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Abstract

Prompt tuning, which adapts vision-language
models by freezing model parameters and opti-
mizing only the prompt, has proven effective for
task-specific adaptations. The core challenge in
prompt tuning is improving specialization for a
specific task and generalization for unseen do-
mains. However, frozen encoders often produce
misaligned features, leading to confusion between
classes and limiting specialization. To overcome
this issue, we propose a confusion-aware loss
(CoA-loss) that improves specialization by refin-
ing the decision boundaries between confusing
classes. Additionally, we mathematically demon-
strate that a mixture model can enhance general-
ization without compromising specialization. This
is achieved using confidence-aware weights (CoA-
weights), which adjust the weights of each predic-
tion in the mixture model based on its confidence
within the class domains. Extensive experiments
show that CoCoA-Mix, a mixture model with
CoA-loss and CoA-weights, outperforms state-
of-the-art methods by enhancing specialization
and generalization. Our code is publicly available
at https://github.com/url-kaist/CoCoA-Mix.

1. Introduction
Pre-trained vision-language models (VLMs) have achieved
remarkable results in diverse downstream tasks, such as im-
age classification (Fu et al., 2022), object detection (Zhong
et al., 2022; Gu et al., 2021), and visual question answer-
ing (Cho et al., 2021; Lin et al., 2022). These models align vi-
sual and textual embeddings through extensive pre-training
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Figure 1: (a) Effect of CoA-loss. The left and right sides
show probabilities for the hatched sample on the decision
boundary. In the middle figure, dashed and solid lines indi-
cate the current and updated decision boundaries. CoA-loss
assigns higher weights to this confusing sample, enhancing
specialization in prompt tuning. (b) Effect of CoA-weights.
The left and right sides show performance across domains.
CoA-weights increase confidence in the specialized predic-
tion for seen domains while reducing it for unseen domains,
preserving both specialization and generalization.

on large-scale datasets, enabling remarkable zero-shot ca-
pabilities. However, their reliance on generic embeddings
often limits their effectiveness in task-specific applications.

To mitigate this limitation, prompt engineering has emerged
as a practical way to enhance performance on a specific
task (Wang et al., 2021; 2022a). The method involves
manually designing a task-specific text template for the
model input. For example, in image classification, hand-
crafted prompts such as "a photo of a [CLASS],
a type of flower" help associate visual embeddings
with the correct class labels, such as “hibiscus” or “sword
lily.” (Zhou et al., 2022c) Although effective, the manual
process is labor-intensive and requires domain expertise,
limiting scalability across diverse tasks.

Prompt tuning has become a scalable alternative to manual
prompt engineering by replacing hand-crafted prompts with
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learnable prompts (Zhou et al., 2022c; Zhu et al., 2023;
Zhou et al., 2024; Zhang et al., 2024a). This method allows
VLMs to effectively align textual embeddings with the cor-
responding visual embeddings by optimizing the prompts
for a specific task while freezing the model parameters.

However, the existing methods have two limitations. First,
existing methods do not explicitly address confusing cases
arising from the frozen visual encoder. The frozen visual en-
coder often fails to capture task-specific features, struggling
to distinguish between different classes. However, most ex-
isting methods rely on standard cross-entropy loss, which
is ineffective in handling confusing cases and consequently
limits their specialization (Zhou et al., 2022c;b). Second,
achieving generalization to unseen domains is crucial in
prompt tuning, but current methods often sacrifice special-
ization to improve generalization. Most studies inherently
assume specialization and generalization are competing ob-
jectives. As a result, the trade-off problem remains an open
challenge.

To overcome these limitations, we propose a confusion-
and-confidence-aware mixture model (CoCoA-Mix), which
combines confusion-aware loss (CoA-loss) and confidence-
aware weights (CoA-weights). We first introduce a mixture
model that combines predictions from individual prompts,
providing a theoretical framework to analyze prompt tun-
ing in terms of specialization and generalization. Building
on this theoretical insight, CoA-loss improves specializa-
tion by applying larger gradient to confusing cases, refining
decision boundaries as shown in Figure 1(a). Then, CoA-
weights achieve generalization without compromising spe-
cialization by scaling mixture model weights based on the
confidence of individual prompts across class domains, as
shown in Figure 1(b). As a result, our method enhances both
specialization and generalization by ensuring that the error
of the mixture model remains lower than the minimum error
of individual prompts. Main contributions are as follows:

• We provide a mathematical framework demonstrating
that specialization and generalization can be improved
simultaneously.

• We propose a CoCoA-Mix framework, consisting of
CoA-loss and CoA-weights. CoA-loss boosts special-
ization by improving classification for confusing cases,
while CoA-weights improve generalization by adjust-
ing the weights of individual prompts in the mixture
model based on their confidence over class domains.

• The proposed method achieves average harmonic mean
improvements of 15.28% and 3.28% over zero-shot
CLIP in base-to-new generalization and cross-dataset
transfer, respectively; it also improves the average accu-
racy in few-shot class-incremental learning by 5.6%p.

2. Related Work
2.1. Textual Prompt Tuning

Prompt tuning has emerged as a method to reduce the re-
liance on human expertise while improving the performance
of VLMs on specific tasks. The method can be categorized
into visual prompt tuning (Jia et al., 2022; Bahng et al.,
2022), textual prompt tuning (Zhou et al., 2022c;b; Zhu
et al., 2023; Yao et al., 2023; Zhang et al., 2024b), and
visual-textual prompt tuning (Khattak et al., 2023a;b). In
this paper, we focus on textual prompt tuning, which re-
places hand-crafted prompts with learnable prompts and
optimizes them using few-shot training data, while keeping
the model parameters frozen.

2.2. Loss for Prompt Tuning

In textual prompt tuning, the frozen encoders map inputs to
generic embeddings, which can lead to misaligned vision-
text embeddings for specific tasks. A common strategy to
mitigate this issue is to employ a standard cross-entropy loss
that aligns textual prompts with their corresponding visual
embeddings. CoOp (Zhou et al., 2022c) pioneered textual
prompt tuning by optimizing prompts for specific tasks us-
ing cross-entropy loss. Subsequent works employed regu-
larization via hand-crafted prompts, which enhanced spe-
cialization by preventing prompts from learning unintended
patterns (Zhu et al., 2023; Yao et al., 2023; Zhang et al.,
2024b). However, such regularization methods may prevent
prompts from fully capturing task-specific patterns, limiting
specialization in complex tasks. Other approaches (Khat-
tak et al., 2023a; Zhang et al., 2024b) introduce additional
network parameters to enhance the representational capac-
ity of the model. MaPLe (Khattak et al., 2023a) leverages
visual-language interactions via a coupling function, while
DePT (Zhang et al., 2024b) employs a dual-head architec-
ture to decouple task-specific and task-shared knowledge
into separate feature spaces. Although these methods im-
prove generalization, they increase the number of learn-
able parameters, leading to overfitting when training data
is scarce and limiting scalability. In contrast, we aim to
enhance both specialization and generalization without in-
troducing additional network components.

2.3. Mixture of Prompts

Prompt ensembling has been studied to improve general-
ization in VLMs. Allingham et al. (2023) propose zero-
shot prompt ensembling (ZPE), which automatically as-
signs weights to hand-crafted prompts from a large pool,
leading to improved zero-shot accuracy. Lu et al. (2024)
extend this to model-level ensembles suited to varying re-
source settings, but this requires multiple forward passes at
inference time. Despite their generalization benefits, neither
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approach explicitly addresses the challenge of achieving
task-specific specialization. In contrast, our method jointly
improves specialization and generalization, while remain-
ing computationally efficient by avoiding multiple forward
passes.

3. Proposed Method
3.1. Preliminary

In downstream tasks, CLIP employs visual and textual en-
coders to map images and textual prompts into a shared
embedding space. The textual prompts t can be generated as
hand-crafted prompts by embedding class labels into prede-
fined templates, such as "a photo of a [CLASS]."
With t, the probability of the image belonging to the class l,
p̂t(l), is defined as follows:

p̂t(l) =
exp (st(l)/τ)∑

l′∈Y exp (st(l′)/τ)
, (1)

where τ is the temperature scale, Y represents the set of
classes, and st(l) denotes the cosine similarity between the
visual and textual embeddings of the class l generated by t.

3.2. Decomposing Specialization and Generalization

The expected error ϵT (p̂) of a predictive distribution p̂ in an
arbitrary target domain DT is defined using the Kullback-
Leibler (KL) divergence as follows:

ϵT (p̂) = E(x,y)∼DT
[− log p̂(y)] , (2)

where y is the ground-truth label for the image x.

We introduce a mixture model to derive an upper bound for
the error in the target domain, providing a framework for
analyzing specialization and generalization.

Definition 3.1 (Mixture model). Let K + 1 different
prompts be given by T = {t0, t1, · · · , tK}, and let π =
{π0, π1, · · · , πK} denote a set of non-negative weights sat-
isfying

∑K
i=0 πi = 1. The mixture model p̂πT is defined as a

weighted combination of the individual prompts:

p̂πT (l) =
exp

(∑K
i=0 πisti(l)/τ

)
∑

l′∈Y exp
(∑K

i=0 πisti(l
′)/τ

) . (3)

Theorem 3.2. The expected error of the mixture model p̂πT
can be bounded as follows:

ϵT (p̂
π
T ) ≤

K∑
i=0

πiϵT (p̂ti). (4)

The proof is provided in Section A.

Lemma 3.3. Let the class set of the target domain DT be
partitioned into K + 1 disjoint subsets, with correspond-
ing sub-domains DT0 ,DT1 , · · · ,DTK

, such that DT =⊔K
i=0 DTi . Then, the expected error of p̂πT is given by:

ϵT (p̂
π
T ) =

K∑
i=0

λiϵTi
(p̂πT ), (5)

where λi = Pr(x,y)∼DT
[(x, y) ∈ DTi

] denotes the prob-
ability that a sample from the target domain DT belongs
to the sub-domain DTi

, satisfying
∑K

i=0 λi = 1. Based on
Theorem 3.2, the error of the mixture model in the arbitrary
target domain can be upper-bounded as follows:

ϵT (p̂
π
T ) ≤

K∑
i=0

λi


πin
i ϵTi

(p̂ti)︸ ︷︷ ︸
specialization

error

+

K∑
j=0
j ̸=i

πout
j ϵTi

(p̂tj )

︸ ︷︷ ︸
generalization

error


,

(6)
where πin

i denotes the mixing weight of the prompt ti for
its own domain DTi

, and πout
j denotes the mixing weight of

the prompt tj(j ̸= i) when applied to the domain Di. Here,
πin
i +

∑K
j=0
j ̸=i

πout
j = 1.

Let Y denote the set of all classes in the arbitrary tar-
get domain DT , which is partitioned as Y =

⊔K
i=0 Yi.

Specifically, we assume that labeled data is provided for
Y1, · · · ,YK , whereas no supervision is available for Y0.
Due to the absence of labeled data in DT0 , the associ-
ated prompt t0 cannot be specialized through training. In-
stead, we utilize a generalized hand-crafted prompt such as
"a photo of a [CLASS]."

Building on this, we detail the proposed method for special-
ization and generalization in prompt tuning. In Section 3.3,
we propose confusion-aware loss (CoA-loss), which focuses
on confusing cases in prompt tuning and effectively reduces
the specialization error ϵTi(p̂ti) for each sub-domain DTi .
Subsequently, Section 3.4 enhances generalization by opti-
mizing confidence-aware weights (CoA-weights) based on
the confidence of each prompt on the given class domain,
tightening the upper bound of ϵT (p̂πT ). As a result, the pro-
posed method enhances specialization and generalization
simultaneously. Figure 2 shows the overall framework of the
confusion-and-confidence-aware mixture model (CoCoA-
Mix), which combines CoA-loss and CoA-weights.

3.3. Confusion-Aware Loss for Specialization

Let p̂ be a predictive distribution and DS be the source
domain. According to Nguyen et al. (2022), the expected
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Figure 2: CoCoA-Mix framework integrates confusion-aware loss (CoA-loss) for specialization and confidence-aware
weights (CoA-weights) for generalization, ensuring performance improvements without trade-offs. The learnable prompt
ti is optimized with CoA-loss to specialize in distinguishing confusing classes within the training domain. CoA-weights
adjusts prediction confidence by increasing πin

i for in-class and decreasing πout
i for out-class. At inference, the specialized

predictions p̂ti , adjusted via CoA-weights, are combined with the generalized predictions p̂t0 to ensure generalization while
preserving specialization.

error ϵT (p̂) on the target domain DT is bounded as follows:

ϵT (p̂) ≤ ϵS(p̂) +
C√
2

√
KL(pT (z)|pS(z)) + δ, (7)

where z is defined as a visual embedding; C is a con-
stant that bounds log p̂(l), ensuring each class probabil-
ity is at least exp(−C); pT and pS are the marginal
distribution of z for the target and source domains, re-
spectively; and δ denotes the conditional misalignment
EpT (x) [KL(pT (y|x)|pS(y|x))], which is typically small.

We focus on textual prompt tuning, which cannot optimize
the visual embedding z due to the frozen encoders. Thus,
Equation (7) suggests that minimizing ϵS(p̂) can reduce
ϵT (p̂), enabling error minimization in the mixture model
via source domain specialization.

Most existing methods use standard cross-entropy, defined
as follows, for the specialization in prompt tuning:

LCE(x, y; p̂t) = − log p̂t(y). (8)

Cross-entropy assigns gradients based on class probabilities,
assigning larger gradients to misclassified samples. While
effective for misclassified cases, it relies only on individual
probabilities and does not consider inter-class relationships,
limiting its ability to handle class confusion. Addressing
confusing classes is crucial in prompt tuning with limited
training data because they significantly impact the deci-
sion boundary. To overcome this limitation, we propose
confusion-aware loss (CoA-loss), defined as follows:

LCoA(x, y; p̂t) = 1− p̂t(y). (9)

The overall loss Lprompt for optimizing the prompt t is given
by:

Lprompt(x, y; p̂t) = LCE + wLCoA, (10)

(a) (b)

Figure 3: Gradient component of Lprompt with respect to (a)
st(c ̸= y) and (b) st(y), where w = 0 represents standard
cross-entropy.

where w is a hyperparameter that balances the contribution
of CoA-loss.

To illustrate how CoA-loss refines the decision boundary
between confusing classes, we analyze the gradients for the
correct class y and an incorrect class c. The gradients of
Lprompt with respect to the similarities st(y) and st(c ̸= y)
are as follows:

∂Lprompt

∂st(y)
= −1

τ
(1− p̂t(y)) (1− wp̂t(y)) ,

∂Lprompt

∂st(c ̸= y)
=

1

τ
p̂t(c) (1 + wp̂t(y)) .

(11)

Figure 3 shows the gradients for classes y and c. When
w = 0, the loss corresponds to standard cross-entropy. As
implied by Equation (11), standard cross-entropy assigns
gradients based on individual probabilities, ignoring inter-
class relationships. In contrast, CoA-loss increases the gra-
dient for y when p̂t(y) approaches 0.5 and for class c when
p̂t(c) nears p̂t(y), especially as w increases. These scenarios
represent confusing cases where the correct class probabil-
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ity is uncertain or where the incorrect class probability is
similar to the correct class, making them difficult to distin-
guish. CoA-loss thus induces larger gradient updates for
these confusing cases.

3.4. Confidence-Aware Weights for Generalization
without Trade-Offs

Equation (6) suggests that optimizing π can minimize the
upper bound of the expected error ϵT (p̂πT ) of the mixture
model. Achieving this requires assigning a higher weight
to the prediction with lower error in the target domain. In
this section, we propose confidence-aware weights (CoA-
weights), which adjust the weight of each prediction based
on the class domain.

Assumption 3.4. The specialized prediction p̂ti for DTi

satisfies the following relationships:

ϵTi
(p̂ti) ≤ ϵTi

(p̂tj ̸=i
) and ϵTj ̸=i

(p̂t0) ≤ ϵTj ̸=i
(p̂ti).

(12)
The first inequality reflects that a prediction p̂ti optimized
for a specific domain DTi always performs better than pre-
dictions p̂tj ̸=i

made by prompts optimized for other domains.
Conversely, the second inequality assumes that the gener-
alized prediction p̂t0 is more effective for unseen classes.
This assumption aligns with the principle that a single pre-
diction specialized for a task cannot excel at all tasks, a
claim further supported by statistical evidence presented
in Appendix B.

Equation (6) and Assumption 3.4 suggest that minimizing
the upper bound of ϵT (p̂πT ) requires increasing πin for in-
classes and decreasing πout for out-classes. To achieve this,
we propose CoA-weights which adjusts the weights πin

i and
πout
i of p̂ti in the mixture model.

Optimizing πin
i for In-Class Domains The weight πin

i

for in-class domains is optimized by minimizing the cross-
entropy loss of the mixture model over the training domain
DSi

:

πin
i = argmin

πin
i

E(x,y)∼DSi
[LCE(x, y; p̂

π
T )]. (13)

With this optimization, weight πin
i is increased when the spe-

cialized prediction p̂ti outperforms the generalized predic-
tion p̂tj ̸=i

for the in-class domain and decreased otherwise.
Consequently, the weight πin

i for in-classes is optimized.
Further details on the cross-entropy effect in the mixture
model are provided in Appendix C.

Optimizing πout
i for Out-Class Domains Because only

in-classes are available during training, out-class set Yout
i

must be generated to optimize πout
i . The out-class set can be

generated by combining random strings or retrieving ran-
dom words. According to Assumption 3.4, the temperature
πout
i for out-class domains is optimized using entropy loss

LEnt, which compares the entropy of p̂ti and p̂t0 as follows:

πout
i = argmin

πout
i

E(x,y)∼DSi
[LEnt(x; p̂ti , p̂t0)] , (14)

LEnt = max (0, H (p̂t0)−H (p̂ti) + d) , (15)

where d is a margin and H (p̂) is the normalized
entropy of p̂ over the out-class set, i.e., H (p̂) =∑

c∼Yout
i
−p̂(c) log p̂(c)/ log |Yout

i |.

The entropy loss LEnt ensures that the entropy of p̂ti>0
ex-

ceeds that of p̂t0 by a margin of d. Entropy measures un-
certainty in the prediction, with higher values indicating
lower confidence. As a result, πout

i is optimized to make
specialized predictions less confident than generalized ones.

4. Experiments
4.1. Datasets and Implementation Details

We validate the effectiveness of our method in three
tasks: (1) base-to-new generalization, (2) few-shot class-
incremental learning (FSCIL), and (3) cross-dataset transfer.

Datasets We evaluate base-to-new generalization and
cross-dataset transfer performance using 11 datasets: Ima-
geNet (Deng et al., 2009), Caltech101 (Fei-Fei et al., 2004),
OxfordPets (Parkhi et al., 2012), StanfordCars (Krause
et al., 2013), Flowers102 (Nilsback & Zisserman, 2008),
Food101 (Bossard et al., 2014), FGVCAircraft (Maji et al.,
2013), EuroSAT (Helber et al., 2019), UCF101 (Soomro,
2012), DTD (Cimpoi et al., 2014), and SUN397 (Xiao et al.,
2010). For FSCIL, we use CIFAR100 (Krizhevsky et al.,
2009). Following Tao et al. (2020), we split the classes into
60 Base and 40 New classes and adopted a 5-shot 5-way
setting, resulting in a total of 9 training sessions.

Training Details The prompt length M is initialized ran-
domly and set to 16 unless specified. The out-class set Yout

i

for optimizing πout
i is generated by sampling the same num-

ber of random words as the in-class set Yi using the API (Re-
bguns, 2021). Prompt tuning is performed using the Adam
optimizer (Kingma, 2014) with a learning rate of 0.002. Op-
timization for the CoA-weights is conducted with SGD. Fur-
ther details of implementation are provided in Appendix D.

4.2. Performance Comparison

Base-to-New Generalization We evaluate prompt tuning
performance over classes in a 4-shot setting. Each dataset is
evenly split into two disjoint subsets: base classes (Base) for
tuning and unseen new classes (New). Accuracy is measured
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Table 1: Performance comparison on 11 datasets in the base-to-new benchmark. H represents the harmonic mean.

AVERAGE IMAGENET CALTECH101
METHOD BASE NEW H BASE NEW H BASE NEW H

CLIP 65.14 68.78 66.82 64.43 60.04 62.16 90.64 91.16 90.90
COOP 77.23 68.56 71.33 73.72± 0.29 64.94± 0.87 69.05 97.16± 0.16 93.92± 0.80 95.51

PROGRAD 78.74 72.19 75.06 74.81± 0.29 66.68± 0.26 70.51 97.50± 0.08 95.49± 0.27 96.48
KGCOOP 78.67 74.62 76.38 75.44± 0.08 69.43± 0.29 72.31 97.61± 0.33 94.80± 0.45 96.18
MAPLE 77.14 72.91 74.69 75.40± 0.29 70.43± 0.12 72.83 97.47± 0.31 93.77± 1.11 95.57
DEPT 79.20 66.36 71.78 73.50± 0.22 70.00± 0.16 71.71 97.83± 0.05 95.83± 0.25 96.82

COA-LOSS 79.12 73.66 76.15 75.68± 0.00 67.98± 0.31 71.62 97.94± 0.14 94.54± 0.24 96.21
COCOA-MIX 79.31 75.10 77.03 75.47± 0.09 68.92± 0.10 72.04 98.02± 0.03 94.39± 0.10 96.17

OXFORDPETS STANFORDCARS FLOWERS102
METHOD BASE NEW H BASE NEW H BASE NEW H

CLIP 90.01 94.24 92.07 55.37 66.65 60.49 69.23 73.90 71.49
COOP 94.10± 0.73 94.42± 4.17 94.16 69.54± 0.75 71.39± 1.28 70.44 90.60± 1.50 67.00± 1.04 77.01

PROGRAD 95.00± 0.31 97.36± 0.42 96.16 71.45± 0.39 73.16± 0.58 72.29 91.36± 0.63 74.92± 0.90 82.32
KGCOOP 94.65± 0.15 97.59± 0.08 96.10 68.64± 0.35 74.96± 0.53 71.66 90.09± 0.63 76.31± 0.42 82.63
MAPLE 94.80± 0.94 97.67± 0.21 96.21 67.97± 0.29 74.40± 0.45 71.04 88.03± 1.62 73.43± 0.49 80.06
DEPT 94.00± 0.29 88.63± 0.78 91.23 71.83± 0.52 59.27± 0.76 64.94 94.53± 0.53 66.30± 1.42 77.92

COA-LOSS 94.90± 0.49 97.93± 0.08 96.39 72.70± 0.11 73.07± 1.27 72.87 88.89± 1.75 75.58± 1.31 81.67
COCOA-MIX 95.16± 0.38 97.60± 0.09 96.36 73.09± 0.25 74.97± 0.08 74.01 91.04± 1.79 77.37± 0.38 83.64

FOOD101 FGVCAIRCRAFT SUN397
METHOD BASE NEW H BASE NEW H BASE NEW H

CLIP 83.58 84.95 84.26 19.51 24.60 21.76 66.76 70.52 68.59
COOP 89.19± 0.19 88.45± 0.89 88.81 26.17± 7.89 19.50± 11.94 11.46 77.37± 0.66 72.06± 1.56 74.60

PROGRAD 89.33± 0.08 89.93± 0.58 89.63 34.21± 1.99 28.53± 2.08 30.97 79.16± 0.36 74.34± 0.75 76.20
KGCOOP 90.26± 0.11 91.25± 0.15 90.75 33.43± 0.56 32.27± 1.19 32.81 79.07± 0.24 76.78± 0.24 77.91
MAPLE 89.37± 0.54 90.77± 0.54 90.06 31.67± 0.66 33.13± 2.38 32.29 78.33± 0.21 77.67± 0.45 78.00
DEPT 89.80± 0.08 88.10± 0.16 88.94 35.93± 0.93 24.33± 0.09 29.01 79.10± 0.22 67.27± 0.46 72.70

COA-LOSS 90.11± 0.18 90.87± 0.42 90.49 33.91± 0.68 32.47± 0.37 33.17 78.70± 0.25 75.43± 0.72 77.03
COCOA-MIX 90.09± 0.16 90.93± 0.09 90.50 33.51± 0.28 34.15± 0.14 33.83 78.51± 0.17 76.60± 0.24 77.54

DTD EUROSAT UCF101
METHOD BASE NEW H BASE NEW H BASE NEW H

CLIP 53.24 54.71 53.97 54.79 66.21 59.96 69.03 69.61 69.32
COOP 71.22± 1.13 53.62± 3.45 61.03 79.93± 1.07 64.79± 6.36 71.19 80.58± 0.66 64.11± 2.84 71.32

PROGRAD 72.07± 0.29 50.56± 2.43 59.35 81.29± 3.36 69.81± 5.56 74.80 80.97± 0.29 73.32± 1.85 76.93
KGCOOP 72.92± 1.05 59.14± 1.53 65.28 83.20± 0.72 70.51± 9.30 75.61 80.09± 0.24 77.75± 0.40 78.90
MAPLE 70.40± 2.57 58.40± 3.00 63.71 76.50± 3.85 55.70± 3.19 64.27 78.57± 2.11 76.60± 1.56 77.53
DEPT 74.40± 0.83 53.13± 1.07 61.98 78.70± 1.56 50.53± 5.71 61.08 81.57± 0.84 66.53± 0.87 73.28

COA-LOSS 73.23± 2.02 58.09± 0.81 64.76 83.38± 0.49 70.07± 2.49 76.09 80.83± 0.80 74.22± 0.91 77.38
COCOA-MIX 72.80± 1.89 64.29± 1.25 68.25 83.49± 0.66 69.11± 3.10 75.54 81.28± 0.95 77.75± 0.24 79.47

independently on Base and New, and their harmonic mean
H (Xian et al., 2017) is calculated to evaluate the trade-
off between them. The final performance is reported as the
average of three random seeds for a fair evaluation.

Table 1 shows that CoOp (Zhou et al., 2022c) achieves
a higher average performance than CLIP on Base but a
lower average performance on New, highlighting the need
for generalization in prompt tuning. ProGrad (Zhu et al.,
2023) and KgCoOp (Yao et al., 2023), which incorporate
hand-crafted prompts during training, improve average per-
formance on both Base and New. MaPLe (Khattak et al.,

2023a) and DePT (Zhang et al., 2024b) focus on improving
performance on both Base and New by increasing model
capacity. However, with only 4-shot training samples, they
often overfit, limiting generalization. Our CoA-loss, when
combined with a naive ensemble, improves Base perfor-
mance but offers limited generalization as it only focuses on
specialization. By incorporating CoA-weights, our CoCoA-
Mix achieves the highest average performance on both Base
and New without trade-offs. Notably, CoCoA-Mix surpasses
the specialization performance of DePT while using 2.8%
of its parameters.
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Table 2: Performance comparison on CIFAR100 in the FSCIL benchmark. Mean represents the average accuracy across all
sessions, and PD indicates the performance difference between the first and last sessions.

METHOD
ACC(%)↑ MEAN↑ PD↓

0 1 2 3 4 5 6 7 8

L2P 89.9 86.0 81.8 80.3 80.0 74.6 73.2 72.6 65.0 78.2 24.9
CLIP-ZSL − − − − − − − − − 77.9 −

COOP-FSCIL 88.6 78.9 77.5 76.0 76.8 78.3 79.2 79.8 79.3 79.4 9.3
FACT W/ CLIP 87.8 84.0 81.4 78.0 77.8 76.3 75.0 72.5 71.9 78.3 15.9
FSPT-FSCIL 86.9 83.1 81.9 80.7 80.4 79.9 80.1 79.9 79.4 81.4 7.5

COCOA-MIX (OURS) 88.2 85.6 84.6 82.7 82.8 82.5 82.3 81.8 80.8 83.5 7.4

Table 3: Performance comparison in cross-dataset transfer

METHOD SOURCE TARGET H

CLIP 66.73 64.89 63.97
COOP 69.06± 0.43 59.88 61.52

PROGRAD 70.21± 0.16 62.36 63.58
KGCOOP 70.52± 0.05 64.45 65.17
MAPLE 69.53± 0.39 65.24 65.26
DEPT 68.03± 0.09 65.06 64.42

COCOA-MIX 70.85± 0.09 65.27 66.07

Few-Shot Class-Incremental Learning (FSCIL) We
evaluated our method on FSCIL tasks to verify its effec-
tiveness in incremental learning with limited data. In FSCIL,
the number of prompts K was increased incrementally, with
each prompt specializing in its session. For a fair compar-
ison, CoCoA-Mix uses prompts with M = 2 per session.
It has fewer parameters than methods with M = 16 un-
til session 6 but requires more parameters from session
7. Table 2 shows the performance of FSCIL on the CI-
FAR100 dataset. L2P (Wang et al., 2022b), which dynami-
cally selects prompts from a pool, shows high initial perfor-
mance but suffers significant knowledge forgetting as new
classes are added, leading to the highest performance dif-
ference (PD). CoOp-FSCIL (Zhou et al., 2022c) and FACT
w/ CLIP (Zhou et al., 2022a) outperform zero-shot CLIP in
early sessions but are affected by knowledge forgetting in
later sessions. FSPT-FSCIL (Ran et al., 2024) outperforms
zero-shot CLIP in all sessions by leveraging a brain-inspired
strategy in prompt tuning. CoCoA-Mix performs lower in
the first two sessions due to fewer parameters but achieves
the highest performance in later sessions, outperforming the
state-of-the-art methods. Details of the FSCIL implementa-
tion are provided in Appendix D.4.

Cross-Dataset Transfer We evaluate cross-dataset trans-
fer by training on ImageNet with 1, 000 classes in a 4-shot
setting and testing on 10 different datasets. Table 3 shows the
accuracy and harmonic mean for source and target datasets.
CoOp improves source accuracy over zero-shot CLIP but

Figure 4: Comparison of Base performance by loss function

reduces target accuracy, highlighting the need for gener-
alization. ProGrad and KgCoOp similarly enhance source
accuracy but fail to outperform zero-shot CLIP on the target
dataset, indicating limited transferability of prompt knowl-
edge. MaPLe and DePT improve transfer performance by
introducing additional parameters but show limited source
accuracy. CoCoA-Mix achieves the highest performance
on both source and target datasets, demonstrating effec-
tive knowledge transfer across different datasets. Notably,
CoCoA-Mix outperforms existing methods in generaliza-
tion while utilizing only 0.26% of the parameters used
by MaPLe. Appendix E.1 provides detailed results on 10
datasets.

4.3. Effectiveness of Our Method

Performance Comparison with Existing Loss Functions
We compared Base performance across various loss func-
tions to demonstrate the effectiveness of CoA-loss for
specialization in prompt tuning. Figure 4 shows the aver-
age Base performance for each loss function. Focal loss
(FL) (Ross & Dollár, 2017) emphasizes misclassified sam-
ples but struggles to learn from well-classified ones, leading
to poor performance compared with CE in prompt tuning.
Generalized cross entropy (GCE) (Zhang & Sabuncu, 2018),
which generalizes CE and mean absolute error (MAE), lim-
its optimization on misclassified samples, restricting spe-
cialization. CE achieves better performance in prompt tun-
ing by balancing well-classified and misclassified samples.
MAE combined with CE treats all samples more equally
and ensures consistent learning even in the few-shot setting,
slightly improving performance. However, these loss func-
tions fail to address confusing cases that significantly affect
decision boundaries, limiting their performance. Adding

7
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(a) (b) (c) (d)

Figure 5: (a) Proportion of predictions by zero-shot CLIP on EuroSAT. (b) Accuracy on easy test samples correctly predicted
by zero-shot CLIP. (c) Accuracy on confusing test samples misclassified by zero-shot CLIP with a probability gap below
0.2. (d) Accuracy on all test samples.

Table 4: Comparison of performance based on the loss function used to train prompts and the strategy of mixing prompts.
TEn refers to the tuning ensemble methods (Lu et al., 2024). ViT-B/16 shows the average performance over 11 datasets,
while RN50+RN101+ViT-B/16+ViT-B/32 reports the average over 10 datasets.

Backbone Method Loss Ensemble Base New H

ViT-B/16

CLIP - - 65.1 68.8 66.8
CLIP (w/ Ensemble) - Uniform Ensemble 70.6 74.3 72.3

CoA-loss (w/o Ensemble) CoA-loss - 78.6 68.5 72.9
CoA-loss (w/ Ensemble) CoA-loss Uniform Ensemble 79.1 73.7 76.2

CoCoA-Mix CoA-loss CoA-weights 79.3 75.1 77.0

RN50 + RN101
+ ViT-B/16 + ViT-B/32

TEn + CoCoOp CoCoOp Sample-Aware Weight Generator 84.1 75.5 79.2
TEn + CoA-Loss CoA-loss Sample-Aware Weight Generator 85.3 75.2 79.5

CoCoA-Mix CoA-loss CoA-weights 85.4 76.3 80.3

CoA-loss to CE achieves the best performance by effec-
tively focusing on confusing cases. Detailed results and
analysis are provided in Appendix E.3.

Effectiveness of Confusion-Aware Loss We analyze the
effect of CoA-loss on model predictions using the EuroSAT
dataset. Figure 5 compares training progress with and with-
out CoA-loss. Figure 5(a) shows the proportion of predic-
tions by zero-shot CLIP. Easy samples are correctly clas-
sified, while confusing samples are misclassified with a
probability gap of less than 0.2 between the correct and in-
correct classes. Hard samples are misclassified with a larger
probability gap. Figure 5(b) and Figure 5(c) present per-
formance on easy samples and confusing samples. While
CoA-loss performs similarly to CE on easy samples, it sig-
nificantly improves accuracy on confusing ones. Figure 5(d)
shows that CoA-loss outperforms CE on test data by address-
ing confusing cases, enhancing class decision boundaries.
The performance improvement on confusing samples with
CoA-loss for each dataset is provided in Appendix E.2

Effectiveness of Confidence-Aware Weights We eval-
uate the effectiveness of CoA-weights in the context of
prompt ensembling. As shown in Table 4, we compare var-

ious ensembling strategies and loss functions across both
single- and multi-backbone configurations. In the ViT-B/16
setting, uniform ensembling improves generalization perfor-
mance over the CLIP baseline by aggregating predictions
from multiple prompts. CoCoA-Mix, which integrates CoA-
loss and CoA-weights, outperforms all other variants. This
highlights the importance of confidence-aware weighting. In
the model-level ensemble setting, CoCoA-Mix achieves the
best performance, outperforming the tuning ensemble (TEn)
with a sample-aware weight generator (Lu et al., 2024).
Notably, CoA-weights achieve this with only two learn-
able parameters, compared with over 205,204 parameters
required by the sample-aware weight generator.

Conclusion
We proposed CoCoA-Mix, a framework combining CoA-
loss and CoA-weights to enhance specialization and general-
ization in prompt tuning. CoA-loss improves specialization
by addressing confusing cases, while CoA-weights adjust
the confidence of predictions to enhance generalization with-
out sacrificing specialization. We believe our method sets a
new direction for effective prompt tuning.
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A. Proof of Theorem 3.2
Consider K + 1 individual prompts T = {t0, t1, . . . , tK} and a mixture model p̂πT with non-negative weights π =

{π0, π1, . . . , πK}, where
∑K

i=0 πi = 1. Let DT be an arbitrary target domain. The expected error ϵT (p̂πT ) of the mixture
model on the target domain is defined as follows in terms of the Kullback-Leibler (KL) divergence:

ϵT (p̂
π
T ) = E(x,y)∼DT

[− log p̂πT (y)] ,

where y is the ground-truth label for the image x.

Using the definition of the mixture model, p̂πT (y) =
exp(

∑K
i=0 πisti

(y)/τ)∑
l′∈Y exp(

∑K
i=0 πisti

(l′)/τ)
, the expected error can be decomposed into

two terms as follows:

ϵT (p̂
π
T ) = E(x,y)∼DT

[− log p̂πT (y)]

= E(x,y)∼DT

− log
exp

(∑K
i=0 πisti(y)/τ

)
∑

l′∈Y exp
(∑K

i=0 πisti(l
′)/τ

)


= E(x,y)∼DT

[
−

K∑
i=0

πisti(y)/τ + log
∑
l′∈Y

exp

(
K∑
i=0

πisti(l
′)/τ

)]

= E(x,y)∼DT

[
−

K∑
i=0

πisti(y)/τ +

K∑
i=0

πilog
∑
l′∈Y

exp (sti(l
′)/τ)

]

+ E(x,y)∼DT

[
−

K∑
i=0

πilog
∑
l′∈Y

exp (sti(l
′)/τ) + log

∑
l′∈Y

exp

(
K∑
i=0

πisti(l
′)/τ

)]
.

The first term is rewritten using the definition of the individual predictive distribution p̂ti for the prompt ti, given as

p̂ti(y) =
exp(sti

(y)/τ)∑
l′∈Y exp(sti

(l′)/τ)
, as follows:

E(x,y)∼DT

[
−

K∑
i=0

πisti(y)/τ +

K∑
i=0

πilog
∑
l′∈Y

exp (sti(l
′)/τ)

]

= E(x,y)∼DT

[
−

K∑
i=0

πi

(
sti(y)/τ − log

∑
l′∈Y

exp (sti(l
′)/τ)

)]

= E(x,y)∼DT

[
−

K∑
i=0

πi

(
log exp (sti(y)/τ)− log

∑
l′∈Y

exp (sti(l
′)/τ)

)]

=

K∑
i=0

πiE(x,y)∼DT

[
− log

exp (sti(y)/τ)∑
l′∈Y exp (sti(l

′)/τ)

]

=

K∑
i=0

πiϵT (p̂ti).

As a result, the first term is equivalent to a convex combination of the expected errors of the individual predictive distributions
with weights π.

For the second term, Jensen’s inequality (Jensen, 1906) can be applied to bound it, as log
∑

exp is a convex function:
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E(x,y)∼DT

[
−

K∑
i=0

πilog
∑
l′∈Y

exp (sti(l
′)/τ) + log

∑
l′∈Y

exp

(
K∑
i=0

πisti(l
′)/τ

)]

≤ E(x,y)∼DT

[
−

K∑
i=0

πilog
∑
l′∈Y

exp (sti(l
′)/τ) +

K∑
i=0

πi

(
log
∑
l′∈Y

exp (sti(l
′)τ)

)]
≤ 0.

By combining the results from the first and second terms, we conclude that the expected error of the mixture model on the
target domain is bounded as follows:

ϵT (p̂
π
T ) ≤

∑
i

πiϵT (p̂ti).

B. Statistical Validation of Assumption 3.4
To empirically verify Assumption 3.4, we conducted a statistical experiment using the CIFAR-100 (Krizhevsky et al., 2009)
dataset and the CLIP model. Specifically, we randomly partitioned the 100 classes into 50 in-classes and 50 out-classes. We
then trained specialized prompts ti on the in-class subset using prompt tuning and compared their predictions against the
zero-shot CLIP baseline on both domains. This process was repeated over 10 random splits.

Figure 6 presents a box plot summarizing the performance differences between the specialized prompt ti on the in-class
domain DTi

and the generalized zero-shot prompt t0. The results show that ti consistently outperforms t0 on in-class
samples from DTi , whereas t0 achieves higher accuracy on out-class samples from DTj ̸=i

.

To assess statistical significance, we performed one-sided paired t-tests on the per-split accuracy gaps. The resulting
p-values were 9.25× 10−12 for the in-class domain comparison (accti > acct0 ) and 2.06× 10−10 for the out-class domain
comparison (acct0 > accti ), both significantly below the standard threshold of 0.05. These results allow us to reject the null
hypothesis and confirm that both inequalities in Assumption 3.4 hold with strong statistical confidence.

These findings support the assumption that specialized predictions are more effective within their domain, whereas
generalized predictions are preferable for unseen class domains.

Figure 6: Box plots of accuracy differences across 10 random splits. The left shows performance gains of specialized over
generalized predictions on in-class domain DTi

, i.e. accti − acct0 . The right shows gains of the generalized prediction on
out-class domain DTj ̸=i

, i.e. acct0 − accti .
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C. Effect of Cross-Entropy in the Mixture Model
The derivative of the cross-entropy LCE for the mixture model p̂πT with respect to πin

i is as follows:

∂LCE(x, y; p̂
π
T )

∂πi
=

∂ (− log p̂πT (y))

∂πi

=
−1

p̂πT (y)

∂p̂πT (y)

∂πi

=
−1

p̂πT (y)

∂

∂πi

(
exp

(∑K
i=0 πisti(y)/τ

)
∑

l′∈Y exp
(∑K

i=0 πisti(l
′)/τ

))

=
−1

p̂πT (y)

(
sti(y)p̂

π
T (y)− p̂πT (y)

∑
l∈Y

p̂πT (l)sti(l)

)
/τ

= −

(
sti(y)−

∑
l∈Y

p̂πT (l)sti(l)

)
/τ

= − (sti(y)− s̊ti) /τ,

where s̊ti is the importance-weighted similarity defined as a weighted sum of the predicted probability of the mixture model
and the similarity derived from the prompt ti, i.e. s̊ti =

∑
l∈Y p̂πT (l)sti(l). For example, if the mixture model predicts class

l∗ with the highest probability, s̊ti approximates the similarity sti(l
∗) for class l∗ derived from prompt ti. Here, we explain

how the CoA-weights πi for in-classes is optimized through the cross-entropy of the mixture model. For simplicity, we
assume s̊ti ≈ sti(l

∗), where l∗ = argmaxl p̂
π
T (l).

In the case sti(y) > s̊ti , the prompt ti predicts the correct class y with high similarity. Therefore, when the mixture model
misclassifies, i.e., l∗ ̸= y, the other prompts tj ̸=i provide low similarities for the correct class y. This case results in an
increase in πi through gradient updates, encouraging the mixture model to rely more on ti.

Conversely, if sti(y) < s̊ti , the prompt ti predicts the correct class y with low similarity. When the mixture model correctly
classifies, i.e. l∗ = y, it suggests that the other prompts tj ̸=i provide high similarities for the correct class y, while the
prompt ti underperforms. This case decreases πi, allowing the mixture model to trust the other prompts tj ̸=i more.
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D. Implementation Details
D.1. Details of CoA-Weights Optimization

There exist multiple strategies for optimizing the CoA-weights π. To evaluate the effectiveness of different optimization
strategies for CoA-weights, we compared two implementation approaches: one-stage optimization and two-stage opti-
mization. Specifically, for one-stage optimization, we design the optimization process such that the temperature scale is
weighted by πi, i.e., τi = π−1

i τ . We fix τ0 to the temperature of the pre-trained CLIP model, i.e. τ0 = 0.01, and optimize τ1
jointly with prompt parameters. This enables the computation of π satisfying

∑K
i=0 πi = 1, ensuring compatibility with the

standard temperature scaling framework of CLIP. The optimization of a single scalar τ1 suffices to determine both π and
the global temperature τ , via the relation τi = π−1

i τ . However, the temperature scale τ is not fixed during optimization,
which may introduce instability when K ≥ 2. In contrast, the two-stage strategy decouples prompt tuning and CoA-weights
optimization. Here, π is parameterized using a softmax of parameters α0, · · · , αK . Concretely, we fix the pre-softmax logit
α0 = 0 and optimize αi under a fixed temperature τ = 0.01. The comparison of these strategies for the K = 1 case is
reported in Table 5. The two strategies yield comparable performance, suggesting that the proposed loss function is robust to
the specific choice of optimization parameterization for CoA-weights. In this paper, we used the one-stage strategy for most
benchmarks and adopted the two-stage approach specifically for FSCIL tasks due to its stability advantages.

Table 5: Comparison of various optimization strategies with respect to π1 and τ for Base and New domains. In one-stage
optimization, τ0 is set to the temperature scale from pre-trained CLIP, i.e. 0.01. π = {π0, π1} and τ are determined by
optimizing τ1. In two-stage optimization, α0 is set to 0, and π and τ are determined by optimizing α1.

π1 τ Base New H

One-Stage Optimization τ0
τ1+τ0

τ1·τ0
τ1+τ0

79.3 75.1 77.0
Two-Stage Optimization exp(α1)

exp(α0)+exp(α1)
0.01 79.4 75.0 77.0

Table 6: 11 datasets used for base-to-new generalization and cross-dataset transfer

Dataset CLASSES TASK DESCRIPTION EXAMPLE CLASSES

IMAGENET 1, 000 Object recognition Large-scale dataset for object classifica-
tion with diverse categories

tench, goldfish, great white
shark, a tiger shark, etc.

CALTECH101 100 Object recognition Variety of object categories with random
background images.

Accordion, Airplane, Brain, But-
terfly, Crab, Motorbike, etc.

OXFORDPETS 37
Fine-grained object
recognition

Classification of pet breeds including
cats and dogs.

Bengal, Persian, Beagle, Ameri-
can Bulldog, etc.

STANFORDCARS 196
Fine-grained object
recognition

Images of various vehicle types, anno-
tated by model.

2000 AM General Hummer
SUV, 2007 BMW X5 SUV, etc.

FLOWERS102 102
Fine-grained object
recognition Classification of various flower species. Daffodil, Pink Primrose, Tiger

Lily, Yellow Iris, etc.

FOOD101 101 Object recognition User-uploaded real-world food photos
with varied backgrounds and noise.

Apple Pie, Waffles, Sushi,
Chocolate Cake, Bibimbap, etc.

FGVCAIRCRAFT 100
Fine-grained object
recognition

Aircraft images annotated hierarchically
by variant, family, and manufacturer.

Boeing 717, DH-82, Falcon
2000, etc.

SUN397 397 Scene recognition Covers diverse scenes including indoor,
urban, and natural environments.

Abbey, Airport Terminal, Bed-
room, Harbor, Bar, etc.

DTD 47
Texture attribute
recognition

Real-world texture images annotated
with descriptive attributes.

Striped, Dotted, Cracked, Fi-
brous, Scaly, Zigzagged, etc.

EUROSAT 10
Land use and land
cover classification

Satellite images from Sentinel-2 focus-
ing on land use and cover types.

Annual Crop Land, Forest,
Highway or Road, River, etc.

UCF101 101 Action recognition
Video clips of human actions collected
from YouTube in dynamic, real-world
environments.

Apply Eye Makeup, Basketball
Dunk, Playing Piano, etc.
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D.2. Details of Dataset

Table 6 lists datasets for base-to-new generalization and cross-dataset transfer. Evaluation across 11 datasets highlights
generalizability and efficiency beyond specific tasks or domains.

D.3. Base-to-New Generalization

Experiments were performed utilizing CLIP with a ViT-B/16 (Dosovitskiy, 2020) backbone. Training was conducted over
50 epochs with a batch size of 32. The prompt t was optimized using the Adam optimizer with a learning rate of 0.002 and
a weight decay of 5× 10−4. CoA-weights were optimized using SGD with the same learning rate, a momentum of 0.9, and
a weight decay of 5× 10−4. The weight for LCoA was set to w = 5.0, the weight for LEnt was set to 10.0, and the margin
was set to d = 0.2. The prompt length M was set to 16.

D.4. Few-Shot Class-Incremental Learning

Following Ran et al. (2024), experiments were conducted using CLIP with a ViT-L/14 (Dosovitskiy, 2020) backbone.
CoCoA-Mix used prompts of length M = 2 per session and accumulated them across sessions, requiring fewer parameters
than the baseline except in the final two sessions. Each prompt was trained for specialization within its session, and the final
prediction used all prompts from previous sessions. Tuned prompt ti for each session, along with CoA-weights πin

i and
πout
i , were stored and reused. To ensure scaling stability across sessions, we used the two-stage optimization strategy for

CoA-weights. Considering the number of iterations per session, CoA-weights were optimized for 2 epochs in the initial
session, and for 100 epochs in all subsequent sessions. The margin d of the loss LEnt was set to 0.1. In the initial session, the
out-class set was generated using random words, and in subsequent sessions, it consisted of classes from previous sessions.
All other settings followed those of base-to-new generalization.

D.5. Cross-Dataset Transfer

Experiments used CLIP with a ViT-B/16 backbone. The weight for LCoA was set to w = 7.0, while the loss weight for πin

was set to 2.0. Other settings followed those of base-to-new generalization.
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Table 7: Performance comparison on 11 datasets in cross-dataset transfer.

Method SOURCE TARGET TARGET
IMAGENET AVERAGE CALTECH101 OXFORDPETS STANFORDCARS FLOWERS102

CLIP 66.73 64.89 93.27 89.18 65.56 68.05
COOP 69.06 59.88 (−5.01) 91.06 (−2.21) 86.74 (−2.44) 59.84 (−5.72) 62.38 (−5.67)

PROGRAD 70.21 62.36 (−2.53) 92.41 (−0.86) 87.90 (−1.28) 62.94 (−2.62) 66.98 (−1.07)
KGCOOP 70.52 64.45 (−0.43) 93.55 (+0.28) 89.86 (+0.68) 65.61 (+0.05) 68.33 (+0.28)
MAPLE 69.53 65.24 (+0.35) 93.43 (+0.16) 89.77 (+0.59) 65.70 (+0.14) 71.17 (+3.12)
DEPT 68.03 65.06 (+0.17) 94.07 (+0.80) 89.43 (+0.25) 65.87 (+0.31) 69.93 (+1.88)

COCOA-MIX 70.85 65.27 (+0.38) 93.46 (+0.19) 89.07 (−0.11) 65.59 (+0.03) 68.72 (+0.67)

Method Target
FOOD101 FGVCAIRCRAFT SUN397 DTD EUROSAT UCF101

CLIP 85.43 24.81 62.61 44.09 48.36 67.51
COOP 83.29 (−2.14) 16.71 (−8.10) 59.40 (−3.21) 38.44 (−5.65) 39.24 (−9.12) 61.66 (−5.85)

PROGRAD 84.37 (−1.06) 17.10 (−7.71) 62.67 (+0.06) 39.87 (−4.22) 45.39 (−2.97) 63.98 (−3.53)
KGCOOP 85.83 (+0.40) 21.18 (−3.63) 64.84 (+2.23) 44.30 (+0.21) 44.64 (−3.72) 66.39 (−1.12)
MAPLE 86.13 (+0.70) 23.27 (−1.54) 66.43 (+3.82) 44.83 (+0.74) 43.73 (−4.63) 67.93 (+0.42)
DEPT 86.27 (+0.84) 22.10 (−2.71) 65.77 (+3.16) 45.53 (+1.44) 44.00 (−4.36) 67.60 (+0.09)

COCOA-MIX 85.78 (+0.35) 24.10 (−0.71) 63.61 (+1.00) 46.41 (+2.32) 48.18 (−0.18) 67.78 (+0.27)

E. Additional Experimental Results
E.1. Cross-Dataset Transfer

Table 7 presents the accuracy of the method trained on a single source dataset and evaluated on both source and target
datasets. Parenthesized values represent the performance difference relative to zero-shot CLIP. CoCoA-Mix achieves the
highest accuracy on the source dataset, highlighting the effectiveness of CoA-loss in specialization. It also achieved the
highest average accuracy across 10 target datasets, validating the effect of CoA-weights. For FGVCAircraft, DTD, and
EuroSAT, where zero-shot CLIP shows significant performance gaps between source and target datasets, CoCoA-Mix
exhibits the most stable and effective transferability, maintaining high performance with minimal accuracy degradation
compared with previous methods. This suggests that CoCoA-Mix is particularly effective under significant domain shifts.
The relatively lower generalization improvement over base-to-new generalization is discussed in Appendix H.

17



CoCoA-Mix: Confusion-and-Confidence-Aware Mixture Model for Context Optimization

E.2. Performance Improvement on Confusing Samples of CoA-loss

We define confusing samples as those misclassified by zero-shot CLIP with a probability gap of 0.5 or less between the
correct and incorrect classes. Figure 7 presents the performance of confusing samples from the test data across 11 datasets for
the Base classes. While slight performance drops are observed on datasets such as Food101, SUN397, and DTD, CoA-loss
consistently enhances specialization across most datasets, with notable improvements on OxfordPets, Flowers102, and
UCF101. This demonstrates the effectiveness of CoA-loss in handling confusing cases while enhancing the performance
across diverse datasets.

Figure 7: Performance improvement on confusing samples, defined as instances with a probability gap ≤ 0.5 between
correct and incorrect labels or misclassified by zero-shot CLIP.
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E.3. Base Performance Comparison According to Loss Function

We compared CoA-loss with four loss functions: focal loss (FL) (Ross & Dollár, 2017), generalized cross-entropy loss
(GCE) (Zhang & Sabuncu, 2018), cross-entropy (CE), and mean absolute error (MAE). The results are presented in Figure 8.

FL modifies CE by weighting with (1− p̂)γ as follows:

LFL(x, y; p̂) = − (1− p̂(y))
γ
log p̂(y), (16)

where γ ≥ 0 is a focusing parameter. FL prioritizes misclassified samples but limits learning from well-classified ones,
leading to lower performance in prompt tuning.

GCE generalizes CE and MAE as follows:

LGCE(x, y; p̂) =
1− p̂(y)q

q
, (17)

where q ∈ (0, 1] transitions from CE (q → 0) to MAE (q = 1). While designed to mitigate the overfitting of CE and slow
convergence of MAE, GCE underperforms CE in prompt tuning.

CE, widely used in prompt tuning, is defined as follows:

LCE(x, y; p̂) = − log p̂(y). (18)

Its gradients with respect to the similarity s(y) and s(c ̸= y) are as follows, respectively:

∂LCE

∂s(y)
= −1

τ
(1− p̂(y)) and

∂LCE

∂s(c ̸= y)
=

1

τ
p̂(c), (19)

where τ is the temperature. CE updates gradients based only on individual class probabilities, ignoring inter-class relation-
ships.

Adding MAE to CE, the loss is defined as follows:

LCE+MAE(x, y; p̂) = − log p̂(y) + w
1

|Y|
∑
l∈Y

|1l=y − p̂(l)| , (20)

where w controls the contribution of MAE. While CE emphasizes difficult samples, MAE ensures uniform learning over all
samples, improving robustness to noise. With optimized w, CE+MAE slightly improves performance, but excessive MAE
weighting reduces focus on difficult samples, degrading performance.

CoA-loss, similar to MAE, applies only to the correct class y and is combined with CE as follows:

LCE+CoA(x, y; p̂) = − log p̂(y) + w (1− p̂(y)) , (21)

where w controls the contribution of CoA-loss. Unlike CE, CoA-loss considers both p̂(c ̸= y) and p̂(y) when updating
p̂(c ̸= y), focusing on confusing cases where p̂(y) and p̂(c ̸= y) approach 0.5. By focusing learning near decision boundaries,
CE+CoA achieves the highest specialization performance.

Figure 8: Performance comparison across various loss functions with varying hyperparameters. The hyperparameter setting
for each loss is shown above each data.
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Table 8: Effect of CoA-weight on Base and New
classes.

πin
i πout

i BASE NEW H

✗ ✗ 79.12 73.66 76.15
✓ ✗ 79.30 73.81 76.32
✓ ✓ 79.31 75.10 77.03

(a) (b)

Figure 9: Sensitivity analysis of hyperparameters. The dotted line
indicates baseline performance. (a) Effect of CoA-loss weight w on
Base accuracy. (b) Effect of margin d on New accuracy.

F. Ablation Studies
F.1. Effectiveness of Confidence-Aware Weights

To evaluate the effectiveness of CoA-weight, we conducted an ablation study on optimizing weights for Base classes (πin
i )

and New classes (πout
i ) separately and jointly. Table 8 shows that optimizing πin

i for Base classes improves performance over
the baseline. This indicates that confidence adjustment in the in-class domain provides additional benefits for specialization.
When both πin

i and πout
i are optimized, the performance improves further, achieving the best harmonic mean between the

Base and New classes. These results demonstrate that adapting weights for both in-classes and out-classes is crucial for
achieving generalization without compromising specialization.

F.2. Sensitivity of Hyperparameters

We analyzed the sensitivity of our method to hyperparameters by evaluating performance under different configurations.
Specifically, we investigated the effect of varying weights w for CoA-loss on Base classes and the margin d for CoA-weights
on New classes.

Figure 9(a) shows the Base performance for different w values, with the red dashed line representing the standard cross-
entropy baseline. Introducing CoA-loss improves specialization, and tuning w effectively balances the focus on confusing
cases, achieving superior performance. Figure 9(b) shows the New performance with varying margins d. The red dashed line
represents the baseline without πout. Across all hyperparameter settings, our method outperforms the baseline, indicating
that performance is relatively insensitive to the choice of margin d.

F.3. Generation of Unseen Classes

We conducted an ablation study to evaluate the effectiveness of different strategies for generating unseen classes. The study
compares three methods: (1) no generation (None), (2) generating random strings (Random String), (3) generating a
total of N classes, with half as random strings and half sampled from the random word API (Rebguns, 2021) (Random
String and Word), and (4) sampling N words from the random word API (Rebguns, 2021) (Random Word). As
represented in Table 9, sampling random words yields the best performance, outperforming other methods. This suggests that
generating out-classes using semantically meaningful words, rather than arbitrary strings, further enhances generalization.
This occurs because semantically meaningful words better align with learned embeddings, providing clearer semantic cues
for distinguishing unseen classes, whereas arbitrary strings introduce noise into the embedding space.

Table 9: Ablation study comparing different strategies for generating unseen classes. The table reports accuracy on New
classes.

NONE RANDOM STRING RANDOM STRING AND WORD RANDOM WORD

ACCURACY 74.12 75.00 75.04 75.10
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G. Qualitative Visualizations
To better understand model behavior, we provide ScoreCAM (Wang et al., 2020) using the PyTorch library by Gildenblat et
al. (2021), comparing CoCoA-Mix with zero-shot CLIP and CoOp. The visualization results are shown in Figure 10. In the
Flowers102 dataset (New), CoCoA-Mix more accurately attends to semantically meaningful regions in out-class samples,
suggesting that CoA-weights effectively enhance generalization. In the FGVC Aircraft dataset (Base), CoA-loss focuses
more precisely on fine-grained details such as text on airplane wings, outperforming zero-shot CLIP in specialization. These
qualitative results demonstrate that CoA-loss and CoA-weights contribute to generalization and specialization, respectively.

Image Zero-Shot CLIP CoOp
CoA-Loss
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Figure 10: ScoreCAM results on Flowers102 and FGVCAircraft. Red indicates higher activation. The leftmost column
shows the image and ground-truth label. Other columns show the ScoreCAM results and predicted labels for each method.
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H. Limitation and Future Work
This study focused on textual prompt tuning. To demonstrate that improved performances in the source domain lead to better
performance in the target domain, we adopted the following relation from Nguyen et al. (2022):

ϵT (p̂) ≤ ϵS(p̂) +
C√
2

√
KL(pT (z)|pS(z)) + δ, (22)

where z is defined as a visual embedding; C is a constant that bounds log p̂(l), ensuring each class probability is at least
exp(−C); pT and pS are the marginal distribution of z for the target and source domains, respectively;

This assumes that visual embeddings z remain consistent across domains, implying similar embeddings for images of the
same semantic but differing styles. However, pre-trained CLIP can generate distinct visual embeddings for images with
varying styles. As a result, while the proposed method ensures that prompts specialized for the source domain perform
well in the target domain from a class perspective, it does not guarantee performance across target domains with different
styles. This limitation is reflected in the results, where cross-dataset transfer shows weaker generalization compared with
base-to-new generalization. Future work could address this by optimizing visual prompts to align embeddings of images
with different styles but the same semantics. Such methods could enhance specialization and generalization across both
classes and styles, enabling more robust performance across diverse domains.
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