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Abstract

Public Graph Neural Networks (GNN) benchmark datasets facilitate the use of1

GNN and enhance GNN applicability to diverse disciplines. The community2

currently lacks public datasets of electrical power grids for GNN applications.3

Indeed, GNNs have the potential to capture complex power grid phenomena over4

alternative machine learning techniques. Power grids are complex engineered net-5

works that are naturally amenable to graph representations. Therefore, GNN have6

the potential for capturing the behavior of power grids over alternative machine7

learning techniques. To this aim, we develop a graph dataset for cascading failure8

events, which are the major cause of blackouts in electric power grids. Historical9

blackout datasets are scarce and incomplete. The assessment of vulnerability and10

the identification of critical components are usually conducted via computationally11

expensive offline simulations of cascading failures. Instead, we propose the use of12

machine learning models for the online detection of cascading failures leveraging13

the knowledge of the system state at the onset of the cascade. We develop Power-14

Graph, a graph dataset modeling cascading failures in power grids, designed for two15

purposes, namely, i) training GNN models for different graph-level tasks including16

multi-class classification, binary classification, and regression, and ii) explaining17

GNN models. The dataset generated via a physics-based cascading failure model18

ensures the generality of the operating and environmental conditions by spanning19

diverse failure scenarios. In addition, we foster the use of the dataset to benchmark20

GNN explainability methods by assigning ground-truth edge-level explanations.21

PowerGraph helps the development of better GNN models for graph-level tasks and22

explainability, critical in many domains ranging from chemistry to biology, where23

the systems and processes can be described as graphs. The dataset is available24

at https://figshare.com/articles/dataset/PowerGraph/22820534 and the25

code at https://anonymous.4open.science/r/PowerGraph/.26

1 Introduction27

The lack of public Graph Neural Network (GNN) datasets for power grid applications has motivated28

the development of a new graph dataset. Power grid stability is crucial to modern society, and,29

therefore, power grids are designed to be robust under failures of different nature. Under particular30

conditions, however, the failure of critical components can trigger cascading outages. In the worst case,31

cascading failures spread into the full blackout of the power grid [6, 26]. The complete understanding32

of complex events as cascading failures is therefore of uttermost importance. Such events are rare33

and historical data is scarce, therefore, we must rely on simulating cascading failures via computer34
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models. The established traditional approach for cascading failure analysis is a quasi-steady state35

model, such as the OPA model [12], the Manchester model [47], and the Cascades model [22]. These36

models assess how the power grid responds after an outage is introduced in the grid. In fact, they37

simulate the complex behavior of the systemic responses and how a chain of successive failures38

(cascade) propagates in the grid. Since such tools are computationally intensive, they cannot be used39

by power grid operators for online detection of cascading failure nor for probabilistic risk analysis40

employing sequential Monte Carlo.41

The shortage of historical blackout data and the high computational cost of current methods to42

simulate cascading failures in power grids highlight the need for machine learning models that can43

detect cascading failures in almost real-time. Power grid operators, specifically transmission system44

operators (TSO), will greatly benefit from an online tool able to estimate the potential of cascading45

failures under given operating conditions of the power grid. The research community has presented46

new methods that employ machine learning algorithms for the online prediction of cascading failures.47

The proposed methods often do not generalize for diverse sets of failures [1, 4]. They are trained with48

datasets created with cascading failure models that often rely on the direct current (DC) power flow49

approximation [38], less accurate than the alternate-current (AC) power flow. In addition to these50

limitations, the authors are not aware of publicly available datasets on the subject.51

Within the realm of machine learning algorithms, GNN are convenient and powerful machine learning52

algorithms to model power grid phenomena, since graphs allow an intuitive representation of power53

grids. In [37], the authors introduce how GNN have been employed for various applications in the54

field of power systems. Our paper focuses on fault scenario application, but we plan to extend it to55

power flow calculation in the future. On this topic, the authors of [59] provide a review of GNN for56

power flow models in the distribution systems. The work in [54] shows that a GNN outperforms a57

feed-forward neural network in predicting cascading failures in power grids. To produce a large and58

complete dataset, we use Cascades [22], an alternate-current (AC) physics-based cascading failure59

model. The model simulates the evolution of the triggering failures yielding the final demand not60

served (DNS) to the customers. We produce a power grid GNN dataset comprising a large set of61

diverse power grid states. The power grid state represents the pre-outage operating condition, which62

is linked to the initial triggering outage (one or more failed elements), referred to as the outage list.63

Each power grid state is represented as a graph, to which we assign a graph-level label according to64

the results of the physics-based model. The dataset is generated to suit different graph-level tasks,65

including multi-class classification, binary classification, and regression.66

The presented graph property prediction dataset fills a gap according to the OGB taxonomy for graph67

dataset [30, 29]. Graph datasets are classified according to their task, domain, and scale. The task is68

at the node-, link-, or graph- level; the scale is small, medium, or large; and the domain is nature,69

society, or information. Our dataset comprises a collection of power grid datasets, which are designed70

for graph-level tasks, and their size ranges from small to medium [21]. Moreover, all the datasets71

in PowerGraph have the same number of features per node, and therefore, they can be utilized as72

one combined dataset to train GNN models. Table 1 reports the total number of graphs per power73

grid, the number of buses and branches in the grid, the number of loading conditions, and the number74

of outage lists simulated. The dataset fits the society domain, where no public GNN graph property75

prediction datasets are available [30], see Appendix A.1.76

Table 1: Parameters of the AC physics-based cascading failure model for the selected four test power
grids. A bus is defined as a node where a line or several lines are connected and may also include
loads and generators in a power system. Transmission lines and transformers are defined as branches.

Test system # Bus # Branch
# Loading
conditions
nload cond

# Outage lists
noutage lists

# Graphs N

IEEE24 24 38 300 43 12900
UK 29 99 300 132 39600
IEEE39 39 46 300 55 16500
IEEE118 118 186 300 250 75000
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Other relevant GNN datasets for graph property prediction are the TU collection [44] and the77

MoleculeNET [58] dataset. Their application is natural science, particularly molecular graphs, i.e.,78

molecules are represented as graphs to predict certain chemical properties. Publicly available power79

grid datasets such as the Electricity Grid Simulated (EGS) datasets [15], the PSML [64], and the80

Simbench dataset [43] are not targeted to machine learning on graphs. In addition, both the EGS and81

PSML provide data for very small power grids, with 4 and 13 nodes respectively. Instead, Simbench82

focuses only on power system analysis in the German distribution and transmission grid, and the83

dataset is not designed for machine learning on graphs. In [46], the authors present new datasets of84

dynamic stability of synthetic power grids. They found that their GNN models, which primarily use85

emphasizes node regression, can predict highly non-linear targets from topological information. On86

the other hand, PowerGraph, which uses graph-level tasks, does not address dynamic stability and87

relies on established real-world-based power grid models to predict the development of cascading88

failures. Overall, the dataset we provide fills a gap in the domain of GNN datasets for graph-level89

tasks [30] and is the only publicly available GNN dataset for power grids.90

Besides benchmarking GNN models, the dataset is intended to be used for explainability methods.91

Therefore, we assign ground-truth edge explanations using the insights provided by the physics-based92

cascading failure model. As explanations, we consider the branches that have failed after the initial93

trigger, i.e., the cascading stage. In the field of explainability for GNN, there is to the best of our94

knowledge no existing real-world dataset with reliable ground-truth explanations [2]. There have95

been recent attempts to create a synthetic graph data generator producing a variety of benchmark96

datasets that mimic real-world data and are accompanied by ground-truth explanations [2], as well97

as to provide atom-wise and bond-wise feature attribution for chemical datasets [28, 32]. However,98

none of these attempts provides real world data with empirical explanations. Here, we propose a99

real world dataset for GNN graph level tasks that has clear ground-truth explanations obtained from100

physic-based simulations.101

This work provides a large-scale graph dataset to enable the prediction of cascading failures in electric102

power grids. The PowerGraph dataset comprises the IEEE24 [17], IEEE39 [18], IEEE118 [16] and103

UK transmission system [45]. These test power systems have been specifically selected due to their104

representation of real-world-based power grids, encompassing a diverse range of scales, topologies,105

and operational characteristics. Moreover, they offer comprehensive data with all the necessary106

information required for conducting cascading failure analysis. With PowerGraph, we make GNN107

more accessible for critical infrastructures such as power grids and facilitate the online detection of108

cascading failures. Our contributions are the following:109

• We provide a data-driven method for the online detection of severe cascading failure events in110

power grids.111

• We make the dataset public in a viable format (PyTorch Geometric), allowing the GNN community112

to test architectures for graph-level applications.113

• The dataset includes several graph-level tasks: binary classification, multi-class classification, and114

regression.115

• We provide explanatory edge masks, allowing the improvement of GNN explainability methods for116

graph-level applications.117

The rest of the paper is organized as follows: Section 2 describes the physics-based model used to118

simulate cascading failure scenarios; Section 3 outlines the structure of the graph datasets; Section 4119

reports the benchmark experiments of the different datasets; Section 5 describes the method used to120

benchmark explainability methods; and Section 6 concludes the article with a final discussion.121

2 Physics-based model of cascading failures122

We employ the established Cascades model [22, 24] for cascading failure simulations to produce the123

GNN datasets. Indeed, its application to the Western Electricity Coordinating Council (WECC) power124

grid demonstrates that Cascades can generate a distribution of blackouts that is consistent with the125

historical blackout data [35]. Cascades is a steady-steady state model with the objective to simulate126

the power grid response under unplanned failures in the grid. For that purpose, the model simulates127
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Figure 1: Workflow of the Cascades [23] model, used to simulate cascading failures in power grids.
Separate runs of Cascades are performed for the different test power grids namely, IEEE24, IEEE39,
UK, and IEEE118.
the power system’s automatic and manual responses after such failures. Initially, all components128

are in service and there are no overloads in the grid. The system is in a steady-state operation with129

the demand supplied by the available generators, which produce power according to AC- optimal130

power flow (OPF) conditions [10]. The simulation begins with the introduction of single or multiple131

initial failures. Then, Cascades simulates the post-outage evolution of the power grid, i.e., identifies132

islands, performs frequency control, under-frequency load shedding, under-voltage load shedding,133

AC power flows, checks for overloads, and disconnects overloaded components. The model returns134

two main results: the demand not served (DNS) in MW and the number of branches tripped after the135

initial triggering failure. The simulation is performed for a set of power demands sampled from a136

yearly load curve. For each season of the year, an equal number of loading conditions are randomly137

sampled. We use a Monte-Carlo simulation to probabilistically generate outages of transmission138

branches (lines and transformers). We define the number of loading conditions and the size of the139

outage list. Therefore, we are able to simulate a large number of scenarios and thus create large140

datasets. Each scenario generated is a power grid state, and therefore, becomes an instance of the141

dataset. For each combination of loading condition and element in the outage list, we simulate the142

cascading failure, identify the terminal state of the power grid, quantify the demand not served, and143

list the tripped elements. Figure 1 shows the structure of the Cascades model [23].144

3 PowerGraph benchmark for graph-level predictions and explainability145

The PowerGraph dataset is obtained by processing the results of the Cascades model. Because we146

work with graph-level tasks, the dataset is a collection of N attributed graphs G = {G1, G2, .., GN}.147

Each input graph reflects a unique pre-outage operating condition of the system and one set of148

single/multiple outages. Therefore, the total number of graphs N per power grid equals to nload cond ∗149

noutage lists. Finally, each graph is assigned an output label corresponding to the chosen task. An150

attributed graph is defined G = (V, E ,V,E), where V is the set of nodes (bus) and E is the set of151

edges (branches), V ∈ R|V|×t is the node feature matrix, with |V| nodes and t features per node and152

E ∈ R|E|×s is the edge feature matrix, with |E| edges and s features per edge. Finally, the graph153

connectivity information is encoded in COO format [20]. We assign three bus-level features and154

four branch-level features. Each feature quantity is normalized using mean normalization. The input155

features are:156

Bus:157
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• Net active power at bus i, Pi,net = Pi,gen − Pi,load, P ∈ Rnbus×1, where Pi,gen and Pi,load are158

the active generation and load, respectively.159

• Net apparent power at bus i, Si,net = Si,gen − Si,load, S ∈ Rnbus×1, where Si,gen and Si,load are160

the apparent generation and load, respectively.161

• Voltage magnitude at bus i, Vi ∈ Rnbus×1, where nbus is the number of buses in the power grid.162

Branch:163

• Active power flow Pi,j164

• Reactive power flow Qi,j165

• Line reactance Xi,j166

• Line rating lri,j .167

Figure 2 displays an instance of the PowerGraph dataset. Each graph represents a state of the power168

grid associated with a loading condition and an outage (single or multiple failures). Since each outage169

is associated with disconnected branches, we remove the respective branches from the adjacency170

matrix and from their respective edge features. Therefore, each instance of the dataset is a graph with171

a different topology. The total number of instances is reported in Table 1. For each initial power grid172

state, we have knowledge of the post-outage evolution of the system, i.e., the demand not served173

(DNS) and the number of tripped lines. We label it as a cascading failure in each case that results in174

branches tripping after the initial outage. With these two results, we can assign an output label to175

each graph for different models:176

177
Binary classification - we assign each instance to two classes:178

• DNS=0, initial state results in a stable state, label 0179

• DNS>0, initial state results in an unstable state, label 1180

Multi-class classification - we assign each instance to four classes:181

• DNS>0, cascading failure of components besides the first trigger, Category A182

• DNS>0, no cascading failure of components besides the first trigger Category B183

• DNS=0, cascading failure of components besides the first trigger, Category C184

• DNS=0, no cascading failure of components besides the first trigger, Category D185

Regression - we assign each instance the DNS in MW186

The choice among binary classification, multi-class classification, or regression depends on the use of187

the GNN model trained with the PowerGraph dataset. The binary classification model serves as an188

early warning system, i.e., detects initial states of the power grid that are critical. The multi-class189

classification model allows us to distinguish different scenarios. Indeed, a transmission system190

operator could benefit from knowing when a cascading failure does not necessarily cause demand not191

served and vice-versa. Finally, with the regression model, we can directly access the final demand192

not served associated with particular pre-outage states of the system. In this case, the GNN model193

becomes a surrogate of the physics-based model useful both as an early warning system and to194

perform security evaluation with low computational cost.195

Table 2: Multi-class classification of datasets. c.f. stands for cascading failure and describes a state
resulting in cascading failure of components. DNS denotes demand not served.

Category A Category B Category C Category D
DNS > 0 MW DNS > 0 MW DNS = 0 MW DNS = 0 MW

c.f. ✓ c.f. × c.f. ✓ c.f. ×

Explainability mask We assign ground-truth explanations as follows: when a system state un-196

dergoes a cascading failure, the cascading edges are considered to be explanations for the observed197

demand not served. Therefore, for the Category A instances, we record the branches that fail dur-198

ing the development of the cascading event. We set the explainability mask as a Boolean vector199
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Table 3: Results of categorization in percentage.

Power grid Category A Category B Category C Category D
IEEE39 2.18% 3.48% 1.46% 92.88%
IEEE118 0.07% 5.84% 2.01% 92.08%
IEEE24 33.90% 4.88% 0.16% 61.06%
UK 4.06% 0% 8.02% 87.92%

Figure 2: Structure of one instance of the GNN dataset for an exemplary power grid. The same
structure is kept for all the power grids in PowerGraph, IEEE24, IEEE39, UK, and IEEE118. We
highlight the initial outage in red, the line is removed both from the graph connectivity matrix and
from the edge feature matrix. The cascading edges are highlighted with the dotted line and encoded
in the M boolean vector (0 - the edge has not tripped during cascading development, 1 - otherwise).

M ∈ R|E|×1, whose elements are equal to 1 for the edges belonging to the cascading stage and 0,200

otherwise (see Figure 2).201

4 Benchmarking graph classification and regression models202

In this section, we outline the method used to benchmark classification and regression models.203

Experimental setting and evaluation metrics For each power grid dataset, we utilize baseline204

GNN architectures as they are common in the graph xAI community. Specifically, we use GCN-205

Conv [34], GATConv [55], and GINEConv [31] to demonstrate that the PowerGraph datasets can206

be used to benchmark GNN and methods used to explain them. Furthermore, we experimented207

with the state-of-the-art graph transformer convolutional layers [52] since they are the backbones of208

the most recent Graph Transformer models: GraphGPS [49], Transformer-M [41], TokenGT [33].209

Finally, we resort to all of the aforementioned models because they account for the edge features,210

which are highly relevant in the case of power grids. We tune the number of MPL ∈ {1, 2, 3} and211

the hidden dimensionality ∈ {8, 16, 32}. Adam optimizer is used with the initial learning rate of212

10−3. Each model is trained for 200 epochs with learning rate adjusted in the learning process using213

a scheduler, which automatically reduces the learning rate if a metric has stopped improving. We214

split train/validation/test with 80/10/10% for all datasets and choose a batch size of 128. We present215

three graph-level models, namely, binary/ multi-class classification, and regression. For classification216

models, we consider balanced accuracy [11] as the reference evaluation metric. Indeed, balanced217

accuracy has been designed as a metric for classification tasks where a strong class imbalance is218

observed (see Table 3). It allows prioritizing all the classes equally, in contrast to the F1 or F2 score,219

and it gives interpretable results for multiclass classification, in contrast to ROC-AUC [50]. Indeed, a220

strong class imbalance is observed. For regression models, we use mean squared error as metric.221

Observations We report the best model performance for each power grid and MPL in Ta-222

bles 4, 5, and 6. For the different MPL, we only show the set of hyper-parameters yielding the223

best performance, and the best model per power grid is highlighted in bold. The GNN architecture224
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comprises 1) a number of MPLs, each followed by PReLU [27] activation function, 2) a global225

pooling operator to obtain graph-level embedding from node embeddings, and 3) one fully connected226

layer. For the classification model, we do not observe relevant differences among the mean, max, and227

sum global pooling operators. The classification results are obtained with max global pooling. The228

regression results are obtained by concatenating max and sum global poolings.

Table 4: Binary classification models results on the test set averaged over five random seeds. Balanced
accuracy is used as reference metric.

Power grid MPL
type

No
MPL

Hidden
dimension

Test
Accuracy

Test
Balanced
Accuracy

IEEE24 GCN 2 32 0.8667 ± 0.0049 0.8769 ± 0.0056
GINe 3 32 0.9798 ± 0.0046 0.9800 ± 0.0035
GAT 3 32 0.9008 ± 0.0052 0.9067 ± 0.0034
Transformer 3 16 0.9907 ± 0.0040 0.9910 ± 0.0037

IEEE39 GCN 3 32 0.9733 ± 0.0012 0.8113 ± 0.0011
GINe 2 32 0.9939 ± 0.0020 0.9550 ± 0.0041
GAT 3 32 0.9697 ± 0.0023 0.7865 ± 0.0061
Transformer 3 16 0.9952 ± 0.0015 0.961 ± 0.016

UK GCN 3 32 0.9657 ± 0.0027 0.7176 ± 0.0023
GINe 2 32 0.9975 ± 0.0018 0.9820 ± 0.0010
GAT 3 8 0.9889 ± 0.0005 0.9175 ± 0.0012
Transformer 3 16 0.9960 ± 0.0016 0.9820 ± 0.0045

IEEE118 GCN 3 32 0.9917 ± 0.0015 0.9364 ± 0.0032
GINe 3 8 0.9992 ± 0.0046 0.9921 ± 0.0035
GAT 3 32 0.9880 ± 0.0012 0.9427 ± 0.0005
Transformer 3 32 0.9992 ± 0.0005 0.9947 ± 0.0041

229

Table 5: Multi-class classification models results on the test set averaged over five random seeds.
Balanced accuracy is used as reference metric.

Power grid MPL
type

No
MPL

Hidden
dimension

Test
Accuracy

Test
Balanced
Accuracy

IEEE24 GCN 2 32 0.8465 ± 0.0023 0.6846 ± 0.0009
GINe 2 32 0.9798 ± 0.0019 0.9426 ± 0.0028
GAT 3 32 0.9054 ± 0.0020 0.8375 ± 0.0009
Transformer 3 32 0.9829 ± 0.0012 0.9894 ± 0.0016

IEEE39 GCN 2 8 0.9242 ± 0.0019 0.4071 ± 0.0012
GINe 3 16 0.9939 ± 0.0015 0.9693 ± 0.0019
GAT 2 16 0.9497 ±0.0022 0.5577 ± 0.0027
Transformer 3 32 0.9550 ± 0.0009 0.9742 ± 0.0016

UK GCN 3 32 0.9068 ± 0.0023 0.4615 ± 0.0038
GINe 2 32 0.9798 ± 0.0020 0.9347 ± 0.0017
GAT 3 8 0.9563 ± 0.0009 0.7452 ± 0.0014
Transformer 3 8 0.9912 ± 0.0009 0.9798 ± 0.0013

IEEE118 GCN 3 8 0.9771 ± 0.0010 0.8303 ± 0.0016
GINe 3 32 0.9968 ± 0.0018 0.9586 ± 0.0010
GAT 3 16 0.9677 ± 0.0010 0.7392 ± 0.0011
Transformer 3 8 0.9992 ± 0.0013 0.9833 ± 0.0006

Discussion Most GNN models achieve high performance on the power grids of PowerGraph. We230

compare GCN, GAT, GINe, and Transformer. Of all MPL considered, only GCN does not take231

edge features into account; as a result its performance is low in most cases. Transformer achieves232

the state-of-the-art on all power grids for the binary and multi-class models. In the regression233

model, Transformer and GINe are the best-performing models. Overall, the model for binary234

and classification models exhibit excellent results. However, the regression model, which is of235

importance in providing a prediction of the demand not served, does not achieve the desired level236

of performance. While the classification models showed consistent performance across various237
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Table 6: Regression models results on the test set averaged over five random seeds. MSE error is
used as reference metric.

Power grid MPL
type

No
MPL

Hidden
dimension

MSE
loss

IEEE24 GCN 1 32 2.80E-03 ± 5.69E-04
GINe 3 16 2.90E-03 ± 2.88E-04
GAT 2 16 2.90E-01 ± 5.00E-04
Transformer 3 8 2.70E-03 ± 3.16E-04

IEEE39 GCN 2 32 5.61E-04 ± 5.04E-05
GINe 3 32 5.04E-04 ± 5.04E-05
GAT 3 32 5.62E-04 ± 4.66E-05
Transformer 3 32 5.47E-04 ± 8.50E-05

UK GCN 3 32 7.07E-03 ± 6.45E-04
GINe 2 32 7.65E-03 ± 6.17E-04
GAT 3 32 7.60E-03 ± 6.12E-04
Transformer 3 16 7.00E-03 ± 5.10E-04

IEEE118 GCN 2 32 4.00E-06 ± 2.94E-07
GINe 2 32 3.00E-06 ± 3.51E-07
GAT 2 8 4.00E-06 ± 3.70E-07
Transformer 2 8 5.00E-06 ± 6.55E-07

power grids, the regression models demonstrate lower MSE values for larger power grids. This238

observation can be attributed to the fact that larger power grids offer a greater diversity of scenarios,239

thus making it increasingly more difficult for a GNN model to identify and learn cascading failure240

patterns. Nevertheless, a regression model offers the most informative and comprehensive results241

since it predicts the exact magnitude of demand not served given a component failure and operating242

conditions. However, our results show that the regression models trained on the PowerGraph datasets243

do not provide the expected performance. Therefore, further advancements and innovations in GNN244

architectures are needed to achieve more robust and accurate regression results. Finally, we test the245

capability of GNN model to generalize to the systems not seen in training, i.e. inductive property of246

GNN [56]. We report the results in Appendix A.6.247

Models trained using the above approach, although representing real systems, are built with synthetic248

data from a cascading failure model. To render these models applicable to real-world systems further249

work is necessary. First, the cascading failure model that generates the data needs to be validated250

and calibrated on the system of interest. Second, the GNN model should be further trained using251

real-world cascading failure events from the system of interest.252

5 Benchmarking explanations on the graph-classification models253

In this section, we outline the method used to benchmark explainability methods. We focus on254

explaining the power grids of Category A of the multi-class classification model. This choice is255

explained in Appendix A.2.256

Experimental setting and datasets For each dataset, we take the trained Transformer with 3257

layers and 32 hidden units described in section 4. To benchmark explainability methods, we do258

not necessarily need the best GNN model. An appropriate filtering on the nature of the predictions259

(correct or mix) and the focus of the explanation (phenomenon or model focus) [5] can circumvent260

smaller test accuracy. We adopt the same training parameters. We evaluate the posthoc explainability261

methods: Saliency [8], Integrated Gradient [53], Occlusion [19], GradCAM [51], GNNExplainer [60]262

with and without node feature mask, PGExplainer [40], PGMExplainer [57], SubgraphX [63], and263

GraphCFE [42]. In Appendix A.3, we report more experimental details on the GNN performance and264

the explainability methods. The PowerGraph benchmark with explanations is used to test and compare265

existing explainability methods. The role of explainers is to identify the edges that are necessary266

for the graphs to be classified as Category A [5]. Then, the resulting edges are evaluated on how267

well they match the explanation masks, which represent the cascading edges. We compare the results268

obtained on the PowerGraph datasets with scores computed for the synthetic dataset BA-2Motifs [40].269

This dataset has 800 Barabási base graphs. Half graphs are attached with “house” motifs (label270
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Figure 3: Top balanced accuracy of the PowerGraph datasets and the synthetic dataset BA-2Motifs.
The top balanced accuracy is computed on explanatory edge masks that contain the top k edges that
contribute the most to the model predictions, with k being the number of edges in the corresponding
ground-truth explanations.

0) and the rest are attached with five-node cycle motifs (label 1). The ground-truth explanations271

in this graph classification are the type of motifs attached to the base graph (house or five-node272

cycle). The BA-2Motifs dataset is commonly used to compare the performance of explainability273

methods [2, 3, 36, 39, 62] because its ground truth explanations enable a simple interpretation for274

human-based evaluation. The comparison of PowerGraph to the BA-2Motifs dataset allows us to275

verify if our results align with state-of-the-art research on the explainability of GNN.276

Human-based evaluation To evaluate the generated explanations, we use the balanced accuracy277

metric. It compares the generated edge mask to the ground-truth cascading edges and takes into278

account the class imbalance, i.e., cascading edges are a small fraction of the total edges. It mea-279

sures how convincing the explanations are to humans. More details about this metric are given in280

Appendix A.4. We report the performance of 11 explainability methods on finding ground-truth281

explanations. All results are averaged on five random seeds. Accuracy scores are computed for the282

datasets in PowerGraph and the synthetic dataset BA-2Motifs.283

Model-centric evaluation Human evaluation is not always practical because it requires ground284

truth explanations and can be very subjective, and therefore does not necessarily account for the285

model’s reasoning. Model-focus evaluation however measures the consistency of model predictions286

w.r.t removing or keeping the explanatory graph entities. For more objective evaluation, we therefore287

evaluate the faithfulness of the explanations using the fidelity+ metric. The fidelity+ measures how288

necessary are the explanatory edges to the GNN predictions. For PowerGraph, edges with high289

fidelity+ are the ones necessary for the graph to belong to Category A. We compare the PowerGraph290

results with BA-2Motifs results, using the fidelity+ metric fidacc+ . The fidacc+ is computed as in the291

GraphFramEx framework [5] and described in Appendix A.5. We utilize GraphFramEx to compare292

explainability methods: we choose the phenomenon focus and the masks to be soft on the edges.293

Explanations are weighted explanatory subgraphs, where edges are given importance based on their294

contribution to the true prediction in the multi-class setting. Figure 4 reports the fidelity+ scores for295

the power grid datasets and for the synthetic dataset BA-2Motifs.296

Results Figure 3 shows that the best-balanced accuracies are obtained with the four methods,297

i.e., Saliency, Integrated Gradient, GradCAM, and Occlusion. Figure 4 also shows that these four298

methods have on average the highest fidelity+ on all datasets. Therefore, we conclude that they are299

the most appropriate methods to generate accurate and necessary explanations. Our observations300

on faithfulness are also consistent with previous results on the GraphFramEx benchmark [5] that301

has already shown the superiority of gradient-based methods and Occlusion to return necessary302

explanations, i.e., the model predictions change when those explanatory entities are removed from the303

graph. However, in Figure 3 and Figure 4, no method globally outperforms the others for all datasets.304

For balanced accuracy, GradCAM and Occlusion are the best for IEEE24; Saliency for IEEE39;305

GradCAM for UK; and Integrated Gradient, Occlusion, GradCAM and SubgraphX for BA-2Motifs.306

On fidelity, GradCAM and Occlusion are the best for IEEE24; Saliency and Integrated Gradient for307

IEEE39; GradCAM for UK; and Integrated Gradient for BA-2Motifs. The choice of the optimal xAI308

method depends on the dataset. This is again consistent with the conclusions in [5]. Concerning309

the IEEE118 dataset, none of the methods is able to generate good explanations. The maximum top310

balanced accuracy is 0.55 and the maximum fidelity+ score is reached by GNNExplainer on edges and311
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Figure 4: Faithfulness of the PowerGraph datasets and the BA-2Motifs dataset measured with the
fid+acc metric as defined in Equation 2 in Appendix A.5. We conducted experiments on five random
seeds. In the plot, alongside each data point, we have included confidence intervals calculated based
on the standard deviation.

node features and is only 0.6. This performance is likely due to the complexity of the IEEE118. Being312

the largest power grid with 186 branches (see Table 1), the system contains complex interdependencies313

between the elements of the power grid during a cascading failure. As a consequence, node and314

edge-level features play a bigger role in explaining the GNN predictions. Therefore, we believe that315

an accurate model explanation will be obtained only with methods that provide node and link-level316

feature masks as well as edge masks. In addition, those methods could play a role in understanding317

the relevance of the input features to the GNN prediction, allowing to discard noisy features.318

6 Conclusions319

To strengthen the use of GNN in the field of power systems, we present PowerGraph, a dataset for320

graph-level tasks and model explainability. The dataset is suited to test graph classification and321

regression models. The main focus of PowerGraph is the analysis of cascading failures in power322

grids. Furthermore, experts often require interpretability of the results. Therefore, we benchmark323

the dataset for a variety of GNN and explainability models. The GNN models show excellent324

performance, in particular for graph classification, on our new benchmark, while graph regression325

models should be further developed. Finally, PowerGraph is the first real-world dataset with ground-326

truth explanations for graph-level tasks in the field of explainable AI. It allows us to evaluate both the327

accuracy and faithfulness of explainability methods in a real-world scenario. PowerGraph provides328

consistent outcomes that align with previous research findings and reinforce the concept that there is329

no universally superior method for explainability. In future work, we aim to extend the PowerGraph330

with new datasets [9] and include additional power grid analyses, including solutions to the power331

flow, the optimal power flow, and the unit commitment.332
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A Supplementary materials521

A.1 OGB taxonomy of graph datasets522

The Open Graph Benchmark [30] contains a diverse set of real-world datasets of various sizes and operational523

specifics. It contains medium to large-scale datasets that can be used to feed data-hungry models like GNN. For524

node and link property prediction tasks, OGB has datasets in all domains, i.e., nature, society, and information.525

However, Table 7 shows the absence of graph datasets in the society domain. To fill this gap, we propose526

PowerGraph, the first collection of real datasets in the society domain.527

Table 7: OGB taxonomy for graph datasets.

Property prediction task

Domain Node Link Graph

Nature proteins ddi , ppa molhiv , molpcba/ppa

Society arxiv , products , papers100M biokg , wikikg2 -

Information mag collab , citation2 code2

A.2 Class targeted explanations528

For benchmarking explanations in section 5, we focus on explaining Category A graphs of the multi-class529

problem, i.e., the power grids that fail to serve the demand (DNS>0). The objective is to shed light on the lines530

that are tripped after the first contingency. We use the multi-class problem rather than the binary classification531

problem that classifies states according to the demand not served (DNS) only, i.e. distinguishes power grids532

that serve the demand (DNS=0, label 1) from the ones that do not (DNS>0, label 0). In the multi-class problem,533

the model learns to distinguish cascading failure scenarios, while in the binary setting, Category A and B are534

considered the same type of grids (class DNS>0). Choosing to explain DNS>0 in the multi-class problem allows535

us to focus on the case where some lines are tripped when DNS>0 and therefore expect the model to learn the536

cascading edges for this class of grids.537

A.3 Explainability methods538

To explain the decisions made by the GNN models, we adopt different classes of explainers including539

gradient/feature-based methods and perturbation-based methods. In our experiments, we compare the fol-540

lowing methods: Random gives every edge and node feature a random value between 0 and 1; Saliency (SA)541

measures node importance as the weight on every node after computing the gradient of the output with respect542

to node features [8]; Integrated Gradient (IG) avoids the saturation problem of the gradient-based method543

Saliency by accumulating gradients over the path from a baseline input (zero-vector) and the input at hand [53];544

Grad-CAM is a generalization of class activation maps (CAM) [51]; Occlusion attributes the importance of an545

edge as the difference of the model initial prediction on the graph after removing this edge [19]; GNNExplainer546

(E,NF) computes the importance of graph entities (node/edge/node feature) using the mutual information [60];547

We also use GNNExplainer that considers only edge importance; PGExplainer is very similar to GNNExplainer,548

but generates explanations only for the graph structure (nodes/edges) using the re-parameterization mechanism549

to overcome computation intractability [40]; PGM-Explainer perturbs the input and uses probabilistic graphical550

models to find the dependencies between the nodes and the output [57]; SubgraphX explores possible explana-551

tory sub-graphs with Monte Carlo Tree Search and assigns them a score using the Shapley value [63]; and552

GraphCFE leverages a graph variational autoencoder to generate counterfactual explanations for graphs [42].553

Model-aware. Gradient-based methods compute the gradients of target prediction with respect to input features554

by back-propagation. Features-based methods map the hidden features to the input space via interpolation to555

measure important scores. Decomposition methods measure the importance of input features by distributing the556

prediction scores to the input space in a back-propagation manner.557

Model-agnostic. Perturbation-based methods use masking strategy in the input space to perturb the input.558

Surrogate models use node/edge dropping, BFS sampling and node feature perturbation. Counterfactual methods559

generate counterfactual explanations by searching for a close possible world using adversarial perturbation560

techniques [25].561
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Table 8: Explainability methods tested on the PowerGraph benchmark.

Explainer Model-aware/agnostic Target Type Flow
SA Model-aware N/E Gradient Backward
IG Model-aware N/E Gradient Backward
Grad-CAM Model-aware N Gradient Backward
Occlusion Model-agnostic N/E Perturbation Forward
GNNExplainer Model-agnostic N/E/NF Perturbation Forward
PGExplainer Model-agnostic N/E Perturbation Forward
PGM-Explainer Model-agnostic N/E Perturbation Forward
SubgraphX Model-agnostic N/E Perturbation Forward

A.4 Balanced accuracy562

Definition The balanced accuracy is the arithmetic mean of the specificity and the sensitivity. The sensitivity563

or true positive rate or recall measures the proportion of real positives that are correctly predicted out of564

all positive predictions that could be made by the model. The specificity or true negative rate measures the565

proportion of correctly identified negatives over the total negative predictions that could be made by the model.566

The balanced accuracy is then expressed as:567

Balanced Accuracy =
Sensitivity + Specificity

2
=

1

2
·
(

TP

TP + FN
+

TN

TN + FP

)
(1)

The balanced accuracy has the advantage of accounting for imbalance in the explanatory mask. In the context of568

cascading failure detection, we know that most of the components (links) in the grid will not fail. Therefore,569

the edge mask has many values that are zeros and only a few that are ones. The balanced accuracy measures if570

the method was able to recognize both failing and not failing edges, while giving the same importance to both571

detections.572

A.5 Faithfulness metric573

To measure the faithfulness of the explanations, we use either the fidelity- or the fidelity+ scores defined in [61, 5].574

We evaluate the contribution of the produced explanatory subgraph to the initial prediction, either by giving575

only the subgraph as input to the model (fidelity-) or by removing it from the entire graph and re-run the model576

(fidelity+). As explained in section A.2, the generated explanations in the context of PowerGraph are the tripped577

lines and therefore should be necessary but not sufficient to the grid class. Indeed, the subgraph resulting from578

isolating the cascading branches does not represent a power grid. Therefore, fidelity- is not relevant in the579

context of the PowerGraph benchmark and we evaluate the faithfulness of explanations using the fidelity+ metric580

defined in equations 2 and 3. The fidelity score can be expressed either with probabilities (fidprob+ ) or indicator581

functions (fidacc+ ). We adopt the fidacc+ , as it is more suitable for classification models. f is a pre-trained582

classifier. We denote by ŷi and ŷ
GC\S
i the model’s predictions when taking as input respectively the input graph583

GC and its complement or masked-out graph GC\S .584

fid+acc =
1

N

N∑
i=1

∣∣∣1(ŷi = yi)− 1(ŷ
GC\S
i = yi)

∣∣∣ (2)

fid+prob =
1

N

N∑
i=1

(f(GC)yi − f(GC\S)yi) (3)

A.6 Inductive property of GNN models on PowerGraph585

We conducted an out-of-distribution test by training GNN models on one power grid dataset and applying the586

model on a different power grid dataset. GNNs allow to train models that can be tested on grids with different587

topologies, as long as we feed the same number of features per node and edge. This attribute is often referred to588

as inductive learning property [56]. We report the results in Tables 9, 10, 11. Table 9 shows that the binary589

classifier models trained on IEEE39, IEEE118, and UK datasets perform well on most datasets, except when590

tested on the IEEE24. Indeed, with a test balanced accuracy of 50%, these models are not able to identify patterns591

in IEEE24 and instead randomly assign instances to a class. Similarly, Table 10 indicates that the multiclass592

classification model trained on the IEEE39 achieves good performance across other power grid datasets, and593
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in particular with the UK and IEEE118 datasets. However, Table 11 shows that the regression models yield594

identical MSE errors for all test sets. This behavior stems from the regression model assigning the same DNS595

value to all instances, indicating an inability to capture any structure in the test dataset. Overall, we conclude596

that the GNN models obtained from PowerGraph do not show robust results when applied on a different power597

grid dataset that the model did not observed during training.598

Table 9: Out-of-distribution balanced accuracies of binary classification models. The selected model
is the best performing model based on the Transformer MPL.

Trained on \Tested on IEEE24 Binary IEEE39 Binary UK Binary IEEE118 Binary
IEEE24 Binary 0.99 0.35 0.25 0.30
IEEE39 Binary 0.50 0.96 0.75 0.70
UK Binary 0.50 0.65 0.98 0.70
IEEE118 Binary 0.50 0.67 0.77 0.99

Table 10: Out-of-distribution balanced accuracies of multiclass classification models. The selected
model is the best performing model based on the Transformer MPL.

Trained on \Tested on IEEE24 Multiclass IEEE39 Multiclass UK Multiclass IEEE118 Multiclass
IEEE24 Multiclass 0.98 0.071 0.12 0.0018
IEEE39 Multiclass 0.45 0.97 0.66 0.76
UK Multiclass 0.0072 0.048 0.98 0.067
IEEE118 Multiclass 0.0072 0.048 0.22 0.98

Table 11: Out-of-distribution MSE errors of regression models. The selected model is the best
performing model based on the Transformer MPL.

Trained on \Tested on IEEE24 Regression IEEE39 Regression UK Regression IEEE118 Regression
IEEE24 Regression 2.70E-03 3.81E-04 3.81E-04 3.81E-04
IEEE39 Regression 1.73E-04 5.47E-04 1.73E-04 1.73E-04
UK Regression 9.89E-05 9.89E-05 2.34E-03 9.89E-05
IEEE118 Regression 9.44E-08 9.44E-08 9.44E-08 5.00E-06

B Access to PowerGraph dataset599

B.1 Dataset documentation and intended uses600

PowerGraph is the collection of the following GNN datasets: UK, IEEE24, IEEE39, IEEE118 power grids.601

We use InMemoryDataset [20] class of Pytorch Geometric, which processes the raw data obtained from the602

Cascades [7] simulation. For each dataset UK, IEEE24, IEEE39, IEEE118, we provide a folder containing the603

raw data organized in the following files:604

• blist.mat: branch list also called edge order or edge index605

• of_bi.mat: binary classification606

• of_reg.mat: regression labels607

• of_mc.mat: multi-class labels608

• Bf.mat: node feature matrix609

• Ef.mat: edge feature matrix610

• exp.mat: ground-truth explanation611

B.2 Download dataset612

The dataset can be viewed and downloaded by the reviewers from https://figshare.com/articles/613

dataset/PowerGraph/22820534 (∼1.8GB, when uncompressed):614

#!/bin/bash615

wget -O data.tar.gz "https :// figshare.com/ndownloader/files /40571123"616

tar -xf data.tar.gz617
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B.3 Author statement618

The authors state here that they bear all responsibility in case of violation of rights, etc., and confirm that this619

work is licensed under the CC BY 4.0 license.620

B.4 Hosting, licensing, and maintenance plan621

The code to obtain the PowerGraph dataset in the InMemoryDataset [20] format and to benchmark GNN and622

explainability methods is available as a public GitHub repository at https://anonymous.4open.science/623

r/PowerGraph/. The authors are responsible for updating the code in case issues are raised and maintaining624

the datasets. We aim to extend the PowerGraph with new datasets and include additional power grid analyses,625

including solutions to the power flow, the optimal power flow, and the unit commitment. Over time we plan626

to release new versions of the datasets and provide updates to the results for both the GNN accuracy and the627

explainability analysis. In addition, the code will be updated if new pytorch/torch-geometric versions are released628

or crucial python packages are updated. The data is hosted on figshare at https://figshare.com/articles/629

dataset/PowerGraph/22820534. The authors give public free access to the PowerGraph dataset. The datasets630

are identified with the DOI:10.6084/m9.figshare.22820534. The work in this paper (code, data) is licensed631

under the CC BY 4.0 license.632

B.5 Code implementation633

We run a hyper-parameters grid search over different GNN models, using torch-geometric 2.3.0 [20] and Torch634

2.0.0 with CUDA version 11.8 [13, 48]. The experiments to benchmark graph classification and regression635

models are performed on a Windows machine with 3 GPUs NVIDIA RTX A6000 with 128 GB RAM memory.636

For the explainability analysis, experiments are conducted on 8 AMD EPYC 7742 CPUs with a memory of 5GB637

each on the ETH Euler clusters [14].638
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