
Published as a conference paper at ICLR 2024

SHARPNESS-AWARE DATA POISONING ATTACK

Pengfei He1, Han Xu1, Jie Ren1, Yingqian Cui1, Shenglai Zeng1, Hui Liu1,
Charu C. Aggarwal2, Jiliang Tang1
1Department of Computer Science and Engineering, Michigan State University
2IBM T. J. Watson Research Center, New York
1{hepengf1,xuhan1,renjie3,cuiyingq,zengshe1,liuhui7,tangjili}@msu.edu
2charu@us.ibm.com

ABSTRACT

Recent research has highlighted the vulnerability of Deep Neural Networks
(DNNs) against data poisoning attacks. These attacks aim to inject poisoning
samples into the models’ training dataset such that the trained models have in-
ference failures. While previous studies have executed different types of attacks,
one major challenge that greatly limits their effectiveness is the uncertainty of the
re-training process after the injection of poisoning samples. It includes the uncer-
tainty of training initialization, algorithm and model architecture. To address this
challenge, we propose a new strategy called “Sharpness-Aware Data Poisoning
Attack (SAPA)”. In particular, it leverages the concept of DNNs’ loss landscape
sharpness to optimize the poisoning effect on the (approximately) worst re-trained
model. Extensive experiments demonstrate that SAPA offers a general and princi-
pled strategy that significantly enhances numerous poisoning attacks against vari-
ous types of re-training uncertainty.

1 INTRODUCTION

The rise of machine learning (ML) models that collect training data from public sources, such as
large language models (Brown et al., 2020; Radford et al.) and large visual models (Ramesh et al.,
2021; Radford et al., 2021), highlights the need of robustness against data poisoning attacks (Stein-
hardt et al., 2017; Shafahi et al., 2018; Chen et al., 2017). Data poisoning attack refers to the threats
of an adversary injecting poisoning data samples into the collected training dataset, such that the
trained ML models can have malicious behaviors. For example, by injecting poisoning samples, the
adversary’s objective is to cause a poisoned model has a poor overall accuracy (known as un-targeted
attacks (Steinhardt et al., 2017; Li et al., 2020b; Ren et al., 2022)), or misclassifies a specified subset
of test samples (known as targeted attacks (Shafahi et al., 2018; Zhu et al., 2019)). Additionally, in
backdoor attacks (Chen et al., 2017; Saha et al., 2020; Tran et al., 2018), the adversary aims to cre-
ate “backdoors” in the poisoned model such that the model gives a specific output as the adversary
desires if the backdoor trigger is presented, regardless of the actual input.

Many poisoning attacks in Deep Neural Networks (DNNs) face a common obstacle that limits their
effectiveness, which is the uncertainty of the re-training process after the injection of poisoning
samples. This challenge is also highlighted in previous studies such as (Schwarzschild et al., 2021;
Zhu et al., 2019; Huang et al., 2020; Geiping et al., 2020). In particular, most existing methods
(as reviewed in Section 2 and Appendix B) generate poisoning samples based on the effect of only
one victim model (Shafahi et al., 2018; Souri et al., 2022). However, on the poisoned dataset, the
re-trained model may converge to a very different point due to the re-training uncertainty, such as
training algorithm, model initialization and model architectures. As a consequence, the injected poi-
soning samples could lose their efficacy and the poisoning effect is compromised. To overcome this
difficulty, recent methods (Geiping et al., 2020; Huang et al., 2020) have introduced the Ensemble
and Re-initialization (E&R) Strategy: which proposes to optimize the average poisoning effect of
multiple models with various model-architectures and initializations. However, this method tends to
be computationally inefficient (Huang et al., 2020). In general, if we consider the poisoning attacks
as general bilevel optimization problems (Bard, 2013; Colson et al., 2007) (Eq. 2 in Section 3),
poisoning problems in DNNs can be categorized as “multiple inner minima” bilevel optimization
problems (Sow et al., 2022; Liu et al., 2020; Li et al., 2020a). Prior works (Sow et al., 2022; Li

1

Published as a conference paper at ICLR 2024

et al., 2020a; Liu et al., 2020; 2021) have demonstrated the theoretical difficulty and complexity of
solving “multiple inner minima” problems.

In this work, we introduce a new attack strategy, Sharpness-Aware Data Poisoning Attack (SAPA).
In this method, we aim to inject poisoning samples, which optimizes the poisoning effect of the
approximately “worst” re-trained model. In other words, even the worst re-trained model (which
achieves the relatively worst poisoning effect) can have a strong poisoning effect. Furthermore, we
find that this strategy can be successfully accomplished by tackling the victim model’s loss landscape
sharpness (Foret et al., 2020). Notably, the loss landscape sharpness is more frequently used to ex-
plain the generalization characteristic of DNNs. In our work, we show the possibility to leverage the
algorithms of sharpness (such as (Foret et al., 2020)) to advance poisoning attacks. Through exper-
imental studies, we show that our proposed method SAPA is a general and principle strategy and
it can improve the performance of various poisoning attacks, including targeted attacks, un-targeted
attacks and backdoor attacks (Section 5.1, 5.2& 5.3). Moreover, we show SAPA can also effectively
improve the poisoning effect under various re-training uncertainties, including for re-training algo-
rithm as well as model architectures (Section 5.4). Compared to the E&R strategy (Huang et al.,
2020), we show SAPA is more computational efficient (Section 5.5).

2 RELATED WORK

2.1 END-TO-END DATA POISONING ATTACKS

Data poisoning attacks (Biggio et al., 2012; Steinhardt et al., 2017) refer to the adversarial threat
during the data collection phase of training ML models. These attacks manipulate the training
data so that the trained models have malicious behaviors. Common objectives of poisoning attacks
include the purposes of causing a poisoned model to have a poor overall accuracy (un-targeted at-
tacks (Steinhardt et al., 2017; Li et al., 2020b; Ren et al., 2022)), misclassifying a specified subset of
test samples (targeted attacks (Shafahi et al., 2018; Zhu et al., 2019)), or insert backdoors (backdoor
attacks (Chen et al., 2017; Saha et al., 2020; Tran et al., 2018)). Notably, in this work, we focus
on the poisoning attacks in an “end-to-end” manner, which means that the victim model is trained
on the poisoned dataset from scratch. It is a practical setting for poisoning attacks as the attackers
cannot take control of the re-training process.

In general, the feasibility of poisoning attacks highly depends on the complexity of the victim model.
For linear models, such as logistic regression and SVM, there are methods (Biggio et al., 2012;
Steinhardt et al., 2017; Koh et al., 2022) that can find solutions close to optimal ones. For DNNs,
the exact solution is generally considered intractable, due to the complexity and uncertainty of the
re-training process. In detail, in the end-to-end scenario, the victim model can be trained with a
great variety of choices, including various choices of model architectures, initialization, and training
algorithms, which are hard to thoroughly consider while generating the poisoning samples. Faced
with this difficulty, many works (Shaban et al., 2019) focus on the transfer learning setting (Shafahi
et al., 2018; Zhu et al., 2019), where they loosen the “end-to-end” assumption. They assume the
attacker has knowledge of a pre-trained model, and the victim model is fine-tuned on this pre-
trained model. However, these attacks are usually ineffective in the end-to-end setting. Recent works
such as Gradient Matching (Geiping et al., 2020) make a great progress under end-to-end setting.
However, these attacks still face obvious degradation when there are re-training variations such as
model architectures. To further improve the attacks, Huang et al. (2020) devise the “ensemble and
re-initialization” strategy to take several victim models into consideration. However, it is time and
memory-consuming, and cannot sufficiently cover the re-training possibilities. In Appendix B, we
provide a more comprehensive review of existing poisoning attacks. In Appendix B.2, we introduce
some poisoning attacks which consider the scenario different from end-to-end scenario.

2.2 LOSS LANDSCAPE SHARPNESS

In this paper, our proposed method involves calculating and optimizing the loss landscape sharpness
of DNNs. The notion of the loss landscape sharpness and its connection to generalization has been
extensively studied, both empirically (Keskar et al., 2016; Dinh et al., 2017) and theoretically (Dz-
iugaite & Roy, 2017; Neyshabur et al., 2017). These studies have motivated the development of
methods (Izmailov et al., 2018; Chaudhari et al., 2019) that aim to improve model generalization
by manipulating or penalizing sharpness. Among these methods, Sharpness-Aware Minimization
(SAM) (Foret et al., 2020) has shown to be highly effective and scalable for DNNs. In this paper,
we explore the use of sharpness for data poisoning attacks.

2

Published as a conference paper at ICLR 2024

3 PRELIMINARY

In this section, we introduce the definitions of the (loss landscape) sharpness, as well as the for-
mulations of several most frequently studied data poisoning attacks. We start by providing some
necessary notations. In this paper, we focus on classification tasks, with input x ∈ X and label
y ∈ Y following the distribution D which is supported on X × Y . Under this dataset, a classifica-
tion model f(·; θ) : X → Y is trained on the training set Dtr = {(xi, yi), i = 1, ..., n}, whose n
data samples follow D. The model parameter θ is from the parameter space Θ. We define the loss
function as l(f(x; θ), y), and the (training) loss as L(θ;Dtr) =

1
n

∑n
i=1 l(f(xi; θ), yi).

3.1 LOSS LANDSCAPE SHARPNESS

We follow the precedent work (Foret et al., 2020) to define the loss landscape sharpness (refer to as
“sharpness” for simplicity) as in Eq. 1. It measures how quickly the model’s training loss can be
increased by moving its parameter to a nearby region. Following Eq. 1, it calculates the training loss
increase after the model parameter θ is perturbed by v, whose lp norm is constrained by ||v||p ≤ ρ:

Sρ(θ;Dtr) = max
||v||p≤ρ

[
L(θ + v;Dtr)

]
− L(θ;Dtr). (1)

In this work, we focus on the definition of sharpness as in Eq.1. Note that there are other sharpness
definitions (Andriushchenko & Flammarion, 2022), we will investigate them as one future work.
Given this definition of sharpness, previous works (Foret et al., 2020; Wen et al., 2023) build the
theoretical and empirical connections between sharpness and model generalization. Generally, a
smaller sharpness indicates a better generalization performance.

3.2 DATA POISONING ATTACKS

In this subsection, we give the definition of poisoning attacks we studied. Given a training set Dtr

with n samples, we assume that the attacker selects a subset Dq from Dtr which takes an ϵ ∈ [0, 1]
percentage of Dtr, and replaces it with a poisoning set Dp. Usually, the samples in Dp are from
modifying samples in Dq . During the re-training stage, the model is trained from scratch on the
perturbed training set (Dtr −Dq) ∪Dp and we denote it as “Dtr +Dp” for simplicity. Although
different attacks may have different purposes and formulations, we give a general formulation as
in Eq.2: the attacker aims to find the poisoning samples Dp, such that the trained model has an
optimized malicious behavior towards data samples from a victim set DT :

min
Dp

Q(θ∗, DT), s.t. θ∗ = argmin
θ

L(θ;Dtr +Dp) (2)

where C denotes the constraint of the poisoning samples. Notably, the design of “adversarial ob-
jective” Q(·) and “victim set” DT is based on the purpose of the adversary. By giving different
formulations of Q(·) and definitions of DT , the attacker can achieve various adversarial goals.
For example, in targeted attacks (Shafahi et al., 2018; Geiping et al., 2020), they aim to cause the
model to misclassify a certain test sample (or set of test samples). Thus, they define the victim set
DT = {(xvic

i , yvic)}ki=1 and the adversarial objective as:

Qt(θ
∗, DT) =

∑
(xi,yi)∈DT

l(f(xi; θ
∗), yobj), (3)

where yobj is a designated class different from yvic. In Appendix B.1, we provide a detailed intro-
duction to the threat models of two other types of poisoning attacks, such as backdoor attacks (Wu
et al., 2022) and un-targeted attacks (Huang et al., 2021).

4 METHOD

In this section, we introduce our proposed method Sharpness-aware Data Poisoning Attack (SAPA).
In Section 4.1, we will first introduce SAPA in general form. In Section 4.2, we introduce how to
achieve SAPA in targeted and backdoor attacks. In Section 4.3, we introduce SAPA in untargeted
attacks. From our discussion, we show the idea of leveraging sharpness is general and lightweight
to be incorporated into various types of poisoning attacks.

4.1 THE OBJECTIVE OF SAPA

As discussed in Section 1 & 2, one major challenge for poisoning attacks originates from the exis-
tence of multiple solutions during re-training. Therefore, we first define the Poisoned Model Space,

3

Published as a conference paper at ICLR 2024

denotes as Θp, which is the set of all models that are trained on a poisoned dataset Dtr + Dp and
have a small training loss:

Θp = {θ : L(θ;Dtr +Dp) ≤ τ} (4)
In practice, the space Θp composes the models that are trained from different training algorithms,
initializations and architectures. In the space Θp, we desire to find the Worst-case Poisoned Model,
which is the model that has the worst poisoning effect θ′ = argmaxθ∈Θp

Q(θ;DT). Ideally, we
aim to optimize the poisoning effect of θ′ to overcome the re-training uncertainty:

min
Dp

Q(θ′;DT), (5)

where θ′ = argmax Q(θ;DT), s.t. L(θ;Dtr +Dp) ≤ τ. (6)

By solving this problem, we can find poisoning samples Dp such that the worst poisoned model θ′
can have an optimized poisoning effect (with a small Q(θ′;DT)). Therefore, for the models that are
re-trained on the poisoned dataset, the poisoning effect is likely to persist, and our experiments in
Section 5 provide empirical evidence. Admittedly, it is also hard to solve the above problem exactly.
As a solution, we propose to approximate the term Q(θ′;DT), by leveraging the existing notion of
model sharpness (Foret et al., 2020). In detail, given a fixed Dp, we approximate Q(θ′;DT) by:

Q(θ′;DT) ≈ max
∥v∥p≤ρ

Q(θ∗ + v;DT), where θ∗ = argmin
θ∈Θ

L(θ;Dtr +Dp) (7)

In details, we first trained the model θ∗ on (Dtr + Dp) (i.e., via ERM), so that θ∗ satisfies the
constraint L(θ∗;Dtr + Dp) ≤ τ . Then, we locally maximize the term Q(θ∗ + v) by perturbing
the model parameter θ∗ with a vector v (which has a limited norm ∥v∥p ≤ ρ). In this way, the
perturbed model θ∗ + v has a worse poisoning effect compared to θ∗, but it is still likely to fall into
the space Θp (because θ∗ + v is not far away from θ∗). Remarkably, the form of the objective Eq. 7
resembles the definition of model sharpness in Eq. 1, while we focus on adversarial loss which is
distinct from the sharpness on the standard loss landscape. Therefore, we call the term in Eq. 7 as
Sharpness-aware adversarial objective, and we desire to find Dp to optimize this objective:

min
Dp

max
∥v∥p≤ρ

Q(θ∗ + v;DT), s.t. θ∗ = argmin
θ∈Θ

L(θ;Dtr +Dp) (8)

In general, the formulation of SAPA can be seen as a modification of existing attacks: it replaces
the adversarial objective (Eq. 2) of existing attacks with Sharpness-aware adversarial objective. In-
tuitively, compared with the traditional adversarial objective (Eq. 2), in SAPA, the perturbation on
the inner minima θ∗ with v enables the algorithm to escape from the poisoned models where the
poisoning effect is unstable. Thus, SAPA has the potential to induce the re-trained models to have
a stable poisoning effect under the uncertainty of the re-training process. Notably, in our proposed
approximation in Eq.7, we locally search for a worst model with the same model architecture of
a trained model θ∗, which does not explicitly consider the uncertainty of different architectures.
However, empirical results in Section 5.4 demonstrate that this strategy can also help improve the
poisoning effect under if there is model architecture shift.

4.2 SAPA IN TARGETED /BACKDOOR ATTACKS

In this subsection, we take one representative algorithm (Geiping et al., 2020) in targeted attacks
as an example, to show SAPA can be incorporated into existing attacks without requiring additional
attacker’s knowledge or computational overhead. In the work Gradient Matching (Geiping et al.,
2020), they assume the attacker is targeting on a victim set DT , and the attacker has other informa-
tion including a pre-trained model θ∗, which is trained on (or part of) the clean training set Dtr and
a loss function L(·). In their attack, they solve the following problem to find the set Dp satisfying:

argmin
Dp

(
1− ⟨∇θQ(θ∗;DT),∇θL(θ

∗;Dtr +Dp)⟩
∥∇θQ(θ∗;DT)∥ · ∥∇θL(θ∗;Dtr +Dp)∥

)
. (9)

It finds a poisoning set Dp, such that the gradient of the training loss, ∇θL(θ
∗;Dtr + Dp),

has a maximized alignment with ∇θQ(θ∗;DT). In this way, during the re-training process, the
model is updated by ∇θL(θ

∗;Dtr +Dp) and likely to minimize Q(θ∗;DT) and achieve the attack
goal successfully. In our method SAPA, if we denote the sharpness-aware poisoning objective as
QS(θ∗;DT) = max∥v∥p≤ρ Q(θ∗ + v;DT) for simplicity, the objective of SAPA is to solve:

argmin
Dp

(
1− ⟨∇θQ

S(θ∗;DT),∇θL(θ
∗;Dtr +Dp)⟩

∥∇θQS(θ∗;DT)∥ · ∥∇θL(θ∗;Dtr +Dp)∥

)
, (10)

4

Published as a conference paper at ICLR 2024

which directly replaces the adversarial objective in Eq.9 to be sharpness aware adversarial objective
in Eq.10. In our algorithm to calculate the term ∇θQ

S(θ∗;DT), we follow the approach in the pre-
vious work (Foret et al., 2020) to first approximate QS(θ∗;DT) by leveraging a first-order method
for v̂:

v̂ = ρ · sign
(
∇θQ(θ∗;DT)

)
|∇θQ(θ∗;DT)|q−1

(
∥∇θQ(θ∗;DT)∥qq

)1/p
, (11)

where 1/p + 1/q = 1 and we consider p = 2 as illustrated in (Foret et al., 2020) if not specified.
Then, we can have the approximation to calculate ∇θQ

S(θ∗;DT) via replacing θ∗ with θ∗ + v̂:

∇θQ
S(θ∗;DT) ≈ ∇θQ(θ;DT)|θ=θ∗+v̂ (12)

In this way, by fixing ∇θQ
S(θ∗;DT), we can solve Eq.10 to find the poisoning samples Dp via gra-

dient descent. Notably, the computation in Eq.11&12 does not require additional attacker’s knowl-
edge compared to original Gradient Matching. In Appendix C.1, we provide the detailed algorithm
of SAPA in Gradient Matching. We also analyze its computational efficiency to show SAPA does not
introduce great computational overhead. Besides, the similar strategy of SAPA and algorithm can
also be applied in backdoor attacks, given the similarity between the objectives and viable solutions
of targeted attacks and backdoor attacks (see more discussions in Appendix C.2).

4.3 SAPA IN UN-TARGETED ATTACKS

For untargeted attacks, similar strategy to replace the (investigated) model with a worse model during
generating the poisoning samples also helps. Note that conducting un-targeted attacks for DNN
models with a small poisoning budget ϵ is usually considered to be a hard problem (Muñoz-González
et al., 2017). Existing feasible solutions (Fowl et al., 2021; Ren et al., 2022) are motivated from a
“data protection perspective” (which are often referred as “un-learnable examples”). In detail, they
perturb the whole (or at least a large portion of) training set, such that the trained classifiers cannot
effectively learn the true data distribution and have a low accuracy on the true data. Take the method
Error-Min (Huang et al., 2021) as an example, to induce the model to have a low accuracy, it
generates “shortcut” perturbations δi for each training sample to solve the following bilevel problem,
such that the model trained on this perturbed dataset has a minimized loss:

min
θ∈Θ

min
{δi}i=1,...,n

[∑
(xi,yi)∈Dtr

l
(
f(xi + δi; θ), yi

)]
, (13)

As a consequence, the found δi via solving Eq. 13 has patterns with a strong correlation to the labels
yi. The models trained on the perturbed dataset can predict (xi + δi) to be yi mostly based on
the information of δi, and prohibit the model to learn useful knowledge from the clean samples in
Dtr. In the original algorithm proposed by (Huang et al., 2021), the problem in Eq.13 is solved by
updating the model parameter θ and training set perturbation {δi}ni=1 alternatively. See Algorithm 1
(without SAPA), they first update the model parameter θ with M steps (step 1) and then update data
perturbation δi for T steps (step 3). For our method, similar to the high-level idea as in targeted
attacks, SAPA introduces one more step (step 2) to replace the model θ with θ+ v̂ during generating
the poisoning samples. Notably, a similar strategy can also be adapted to other un-targeted attacks,
i.e., Error-Max Fowl et al. (2021). We provide its detailed algorithm in Appendix C.
5 EXPERIMENT
In this section, we conduct experiments to show that SAPA can improve existing methods when it
is applied to targeted, backdoor and un-targeted attacks in Section 5.1, 5.2 and 5.3, respectively.
For all methods in experiments, we obtain the poisoning samples via ResNet18 models. We report
the results when the re-training is under ResNet18 and ResNet50, to have a thorough comparison
with previous works (many baseline methods are also evaluated in the same setting). In Section.5.4
we evaluate the robustness of SAPA under various re-training settings including different training
algorithms (including some defense strategies) and several more model architectures. In Section 5.5,
we compare SAPA with baselines incorporating ensemble and re-initialization technique to illustrate
the superiority of SAPA in both effectiveness and efficiency. Through this section, we focus on
image classification tasks on benchmark datasets CIFAR10 and CIFAR100. Meanwhile, we provide
additional empirical results of the dataset SVHN in Appendix D. For our method SAPA, we set the
radius ρ (Eq. 8 in Section 4) to be 0.05 in all experiments. We provide detailed implementation in
Appendix C for all SAPA-based algorithms1.

1Code is available in https://github.com/PengfeiHePower/SAPA

5

Published as a conference paper at ICLR 2024

Algorithm 1: Error-min+SAPA
Input : Clean training set {(xi, yi)}ni=1; Optimization step T and M ; epochs E.
Output: Sample-wise perturbation Dp = {δi}ni=1
Randomly initialize perturbation DP = {δi}ni=1
for epoch in 1, ..., E do

1. for m in 1, ...,M do
Update θ via minimizing

∑
(xi,yi)∈Dtr

l
(
f(xi + δi; θ), yi

)
end
2. SAPA: Fix θ, DP , find worst direction v̂ to maximize

∑
(xi,yi)∈Dtr

l(f(xi + δi; θ + v̂), yi)

3. for t = 1, ..., T steps do
Update δi via gradient descent on the fixed model f(·; θ + v̂)

end
end

5.1 PERFORMANCE OF SAPA IN TARGETED ATTACKS

Experiment Setup. In this experiment, we focus on targeted attack goal to cause the poi-
soned model to misclassify one victim sample. During attacks, under each dataset, we assume
that the attacker randomly chooses a small proportion of training dataset with “poisoning ratio”
ϵ = 1%, 0.2%, and inserts unnoticeable perturbations (whose l∞ norm is limited by “perturbation
budget” 16/255, 8/255, 4/255) on each of them. After crafting the poisoned dataset, the model is
randomly initialized and re-trained from scratch, via SGD for 160 epochs with an initial learning rate
of 0.1 and decay by 0.1 at epochs 80 and 120. For each setting, we repeat the experiment 50 times
and report the average performance. Multiple-target attacks are also considered in Appendix D.
More details of the implementation can be found in Appendix.C.1.
Baselines. We compare SAPA with representative baselines, including Bullseye(Aghakhani et al.,
2021), Poison-Frog(Shafahi et al., 2018), Meta-Poison (Huang et al., 2020), and Grad-Match (Geip-
ing et al., 2020). Notably, our method is incorporated to the method Grad-Match (Geiping et al.,
2020). For other baselines, MetaPoison leverages meta learning (Vilalta & Drissi, 2002) to unroll
the training pipeline and ensembles multiple models. Poison-frog and Bullseye, also known as “fea-
ture collision”, generate poisoning samples with representations similar to those of the victim. In
Appendix B, we provide detailed discussions of these baselines.
Performance comparison. In Table 1 we report the “Success Rate” which is the probability that the
targeted sample is successfully classified to be the designated wrong label yobj . From the results, we
can see that SAPA consistently outperforms baselines. The advantage of SAPA is obvious, especially
when the attacker’s capacity is limited (i.e., the perturbation budget is 8/255 or 4/255). Additional
results on ResNet50 can be found in Appendix D.

Table 1: Success Rate in Targeted Attacks(with standard error reported).

16/255 8/255 4/255
ϵ = 1% ϵ = 0.2% ϵ = 1% ϵ = 0.2% ϵ = 1% ϵ = 0.2%

CIFAR10

Bullseye 3.7±1.6 1.1±0.4 1±0.3 0±0 0±0 0±0
Poison-Frog 1.3±0.8 0±0 0±0 0±0 0±0 0±0
Meta-Poison 42.5±2.8 30.7±2.3 28.1±2.5 19.4±2.1 5.2±1.7 3.9±1.2
Grad-Match 72.9±3.4 2 63.4±3.8 35.4±3.1 26.8±3.4 10.3±2.6 6.4±2.8

SAPA+Grad-Match 80.1±3.5 70.8±2.7 48.4±2.8 31.5±3.1 16.7±2.4 11.2±1.5

CIFAR100

Bullseye 2.1±0.3 0±0 2.6±0.7 1.2±0.2 0.5±0.1 0.1±0.1
Poison-Frog 1.0±0.8 0±0 1.1±0.4 0±0 0.2±0.1 0±0
Meta-Poison 50.3±2.6 24.1±2.5 43.2±2.8 22.7±1.7 4.5±1.2 3.1±0.8
Grad-Match 90.2±3.1 53.6±2.5 62.1±3.5 33.4±4.4 11.3±2.5 7.4±1.9

SAPA+Grad-Match 91.6±1.5 74.9±2.2 86.8±3.9 52.6±3.6 31.6±2.4 12.1±1.2

5.2 PERFORMANCE OF SAPA IN BACKDOOR ATTACKS

Experiment setup. In this subsection, we study the effectiveness of SAPA in backdoor attacks. In
particular, we focus on the “hidden-trigger” setting (Saha et al., 2020; Souri et al., 2022) where
the attackers can only add imperceptible perturbations to the clean training samples. For backdoor
attacks, the adversarial goal is to cause the samples from a victim class yvic to be wrongly classified

2Results for baseline Grad-Match is lower than reported in the original paper, because the original paper
only trains 40 epochs. Detailed analysis on the impact of epochs can be found in Appendix D

6

Published as a conference paper at ICLR 2024

as a designated class yobj by inserting triggers. Besides, we follow the setting in (Souri et al., 2022)
that the attacker adds imperceptible perturbations to samples in class yobj . Therefore, in our study,
we randomly choose the two different classes yvic, yobj for poisoning sample generation. In this
evaluation, we constrain that the attacker can only perturb 1% of the whole training set and the re-
training process resembles our settings in Section 5.1. All experiments are repeated for 50 times and
we report the average success rate. More implementation details are in Appendix.C.2

Baselines. In the experiment, our proposed method SAPA is incorporated to Sleeper Agent (Souri
et al., 2022) which also leverages Gradient Match (Geiping et al., 2020) to achieve the adversarial
goal in backdoor attacks. We also show the results of the method, Hidden-Trigger Backdoor (Saha
et al., 2020), which optimizes the poison over images with triggers to preserve information of trig-
gers, and the Clean-Label Backdoor method (Turner et al., 2019) leverages calculating adversarial
examples (Goodfellow et al., 2014) to train a backdoored model.

Performance comparison. Our results are shown in Table 2, where we report the “Success Rate”,
which is the ratio of samples (with triggers) in yvic that are classified as yobj by the poisoned model.
From the result, our method outperforms all baselines under all settings. Specifically, Hidden-
trigger (Saha et al., 2020) and Clean-label (Turner et al., 2019) suffer from low ineffectiveness, as
they are either designed for transfer learning or require control over the training process. Compared
to these methods, SAPA shows effectiveness for different model architectures and perturbation bud-
gets. In comparison with Sleeper Agent (Souri et al., 2022), which is also based on Gradient Match-
ing (Geiping et al., 2020), our method can also have a clear improvement. Especially, under the
perturbation budget 8/255 and CIFAR100 dataset, SAPA can obviously outperform Sleeper Agent.

Table 2: Success Rate in Backdoor Attacks on CIFAR10 and CIFAR100

ResNet18 ResNet50 VGG11
16/255 8/255 16/255 8/255 16/255 8/255

CIFAR10

Hidden-trigger 3.5±1.2 1.3±0.4 3.2±0.9 1.3±0.3 5±1.4 1.8±0.7
Clean-label 2.7±1.1 3 0.9±0.7 2.6±0.7 0.9±0.2 4.7±1.5 1.1±0.9

Sleeper Agent 90.9±2.2 31.5±4.2 94.1±2.7 21.2±4.3 85.8±3.4 26.7±3.9
SAPA+Sleeper Agent 98.1±2.6 49.3±3.7 98.4±4.9 33.2±3.1 94.3±2.6 35.5±2.8

CIFAR100

Hidden-trigger 2.1±0.9 1.3±0.4 1.7±0.3 0.8±0.1 3.4±1.2 1.2±0.6
Clean-label 1.5±0.7 0.9±0.2 1.2±0.4 0.4±0.1 2.6±0.3 0.8±0.2

Sleeper Agent 58.3±3.9 26.7±4.3 47.2±4.5 18.5±3.7 41.6±3.2 12.9±2.6
SAPA+Sleeper Agent 72.4±3.6 41.8±3.2 63.9±3.5 31.4±3.2 67.7±2.7 30.3±2.3

5.3 PERFORMANCE OF SAPA IN UN-TARGETED ATTACKS

Experiment Setup. The goal of un-targeted attacks is to degrade the models’ test accuracy. We fol-
low the line of existing works (Huang et al., 2021; Fowl et al., 2021; Ren et al., 2022) (which are also
called “un-learnable examples”) to perturb a large portion of training samples (50%, 80%, 100%) in
CIFAR10 and CIFAR100 datasets, in order to protect the data against being learned by DNNs. In
our experiment, we limit the perturbation budget to 8/255. We first generate poisoning samples tar-
geting on ResNet18. Then we re-train the victim models under ResNet18 and ResNet50 following
existing works (Huang et al., 2020; Fowl et al., 2021). The training procedure for each model also
resembles the settings in Section 5.1, and we repeat experiments for each setting 5 times and report
the average performance. More details of the implementation are in Appendix C.3.

Baselines. We compare SAPA with representative “un-learnable” methods, such as Error-Min
(Huang et al., 2020), Error-Max (Fowl et al., 2021), Separable Perturbation (Yu et al., 2022), and
Autoregressive Perturbation (Sandoval-Segura et al., 2022). We also report the clean performance
which refers to the accuracy of models without poisoning attack. Notably, our proposed method
SAPA can be incorporated into either Error-Min or Error-Max, so we denote our method as “Error-
Min+SAPA” and “Error-Max + SAPA” respectively. We provide more details of the algorithm of
“Error-Max+SAPA” in Appendix C.

Performance comparison. In Table 3, we report the accuracy of the re-trained model on the clean
test dataset of CIFAR10 and CIFAR100, so a lower value indicates better attack performance. From
the result SAPA can improve the poisoning effect for both Error-Min and Error-Max under all set-
tings. For example, when incorporating SAPA to Error-Min, Error-Min+SAPA has a clear advantage,
by reducing the accuracy to around 10% when the poisoning ratio is 100% in the CIFAR10 dataset.

3Hidden trigger and Clean-label also have lower success rates than in their original papers. This is because
they are originally proposed for fine-tuning settings (by fixing the early layers), while we focus on end-to-end
setting in this work. Our results are consistent with results in work (Souri et al., 2022).

7

Published as a conference paper at ICLR 2024

In other settings, Error-Min+SAPA can also manage to achieve a 2-4% accuracy reduction compared
to Error-Min. Similarly, Error-Max+SAPA is also demonstrated to have a consistent improvement
over Error-Max. In addition, incorporating our strategy can boost Error-Max and Error-Min to
achieve comparable performance with Autoregressive Perturbation which specifically targets on the
vulnerability of CNNs.

Table 3: Test Accuracy of Models Trained on Poisoned Datasets via Un-targeted Attacks.

CIFAR10 CIFAR100
ResNet18 ResNet50 ResNet18 ResNet50

100% 80% 50% 100% 80% 50% 100% 80% 50% 100% 80% 50%
Clean∗ 94.8 94.8 94.8 95.0 95.0 95.0 74.8 74.8 74.8 75.2 75.2 75.2

Separable. 13.5 86.3 92.9 14.9 88.1 93.2 9.1 57.1 66.2 8.4 60.8 66.7
Autoregressive. 11.8 82.3 89.8 10.1 83.6 90.3 4.2 51.6 64.7 4.3 53.5 66.1

Error-Max 11.9 88.2 92.2 12.8 90.1 93.9 4.8 57.3 66.9 5.6 58.3 68.1
Error-Max+SAPA 9.6 84.6 90.1 10.9 85.7 91.3 4.1 55.1 64.8 4.9 56.8 66.9

Error-Min 21.2 87.1 93.4 18.9 89.5 94.5 11.2 56.9 67.7 10.8 60.5 70.3
Error-Min+SAPA 10.9 83.7 90.0 10.3 85.2 91.8 8.7 53.1 65.3 9.5 57.9 67.6

5.4 ROBUSTNESS OF RE-TRAINING VARIANTS

We provide ablation studies on the effectiveness of SAPA under various re-training settings including
different re-training algorithms, re-training schedules and model architectures. We also study the
robustness of SAPA against adversarial training (Madry et al., 2017). Notably, we only focus on the
CIFAR10 dataset and ResNet18 (except for the studies on various architectures). For targeted and
backdoor attacks, we specify the perturbation budget to 16/255 with poisoning ratio ϵ = 1%. For
un-targeted attacks, we specify the perturbation budget to be 8/255 with poisoning ratio ϵ = 100%.

Various Re-training Algorithms. There are studies (Schwarzschild et al., 2021; Ren et al., 2022)
demonstrating that many poisoning attacks can lose efficacy when faced with training algorithms
beyond Empirical Risk Minimization (ERM). Therefore, we provide additional experiments to test
the performance of SAPA under various re-training algorithms. We mainly consider the algorithms
including Cut-Out (DeVries & Taylor, 2017), Mix-Up (Zhang et al., 2017), and Sharpness-aware
Minimization (SAM) (Foret et al., 2020), which is proposed to minimize model sharpness to improve
model generalization. Two optimization methods—SGD and ADAM are also included. In Table 4,
we compare SAPA with its backbone attack as baselines for each type of poisoning attack, and we
use the same evaluation metric as previous subsections. From this table, we can see that our method
remains outperforming the baseline attacks. Notably, among these re-training algorithms, Mix-Up
shows an outstanding ability to reduce the poisoning effect for all attack methods that we studied. It
may be because Mix-Up is a data augmentation strategy which drastically manipulates the training
data distribution, which can weaken the poisoning effect of the injected poisoning samples.

Table 4: SAPA vs Strongest Baselines under Re-training Scheme Variation.

Un-targeted(↓) Targeted(↑) Backdoor(↑)
Error-min SAPA GradMatch SAPA SleeperAgent SAPA

SGD 21.2 10.9 (-10.3) 73.1 80.1 (+6.8) 91.8 97.1 (+5.3)
ADAM 19.7 10.4 (-9.3) 80.2 85.4 (+5.2) 92.3 97.7 (+5.4)

Cut-Out 22.6 11.2 (-11.4) 82.4 90.3 (+7.9) 97.8 100.0 (+2.2)
Mix-Up 40.8 36.7 (-4.1) 58.4 65.5 (+7.1) 69.7 76.5 (+6.8)

SAM 28.9 11.3 (-17.6) 74.3 80.7 (+6.4) 79.9 85.3 (+5.4)
Un-targeted(↓) Targeted(↑) Backdoor(↑)

Error-min SAPA GradMatch SAPA SleeperAgent SAPA
ResNet18 21.2 10.9 (-10.3) 73.1 80.1 (+7.0) 91.8 97.1 (+5.3)

MobileNetV2 21.5 11.9 (-9.6) 68.5 75.2 (+6.7) 30.2 37.6 (+7.4)
VGG11 35.3 20.2 (-15.1) 42.9 47.6 (+4.7) 31.9 37.4 (+5.5)

ViT 40.6 36.5 (-4.1) 36.2 41.5 (+5.3) 24.7 26.3 (+1.6)

Various model architectures. We also test different model architectures after the generation of
poisoned data for all three types of attacks. In detail, we test on MobileNetV2 (Sandler et al., 2018),
VGG11 (Simonyan & Zisserman, 2014) and pretrained Vision Transformer(ViT, (Dosovitskiy et al.,
2020)). Results in Table 4 conclude that SAPA consistently improves the baseline methods, and
shows a better ability to adapt to unknown model architectures during re-training.

Various Re-Training Schedules. There are also studies (Schwarzschild et al., 2021; Huang et al.,
2020) suggesting that a different re-training epoch number or schedule can significantly break the
poisoning effect. Therefore, we provide additional experiments when: (1) the model is trained for

8

Published as a conference paper at ICLR 2024

500 epochs and the learning rate is updated by “steps” similar to previous studies, and (2) the re-
training learning rate is updated “cyclicly”. In Figure 1, we plot the curve of the poisoning effect of
SAPA and baselines in the backdoor and un-targeted attacks. Note that we exclude targeted attacks
because the poisoning effect is discrete in one model. From these figures, we can find that SAPA can
stably converge to the point with a strong poisoning effect that consistently outperforms baselines.

0 100 200 300 400 500
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

SR

SleeperAgent
SAPA

(a) Backdoor(↑) (Step)

0 100 200 300 400 500
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

SR

SleeperAgent
SAPA

(b) Backdoor(↑) (Cyclic)

0 100 200 300 400 500
Epochs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Te
st

in
g

Ac
c

Error-min
Error-min+SAPA

(c) Un-targeted(↓) (Step)

0 100 200 300 400 500
Epochs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Te
st

in
g

Ac
c

Error-min
Error-min+SAPA

(d) Un-targeted(↓) (Cyclic)

Figure 1: The Curve of Poisoning Effect for Various Re-training Schedules

Table 5: Adv. Train.
ERM Adv Train.

Separable 11.8 75.2
Autoregressive 13.5 78.7

Error-min 21.2 82.0
Error-min + SAPA 10.9 73.2

Error-max 11.9 80.3
Error-max + SAPA 9.6 72.5

Adversarial Training. In reality, these attacks can be faced
to defense strategies. In this part, take untargeted attack as an
example, we conduct a case study to evaluate the resistance
of SAPA against Adversarial Training (Madry et al., 2017),
which is a strong defense for un-targeted attacks (Tao et al.,
2021). We test on SAPA as well as all baselines in un-targeted
attack. From the results, we note that adversarial training can
significantly increase the test accuracy to defend against all attack methods. However, SAPA can
can still outperform other attacks. Notably, although Adv. Train. is usually considered as a strong
defense to untargeted attacks, it can naturally reduce the accuracy on CIFAR10 from 95% to 85%
without any poisoning attacks, based on extensive previous studies (Tsipras et al., 2018).

5.5 EFFICIENCY VS EFFECTIVENESS TRADE-OFF

Previous works (Huang et al., 2020) also leverage the Ensemble and Re-initialization (E&R) tech-
nique, to take various model architectures and initializations into consideration to handle re-training
uncertainty. In this part, we compare the efficiency and effectiveness trade-off between SAPA and
E&R, when they are incorporated to existing attacks, such as Gradient Matching and Sleeper Agent.
In Figure 2, we report the attack successful rate (ASR) and computing time of SAPA and E&R
with different options (K,R denote the number of ensembled model architectures and initializations
respectively). Specifically, SAPA has higher ASR when K and R are small, and can still achieve
comparable success rates when K and R are increasing. However, the running time grows dra-
matically for large K and R making them much less efficient than SAPA. This result shows SAPA
demonstrate much better efficiency and effectiveness trade-off compared with E&R. Notably, we
exclude the result for untargeted attacks, as it generates poisoning samples for the whole training
set, which makes E&R extremely inefficient.

60

65

70

75

80

85

250

500

750

1000

1250

SAPA

GM(K=1, R=1)

GM(K=1,R=4)

GM(K=1,R=8)

GM(K=4,R=1)

GM(K=8,R=1)

ASR Time

(a) Targeted

80

85

90

95

100

0

5000

10000

15000

SA
PA

Sle
ep(

K=1
,R=

1)

Sle
ep(

K=1
,R=

2)

Sle
ep(

K=1
,R=

4)

Sle
ep(

K=2
,R=

1)

Sle
ep(

K=4
,R=

1)

ASR Time

(b) Backdoor
Figure 2: ASR and running time for targeted attack (GM) and backdoor attack (Sleep.).

6 CONCLUSION AND LIMITATION

In this paper, we introduce a novel and versatile framework for data poisoning attacks that takes
into account the model landscape sharpness. We apply this strategy to various types of poisoning
attacks, including un-targeted, targeted, and backdoor attacks. Our experimental results demonstrate
the superiority of our method compared to existing approaches. However, in this paper, our method
focuses on image classification. Therefore, we will leave the relative studies, such as the poisoning
attacks in self-supervised learning settings, and poisoning attacks in other domains such as texts and
graphs for future investigation.

9

Published as a conference paper at ICLR 2024

7 ACKNOWLEDGEMENT

This research is supported by the National Science Foundation (NSF) under grant numbers CNS
2246050, IIS1845081, IIS2212032, IIS2212144, IOS2107215, DUE 2234015, DRL 2025244 and
IOS2035472, the Army Research Office (ARO) under grant number W911NF-21-1-0198, the Home
Depot, Cisco Systems Inc, Amazon Faculty Award, Johnson&Johnson, JP Morgan Faculty Award
and SNAP.

REFERENCES

Hojjat Aghakhani, Dongyu Meng, Yu-Xiang Wang, Christopher Kruegel, and Giovanni Vigna.
Bullseye polytope: A scalable clean-label poisoning attack with improved transferability. In 2021
IEEE European Symposium on Security and Privacy (EuroS&P), pp. 159–178. IEEE, 2021.

Maksym Andriushchenko and Nicolas Flammarion. Towards understanding sharpness-aware mini-
mization, 2022.

Jonathan F Bard. Practical bilevel optimization: algorithms and applications, volume 30. Springer
Science & Business Media, 2013.

Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks against support vector ma-
chines. arXiv preprint arXiv:1206.6389, 2012.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun, Carlo Baldassi, Christian
Borgs, Jennifer Chayes, Levent Sagun, and Riccardo Zecchina. Entropy-sgd: Biasing gradient
descent into wide valleys. Journal of Statistical Mechanics: Theory and Experiment, 2019(12):
124018, 2019.

Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted backdoor attacks on deep
learning systems using data poisoning. arXiv preprint arXiv:1712.05526, 2017.

Benoı̂t Colson, Patrice Marcotte, and Gilles Savard. An overview of bilevel optimization. Annals of
operations research, 153:235–256, 2007.

Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks
with cutout. arXiv preprint arXiv:1708.04552, 2017.

Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize
for deep nets. In International Conference on Machine Learning, pp. 1019–1028. PMLR, 2017.

Khoa Doan, Yingjie Lao, Weijie Zhao, and Ping Li. Lira: Learnable, imperceptible and robust
backdoor attacks. In Proceedings of the IEEE/CVF international conference on computer vision,
pp. 11966–11976, 2021.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Gintare Karolina Dziugaite and Daniel M Roy. Computing nonvacuous generalization bounds for
deep (stochastic) neural networks with many more parameters than training data. arXiv preprint
arXiv:1703.11008, 2017.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimiza-
tion for efficiently improving generalization. arXiv preprint arXiv:2010.01412, 2020.

Liam Fowl, Micah Goldblum, Ping-yeh Chiang, Jonas Geiping, Wojciech Czaja, and Tom Goldstein.
Adversarial examples make strong poisons. Advances in Neural Information Processing Systems,
34:30339–30351, 2021.

10

Published as a conference paper at ICLR 2024

Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil. Bilevel
programming for hyperparameter optimization and meta-learning. In International Conference
on Machine Learning, pp. 1568–1577. PMLR, 2018.

Jonas Geiping, Liam Fowl, W Ronny Huang, Wojciech Czaja, Gavin Taylor, Michael Moeller, and
Tom Goldstein. Witches’ brew: Industrial scale data poisoning via gradient matching. arXiv
preprint arXiv:2009.02276, 2020.

Micah Goldblum, Dimitris Tsipras, Chulin Xie, Xinyun Chen, Avi Schwarzschild, Dawn Song,
Aleksander Madry, Bo Li, and Tom Goldstein. Dataset security for machine learning: Data
poisoning, backdoor attacks, and defenses. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 45(2):1563–1580, 2022.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Evaluating backdooring
attacks on deep neural networks. IEEE Access, 7:47230–47244, 2019.

Hanxun Huang, Xingjun Ma, Sarah Monazam Erfani, James Bailey, and Yisen Wang. Unlearnable
examples: Making personal data unexploitable. arXiv preprint arXiv:2101.04898, 2021.

W Ronny Huang, Jonas Geiping, Liam Fowl, Gavin Taylor, and Tom Goldstein. Metapoison: Prac-
tical general-purpose clean-label data poisoning. Advances in Neural Information Processing
Systems, 33:12080–12091, 2020.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wil-
son. Averaging weights leads to wider optima and better generalization. arXiv preprint
arXiv:1803.05407, 2018.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Pe-
ter Tang. On large-batch training for deep learning: Generalization gap and sharp minima. arXiv
preprint arXiv:1609.04836, 2016.

Pang Wei Koh, Jacob Steinhardt, and Percy Liang. Stronger data poisoning attacks break data
sanitization defenses. Machine Learning, pp. 1–47, 2022.

Junyi Li, Bin Gu, and Heng Huang. Improved bilevel model: Fast and optimal algorithm with
theoretical guarantee. arXiv preprint arXiv:2009.00690, 2020a.

Mingchen Li, Mahdi Soltanolkotabi, and Samet Oymak. Gradient descent with early stopping is
provably robust to label noise for overparameterized neural networks. In International conference
on artificial intelligence and statistics, pp. 4313–4324. PMLR, 2020b.

Risheng Liu, Pan Mu, Xiaoming Yuan, Shangzhi Zeng, and Jin Zhang. A generic first-order al-
gorithmic framework for bi-level programming beyond lower-level singleton. In International
Conference on Machine Learning, pp. 6305–6315. PMLR, 2020.

Risheng Liu, Yaohua Liu, Shangzhi Zeng, and Jin Zhang. Towards gradient-based bilevel optimiza-
tion with non-convex followers and beyond. Advances in Neural Information Processing Systems,
34:8662–8675, 2021.

Yiwei Lu, Gautam Kamath, and Yaoliang Yu. Indiscriminate data poisoning attacks on neural net-
works. arXiv preprint arXiv:2204.09092, 2022.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

Shike Mei and Xiaojin Zhu. Using machine teaching to identify optimal training-set attacks on
machine learners. In Proceedings of the aaai conference on artificial intelligence, volume 29,
2015.

11

Published as a conference paper at ICLR 2024

Luis Muñoz-González, Battista Biggio, Ambra Demontis, Andrea Paudice, Vasin Wongrassamee,
Emil C Lupu, and Fabio Roli. Towards poisoning of deep learning algorithms with back-gradient
optimization. In Proceedings of the 10th ACM workshop on artificial intelligence and security,
pp. 27–38, 2017.

Behnam Neyshabur, Srinadh Bhojanapalli, and Nathan Srebro. A pac-bayesian approach to
spectrally-normalized margin bounds for neural networks. arXiv preprint arXiv:1707.09564,
2017.

Anh Nguyen and Anh Tran. Wanet–imperceptible warping-based backdoor attack. arXiv preprint
arXiv:2102.10369, 2021.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. In International Conference on Machine
Learning, pp. 8821–8831. PMLR, 2021.

Jie Ren, Han Xu, Yuxuan Wan, Xingjun Ma, Lichao Sun, and Jiliang Tang. Transferable unlearnable
examples. arXiv preprint arXiv:2210.10114, 2022.

Aniruddha Saha, Akshayvarun Subramanya, and Hamed Pirsiavash. Hidden trigger backdoor at-
tacks. In Proceedings of the AAAI conference on artificial intelligence, volume 34, pp. 11957–
11965, 2020.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510–4520, 2018.

Pedro Sandoval-Segura, Vasu Singla, Jonas Geiping, Micah Goldblum, Tom Goldstein, and David
Jacobs. Autoregressive perturbations for data poisoning. Advances in Neural Information Pro-
cessing Systems, 35:27374–27386, 2022.

Avi Schwarzschild, Micah Goldblum, Arjun Gupta, John P Dickerson, and Tom Goldstein. Just
how toxic is data poisoning? a unified benchmark for backdoor and data poisoning attacks. In
International Conference on Machine Learning, pp. 9389–9398. PMLR, 2021.

Amirreza Shaban, Ching-An Cheng, Nathan Hatch, and Byron Boots. Truncated back-propagation
for bilevel optimization. In The 22nd International Conference on Artificial Intelligence and
Statistics, pp. 1723–1732. PMLR, 2019.

Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph Studer, Tudor Dumitras,
and Tom Goldstein. Poison frogs! targeted clean-label poisoning attacks on neural networks.
Advances in neural information processing systems, 31, 2018.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Hossein Souri, Liam Fowl, Rama Chellappa, Micah Goldblum, and Tom Goldstein. Sleeper agent:
Scalable hidden trigger backdoors for neural networks trained from scratch. Advances in Neural
Information Processing Systems, 35:19165–19178, 2022.

Daouda Sow, Kaiyi Ji, Ziwei Guan, and Yingbin Liang. A primal-dual approach to bilevel optimiza-
tion with multiple inner minima, 2022.

Jacob Steinhardt, Pang Wei W Koh, and Percy S Liang. Certified defenses for data poisoning attacks.
Advances in neural information processing systems, 30, 2017.

12

Published as a conference paper at ICLR 2024

Fnu Suya, Saeed Mahloujifar, Anshuman Suri, David Evans, and Yuan Tian. Model-targeted poi-
soning attacks with provable convergence. In International Conference on Machine Learning, pp.
10000–10010. PMLR, 2021.

Lue Tao, Lei Feng, Jinfeng Yi, Sheng-Jun Huang, and Songcan Chen. Better safe than sorry: Pre-
venting delusive adversaries with adversarial training. Advances in Neural Information Process-
ing Systems, 34:16209–16225, 2021.

Brandon Tran, Jerry Li, and Aleksander Madry. Spectral signatures in backdoor attacks. Advances
in neural information processing systems, 31, 2018.

Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander Madry.
Robustness may be at odds with accuracy. arXiv preprint arXiv:1805.12152, 2018.

Alexander Turner, Dimitris Tsipras, and Aleksander Madry. Label-consistent backdoor attacks.
arXiv preprint arXiv:1912.02771, 2019.

Ricardo Vilalta and Youssef Drissi. A perspective view and survey of meta-learning. Artificial
intelligence review, 18:77–95, 2002.

Kaiyue Wen, Tengyu Ma, and Zhiyuan Li. How does sharpness-aware minimization minimize
sharpness?, 2023.

Baoyuan Wu, Hongrui Chen, Mingda Zhang, Zihao Zhu, Shaokui Wei, Danni Yuan, and Chao
Shen. Backdoorbench: A comprehensive benchmark of backdoor learning. Advances in Neural
Information Processing Systems, 35:10546–10559, 2022.

Huang Xiao, Battista Biggio, Gavin Brown, Giorgio Fumera, Claudia Eckert, and Fabio Roli. Is
feature selection secure against training data poisoning? In international conference on machine
learning, pp. 1689–1698. PMLR, 2015.

Da Yu, Huishuai Zhang, Wei Chen, Jian Yin, and Tie-Yan Liu. Availability attacks create shortcuts.
In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
pp. 2367–2376, 2022.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. arXiv preprint arXiv:1710.09412, 2017.

Bingyin Zhao and Yingjie Lao. Clpa: Clean-label poisoning availability attacks using generative
adversarial nets. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp.
9162–9170, 2022.

Chen Zhu, W Ronny Huang, Hengduo Li, Gavin Taylor, Christoph Studer, and Tom Goldstein.
Transferable clean-label poisoning attacks on deep neural nets. In International Conference on
Machine Learning, pp. 7614–7623. PMLR, 2019.

13

Published as a conference paper at ICLR 2024

A BOARDER IMPACT

Our research unveils a powerful attacking framework that has the potential to compromise security-
critical systems in a stealthy manner. As machine learning models, particularly large models that
require extensive training datasets, become increasingly prevalent and assume significant roles in
various domains, the importance of clean training data cannot be overstated. It is imperative to
prioritize the quality of data to ensure the success and reliability of these models. By shedding light
on the potential dangers associated with this threat model, our study aims to raise awareness about
the importance of data security. We hope that our findings will serve as a catalyst for the development
of stronger defenses against data poisoning attacks. Safeguarding against these threats requires
a proactive approach and increased vigilance to protect the integrity and robustness of machine
learning systems.

B DISCUSSION OF EXISTING DATA POISONING ATTACKS.
B.1 THREAT MODEL AND OBJECTIVES

In this section, we introduce the threat model, adversarial objective, and victim set for each type of
data poisoning attack.

Un-targeted Attacks. In un-targeted attacks (Steinhardt et al., 2017), the attacker aims to cause the
trained model with an overall low test accuracy. The attackers are assumed to have access to the
training data and can perturb part (Steinhardt et al., 2017) or the whole training data (Fowl et al.,
2021; Huang et al., 2021). However, because the attacker usually does not have knowledge of test
distribution and the training process of the victim model, most works (Steinhardt et al., 2017; Fowl
et al., 2021; Huang et al., 2021) define the adversarial objective as the following to maximize the
model error on the clean training set Dtr:

Qut(θ
∗, Dtr) = −L(θ∗;Dtr) (14)

Targeted attacks. In targeted attacks (Shafahi et al., 2018), the attacker aims to cause the trained
model to misclassify a specified test sample or a subset of test samples. For example, they
are targeting on a victim person and have knowledge of k (k ≥ 1) photographs of this per-
son4{(xvic

i , yvic)}ki=1. They aim to cause the model to misclassify the photos of this person while
preserving the overall accuracy of the rest. The attackers are only allowed to perturb a small part of
the training data and have no knowledge of the victim model including the initialization and train-
ing algorithm. Therefore, they define the victim set DT = {(xvic

i , yvic)}ki=1 and the adversarial
objective as:

Qt(θ
∗, DT) =

∑
(xi,yi)∈DT

l(f(xi; θ
∗), yobj), (15)

where yobj is a designated class different from yvic.

Backdoor attacks. In backdoor attacks (Chen et al., 2017; Souri et al., 2022), the attacker aims to
take control of the model prediction by injecting samples with “triggers”. In particular, if there is
a trigger, such as a patch p, present in an image, the poisoned model will predict this sample to a
specified class yobj . Otherwise, the poisoned model will make a correct prediction. Similar to the
targeted attack, attackers are only allowed to perturb a small part of training data and have no control
of the training process of the victim model. In backdoor attacks, most works target on samples from
a specific victim class y = yvic and define the victim set as DT = {(x, y) ∈ Dtr|y = yvic}. During
the attack, they aim to solve the adversarial objective:

Qb(θ
∗, DT) =

∑
(xi,yi)∈DT

l(f(xi ⊕ p; θ∗), yobj) (16)

where x ⊕ p denotes the process that p is attached to a clean image x. In this way, the poisoned
model is likely to predict the samples with triggers to be class yobj .

4We assume that the samples of the victim are from the same class yvic, following most existing
works (Shafahi et al., 2018).

14

Published as a conference paper at ICLR 2024

B.2 ALGORITHMS

In this section, we discuss the details of existing data poisoning attacks.

Targeted attacks. Targeted attacks insert poisons into the clean training aiming at misclassifying
targets(samples or classes) as adversarial labels. Fundamentally, targeted attacks can be formu-
lated as a bi-level optimization problem in Eq.15, which can be challenging especially for DNN
because the inner problem has multiple minima. Some existing methods avoid solving it directly
and apply heuristic approaches such as Feature Collision Attacks(i.e. Bullseye(Aghakhani et al.,
2021), poison-frog(Shafahi et al., 2018)) which manipulate the representation of victims to mislead
models classify them as adversarial labels. These methods are well-suited for the transfer learn-
ing setting(Goldblum et al., 2022), where a model is pre-trained on clean data and fine-tuned on a
smaller poisoned dataset. However, this brings a natural drawback in that its poisoning effect is only
kept for one surrogate model(the pre-trained model), thus these methods can hardly work for the
retrain-from-scratch scenario as the retrained model can be very different from the surrogate model.
Another line of work tries to handle the bi-level optimization problem directly. For linear or convex
models, the inner problem typically exhibits a single minimum. As a result, several methods such
as those proposed by(Biggio et al., 2012; Xiao et al., 2015) have been developed to successfully
achieve the malicious objective. Theoretical analyses, such as the work by(Mei & Zhu, 2015), have
provided guarantees in these cases. However, these methods become ineffective for DNN. (Muñoz-
González et al., 2017) applies a method called “back-gradient descent” in which the inner problem is
approximately solved using several steps of gradient descent, and the gradient-descent for the outer
is conducted by back-propagating through the inner minimization routine. This method is both time
and memory-consuming, thus impractical for models with multiple layers. MetaPoison(Huang et al.,
2020) draws inspiration from (Franceschi et al., 2018; Shaban et al., 2019) and unrolling the training
pipeline of inner. They also apply “ensembling” and “network re-initialization” to avoid overfitting
to one single surrogate model and try to preserve the poisoning effect during re-training. However,
the success of this unrolling still requires single minima assumption(Liu et al., 2020), leading to less
effectiveness as shown in the empirical results. Grad-Match(Geiping et al., 2020) leverages a “gra-
dient alignment” technique to solve the problem in Eq.15 and applies “poison re-initialization” to
select better poisons, but there still exists space for improvement as the formulation does not capture
the nature of inner multiple minima well(Sow et al., 2022). This is the reason why we rethink the
formulation of targeted attacks and design a new objective in Eq.5.

Backdoor attacks. Backdoor attacks aim at inserting triggers into training samples and testing sam-
ples, such that triggered inputs will be misclassified. Note that there exist many types of backdoor
attacks(Wu et al., 2022) with regard to factors of backdoor, such as attacker’s capability(training con-
trollable or not), characteristics of triggers(visibility, etc). In Eq.16, we focus on so-called hidden-
trigger clean-label backdoor attacks, meaning attackers insert poisoned samples rather than triggers
into the training data, and testing inputs attached with a trigger will be misclassified. Hidden-
trigger(Saha et al., 2020) generates poisoned images carrying information about triggered source
images and confuses the model during fine-tuning. Clean-label(Turner et al., 2019) leverages ad-
versarial perturbations to cause a successful backdoored effect. However, both methods can hardly
succeed in the retrain-from-scratch scenario, as Hidden-trigger is designed for transferring learning
and Clean-label needs to control the retraining process. Sleeper Agent(Souri et al., 2022) incorpo-
rates the gradient matching technique to solve the problem in Eq.16, and considers “model restarts”
to adaptively update the model during the generation of poisons, but it can only cover a few mod-
els and limits its effectiveness. Our SAPA utilizes the sharpness objective to capture the nature of
multiple-inner-minima, and is shown to better preserve the poisoning effect during retraining. It
is worth noting that there exists a line of work that consider a different scenario from end-to-end
scenario discussed in this paper. Some of these attacks need additional assumptions that the attacker
can control the re-training process such as WaNet (Nguyen & Tran, 2021) and LiRA (Doan et al.,
2021); some conduct attacks without involving any models and require noticeable triggers, such as
BadNet (Gu et al., 2019). Therefore, this line of work is out of the main scope of our paper.

Un-targeted attacks. Un-targeted attacks insert poisons into the clean training and the goal is to
degrade the overall accuracy over the clean testing. Generally, it can be formulated as a bi-level opti-
mization problem in Eq.14. Early works(Biggio et al., 2012; Steinhardt et al., 2017; Koh et al., 2022)
primarily focused on simple models with desirable properties like linearity and convexity. In these
cases, the inner problem typically possesses a unique solution, and these methods demonstrate effec-

15

Published as a conference paper at ICLR 2024

tive performance. Theoretical analysis(Steinhardt et al., 2017; Suya et al., 2021) have been carried
out to establish the feasibility of untargeted attacks on such simple models. Nevertheless, the pres-
ence of non-convexity and multiple minima within the inner problem poses significant challenges
for untargeted attacks on DNN models. (Muñoz-González et al., 2017) applies “back-gradient de-
scent”, which is expensive and infeasible for complex models. (Lu et al., 2022) borrows ideas from
Stackelberg games and applies so-called “total gradient descent ascent” techniques to generate poi-
son samples one by one. However, they can hardly preserve poisoning effects after retraining and
have a subtle influence on clean testing. CLPA(Zhao & Lao, 2022) takes advantage of ’naturally
poisoned data’ which refers to the wrongly predicted samples by the clean model and generates
them using GAN. Nevertheless, this method can only be applied for transferring learning as it relies
on the clean model and suffers from the multiple-inner-minima problem. MetaPoison(Huang et al.,
2020) tries to handle the multiple-inner-minima problem using ensembling and re-initialization, but
the performance is not very satisfactory. Error-max(Fowl et al., 2021) solves the problem in Eq.14
by leveraging adversarial examples, and Error-min(Huang et al., 2021) inserts perturbations to build
a relationship between labels and perturbations. These two methods only involve one surrogate
model and can be improved through our proposed method. There also exists another line of work
that generate perturbations without access to model or datasets, such as Synthetic Perturbations(Yu
et al., 2022) and Autoregressive Perturbations(Sandoval-Segura et al., 2022). Though they do not
solve the optimization problem directly and do not have the multiple-inner-minima problem, their
application may be limited to specific settings(such as un-targeted attacks and CNN models), and
not as general as ours.

C IMPLEMENTATION DETAILS OF ALL SAPA METHODS

In this subsection, we provide details of the implementation of SAPA methods.

C.1 TARGETED ATTACKS

As introduced in Section.4.1, we solve the optimzation problem in Eq.8 using Gradient Matching.
To be more specific, we randomly choose one or a few target samples from a victim class(in testing)
as the victim set DT . At the same time, we randomly choose a percentage of samples Dp from
the training to be modified in the algorithm, and the percentage is referred to as poisoning ratio.
The attacking goal is to make the model trained on Dtr +Dp misclassify samples in DT as a pre-
specified adversarial class(different from the true class). To ensure the imperceptibility of poisons,
we rigorously control the poisoning ratio and perturbation budget(L∞ norm of the perturbation)
and in our experiments, we consider the ratio of 1%, 0.2% and budget of 16/255, 8/255, 4/255.

Given a pre-trained clean model, we first randomly initialize the perturbation for Dp, and during
each optimization step, we compute the gradient of the sharpness-aware objective using Eq.12 and
do one step gradient descent to minimize the similarity loss defined in Eq.10. The detailed algorithm
is shown in Algorithm.2.

After the generation of poisons, we retrain the model from scratch via SGD for 160 epochs with an
initial learning of 0.1 and decay by 0.1 at epochs 80,120. After training, we evaluate the prediction
on targets DT . For the single-target case, only predicting the target as the adversarial label is con-
sidered a success, and we sample 10 random poison-target cases as one trial, for which the average
success rate over 10 cases is referred to as the success rate for this trial. For each setting(poisoning
ratio and perturbation budget), we do 50 trials and report the average success rate. For the multi-
target case, we randomly choose a few targets, 4 or 8 in our experiments, and the average accuracy
of predicting targets as adversarial labels is referred to as the success rate of one experiment. We
also repeat experiments 50 times and report the average success rate.

C.2 BACKDOOR ATTACKS

Similar to the targeted attack, we leverage the Gradient Matching method. To be more specific, we
randomly choose a victim class and an objective class. Then we randomly sample the victim set DT

from the victim class and select Dp from the objective class to be modified in the algorithm. Note
that both DT and Dp are sampled from the training data. The attacking goal is to make the model
retrained on Dtr +Dp misclassify images from the victim class(in testing) which are attached with

16

Published as a conference paper at ICLR 2024

Algorithm 2: SAPA in Targeted Attacks(Grad-Match)
Input : Pre-trained model f(·; θ∗) on the clean training set Dtr; a victim set DT ; optimization

step M .
Randomly initialize the poisoning samples Dp

Compute the gradient ∇θQ
S(θ∗;DT) using Eq.12

for m = 1, ...,M do
Update Dp in Eq.10 with one-step gradient descent

end
Output: Return Dp

a pre-specified trigger as the objective class. We also restrict the poisoning ratio to be 1% and the
perturbation budget is bounded by 16/255, 8/255.

Given a pre-trained clean model, we first randomly initialize the perturbations for Dp, and during
each optimization step, we compute the gradient in Eq.12, but different from targeted attacks, in
Eq.12 DT are attached with the trigger which will be used to backdoor images in the testing. Then
we do one-step gradient descent to minimize the similarity loss defined in Eq.10, after optimizing for
R steps, we update the model f on poisoned training data Dtr +Dp, and then continue optimizing
perturbations on the updated model. The detailed algorithm is shown in Algorithm.3.

After the generation, we retrain the model from scratch via SGD for 160 epochs with an initial
learning of 0.1 and decay by 0.1 at epochs 80,120. After that, we evaluate the prediction of triggered
images from the entire victim class in the testing. The average accuracy of predicting triggered
images as the adversarial label is referred to as the success rate. We repeat experiments 50 times
and report the average accuracy as the final results. We conduct experiments on multiple datasets
including CIFAR10, CIFAR100 and SVHN, along with multiple victim models including ResNet18,
ResNet50 and VGG11.

Algorithm 3: SAPA in Backdoor Attacks
Input : Pre-trained model f(·; θ∗) on the clean training set Dtr; a victim set DT ; retraining

factor R; optimization step M .
Randomly initialize the poisoning samples Dp

for m = 0, ...,M − 1 do
if m mod ⌊M/(R+ 1)⌋ = 0 and m ̸= M then

Update θ∗ on poisoned training Dtr +Dp

Find the worst-case direction v̂ using Eq.11
Approximate ∇S

θQ(θ∗;DT) by ∇θQ(θ∗;DT)|θ=θ∗+v̂ .
end
Update Dp with one step gradient descent

end
Output: Poisoning set Dp

C.3 UN-TARGETED ATTACKS

We implement SAPA based on two existing methods: Error-min(Huang et al., 2021) and Error-
max(Fowl et al., 2021).

Error-min+SAPA. We have discussed this method in Section 4.3, and the detailed algorithm is
shown in Algorithm.1. In our experiments, we set T = 20, M = 10, α = ϵ/10 and E = 100.

Error-max+SAPA. Different from Error-min, Error-max is used to solve the optimization as fol-
lows:

max
{δi}i=1,...,n

∑
(xi,yi)∈Dtr

l
(
f(xi + δi; θ

∗), yi)

17

Published as a conference paper at ICLR 2024

where θ∗ denote a model trained on clean data and is fixed during poison generation. Thus
SAPA+Error-max focuses on the sharpness-aware objective as follows:

max
{δi}i=1,...,n

[
max
||v||≤ρ

∑
(xi,yi)∈Dtr

l
(
f(xi + δi; θ

∗ + v), yi
)]

Similar to Error-Min+SAPA, we also solve this optimization problem using gradient descent. As
shown in Algorithm 4, given the clean pre-trained model f(·, θ), we first find the worst direction v̂
to maximize maxv

∑
(xi,yi)∈Dtr

l
(
f(xi + δi; θ

∗ + v), yi) and then update δi fixing θ∗ + v̂.

After generating perturbations via either SAPA+Error-min or SAPA+Error-max, we retrain the
model on poisoned training via SGD for 160 epochs with an initial learning of 0.1 and decay by
0.1 at epochs 80,120. Then we evaluate the prediction of clean testing and report the average ac-
curacy. Our experiment is conducted on multiple datasets including CIFAR10, CIFAR100, SVHN,
along with multiple victim models including ResNet18 and ResNet50.

Algorithm 4: Error-max+SAPA
Input : Network f(·; θ); clean training set {(xi, yi)}ni=1; perturbation bound ϵ; PGD step T ;

pre-train steps R
Output: Sample-wise perturbation Dp = {δi}ni=1
for r in 1, ..., R do

Update θ via minimizing L(θ;Dtr)
end
Randomly initialize perturbation Dp

Fix θ,Dp, find the worst direction v̂ to maximize
∑

(xi,yi)∈Dtr
l
(
f(xi + δi; θ

∗ + v), yi)

for t = 1, ..., T PGD steps do
Update Dp via gradient ascent fixing θ + v̂

end

18

Published as a conference paper at ICLR 2024

D ADDITIONAL EXPERIMENTS

In this section, we provide additional experiments to further illustrate the effectiveness of SAPA.

D.1 ADDITIONAL DATASET

We test on the additional dataset, SVHN, to further illustrate the advantage of our method. All the
experiments are conducted following the same procedure as in Section.5, while some details are
different. For un-targeted attacks, we repeat all experiments on SVHN. For targeted attacks, we
conduct on the “Single-Victim” case and omit baselines Poison-Frog and Bulleyes because they do
not perform well under the train-from-scratch setting. For backdoor attacks, we also omit baselines
Clean-label and Hidden-trigger which do not perform well.

Performance comparison. Results of un-targeted attacks are shown in Table.6. Similar to results on
CIFAR10 and CIFAR100, our method outperforms nearly all baselines under all settings. Results of
targeted attacks are shown in Table.7. Our method outperforms all baselines significantly especially
for smaller budget sizes and poison ratios. Results of backdoor attacks are shown in Table.8. Our
method has better performance than baselines under all settings.

Table 6: Test Accuracy of Models Trained on Poisoned Datasets via Un-targeted Attacks.

SVHN
ResNet18 ResNet50

100% 80% 50% 100% 80% 50%
Clean∗ 96.0 96.0 96.0 95.9 95.9 95.9

Separable 8.3 92.5 94.3 7.8 90.9 93.1
Autoregressive. 7.2 89.5 92.5 7.1 89.1 91.2

Error-Max 5.3 92.9 93.4 5.7 92.5 93.7
Error-Max+SAPA 4.7 92.3 92.6 5.1 91.8 92.1

Error-Min 13.8 92.8 95.3 13.7 91.3 94.2
Error-Min+SAPA 10.2 91.7 93.1 11.4 90.4 91.8

Table 7: Success Rate under the “Single-Victim” Setting in Targeted Attacks.

16/255 8/255 4/255
ϵ = 1% ϵ = 0.2% ϵ = 1% ϵ = 0.2% ϵ = 1% ϵ = 0.2%

SVHN
Meta-Poison 52.1 28.7 35.3 21.9 23.8 11.2
Grad-Match 62.6 37.4 44.2 25.7 31.3 17.4

SAPA 71.2 48.5 55.7 38.2 42.1 23.3

Table 8: Success Rate in Backdoor Attacks on SVHN

ResNet18 ResNet50 VGG11
16/255 8/255 16/255 8/255 16/255 8/255

Sleeper Agent 92.3 42.6 91.6 34.8 86.2 38.1
SAPA-backdoor 97.5 58.3 95.4 44.1 91.4 43.7

D.2 MULTI-TARGET TARGETED ATTACKS

We also perform tests on poisoning multiple targets simultaneously. We conduct experiments on
model ResNet18 and two datasets Cifar10 and Cifar100. We only compare with the most powerful
baseline Grad-Match under multiple settings, including different number of victim targets(4,8), per-
turbation size(16/255, 8/255 and 4/255) and poisoning rate(1% and 0.25%). All results are shown
in Table 9. It is obvious that SAPA consistently improves the performance under all settings.

D.3 HYPERPARAMETER

The radius ρ in Eq. 8 is the most important hyperparameter in our proposed method, and it repre-
sents the radius within which the locally worst model is searched. In the work (Foret et al., 2020),
the default value is 0.05 and we adopt it in our main experiments. However, we are interested in

19

Published as a conference paper at ICLR 2024

Table 9: Avg. Success Rate under the “Multiple-Victim” Setting in Targeted Attacks.

16/255 8/255 4/255
1% 0.25% 1% 0.25% 1% 0.25%

CIFAR10: 4 Victims Grad-Match 62.9 36.2 34.7 25.1 20.3 7.5
SAPA 75.1 53.4 47.9 30.8 24.3 10.8

CIFAR10: 8 Victims Grad-Match 52.1 23.2 27.9 18.4 12.7 5.6
SAPA 64.6 31.2 34.6 26.1 17.5 7.3

CIFAR100: 4 Victims Grad-Match 67.3 30.1 37.2 12.5 17.8 2.9
SAPA 74.2 43.8 44.3 19.7 25.1 6.1

CIFAR100: 8 Victims Grad-Match 43.6 23.2 16.7 4.9 13.8 2.7
SAPA 52.7 31.3 24.8 8.3 18.7 4.2

whether this hyperparameter has a large impact on the performance. Therefore, we test for dif-
ferent values, i.e. ρ = 0.01, 0.05, 0.1, 0.2, 0.5. To avoid the computational cost, we only test on
targeted(SAPA+Grad-Match) and backdoor attack(SAPA+SleeperAgent), and results are shown in
Tabel 10. We notice that a smaller ρ causes the algorithm to regress to the backbone attacks without
SAPA, so the poisoning effect drops; while a very large value (ρ ≥ 0.2) also leads to poor attack
performance.

Table 10: Hyperparameter ρ

Method/ρ 0.01 0.05 0.1 0.2 0.5
SAPA+GM 76.5 80.4 82.1 77.5 69.3

SAPA+SleepAgent 92.7 97.1 97.6 96.8 83.2

D.4 ENSEMBLE AND RE-INITIALIZATION

In Section.5.5, we compare SAPA with ensemble and re-initialization techniques. It is also worth
noting that SAPA can leverage these techniques to further improve the performance. We conduct
experiments on targeted(SAPA+Grad-Match) and backdoor(SAPA+SleeperAgent) attacks to show
this. Same as in Section.5.5, let K,R denote the number of ensembles and re-initializations respec-
tively.

Table 11: Impact of ensemble(K) and re-inistailzation(R)

Targeted Backdoor
ASR(↑) Time/s(↓) ASR(↑) Time/s(↓)

K=1,R=1 80.0 156.9 97.1 4031.3
K=2,R=1 83.5 319.1 98.2 8129.7
K=4,R=1 86.3 748.4 98.9 16254.3
K=8,R=1 87.1 1562.5 100 30888.9
K=1,R=2 81.7 296.8 97.9 8006.4
K=1,R=4 83.5 718.5 98.5 15986.7
K=1,R=8 86.2 1379.7 99.3 32459.8

D.5 MORE RESULTS

We also provide the performance of un-targeted attacks with standard error reported, and of targeted
attacks for ResNet50 on Cifar10 in Table 12 and 13 respectively.

E ADDITIONAL VISUALIZATIONS

Loss Landscape. We provide the visualization of the loss landscape for targeted and backdoor
attacks to further illustrate that our method can indeed minimize the sharpness. For both attacks,
losses are computed on the victim set DT , and we visualize on CIFAR10 and ResNet18 with per-
turbation size 16/255 and poison ration 1%. Visualizations are shown in Figure.3. It is obvious that
our method can achieve a smoother loss landscape.

Effect of epochs on targeted. As we mentioned in Section 5, we adopt different re-training epochs
when applying baseline Grad-Match. In specific, the original paper(Geiping et al., 2020) adapts

20

Published as a conference paper at ICLR 2024

Table 12: Model Test Accuracy under Un-targeted Attacks. (with standard error reported)

CIFAR10 CIFAR100
ResNet18 ResNet50 ResNet18 ResNet50

100% 80% 50% 100% 80% 50% 100% 80% 50% 100% 80% 50%
Separable 13.5±0.11 86.3±0.17 92.9±0.26 14.9±0.12 88.1±0.17 93.2±0.11 9.14v0.16 57.1±0.21 66.2±0.19 8.4±0.14 60.8±0.17 66.7±0.25

Autoregressive 11.7±0.13 82.2±0.25 89.7±0.28 10.07±0.09 83.6±0.15 90.3±0.11 4.24±0.08 51.6±0.13 64.7±0.10 4.32±0.11 53.5±0.21 66.1±0.19
Error-Max 15.4±0.23 88.2±0.34 92.2±0.27 27.8±0.38 90.1±0.25 93.9±0.31 4.87±0.11 57.3±0.14 66.9±0.13 5.61±0.13 58.3±0.18 68.1+0.27

Error-Max+SAPA 11.3±0.11 84.6±0.23 90.1±0.19 15.76±0.34 85.7±0.39 91.3±0.23 4.13±0.08 55.1±0.12 64.8±0.09 4.87±0.17 56.8±0.14 66.9±023
Error-Min 21.2±0.26 87.1±0.38 93.4±0.35 18.89±0.41 89.5±0.36 94.5±0.29 11.2±0.19 56.9±0.25 67.7±0.17 10.8±0.14 60.5±0.21 70.3±0.24

Error-Min+SAPA 10.9±0.15 83.7±0.32 90.0±0.38 10.3±0.37 85.2±0.39 91.8±0.33 8.73±0.21 53.1±0.13 65.3±0.15 9.52±0.12 57.9±0.17 67.6±0.18

Table 13: Success Rate in Targeted Attacks(for ResNet50 on Cifar10).

16/255 8/255 4/255
ϵ = 1% ϵ = 0.2% ϵ = 1% ϵ = 0.2% ϵ = 1% ϵ = 0.2%

CIFAR10

Bullseye 1.7±0.9 0.5±0.2 1.1±0.6 0.4±0.1 0±0 0±0
Poison-Frog 2.3±0.7 0.6±0.4 0.8±0.3 0±0 0±0 0±0
Meta-Poison 46.9±2.5 34.1±2.6 23.5±1.7 10.7±1.6 15.6±1.3 6.9±1.2
Grad-Match 75.6±3.7 53.9±4.3 30.1±3.8 14.8±2.6 21.5±2.9 9.6±2.3

SAPA 81.4±3.1 60.2±3.5 34.7±3.6 17.6±1.9 26.3±2.1 12.4±1.9

CIFAR100

Bullseye 2.4±1.1 1.2±0.5 1.6±0.9 0.7±0.3 0±0 0±0
Poison-Frog 2.9±0.9 1.3±0.4 1.5±0.7 0.8±0.2 0±0 0±0
Meta-Poison 50.2±2.4 29.8±1.8 27.9±2.1 12.5±1.1 19.4±1.6 8.2+1.8
Grad-Match 80.8±3.6 50.7±4.1 36.7±3.8 24.3±3.9 26.9±2.7 10.4±2.1

SAPA 84.5±3.4 56.4±2.9 42.8±3.4 29.6±2.7 30.1±2.4 13.5±1.6

(a) Backdoor(SleeperAgent) (b) Backdoor(SAPA) (c) Targeted(Grad-Match) (d) Targeted(SAPA)

Figure 3: Visualization of loss landscape for Backdoor and Targeted attacks.

0 5 10 15 20 25 30 35 40
Epochs

0

20

40

60

80

100

AS
R

SAPA
GradMatch

(a) 40 epochs, 16/255

0 20 40 60 80 100 120 140 160
Epochs

0

20

40

60

80

100

AS
R

SAPA
GradMatch

(b) 160 epochs, 16/255

0 5 10 15 20 25 30 35 40
Epochs

0

10

20

30

40

50

60

70

AS
R

SAPA
GradMatch

(c) 40 epochs, 8/255

0 20 40 60 80 100 120 140 160
Epochs

0

10

20

30

40

50

60

70
AS

R

SAPA
GradMatch

(d) 160 epochs, 8/255

Figure 4: Attack successful rate (ASR) for different training epochs of targeted attacks

40 epochs while we re-trained for 150 epochs. We plot the success rates for different epochs(40
and 160) under different perturbation sizes(16/255 and 8/255) and show them in Figure 4. Results
of SAPA and Grad-Match are in red and blue respectively. From the figures, we notice that the
160-epoch has a smaller success rate than the 40-epoch and the success rate is slightly decreasing
when the epochs are growing. These observations imply that re-training epochs indeed influence the
poisoning effect and SAPA can improve the performance to some extent.

21

	Introduction
	Related work
	End-to-end Data Poisoning Attacks
	Loss Landscape Sharpness

	Preliminary
	Loss Landscape Sharpness
	Data Poisoning Attacks

	Method
	The Objective of SAPA
	SAPA in Targeted /Backdoor Attacks
	SAPA in Un-targeted Attacks

	Experiment
	Performance of SAPA in Targeted Attacks
	Performance of SAPA in Backdoor Attacks
	Performance of SAPA in Un-targeted Attacks
	Robustness of re-training variants
	Efficiency vs Effectiveness Trade-off

	Conclusion and Limitation
	Acknowledgement
	Boarder Impact
	Discussion of Existing Data Poisoning Attacks.
	Threat model and objectives
	Algorithms

	Implementation Details of All SAPA Methods
	Targeted attacks
	Backdoor attacks
	Un-targeted attacks

	Additional Experiments
	Additional dataset
	Multi-target targeted attacks
	Hyperparameter
	Ensemble and re-initialization
	More results

	Additional visualizations

