
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

HF-FONT: FEW-SHOT FONT GENERATION VIA HIGH-
FREQUENCY STYLE ENHANCEMENT AND FUSION

Anonymous authors
Paper under double-blind review

ABSTRACT

Few-shot font generation aims to create new fonts with a limited number of glyph
references. It can be used to greatly reduce the workload of manual font design.
However, although existing methods have achieved satisfactory performance, they
still struggle to capture delicate glyph details, thus resulting in stroke errors, ar-
tifacts, and blurriness. To address these problems, we propose HF-Font, a novel
framework that generates fonts with higher structural fidelity. Specifically, in-
spired by the observation that high-frequency information of character images
often contains distinct style patterns (e.g., glyph topology and stroke variation),
we develop a novel style-enhanced module to improve the style extraction by
incorporating high-frequency features from reference images using a high-pass
filter. Then, for guiding the generation process, we design a Style-Content Fu-
sion Module (SCFM), which integrates the style features with a component-wise
codebook that encodes content semantics. Moreover, we also introduce a style
contrastive loss to better transfer high-frequency features. Extensive experiments
show that our HF-Font outperforms the state-of-the-art methods in both qualita-
tive and quantitative evaluations, demonstrating its effectiveness across diverse
font styles and characters. Our source code will be released soon.

1 INTRODUCTION

The task of few-shot font generation allows to transfer the font style from a source domain to a
target domain based on only a few reference images. It can greatly alleviate the burden of time-
consuming and labor-intensive manual design, especially for some character-rich languages like
Chinese, Japanese, or Korean. Therefore, few-shot font generation techniques can benefit many
critical applications, including logo design, ancient character restoration, and so on.

At present, with the rapid development of deep learning architectures, such as Convolutional Neu-
ral Networks (CNNs) (Chen et al., 2022), Generative Adversarial Networks (GANs) (Goodfellow
et al., 2014), and diffusion models (Ho et al., 2020), researchers have made great advances in cre-
ating gratifying fonts. A widely-adopted strategy for this task is the style-content disentanglement
paradigm, which decouples the content and style representations from the given content and refer-
ence images. These two representations are then combined and decoded to generate the target glyph.
Early approaches (Zhang et al., 2018b; Gao et al., 2020; Xie et al., 2021; Wang et al., 2023) mainly
model font style as a set of universal statistic features, and utilize the extracted representations to
encode stylistic information. In addition, witnessing the structure variations and local correlations
in font styles, some works (Park et al., 2021b; Tang et al., 2022; Kong et al., 2022; Chen et al., 2024)
also employ structure-aware representations, which typically decompose characters into different
components and acquire multiple style representations to boost the performance. Nevertheless, de-
spite the remarkable progress, existing methods still have several drawbacks. The highly diverse
and intricate nature of font styles often leads to obvious defects in synthesized results, like incom-
plete or unwanted strokes, anomalous blurriness, and artifacts. Besides, a core challenge of few-shot
font generation lies in how to accurately capture the target style from just a few reference images.
Previous works tend to exhibit a limited performance in reproducing stylistic details, due to their
insufficient style extraction ability.

To tackle the above challenges, our key idea revolves around leveraging high-frequency features to
enhance the style extraction. As shown in Figure 1, these high-frequency components are defined by

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Characters

High-frequency

Characters

High-frequency

Characters

High-frequency

Figure 1: Some character samples and their corresponding high-frequency components. We
find that high-frequency components provide clearer contours and highlight distinctive style pat-
terns. Zoom in to see details.

rapid spatial intensity transitions along stroke boundaries, rather than by differences in color. They
highlight the overall contours of the glyphs and reveal essential style attributes such as topology,
stroke variation, and line spacing. Hence, the incorporation of high-frequency information facilitates
a more effective and robust style extraction process.

In light of this, we put forward a new end-to-end few-shot font generation method called HF-Font.
To be specific, we first develop a style-enhanced module to process both style reference images
and their corresponding high-frequency counterparts in parallel. Given that the reference images
usually contain background noise, we introduce a gate mechanism to filter out the irrelevant infor-
mation. Subsequently, the style features extracted from both branches are adaptively fused with
the component-wise content representation through an innovative Style-Content Fusion Module
(SCFM), which includes two Grouped Residual Attention Blocks (GRABs) and one output adapter.
Apart from these, we also design a style contrastive loss to further obtain discriminative features,
promoting both realism and diversity in the generated results. Consequently, our method yields
superior and impressive stylization performance, highlighting its potential for practical applications.

To summarize, our major contributions are as follows:

• We propose HF-Font, a novel few-shot font generation framework. It incorporates a style-
enhanced module to leverage high-frequency information from reference images, thereby
strengthening structural integrity.

• We devise an inventive Style-Content Fusion Module (SCFM), which efficiently integrates
style information with the component-level codebook. Furthermore, a style contrastive loss
is also employed to facilitate the transfer of high-frequency features.

• Extensive experimental results verify that our HF-Font surpasses the leading models in both
qualitative and quantitative evaluations, which demonstrates its effectiveness and general-
ization capability across diverse font styles and characters.

2 RELATED WORK

2.1 IMAGE-TO-IMAGE TRANSLATION

Image-to-image (I2I) translation is to convert an image from one domain to another while preserving
its semantic content. Previous methods, such as Pix2pix (Isola et al., 2017) and CycleGAN (Zhu
et al., 2017), mainly leverage GANs (Goodfellow et al., 2014) for supervised or unsupervised set-
tings. Later, motivated by the human ability of inductive reasoning, FUNIT (Liu et al., 2019) em-
ploys Adaptive Instance Normalization (AdaIN) (Huang & Belongie, 2017) to fuse the encoded
content and style features. Recently, diffusion models have emerged as a powerful generative tech-
nology. ILVR (Choi et al., 2021) achieves high-quality performance using only a pre-trained un-
conditional Denoising Diffusion Probabilistic Model (DDPM) (Ho et al., 2020). SCDM (Ko et al.,
2024) applies stochastic perturbations to semantic maps and conditions I2I translation on the dif-
fused labels. Notably, since font generation can be viewed as a special I2I translation task, many
generic I2I translation approaches can be adaptively modified for font generation.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.2 FEW-SHOT FONT GENERATION

Few-shot font generation intends to create a required font library with just a handful of glyph ref-
erences. A classical tactic involves extracting content and style features from the input source and
reference images, respectively. EMD (Zhang et al., 2018b) and AGIS-Net (Gao et al., 2020) dis-
entangle the representations of style and content, and model each font as a universal descriptor.
DG-Font (Xie et al., 2021) introduces a feature deformation skip connection to capture the glyph
deformations. CF-Font (Wang et al., 2023) extends DG-Font through incorporating a content fusion
module to narrow the gap between the source and target fonts. Later, NTF (Fu et al., 2023) formu-
lates font generation as a continuous transformation via a neural transformation field (Mildenhall
et al., 2020). FontDiffuser (Yang et al., 2024) implements a multi-scale content aggregation block
along with a style contrastive refinement module to guide the whole framework.

For the generation of highly-structured characters, some notable studies leverage prior domain
knowledge, such as stroke decomposition and trajectory, to optimize the final results. SA-VAE (Sun
et al., 2018) stands out as the first attempt to integrate radicals and spatial structures into the gen-
erative model. LF-Font (Park et al., 2021b) represents component-wise style feature via a low-
rank matrix factorization. MX-Font (Park et al., 2021a) utilizes a multi-head design, with each
head weakly supervised to extract distinct local concepts. MX-Font++ (Wang et al., 2025) ex-
tends MX-Font by introducing Heterogeneous Aggregation Experts (HAE) to enhance feature ex-
traction and decoupling. Afterwards, CG-GAN (Kong et al., 2022) utilizes a component predictor
to assist the generator during adversarial training, while FsFont (Tang et al., 2022) establishes a
character-reference mapping relationship and employs cross-attention to align the patch-level fea-
tures. Diff-Font (He et al., 2024) infuses predefined embedding tokens into the condition diffusion
model to support the sampling process. IF-Font (Chen et al., 2024) replaces the source image with
the Ideographic Description Sequence (IDS) to control glyph semantics. Yet, these methods remain
dependent on the labels of component categories. In contrast, VQ-Font (Pan et al., 2023) constructs
a vector quantization-based encoder to automatically extract components. DA-Font (Chen et al.,
2025) integrates a Dual-Attention Hybrid Module to optimize style transfer and relation-aware fea-
ture harmonization. Nevertheless, prevailing approaches still fall short in effectively encapsulating
intricate structural features. This motivates us to harness high-frequency information and design a
novel feature fusion strategy, as such information offers sharper style cues.

3 METHODOLOGY

3.1 OVERALL SCHEME

Given a set of k reference images x = {xi}ki=1 and a content image Ic, our model aims to generate
a character Io that retains the same content with Ic and the same style with x. As illustrated in
Figure 2 (a), the generator mainly includes eight parts. Among them, the content encoder Ec extracts
the feature representation fc from Ic. It is pre-trained via a Vector Quantized Variational Auto-
Encoder (VQ-VAE) to acquire a component-wise codebook Fc as well. The reference images x
are first processed by a high-pass filter to obtain their high-frequency images h = {hi}ki=1. Next,
the spatial and high-frequency style encoders, Ess and Esh, extract style features fspa = {fis}ki=1

and ffre = {fir}ki=1 from x and h, respectively. After that, fspa is further refined through a gate
mechanism to yield f̂spa = {f̂is}ki=1, which is then fused with ffre and Fc via our proposed SCFM
to derive the style feature fsa. Meanwhile, the Content Alignment Module (CAM) adaptively re-
weights and aggregates f̂spa to get the aligned content feature fca. Finally, the decoder Dr outputs
the result Io by concatenating fc, fsa, and fca as inputs.

During the model’s training, a multi-task discriminator Ds,c is employed to distinguish between the
real and generated images, as shown in Figure 2 (b). Moreover, to ensure that the generated glyph
accurately reflects the reference style while preserving the input content structure, it also performs
the classifications on each character, identifying both its style and content categories. The complete
architectures of the generator and discriminator are provided in Appendix A.1. Notably, the content
encoder Ec and the codebook Fc remain frozen during the main training stage, while all other
components are fully trainable.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Content Image Ic

Reference Images
x = { x1, x2,..., xk }

Spatial Style
Encoder Ess

fc

Content
Similarity Calculation

Content
Encoder Ec Generated Result Io

Decoder Dr

(a) Generator Network

fsa

...
...

fca

Discriminator
Ds,c

(b) Discriminator Network

L1

Target Image It

} {= 21
c

k
ccc

s f,...,f,ff

Content Label c

Style Label s

Component-wise
Codebook Fc

High-freq Style
Encoder Esh

...

×

...

...

...

...

} {= 21 ksssspa f,...,f,ff

} {= 21 krrrfre f,...,f,ff

} {= 21 ksssspa f̂,...,f̂,f̂f̂

} {= 21 ksssspa f̂,...,f̂,f̂f̂

High-frequency Images
h = { h1, h2,..., hk }

Figure 2: Overview of our proposed HF-Font. (a) The generator network mainly consists of the
following parts: a pre-trained content encoder Ec, a spatial style encoder Ess, a high-frequency
style encoder Esh, a high-pass filter, a gate mechanism, a Content Alignment Module (CAM), a
Style-Content Fusion Module (SCFM), and a decoder Dr. (b) A discriminator network is used to
distinguish the real and fake images, while also classifying the content and style categories of the
generated characters.

3.2 STYLE-ENHANCED MODULE

To enrich the style representations, we introduce a style-enhanced module that exploits high-
frequency information into the feature extraction process. In particular, a Laplacian kernel is used
as a high-pass filter to obtain high-frequency counterparts h from reference images x. This op-
eration efficiently emphasizes fine-grained details without relying on any frequency-domain trans-
formation (Wahl, 2024). Next, two parallel style encoders, Ess and Esh, are employed to extract
complementary style features fspa and ffre from x and h separately. Though structurally identical,
these two encoders do not share weights with each other. Moreover, a gate mechanism is integrated
into the spatial branch to modulate fspa, allowing only informative style cues to pass.

Gate Mechanism. Intuitively, the stroke regions in reference images are often sparse, which makes
style extraction susceptible to background noise (Dai et al., 2024). Here, background noise refers to
the non-informative or low-response activations in intermediate feature maps during convolutional
encoding, rather than the white background of the glyph images. To solve this problem, we bring
in a gate mechanism to selectively filter the reference features. Specifically, the initial spatial style
feature fspa = {fis}ki=1 is fed into a gate layer, consisting of a learnable fully-connected layer
followed by a Sigmoid activation, to produce the gate units w = {wi}ki=1. Each wi flexibly controls
the information flow of fis, where higher values indicate stronger retention of the style signals. The
refined features f̂spa = {f̂is}ki=1 are obtained by element-wise multiplication, i.e., f̂is = wi · fis.
This design effectively suppresses extraneous noise while preserving meaningful style patterns.

3.3 GLYPH FEATURE DECOMPOSITION AND CONTENT ALIGNMENT MODULE

Glyph Feature Decomposition. In our HF-Font, the content encoder is pre-trained through a glyph
feature decomposition network, which projects each character into a component-wise codebook.
This network is trained on a certain character set for image reconstruction. As illustrated in Figure 3,
the content encoder Ec is built on CNN and maps a character image If into latent representation Zc.
Then, vector quantization (Aaron et al., 2017) is applied to discrete Zc as:

zic = ejc, s.t. j = argmin
j∈{1,2,...,d}

∥zic − ejc∥22 (1)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Codebook Fc

Encoder Ec Reconstruction
Decoder Dr

规
Zc Zq

If Ir

Latent Loss Llat

Reconstruction Loss Lrec

2
3

d
...

1

规

Figure 3: The architecture of glyph feature
decomposition network. It is utilized for pre-
training Ec and acquiring Fc.

where each spatial vector zic in Zc is replaced
by its nearest code vector ejc from the codebook
Fc, which contains d code vectors. Finally, the
reconstruction decoder Dr takes the matched
codes Zq as input to reconstruct the glyph Ir.
Visual analyses of the codebook are presented
in Appendix A.2.

During pre-training, Ec and Dr are optimized
by minimizing an objective function Lpre that
contains a reconstruction loss Lrec and a latent
loss Llat, defined as follows:

Lpre = Lrec + Llat = ∥If − Ir∥1 + α∥sg[Zc]− Zq∥22 + γ∥Zc − sg[Zq]∥22 (2)

where sg denotes the stop-gradient operator. α and γ are the balancing hyper-parameters. Experi-
mentally, we set them as 1 and 0.25, respectively.

Upon completing pre-training, we fix the content encoder Ec along with the codebook Fc to build
the font generation model. To be noticed, although the reconstruction decoder Dr adopts the same
architecture with the font generation model’s decoder, the latter is re-trained from scratch during the
main training phase.

Content Alignment Module. From a perceptual perspective, reference characters sharing similar
elements with the input glyph should receive more attention during the style transfer process (Zhu
et al., 2020). To this end, in the Content Alignment Module (CAM), we first extract the content
features f c

s = {f c
i }ki=1 from reference images via the content encoder Ec. In addition, to ensure

dimension compatibility, both f c
s and fc are reshaped to f c

s and fc. Then, the similarity values are
calculated using the normalized cross-correlation measurement (Singhal, 2001) as:

Φia =
⟨fca

i , fa
c ⟩∥∥fca

i

∥∥ ∗ ∥∥fa
c

∥∥ , a ∈ {1, 2, . . . , T} (3)

where a refers to the position within the T -dimensional channel, and Φia is a scalar representing
the similarity between the a-th channel of the i-th reference image and the content image. Next,
we normalize these values channel-wise using the Softmax function, and apply them to weight the
spatial style feature representations f̂spa to obtain the aligned content feature fca by:

Φia = Softmax(Φia) fca = Concata

(
k∑

i=1

Φiaf̂
a
is

)
(4)

3.4 STYLE-CONTENT FUSION MODULE

The Style-Content Fusion Module (SCFM) serves as the core integration unit that harmonizes con-
tent structure and style representations. As shown in Figure 4, each attention block contains two key
components, namely Grouped Residual Layer (GRL) and Exponential-Space Relative Position Bias
(ES-RPB), which are introduced below.

Grouped Residual Layer. Some prior works (Zhou et al., 2023; Li et al., 2024) have pointed out
the computational redundancy and complexity in the generation of query, key, and value matrices.
To mitigate this, we design the Grouped Residual Layer (GRL) that integrates grouping and residual
connections to improve efficiency and learning capacity. Formally, given an input S ∈ RB×N×C , we
first split S along the channel dimension into two halves, denoted as S1, S2 ∈ RB×N×C

2 . Then, two
linear layers, Γ1 and Γ2, are applied to both parts, combined with residual connections to enhance
the gradient flow, as follows:

Ω1 = Γ1(S1) + S1, Ω1 ∈ RB×N×C
2

Ω2 = Γ2(S2) + S2, Ω2 ∈ RB×N×C
2

(5)

Ultimately, Ω1 and Ω2 are concatenated along the channel dimension to get the output.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

ES-RPB

... ...
spaf̂ fref

Fc
fsa

Fs

Grouped Residual
Attention Block (GRAB)

K, V
Q

K, V
Q Output

Adapter

G
R

L
G

R
L

G
R

L

NormalizeR

R

R

TNormalize

Q

K

V

× · + S

×

Sc
al

e

M
LP

∆Y

EXP

LinearR

Linear

Linear

+
+

R

T

S

×

·

+

Reshape

Transposition

Softmax

Matrix
Multiplication

Scalar
Multiplication

Element-wise
Sum

Chunk

Concatenation

Grouped Residual
Attention Block (GRAB)

Grouped Residual Layer (GRL)

Fc

(Fs)

spaf̂

)(fref

B×N×C B×N×C

B×N×C/2

B×N×C/2

B×N×C/2

B×N×C/2

∆X

Figure 4: Style-Content Fusion Module. It is made up
of two Grouped Residual Attention Blocks (GRABs)
and one output adapter for dimensional adjustment.

Exponential-Space Relative Position
Bias. Considering that conventional Rel-
ative Position Bias (RPB) assigns posi-
tional weights independently and over-
looks the principle that nearby pixels con-
tribute more to image generation (Liang
et al., 2021), we propose the Exponential-
Space Relative Position Bias (ES-RPB).
Particularly, we introduce an exponen-
tial mapping to the original absolute posi-
tion coordinate (∆X , ∆Y), which injects
distance-awareness into the original RPB,
thus promoting local focus. What’s more,
to better stabilize training, a lightweight
Multi-Layer Perceptron (MLP) is em-
ployed to process the transformed coordi-
nate (∆X̂ , ∆Ŷ) and acquire the final bias
matrix ΛE . The operation process can be
formulated as:

∆X̂ = sign(∆X) · (1− exp(−|δ ·∆X|))

∆Ŷ = sign(∆Y) · (1− exp(−|η ·∆Y |))

ΛE = MLP(∆X̂,∆Ŷ)

(6)

where δ and η are the trainable factors that control the sensitivity to positional offsets within the same
window. Besides, the symbol · denotes element-wise multiplication, and the MLP comprises two
linear layers with an activation function in between. We set both δ and η to 3.2 in our experiments.

Based on the GRL and ES-RPB, we elaborate on the fusion process of SCFM. Notably, to ensure di-
mension matching, we first flatten the spatial structure of key and value features across both blocks.
In each GRAB, the query Q, key K, and value V are derived by applying three GRLs to the cor-
responding inputs. Next, the similarity between Q and K is computed via normalized dot-product,
which is then scaled by a learnable factor µ (initialized to 10), and further refined with ΛE . After
that, the attention weights are obtained through the Softmax function, followed by feature aggrega-
tion with V . Lastly, a linear projection ΓProj is employed to output the result. The overall pipeline
is represented as follows:

GRAB = Γproj(Softmax(µ ·Normalize(Q) ∗Normalize(K)⊤ + ΛE)V) (7)

In the first GRAB, the component-wise codebook Fc serves as Q, while the refined spatial style
feature f̂spa is used as K and V , yielding the intermediate output Fs. The second GRAB follows
the same structure, where Q is replaced by Fs, with both K and V jointly assigned to ffre. Finally,
we utilize an output adapter to adjust the channel dimension, obtaining the fused style representation
fsa. More theoretical analyses of SCFM can be found in Appendix A.5.

3.5 TRAINING OBJECTIVE

The loss functions of our proposed HF-Font consist of three parts: adversarial loss, matching loss,
and style contrastive loss.

Adversarial Loss. To ensure plausibility in both style and content, we use a multi-head discrimina-
tor Ds,c conditioned on the style label s and content label c. The loss function is implemented on
the hinge GAN loss (Zhang et al., 2019) by:

LD
adv = −EIt∼pdata min (0,−1 +Ds,c (It))− EIo∼pG min (0,−1−Ds,c (Io))

LG
adv = −EIo∼pGDs,c (Io)

(8)

where pdata and pG denote the set of real images and generated images, respectively.

Matching Loss. To mitigate mode collapse and enforce the generated character Io closely resemble
to the ground truth It at both pixel and feature levels, we apply an L1 loss on the image and its

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

features, as defined below:

Limg = EIt∼pdata [∥It − Io∥1]

Lfeat = EIt∼pdata

[
M∑

m=1

∥∥∥D(m)
s,c (It)−D(m)

s,c (Io)
∥∥∥
1

]
(9)

where M is Ds,c’s layer number and D
(m)
s,c (·) refers to the feature map in the m-th layer of Ds,c.

Style Contrastive Loss. To promote the extraction of discriminative style features from high-
frequency information, we propose the style contrastive loss Lcst. It encourages high-frequency
style feature ffre from the same font to be closer in the feature space, while pushing apart those
from different fonts, as follows:

Lcst = − 1

U

∑
i∈Θ

1

|P (i) |
∑

p∈P (i)

log
exp (vi · vp/τ)∑

a∈A(i) exp (vi · va/τ)
(10)

In detail, i ∈ Θ = {1, 2, ..., U} is the sample index in a batch size of U and A(i) = Θ\{i} represents
other indices distinct from i. Besides, vi denotes the normalized high-frequency feature of the i-th
font derived from f

(i)
fre. Its positive set is defined as P (i) = {p ∈ A(i) | yp = yi}, where yi refers

to the font label of the i-th sample, and the remaining samples A(i)\P (i) serve as the negative
set. Apart from these, the scalar parameter τ controls the temperature of the similarity distribution,
which is set to 0.07.

Total Loss. Finally, we optimize HF-Font by the following full objective function:

min
G

max
D

(LD
adv + LG

adv + λ1Limg + λ2Lfeat + λ3Lcst) (11)

Here, λ1, λ2, and λ3 are the three weighting hyper-parameters. In our experiments, we empirically
set them to 1, 1, and 0.2, respectively.

4 EXPERIMENTS

4.1 DATASET AND EVALUATION METRICS

Dataset. We collect a large Chinese font dataset with 575 fonts (style), each containing 3500
commonly-used Chinese characters (content) at a resolution of 128×128. Notably, the font kai
is fixed as the content font throughout training and testing. It is also used to pre-train the feature
decomposition network for codebook acquisition.

For the training set, we randomly select 550 fonts with 3000 characters per font, forming the Seen
Fonts Seen Characters (SFSC) set. Our test set includes two parts: 24 Unseen Fonts with 500 Unseen
Characters per font (UFUC) and 550 Seen Fonts with 500 Unseen Characters per font (SFUC).

Evaluation Metrics. To comprehensively assess the quality of font generation, we utilize the fol-
lowing five metrics, including L1 loss, Structural Similarity Index Measure (SSIM) (Wang et al.,
2004), Root Mean Square Error (RMSE) (Karunasingha, 2022), Learned Perceptual Image Patch
Similarity (LPIPS) (Zhang et al., 2018a), and Frechet Inception Distance (FID) (Martin et al., 2017).

Furthermore, we also perform a user study to evaluate the subjective quality of generated results. In
particular, we randomly select 10 font styles from each test set and 10 characters per font. Then,
we invite 20 well-educated volunteers and ask them to choose the best generation result among the
comparison methods. Here, all the samples are shuffled before evaluation to avoid any potential
bias. In addition, all the participants evaluate the same set of samples to ensure consistency and
comparability across the results.

4.2 IMPLEMENTATION DETAILS

The entire training process consists of two stages. In the first stage, we train the feature decomposing
network with 3000 Chinese characters rendered in the font kai. During this stage, we set the em-
bedding dimension to 256, the codebook size to 100, the batch size to 64, and the number of training

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Quantitative comparison results on UFUC and SFUC datasets.

Dataset Method Venue SSIM↑ RMSE↓ LPIPS↓ FID↓ L1↓ User study↑

UFUC

FUNIT ICCV 2019 0.6276 0.3356 0.2692 71.3708 0.1376 2.55%
MX-Font ICCV 2021 0.6966 0.3159 0.2359 62.7500 0.1235 5.25%
DG-Font CVPR 2021 0.6527 0.3238 0.2058 61.6022 0.1241 5.55%
LF-Font AAAI 2021 0.6768 0.3110 0.2516 66.8840 0.1190 5.45%
CF-Font CVPR 2023 0.6613 0.3102 0.2014 59.7644 0.1169 8.90%
VQ-Font ICCV 2023 0.6776 0.3066 0.2157 58.2632 0.1175 10.35%

FontDiffuser AAAI 2024 0.6390 0.3579 0.2816 79.4458 0.1530 8.35%
IF-Font NeurIPS 2024 0.6891 0.3130 0.2173 59.6292 0.1038 11.10%

MX-Font++ ICASSP 2025 0.7092 0.2897 0.1855 57.7845 0.0976 12.05%
DA-Font ACM MM 2025 0.7352 0.2854 0.1699 54.1856 0.0872 13.75%

HF-Font (Ours) - 0.7518 0.2692 0.1544 50.0632 0.0817 16.70%

SFUC

FUNIT ICCV 2019 0.6056 0.3583 0.2777 68.8726 0.1545 2.25%
MX-Font ICCV 2021 0.6733 0.3314 0.2197 61.0583 0.1321 5.65%
DG-Font CVPR 2021 0.6478 0.3278 0.2006 58.3525 0.1277 5.80%
LF-Font AAAI 2021 0.6140 0.3335 0.2726 69.2239 0.1520 5.55%
CF-Font CVPR 2023 0.6569 0.3186 0.1974 57.9868 0.1202 8.60%
VQ-Font ICCV 2023 0.6414 0.3304 0.2069 56.7299 0.1305 9.95%

FontDiffuser AAAI 2024 0.6317 0.3691 0.2910 73.3052 0.1574 8.65%
IF-Font NeurIPS 2024 0.6652 0.3280 0.2221 62.8246 0.1213 10.70%

MX-Font++ ICASSP 2025 0.6843 0.3122 0.2043 57.1191 0.1179 11.40%
DA-Font ACM MM 2025 0.7287 0.3019 0.1792 49.2237 0.1116 14.05%

HF-Font (Ours) - 0.7335 0.2941 0.1677 46.1692 0.1063 17.40%

Dataset UFUC SFUC

Content

FUNIT

MX-Font

DG-Font

LF-Font

CF-Font

VQ-Font

FontDiffuser

IF-Font

MX-Font++

DA-Font

HF-Font (Ours)

Ground Truth

Figure 5: Qualitative comparison results on UFUC and SFUC datasets. Characters in the blue
boxes suffer from stroke errors (including missing or redundant strokes), while the red boxes high-
light conspicuous blurring or artifacts. Zoom in to see details.

iterations to 50000. In the second stage, we train the entire model via Adam optimizer (Kingma &
Ba, 2015) with β1 = 0.9 and β2 = 0.99. Here, the batch size is set to 8, with learning rates of
2× 10−4 for the generator and 4× 10−4 for the discriminator. The total number of iteration steps is
set to 600000. For the few-shot font generation task, the number of reference images is set to 4.

4.3 COMPARISON WITH SOTA METHODS

We compare our proposed HF-Font with eight state-of-the-art methods, including one image-to-
image translation method (FUNIT (Liu et al., 2019)) and nine classical font generation methods
(MX-Font (Park et al., 2021a), DG-Font (Xie et al., 2021), LF-Font (Park et al., 2021b), CF-
Font (Wang et al., 2023), VQ-Font (Pan et al., 2023), FontDiffuser (Yang et al., 2024), IF-Font (Chen
et al., 2024), MX-Font++ (Wang et al., 2025), and DA-Font (Chen et al., 2025)). For a fair compar-
ison, we retrain all these models using their default settings on our training set. To be noticed, none
of these above methods explicitly leverage high-frequency information.

The quantitative comparison results are summarized in Table 1. It is evident that our proposed
model achieves the best performance across all the evaluation metrics. Figure 5 displays the qual-
itative comparison results. We can observe that FUNIT exhibits structural incompleteness in most

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Quantitative results on different
modules. Among them, G, H, F, and L denote
the gate mechanism, high-frequency branch,
SCFM, and style contrastive loss, respectively.

Modules SSIM↑ RMSE↓ LPIPS↓ FID↓G H F L
0.6434 0.3228 0.2481 68.7447

✓ 0.6560 0.3175 0.2293 63.9206
✓ ✓ 0.6953 0.2986 0.1985 59.1434
✓ ✓ ✓ 0.7367 0.2734 0.1679 54.2591
✓ ✓ ✓ ✓ 0.7518 0.2692 0.1544 50.0632

Table 3: Quantitative results on different
codebook sizes. It demonstrates how varying
the number of embeddings Fc affects the qual-
ity of generated images.

Codebook Size SSIM↑ RMSE↓ LPIPS↓ FID↓

50 0.6276 0.3675 0.2531 69.6119
75 0.7173 0.3257 0.2074 62.0768
100 0.7518 0.2692 0.1544 50.0632
125 0.7624 0.2704 0.1456 49.1751
150 0.7689 0.2698 0.1497 47.0893

Content

Base Model

+G

+GH

+GHF

+GHFL

Ground Truth

Figure 6: Qualitative results on different mod-
ules. G, H, F, and L share the same notations
with Table 2. The first row is the base model.
The green boxes highlight details better gener-
ated by the full model. Zoom in to see details.

Number of reference images 1 2 3 4 5 6 7 8

SSIM 0.4228 0.5589 0.7007 0.7518 0.7606 0.7647 0.7729 0.7705

RMSE 0.5612 0.4218 0.3293 0.2692 0.2526 0.2473 0.2289 0.2352

LPIPS 0.3501 0.2724 0.2216 0.1544 0.1586 0.1566 0.141 0.136

FID/100 0.744 0.6547 0.5888 0.5006 0.4821 0.4686 0.4476 0.4375

L1_Loss 0.1253 0.1162 0.0908 0.0817 0.0862 0.0860 0.0873 0.0794

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8

V
al

ue

The Number of Reference Images

SSIM RMSE LPIPS FID/100

Figure 7: Performance trend with different
numbers of reference images.

cases. Only when the source font closely resembles the target one can it generate well-layout char-
acters. Although MX-Font and LF-Font could preserve the overall character shapes, their outputs
often appear blurry with indistinct textures, resulting in degraded stroke smoothness and clarity.
Besides, DG-Font also struggles to capture fine-grained details in complex glyphs, which leads to
incomplete or fuzzy components. While CF-Font generally maintains the correct glyph layouts,
it usually introduces noticeable artifacts. VQ-Font demonstrates good stability but lacks precise
control over local features, resulting in glyph distortions and vague strokes. In addition, the per-
formances of FontDiffuser and IF-Font are also outstanding, but their generated results sometimes
suffer from obvious stroke errors. MX-Font++ improves style aggregation yet still shows obvious
drawbacks in some cases, while DA-Font could preserve well structures but sometimes suffers from
local blurring. As a whole, characters generated by our HF-Font are of high quality in terms of style
consistency, accurate global structures, and delicate local details. Notably, Additional comparison
results are provided in Appendix A.3, more generation results are included in Appendix A.6, and
the cross-lingual generation results are presented in Appendix A.7.

4.4 ABLATION STUDY

In this section, we conduct a series of ablation experiments to access the influence of each part in
our model. These experiments are performed on the UFUC dataset. More analyses and results are
provided in the Appendix A.4.

The Effect of Different Modules. We separate the proposed modules and sequentially add them
to the base model to observe their individual effects. The quantitative results are presented in Ta-
ble 2, validating that all these modules can help improve the quality. Beyond numerical advances,
they also bring a noticeable improvement in the visual aspects of geometric structures and stylistic
strokes, as depicted in Figure 6. The gate mechanism suppresses background noise to enable more
reliable spatial style extraction. Building on this, the high-frequency branch enriches local details
and SCFM facilitates comprehensive feature fusion, which strengthens both structural coherence
and style consistency. Moreover, the style contrastive loss further enhances the precision of results.

The Effect of Codebook Size. The size of codebook Fc significantly affects the model’s complexity
and feature decomposition ability. Table 3 presents the quantitative results under different codebook
sizes. We can find that the performance improves with increasing codebook size up to 100. Never-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

theless, beyond this point, further enlarging the codebook yields marginal gains, with some metrics
(e.g., RMSE) even showing slight degradation. This suggests that while a larger codebook could
enhance representation, excessive sizes would introduce more redundant information, which might
compromise the model’s efficiency. Hence, in other experiments, we set the codebook size to 100.

The Effect of Reference Image Numbers. Intuitively, given more reference images, the generated
results would be better due to the availability of richer style information. As illustrated in Fig-
ure 7, the model’s performance consistently improves as the number of reference images increases.
Specifically, when the number rises from 1 to 4, the quality of generated results yields notable gains.
However, further increases bring only marginal improvements while introducing additional infer-
ence time and memory overhead. Thus, in our paper, to strike a balance between performance and
efficiency, we set the number of reference images to 4.

5 CONCLUSION

In this paper, we propose HF-Font, a novel few-shot font generation framework that leverages high-
frequency information from reference images to enhance style extraction. To capture more distinc-
tive style features, we introduce a style contrastive loss to facilitate the transfer process. Meanwhile,
a gate mechanism is employed to suppress background noise while retaining meaningful style cues.
Furthermore, we also design a Style-Content Fusion Module (SCFM) to promote effective inte-
gration of style and content representations. Both quantitative and qualitative experimental results
verify that our proposed model exceeds other competitive methods on various fonts and characters.

REPRODUCIBILITY STATEMENT

We have included detailed descriptions of our method in the main text (Section 3), as well as exper-
imental settings (Section 4.1 and Section 4.2) to ensure reproducibility. Additional information is
provided in the appendix, including the network architecture (Appendix A.1) and theoretical analy-
ses (Appendix A.5), which further support the reproducibility of our results.

REFERENCES

van den Oord Aaron, Vinyals Oriol, Kavukcuoglu Koray, and et al. Neural discrete representation
learning. In Proc. NeurIPS, pp. 6309–6318, 2017.

Weiran Chen, Chunping Liu, Yi Ji, and et al. Chinese character style transfer model based on
convolutional neural network. In Proc. ICANN, pp. 558–569, 2022.

Weiran Chen, Guiqian Zhu, Ying Li, Yi Ji, and Chunping Liu. DA-Font: few-shot font generation
via dual-attention hybrid integration. In Proc. ACM MM, pp. 6644–6653, 2025.

Xinping Chen, Xiao Ke, Wenzhong Guo, and et al. IF-Font: Ideographic description sequence-
following font generation. In Proc. NeurIPS, pp. 1–23, 2024.

Jooyoung Choi, Sungwon Kim, Yonghyun Jeong, and et al. ILVR: Conditioning method for denois-
ing diffusion probabilistic models. In Proc. ICCV, pp. 14347–14356, 2021.

Gang Dai, Yifan Zhang, Quhui Ke, and et al. One-DM: One-shot diffusion mimicker for handwritten
text generation. In Proc. ECCV, pp. 410–427, 2024.

Bin Fu, Junjun He, Jianjun Wang, and Yu Qiao. Neural transformation fields for arbitrary-styled
font generation. In Proc. CVPR, pp. 22438–22447, 2023.

Yue Gao, Yuan Guo, Zhouhui Lian, and et al. Artistic glyph image synthesis via one-stage few-shot
learning. ACM Trans. Graph., 38:1–12, 2020.

Ian J Goodfellow, Pouget-Abadie Jean, Mirza Mehdi, Bing Xu, Aaron Courville, and et al. Genera-
tive adversarial nets. In Proc. NeurIPS, pp. 2672–2680, 2014.

Haibing He, Xinyuan Chen, Chaoyue Wang, and et al. Diff-Font: Diffusion model for robust one-
shot font generation. Int. J. Comput. Vis., 132:5372–5386, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jonathan Ho, Ajay Jain, Pieter Abbeel, and et al. Denoising diffusion probabilistic models. In Proc.
NeurIPS, pp. 1–12, 2020.

Xun Huang and Serge Belongie. Arbitrary style transfer in real-time with adaptive instance normal-
ization. In Proc. ICCV, pp. 1510–1519, 2017.

Philip Isola, Jun-Yan Zhu, Tinghui Zhou, and et al. Image-to-image translation with conditional
adversarial networks. In Proc. CVPR, pp. 5967–5976, 2017.

Dulakshi Santhusitha Kumari Karunasingha. Root mean square error or mean absolute error? use
their ratio as well. Inf. Sci., 585:609–629, 2022.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proc. ICLR,
pp. 1–15, 2015.

Juyeon Ko, Inho Kong, Dogyun Park, and et al. Stochastic conditional diffusion models for robust
semantic image synthesis. In Proc. ICML, pp. 24932–24963, 2024.

Yuxin Kong, Canjie Luo, Weihong Ma, Qiyuan Zhu, Shenggao Zhu, Nicholas Yuan, and et al. Look
closer to supervise better: One-shot font generation via component-based discriminator. In Proc.
CVPR, pp. 13472–13481, 2022.

Yuzhen Li, Zehang Deng, Yuxin Cao, and et al. GRFormer: Grouped residual self-attention for
lightweight single image super-resolution. In Proc. ACM MM, pp. 9378–9386, 2024.

Jingyun Liang, Jiazhang Cao, Guolei Sun, Kai Zhang, Radu Timofte, and et al. SwinIR: Image
restoration using swin transformer. In Proc. ICCV, pp. 1833–1844, 2021.

Mingyu Liu, Xun Huang, Arun Mallya, Tero Karras, Timo Aila, and et al. Few-shot unsupervised
image-to-image translation. In Proc. ICCV, pp. 10550–10559, 2019.

Heusel Martin, Ramsauer Hubert, Unterthiner Thomas, and et al. Gans trained by a two time-scale
update rule converge to a local nash equilibrium. In Proc. NeurIPS, pp. 6629–6640, 2017.

Ben Mildenhall, Pratul P. Srinivasan, and et al. Nerf: Representing scenes as neural radiance fields
for view synthesis. In Proc. ECCV, pp. 405–421, 2020.

Wei Pan, Anna Zhu, Xinyu Zhou, and et al. Few shot font generation via transferring similarity
guided global style and quantization local style. In Proc. ICCV, pp. 19449–19459, 2023.

Song Park, Sanghyuk Chun, Junbum Cha, and et al. Multiple heads are better than one: Few-shot
font generation with multiple localized experts. In Proc. ICCV, pp. 13880–13889, 2021a.

Song Park, Sanghyuk Chun, Junbum Cha, and et al. Few-shot font generation with localized style
representations and factorization. In Proc. AAAI, pp. 2393–2402, 2021b.

Amit Singhal. Modern information retrieval: A brief overview. IEEE Data Eng. Bull., 24:35–43,
2001.

Danyang Sun, Tongzheng Ren, Chongxuan Li, and et al. Learning to write stylized chinese charac-
ters by reading a handful of examples. In Proc. IJCAI, pp. 920–927, 2018.

Licheng Tang, Yiyang Cai, Jiaming Liu, Zhibin Hong, and et al. Few-shot font generation by
learning fine-grained local styles. In Proc. CVPR, pp. 7895–7904, 2022.

Martin Wahl. A kernel-based analysis of laplacian eigenmaps, 2024.

Chi Wang, Min Zhou, Ge Tiezheng, and et al. CF-Font: Content fusion for few-shot font generation.
In Proc. CVPR, pp. 1858–1867, 2023.

Weihang Wang, Duolin Sun, Jielei Zhang, and Longwen Gao. MX-Font++: mixture of heteroge-
neous aggregation experts for few-shot font generation. In Proc. ICASSP, pp. 1–5, 2025.

Zhou Wang, A.C Bovik, H.R. Sheikh, and et al. Image quality assessment: from error visibility to
structural similarity. IEEE Trans. Image Process., 13:600–612, 2004.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yangchen Xie, Xinyuan Chen, Li Sun, and Yue Lu. DG-Font: Deformable generative networks for
unsupervised font generation. In Proc. CVPR, pp. 5130–5140, 2021.

Zhenhua Yang, Dezhi Peng, Yuxin Kong, and et al. FontDiffuser: one-shot font generation via
denoising diffusion with multi-scale content aggregation and style contrastive learning. In Proc.
AAAI, pp. 6603–6611, 2024.

Han Zhang, Ian J. Goodfellow, Dimitris N. Metaxas, and et al. Self-attention generative adversarial
networks. In Proc. ICML, pp. 7354–7363, 2019.

Richard Zhang, Phillip Isola, A.Efros Alexei, and et al. The unreasonable effectiveness of deep
features as a perceptual metric. In Proc. CVPR, pp. 586–595, 2018a.

Yexun Zhang, Ya Zhang, Wenbin Cai, and et al. Separating style and content for generalized style
transfer. In Proc. CVPR, pp. 8447–8455, 2018b.

Yupeng Zhou, Zhen Li, Chunle Guo, and et al. SRFormer: Permuted self-attention for single image
super-resolution. In Proc. ICCV, pp. 12734–12745, 2023.

Anna Zhu, Xiongbo Lu, Xiang Bai, and et al. Few-shot text style transfer via deep feature similarity.
IEEE Trans. Image Process., 29:6932–6946, 2020.

Jun-Yan Zhu, Taesung Park, Isola Philip, and et al. Unpaired image-to-image translation using
cycle-consistent adversarial networks. In Proc. ICCV, pp. 2242–2251, 2017.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

In this appendix, we provide additional details and analyses, including network architecture, visu-
alizations of the codebook, extended comparison and ablation studies, theoretical analyses of GRL
and ES-RPB in SCFM, more generation results, cross-lingual generation results, as well as a brief
description of our usage of large language models (LLMs) for writing polish.

A.1 NETWORK ARCHITECTURE

Our entire model consists of two primary parts: the generator and the discriminator. Both of them
are built up with two types of layers: the convolution layer and the residual layer, which are illus-
trated in Figure 8. Each residual layer includes two identical convolution layers. Notably, since
the residual layer has its own downsampling operator, its convolution layers do not perform addi-
tional downsampling. The detailed architectures of content encoder Ec, spatial style encoder Ess,
high-freq style encoder Esh, decoder Dr, and discriminator Ds,c are shown in Table 4.

Table 4: Architectures of the generator modules Ec, Ess, Esh, Dr, and the discriminator Ds,c.
IN and SN denote instance normalization and spectral normalization, respectively. Besides, all the
padding operations are zero-padding. In the discriminator’s output layer, we utilize two embedding
operators to embed the output feature map into two prediction vectors of both its style and content.

Content Encoder Ec

Layer Type Normalization Activation Padding Kernel Size Stride Downsample Feature Maps
Convolution Layer IN ReLU 1 3 1 - 32
Convolution Layer IN ReLU 1 3 2 - 64
Convolution Layer IN ReLU 1 3 2 - 128
Convolution Layer IN ReLU 1 3 2 - 256
Convolution Layer IN ReLU 1 3 1 - 256

Spatial Style Encoder Ess

Layer Type Normalization Activation Padding Kernel Size Stride Downsample Feature Maps
Convolution Layer IN ReLU 1 3 1 - 32
Convolution Layer IN ReLU 1 3 1 AvgPool 64
Convolution Layer IN ReLU 1 3 1 AvgPool 128

Residual Layer IN ReLU 1 3 1 - 128
Residual Layer IN ReLU 1 3 1 - 128
Residual Layer IN ReLU 1 3 1 AvgPool 256
Residual Layer IN ReLU 1 3 1 - 256
Output Layer - Sigmoid - - - - 256

High-freq Style Encoder Esh

Layer Type Normalization Activation Padding Kernel Size Stride Downsample Feature Maps
Convolution Layer IN ReLU 1 3 1 - 32
Convolution Layer IN ReLU 1 3 1 AvgPool 64
Convolution Layer IN ReLU 1 3 1 AvgPool 128

Residual Layer IN ReLU 1 3 1 - 128
Residual Layer IN ReLU 1 3 1 - 128
Residual Layer IN ReLU 1 3 1 AvgPool 256
Residual Layer IN ReLU 1 3 1 - 256
Output Layer - Sigmoid - - - - 256

Decoder Dr

Layer Type Normalization Activation Padding Kernel Size Stride Upsample Feature Maps
Residual Layer IN ReLU 1 3 1 - 256
Residual Layer IN ReLU 1 3 1 - 256
Residual Layer IN ReLU 1 3 1 - 256

Convolution Layer IN ReLU 1 3 1 Nearest 128
Convolution Layer IN ReLU 1 3 1 Nearest 64
Convolution Layer IN ReLU 1 3 1 Nearest 32
Convolution Layer IN ReLU 1 3 1 - 1

Output Layer - Sigmoid - - - - 1

Discriminator Ds,c

Layer Type Normalization Activation Padding Kernel Size Stride Upsample Feature Maps
Convolution Layer SN - 1 3 2 - 32

Residual Layer SN ReLU 1 3 1 AvgPool 64
Residual Layer SN ReLU 1 3 1 AvgPool 128
Residual Layer SN ReLU 1 3 1 AvgPool 256
Residual Layer SN ReLU 1 3 1 - 512
Residual Layer SN ReLU 1 3 1 - 512
Output Layer Multi-task embedding

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Input
Feature

Normalization

Activation

 Convolution

 Downsample

Output
Feature

Input
Feature

Output
Feature

 Downsample

+

Conv Layer

Conv Layer

 Downsample

(a) Convolution Layer (b) Residual Layer

Figure 8: Structures of the convolution layer and the residual layer in Table 4.

A.2 VISUAL ANALYSES OF THE CODEBOOK

To gain a deeper understanding into the learned quantization space, we visualize some representa-
tive codebook vectors to illustrate the structural information they encode. As shown in Figure 9,
each code vector exhibits distinct spatial activations, with some focusing on vertical structures and
others highlighting horizontal patterns. This indicates that the codebook could implicitly capture
component-level abstractions, which facilitates structural decomposition without the need for any
explicit prior knowledge. Such findings provide empirical support for the interpretability of the
learned codebook and its critical role in character layout modelling.

Code 1 Code 18 Code 20 Code 98Code 44

Code 6 Code 12 Code 62 Code 96Code 36

Vertical
Structure

Horizontal
Structure

Figure 9: The visualization of some latent codes.

A.3 MORE COMPARISON RESULTS

In addition to the two test sets (UFUC and SFUC) discussed in the main paper, we further conduct
comparison experiments on a third benchmark, 24 Unseen Fonts with 3000 Seen Characters per font
(UFSC), to evaluate the generalization ability of our proposed method.

Apart from the state-of-the-art methods mentioned in Section 4.3, we also include Diff-Font, a
generative architecture built upon the diffusion model, as an extra comparison method. Notably,
since Diff-Font is limited to generating seen characters, we only evaluate it on the UFSC test set.

The quantitative comparison results are presented in Table 5, which shows that our HF-Font consis-
tently outperforms all the competing methods across multiple evaluation metrics. Figure 10 displays
the qualitative comparison results. We can observe that FUNIT tends to produce structurally incom-
plete glyphs, while MX-Font and LF-Font preserve the overall shapes but yield blurred textures with
limited visual fidelity. DG-Font struggles with local details, leading to missing strokes or misplac-
ing components in complex characters. Besides, CF-Font maintains the overall layout but suffers
from artifacts and style inconsistencies. VQ-Font achieves reasonable style adaptation yet lacks
fine-grained control, resulting in glyph distortions. Although Diff-Font, FontDiffuser, and IF-Font
perform relatively well, stroke-level errors still occur in some cases. MX-Font++ enhances style ag-

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

gregation but still exhibits noticeable issues in certain cases, whereas DA-Font generally preserves
global structures yet occasionally suffers from local blurriness. In contrast, our HF-Font generates
characters with superior style consistency, better structural accuracy, and refined local details.

Table 5: Quantitative comparison results on UFSC dataset.

Method Venue SSIM↑ RMSE↓ LPIPS↓ FID↓ L1↓ User study↑
FUNIT ICCV 2019 0.6309 0.3339 0.2685 59.3728 0.1362 2.40%

MX-Font ICCV 2021 0.7062 0.3229 0.2063 53.3935 0.1205 4.30%
DG-Font CVPR 2021 0.6658 0.3138 0.1877 50.0568 0.1256 4.70%
LF-Font AAAI 2021 0.6812 0.3090 0.2471 55.2930 0.1176 4.60%
CF-Font CVPR 2023 0.6794 0.3063 0.1836 49.7423 0.1224 7.95%
VQ-Font ICCV 2023 0.6842 0.2995 0.1927 48.6191 0.1166 9.75%
Diff-Font1 IJCV 2024 0.6143 0.3242 0.1851 60.0310 0.1370 6.85%

FontDiffuser AAAI 2024 0.6430 0.3433 0.2846 63.1833 0.1483 8.20%
IF-Font NeurIPS 2024 0.6915 0.2997 0.1962 48.3104 0.1181 10.65%

MX-Font++ ICASSP 2025 0.7351 0.2923 0.1798 46.7172 0.1127 11.55%
DA-Font ACM MM 2025 0.7544 0.2782 0.1649 43.8763 0.0916 13.60%

HF-Font (Ours) - 0.7612 0.2635 0.1567 40.6694 0.0859 15.45%
1 Diff-Font can only generate seen characters, so we evaluate this model on the UFSC test set alone.

Content

FUNIT

MX-Font

DG-Font

LF-Font

CF-Font

VQ-Font

Diff-Font

FontDiffuser

IF-Font

MX-Font++

DA-Font

HF-Font (Ours)

Ground Truth

Figure 10: Qualitative comparison results on UFSC dataset. Characters in the blue boxes suffer
from stroke errors (e.g., missing or redundant strokes), while the red boxes highlight conspicuous
blurring or artifacts. Zoom in to see details.

A.4 MORE ABLATION STUDIES

Like Section 4.4, we carry out the additional ablation experiments on the UFUC dataset.

The Effect of Different High-pass Filters. We conduct ablation experiments to evaluate the im-
pacts of different high-pass filters. As illustrated in Figure 11, we compare the Laplacian filter with
three other commonly-used filters, including Wavelet, Fourier, and Sobel. From the figure, we no-
tice that the Wavelet filter could capture local high-frequency details but often yields overly sparse
and fragmented features, which may impede stroke continuity modelling. Besides, the Fourier fil-
ter tends to produce dim and blurry edges in the spatial domain. Additionally, although the Sobel
operator provides enhancement along the gradient directions, it is susceptible to noise, resulting in
disjointed contours. In contrast, the Laplacian filter extracts more accurate and sharper character
contours and structures. The quantitative results in Table 6 also confirm its advantage in extracting
high-frequency style features.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

The Effect of GRL and ES-RPB in SCFM. To assess the roles of Grouped Residual Layer (GRL)
and Exponential-Space Relative Position Bias (ES-RPB) in our proposed Style-Content Fusion
Module (SCFM), we perform a series of ablation experiments. The quantitative results are sum-
marized in Table 7, and the qualitative comparisons are presented in Figure 12.

From the results, we can find that removing GRL while retaining ES-RPB alone would lead to a
performance drop, with SSIM decreasing from 0.7518 to 0.7327 and RMSE increasing from 0.2692
to 0.2797. This indicates that GRL facilitates effective feature fusion via structured residual learn-
ing. As shown in Figure 12, the absence of GRL results in blurred stroke details, underscoring its
importance in preserving glyph topological integrity.

Similarly, disabling ES-RPB also degrades the model’s performance, notably increasing LPIPS
(0.1803) and FID (56.2451), which demonstrates its efficacy in spatial alignment and geometric
fidelity. Without ES-RPB, the generated glyphs tend to exhibit positional distortion and weakened
visual consistency.

Table 6: Quantitative results on different
high-pass filters. It is obvious that Laplacian
filter yields the best overall performance.

Filter SSIM↑ RMSE↓ LPIPS↓ FID↓
Wavelet 0.7216 0.2987 0.1782 57.1143
Fourier 0.6479 0.3321 0.2236 66.7955
Sobel 0.6995 0.3103 0.1861 62.9451

Laplacian 0.7518 0.2692 0.1544 50.0632

Table 7: Quantitative results on GRL and ES-
RPB in SCFM. The first row denotes the stan-
dard cross-attention mechanism.

Modules SSIM↑ RMSE↓ LPIPS↓ FID↓GRL ES-RPB
✗ ✗ 0.7152 0.3063 0.2089 60.0298
✓ ✗ 0.7284 0.2845 0.1803 56.2451
✗ ✓ 0.7327 0.2797 0.1736 54.4714
✓ ✓ 0.7518 0.2692 0.1544 50.0632

Filter

Wavelet

Fourier

Sobel

Laplacian

Figure 11: Effect of different high-pass filters on style feature extraction. Zoom in to see details.

Content

w/o (GRL & ES-RPB)

w/o ES-RPB

w/o GRL

Full Model

Ground Truth

Figure 12: Qualitative results on GRL and ES-RPB in SCFM. The green boxes point details that
are better generated by the full model. Zoom in to see details.

A.5 THEORETICAL ANALYSES ON THE EFFECTIVENESS OF GRL AND ES-RPB IN SCFM

Theoretical Explanation of GRL. GRL includes two core components: the grouping scheme and
the residual structure. The grouping scheme is proposed to efficiently reduce both parameters and
computations without sacrificing representation performance. Meanwhile, the residual structure aids
optimization by allowing the model to find the optimal solution in a residual space. The explanations
are as follows:

First, we analyze the reductions of parameters and Multiply-ACcumulate operations (MACs). For
a conventional linear layer with both input and output dimensions equal to N , the complexity in

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

terms of parameters and MACs amounts to N2. However, by splitting the input into two parts of
size N

2 and processing them with two linear layers, the total complexity decreases to N2

2 . Hence,
the grouping scheme yields a clear halving of both the parameter count and computational cost.

Second, we analyze why the grouping scheme does not lead to severe performance degradation. A
possible concern about the grouping scheme is that splitting channels may reduce the interactions
between different groups of features. Here, we will show that, at least for query and key matrices
in the attention mechanism, this worry is unnecessary. Specifically, let the query and key inputs be
Xq ∈ RNq×C and Xk ∈ RNk×C , where Nq and Nk denote the sequence lengths of query and key,
respectively. C is the channel dimension. Then, we divide each of them into two halves as follows:

Xq = [X(1)
q , X(2)

q] Xk = [X
(1)
k , X

(2)
k] (12)

where X
(i)
q ∈ RNq×C

2 and X
(i)
k ∈ RNk×C

2 . Then we apply grouped linear projections with param-

eter matrices W (i)
q ,W

(i)
k ∈ R

C
2 ×C

2 to derive the query matrix Q and the key matrix K as:

Q = [X(1)
q W (1)

q , X(2)
q W (2)

q] K = [X
(1)
k W

(1)
k , X

(2)
k W

(2)
k] (13)

Next, we perform the matrix product of Q and KT by:

QK⊤ = [X(1)
q W (1)

q , X(2)
q W (2)

q]

[
X

(1)
k W

(1)
k

X
(2)
k W

(2)
k

]⊤
= X(1)

q W (1)
q (X

(1)
k W

(1)
k)⊤ +X(2)

q W (2)
q (X

(2)
k W

(2)
k)⊤

(14)

Among them, each element of QK⊤ is calculated as follows:

(QK⊤)ij = (X(1)
q W (1)

q)i · (X(1)
k W

(1)
k)j + (X(2)

q W (2)
q)i · (X(2)

k W
(2)
k)j (15)

From Equation 15, we can see that each value is the sum of contributions from both channel groups.
Therefore, although each projection operates on a separate group of channels, the subsequent dot-
product naturally aggregates information across all groups, thereby largely preventing severe per-
formance degradation.

Third, we analyze the role of the residual structure in GRL. As discussed in Section 3.4, an attention
block typically involves multiple matrix multiplications, which makes it difficult for the network to
directly learn the optimal parameters. To be specific, given the input of attention mechanism as X
and the desired projections as Q̂, K̂, and V̂ , the network without residual connections must learn
these mappings entirely from scratch. In contrast, when introducing a residual structure for the QKV
linear layers, the network only needs to model Q̂ − X , K̂ − X , and V̂ − X . This transformation
effectively shifts the optimization from the original linear space to a residual space, which tends
to be smoother and easier to navigate. Consequently, the residual design not only facilitates more
efficient optimization but also enhances the representational capacity of the QKV layers.

Theoretical Explanation of ES-RPB. To better understand the spatial prior introduced by ES-
RPB, we provide a visual comparison between linear and exponential coordinate mappings used in
position encoding. As illustrated in Figure 13, the exponential transformation maps the absolute
positional coordinates (∆X,∆Y) from linear space to exponential space (∆X̂ , ∆Ŷ), thereby in-
creasing spatial sensitivity near the centre. This design reflects a distance-aware inductive bias that
closer pixels should contribute more to attention, which is a desirable property for spatial alignment
in the font generation task. Apart from this, ES-RPB also incorporates two other improvements.
First, it replaces direct parameter learning with a lightweight MLP to minimize the noise impact
and enhance training stability. Second, instead of learning relative positional parameters in isola-
tion, ES-RPB models them within the shared functional space of the MLP, which encourages richer
interactions and better generalization across spatial contexts.

A.6 MORE GENERATION RESULTS

To further validate the robustness and generalization capability of our proposed HF-Font, we conduct
two extra groups of experiments. The first group investigates the model’s performance across a

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

4 3 2 1 0 1 2 3 4
Relative X Position

4

3

2

1

0

1

2

3

4

R
el

at
iv

e Y
 P

os
iti

on

X Mapping (RPB)

4 3 2 1 0 1 2 3 4
Relative X Position

4

3

2

1

0

1

2

3

4

R
el

at
iv

e Y
 P

os
iti

on

Y Mapping (RPB)

4 3 2 1 0 1 2 3 4
Relative X Position

4

3

2

1

0

1

2

3

4

R
el

at
iv

e Y
 P

os
iti

on

X Mapping (ES-RPB)

4 3 2 1 0 1 2 3 4
Relative X Position

4

3

2

1

0

1

2

3

4

R
el

at
iv

e Y
 P

os
iti

on

Y Mapping (ES-RPB)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 13: Comparison between coordinate mapping functions used in RPB and ES-RPB.
The top row shows linear normalized mapping in the X-direction (left) and Y-direction (right). The
bottom row displays exponential-space mapping, where changes near the centre are more prominent.
The colour scale represents the relative position bias values, ranging from -1 (blue) to 1 (red).

wide range of diverse and stylistically rich typefaces, thereby aiming to assess its adaptability to
substantial style variations (Figure 14). The second group targets the generation of structurally
complex characters, which contain dense strokes and intricate component arrangements, to verify
the model’s ability in preserving fine-grained structural fidelity under challenging cases (Figure 15).
Experimental results from both settings consistently demonstrate the effectiveness and reliability of
our approach in handling a broad spectrum of font generation scenarios.

A.7 CROSS-LINGUAL FONT GENERATION

An interesting question is whether our method can be applied to the generation of other Eastern
Asian font styles, such as Japanese Kana and Korean Hangul. Obviously, collecting a large number
of character images in these font styles for model training directly would fulfil this goal but also
be highly time-consuming and labour-intensive. On the other hand, considering the structural and
visual similarities among these font styles, we thus utilize the framework trained on our collected
Chinese fonts to extend the generation of other font styles directly. To be specific, we randomly
choose 15 fonts with 100 Japanese Kana characters and 10 fonts with 125 Korean Hangul characters
for testing, respectively. Some generation results are displayed in Figure 16. We can see that since
the structures of the Japanese Kana and Korean Hangul characters are simpler than those of Chinese
characters, the generation results closely resemble the ground truths, demonstrating the robust cross-
domain generalization ability of our proposed model.

A.8 USAGE OF LARGE LANGUAGE MODELS

During manuscript preparation, we employed several large language models (such as ChatGPT and
DeepSeek) solely for the purpose of polishing the writing and improving readability. These models
were not used for research ideation, experiment design, data analysis, or result interpretation. The
authors take full responsibility for the content of the paper.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Content

Generated Results

Ground Truth

Content

Generated Results

Ground Truth

Content

Generated Results

Ground Truth

Content

Generated Results

Ground Truth

Content

Generated Results

Ground Truth

Figure 14: More generation results on various font styles. The first row shows the content images,
the second row denotes the characters generated by our HF-Font, and the third row represents the
ground truth. Zoom in to see details.

Content

Generated Results

Ground Truth

Content

Generated Results

Ground Truth

Content

Generated Results

Ground Truth

Content

Generated Results

Ground Truth

Content

Generated Results

Ground Truth

Figure 15: More generation results on complex characters. The first row shows the content im-
ages, the second row denotes the characters generated by our HF-Font, and the third row represents
the ground truth. Zoom in to see details.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Content

Generated Results

Ground Truth

Content

Generated Results

Ground Truth

(a) Generated Results on Japanese (Kana) characters

Content

Generated Results

Ground Truth

Content

Generated Results

Ground Truth

(b) Generated Results on Korean (Hangul) characters

Figure 16: Generation results on cross-lingual scenario. In this case, we generate some Japanese
Kana and Korean Hangul glyph images with the model trained on Chinese fonts.

20

	Introduction
	Related Work
	Image-to-Image Translation
	Few-Shot Font Generation

	Methodology
	Overall Scheme
	Style-Enhanced Module
	Glyph Feature Decomposition and Content Alignment Module
	Style-Content Fusion Module
	Training Objective

	Experiments
	Dataset and Evaluation Metrics
	Implementation Details
	Comparison with SOTA Methods
	Ablation Study

	Conclusion
	Appendix
	Network Architecture
	Visual Analyses of the Codebook
	More Comparison Results
	More Ablation Studies
	Theoretical Analyses on the Effectiveness of GRL and ES-RPB in SCFM
	More Generation Results
	Cross-lingual font generation
	Usage of Large Language Models

