumvent using the ambiguous superpixel assignments.

A.2 Expected Denoising Error for a Fixed Neighborhood

Section 4.3 states that SNA is the optimal denoiser, but in practice, samples are limited to a neighbor-
hood surrounding a query pixel. To analyze the impact of this restriction, this subsection computes the
expected error over the image pixels and noise for a fixed superpixel sample. For expedient analysis,
the number of features is one (F = 1, xi → xi). The image pixels conditioned on the superpixel
information are modeled with a Gaussian distribution, xi|si,µ,η ∼ N (µs, η

2
s). We will analyze the

attention modules by studying a denoiser of the following form,

Di(x̃) =
∑

j∈N (i)

wj x̃j (21)

This denoiser corresponds to using a flat attention scale λat = 0 and using only prior superpixel
probabilities as attention weights wj . Analysis of attention weights, in general, is difficult, and this
approach removes the challenge. The expected error is computed over the Gaussian-corrupted and
noise-free data density conditioned by the superpixel information, p(x̃|x)p(x|s, µ, η). The expected
error is split into the classic bias-variance decomposition. See Section A.4 for the proof.
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Claim 2 The expected error of the denoiser D over the joint density p(x̃,x|s, µ, η) is written,

E (Di(x̃)− xi)
2
= σ2

∑
j∈N (i)

w2
j︸ ︷︷ ︸

Variance

+

 ∑
j∈N (i)

wj(µsj − µsi)

2

︸ ︷︷ ︸
Bias

(22)

The NA module’s flat weights achieve the minimum variance of 1
W σ2 where W = |N (·)| is the

window size. However, NA’s bias depends entirely on the superpixel’s neighbors and can be large
if the neighborhood happens to contain pixels from superpixels with different means. For example,
the bias will be large for pixels along the sharp orange edge in Figure 3 since their neighborhoods
include the dissimilar blue region. Section A.3 shows that even when the attention scale is non-zero,
NA cannot robustly reject dissimilar regions.

H-SNA has the opposite problem of NA. H-SNA’s sharp weights achieve the minimum possible bias
of zero. However, H-SNA’s variance depends entirely on the size of the superpixel. In Figure 3, the
snake-like superpixel reduces the number of included pixels, increasing the variance term of the error.
This observation that thin and small superpixels are undesirable matches existing assumptions from
superpixel literature [26, 5].

SNA’s modulation of the superpixel weights allows it to be better than both NA and H-SNA. In
Figure 3, SNA excludes the dissimilar blue region (unlike NA) and includes the similar orange regions
(unlike H-SNA). Said another way, SNA excludes only dissimilar regions.

A.3 Exclude Dissimilar Regions Instead of Dissimilar Pixels

Section A.2 showed SNA yields a smaller theoretical error than NA because SNA can exclude
dissimilar regions via superpixel probabilities. The previous analysis fixed the attention scale to zero
(λat = 0), and one may wonder if the attention scale might be used to exclude dissimilar regions
as well. This subsection shows the attention scale excludes dissimilar pixels rather than dissimilar
regions, which is less robust under noise. In this analysis, the qk-transforms are fixed to identity,
the feature dimension is fixed to 1, and the distances function is the negative squared difference:
d(yi, yj) = −(yi − yj)

2.

We first show the attention scale excludes dissimilar pixels rather than regions. Weights of pixels
within a similar region should be similar, wi,j ≈ wi,i, while weights of pixels within dissimilar
regions should be near zero, wi,j ≈ 0. The decay of dissimilar regions will only occur for NA when
the scale increases (λat > 0), but this growth also decays the weights associated with similar regions.
Noting eλatd(yi,yi) = 1, the ratio of two weights for NA is as follows:

log

(
wi,j

wi,i

)
= −λat(yi − yj)

2 = 0 ⇐⇒ yi ≈ yj (23)

Two noisy pixel values must be approximately equal for their attention weights to be approximately
equal. In other words, excluding dissimilar regions with the attention weights also excludes non-
identical noisy pixels. This strict condition limits NA’s ability to exclude dissimilar regions.

Compare this with SNA, which we argue excludes regions more robustly. Say all but a single region
should be excluded, so λsp can be large. The inclusion of the single (useful) region depends on the
most likely estimated superpixel matching the latent probabilities, s∗i = ŝi. Using Section 3.1’s
formulation, the argmax terms match when the following condition is met,

(µ̂s∗i
− yi)

2 < (µ̂ŝi − yi)
2, s ̸= s∗ (24)

In other words, SNA properly rejects dissimilar regions when a noisy pixel is more similar to its true
mean than another superpixel mean. Comparing two noisy differences is more robust than comparing
two noisy pixels. So we claim SNA rejects dissimilar regions more robustly than NA.
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A.4 The Estimated Expected Denoising Error

This subsection presents a more detailed version of Claim 3 from Section A.2 and its proof.

Claim 3 The expected error of the denoiser D over the joint density p(x̃,x|s,µ,η) is written,

E (Di(x̃)− xi)
2
= η2si(1− 2wi) +

∑
j∈N (i)

w2
j (σ

2 + η2sj )︸ ︷︷ ︸
Variance

+

 ∑
j∈N (i)

wj(µsj − µsi)

2

︸ ︷︷ ︸
Bias

(25)

The following proves the above claim. The first step is to expand the square,

E[(Di(x̃)− xi)
2] = E[D2

i (x̃)] + E[x2
i ]− 2E[Di(x̃)xi] (26)

Each expectation is evaluated separately,

E[x2
i ] = η2si + µ2

si (27)

E[D2
i (x̃)] =

∑
j∈N (i)

w2
jE[x̃2

j ] + 2
∑

k<j,j∈N (i)

wjwkE[x̃j x̃k] (28)

=
∑

j∈N (i)

w2
j

(
σ2 + η2sj + µ2

sj

)
+ 2

∑
k<j,j∈N (i)

wjwkµsjµsk (29)

=
∑

j∈N (i)

w2
i,j(σ

2 + η2sj ) +
∑

j,k∈N (i)

wi,jwi,kµsjµsk (30)

E[Di(x̃)xi] =
∑

j∈N (i)

wjE[x̃jxi] = wi,iη
2
si +

∑
j∈N (i)

wi,jµsiµsj (31)

Then all terms are put together and rearranged,

E[(Di(x̃)− xi)
2] = η2si − 2wi,iη

2
si +

∑
j∈N (i)

w2
i,j(σ

2 + η2sj )

+ µ2
si +

∑
j,k∈N (i)

wjwkµsjµsk − 2
∑

j∈N (i)

wi,jµsiµsj (32)

= η2si − 2wiη
2
si +

∑
j∈N (i)

w2
j (σ

2 + η2sj )

+
∑

j,k∈N (i)
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Using E[X2] = Var[X] + E[X]2, the bias-variance terms can be identified. Since the E[X]2 term is
simple to compute and exactly matches the right-hand side, we can label those terms as the bias and
assign the remaining terms to the variance.
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Figure 9: Neighborhood Window Size. Increasing the neighborhood window size includes more
samples to decrease the variance but also adds bias since the noisy samples can be weighted improperly.
This bias-variance trade-off is illustrated by the increasing optimal window size as the noise intensity
increases. Since the bias of H-SNA is nearly zero, the increasing neighborhood size only increases
the denoising quality within the selected grid.

Figure 10: Number of Auxiliary Parameters. This ablation experiment expands the size of the
auxiliary network by increasing the number of UNet channels. The x-axis plots the number of
parameters in the auxiliary network (|ϕ|). The y-axis plots the PSNR of several denoiser networks.
Generally, more parameters improve the denoising quality. The drop in denoising quality for the final
network may be due to under-training.

Figure 11: Number of Superpixels. The number of superpixels has a limited effect on the denoising
quality when compared with other hyperparameters. Generally, increasing the number of superpixels
increases the denoising quality. When the noise is low (σ = 10) the number of superpixels seems
irrelevant. As the noise increases, the benefit of more superpixels becomes more apparent. Generally,
using explicit SLIC iterations is more effective than predicting superpixel probabilities directly.

B Additional Experiments

B.1 Ablation Experiments

This subsection explores the impact of hyperparameters related to the proposed SNA. This includes
the neighborhood window size (Fig 9), the size of the auxiliary network (Fig 10), and the number of
superpixels (Fig 11). All networks are trained and tested according to Section 5.2. Both the size of
the auxiliary network and the neighborhood window size have a significant impact on the denoiser
quality (over 1 dB). The number of superpixels has a smaller overall impact (less than 0.5 dB).
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B.2 Additional Denoising Results

Figure 12: Additional Denoised Examples [PSNR↑]. This figure compares the quality of denoised
images using the Simple Network and noise intensity σ = 20. The attention scale (λat) is either
fixed or learned with a deep network. In both cases, the NA module mixes perceptually dissimilar
information, while the SNA module excludes dissimilar regions.
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NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: This paper presents soft superpixel neighborhood attention (SNA), which
extends standard neighborhood attention to account for deformable boundaries within
natural images. Sections 4.3 and A.1 claim and prove SNA is the optimal denoiser under the
latent superpixel model. Section 5.2 empirically demonstrates SNA outperforms alternative
methods on Gaussian denoising, validating our theoretical finding. Section 5.3 compares the
superpixels learned from the denoising task to superpixels learned with explicit supervision.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Table 1 Section 5.2 reports the proposed SNA module requires more computa-
tion than the existing baseline method (NA). We note the implementation of SNA has not
been optimized, which can dramatically reduce wall-clock time. The primary optimization is
to more efficiently read from global CUDA memory, which may have a dramatic impact on
wall-clock time. Section 4.3 states SNA is the optimal denoiser, but assumes the corrupting
noise is Gaussian.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Section 4.3 includes the main theoretical contribution of this paper. All as-
sumptions are stated in the statement of the proof. Intuition for an important assumption is
described in Section 4.2 and visualized in Figure 4. Section A.1 includes the formal proof of
the statement.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Section 4.1 writes the proposed attention module using standard notation. The
experiment set-up described in Section 5.1 explains the important parameters used to run
the denoising and superpixel-loss experiments. The denoising experiment uses the random
seed 123 across all test samples. The code is provided in the supplemental material and will
be made publicly available upon acceptance.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code is provided in the supplemental material and will be made publicly
available upon acceptance. The code is implemented in Python using Pytorch, Numpy,
Pandas, and CUDA and run using two NVIDIA Titan RTX GPUs and one RTX 3090 Ti
GPU [40–43]. The code includes a readme, and requirements files to setup the environment.
Testing datasets are Set5 [44], BSD100 [36], Urban100 [45], and Manga109 [46].

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experiment set-up described in Section 5.1 explains the important parame-
ters used to run the denoising and superpixel-loss experiments. We train each network for
800 epochs using a batch size of 2 on the BSD500 dataset [36] using a learning rate of
2 · 10−4 with a decay factor of 1/2 at epochs 300 and 600. These hyperparameters were
chosen using an informal grid search. The code is provided in the supplemental material and
will be made publicly available upon acceptance.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Error bars are not usually reported for the benchmarks used in this paper, and
we believe including them will add unnecessary clutter to the report. If requested by the
reviewers, the 95% confidence interval of the average PSNR/SSIM can be added to the
experiments. However, generating error bars to assess the impact of training requires re-
running all of the experiments several times, which significantly increases the computational
cost of this paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]

Justification: Section 5.1 states the workstation used to run the experiments includes two
NVIDIA Titan RTX GPUs and one GeForce RTX 3090 Ti GPU. Each experiment takes
about 2 hours to run, and all experiments together take less than 72 hours to run. This paper
did require additional computing to determine if using the simple deep learning network was
necessary, given the computing budget. This entailed training several larger deep networks
and iteratively pruning network layers to reduce the wall-clock training time. Ultimately,
using a very simple network enabled a clear, simple experiment to demonstrate this paper’s
major claims.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This paper presents a module for deep neural networks and applies the module
to single-image denoising. While this module may improve generic deep neural networks,
this specific paper is not tied to any direct application.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]
Justification: This paper proposes a module for denoising and is not at risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The code is implemented in Python (PSF) using Pytorch (BSD3), Numpy
(BSD), Pandas (BSD3), and CUDA (NVIDIA Software License) [40–43]. The testing
datasets are Set5 [44], BSD100 [36], Urban100 [45], and Manga109 [46]. These datasets
are properly referenced with their supporting paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: This paper proposes code for a new attention module, and the code
is provided in the zip file. Within the zipped code file, the new asset is located
within the superpixel_paper/lib/superpixel_paper/ssna/ directory. Two important files
within the directory are superpixel_paper/lib/superpixel_paper/ssna/ssna.py and super-
pixel_paper/lib/superpixel_paper/ssna/attn_reweight.py. The code will be released under the
BSD-3-Clause license.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.
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• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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