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Abstract

Simulating human reasoning in open-ended tasks has been a long-standing aspira-
tion in AI and cognitive science. While large language models now approximate
human responses at scale, they remain tuned to population-level consensus, often
erasing the individuality of reasoning styles and belief trajectories. To advance
the vision of more human-like reasoning in machines, we introduce HugAgent
(HUman-Grounded AGENT Benchmark), a benchmark for average-to-individual
reasoning adaptation. The task is to predict how a specific person would reason
and update their beliefs in novel scenarios, given partial evidence of their past
views. HugAgent adopts a dual-track design: a synthetic track for scale and sys-
tematic stress tests, and a human track for ecologically valid, “out-loud” reasoning
data. This design enables scalable, reproducible evaluation of intra-agent fidelity:
whether models can capture not just what people believe, but how their reasoning
evolves. Experiments with state-of-the-art LLMs reveal persistent adaptation gaps,
positioning HugAgent as the first extensible benchmark for aligning machine rea-
soning with the individuality of human thought. Our benchmark and chatbot are
open-sourced as HugAgent and TraceYourThinking.

Figure 1: Illustration of HugAgent operationalizing “average-to-individual” reasoning adaptation: a
gray robot repeats population consensus, then observes an individual’s nuanced reasoning, gradually
aligns with that individual (turning colorful), and finally adapts under counterfactual updates (e.g.,
with eco-lamps). This illustrates the shift from consensus mimicry to individualized reasoning.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Bridging Language,
Agent, and World Models for Reasoning and Planning (LAW).
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1 Introduction
Background. Large language models (LLMs) are increasingly used as social simulators—to role-
play individuals, build digital twins, and generate silicon samples for testing social and policy
ideas[1–4]. These systems promise scalability and accessibility: instead of recruiting thousands of
people, researchers and practitioners can use LLMs to approximate human perspectives at scale. Yet
because LLMs are pretrained on population-level corpora, they tend to collapse into an “average
voice,” capturing consensus patterns while erasing the individuality of personal histories, beliefs, and
reasoning styles[5–7].

This paper asks a core question: can LLMs move from simulating the average to
simulating the individual?

In other words, can they predict how a specific person would think, believe, and reason in new
scenarios, given evidence of their past views? We formalize this broad challenge as average-to-
individual reasoning adaptation, a measurable task that targets intra-individual fidelity in human
simulation(formally defined in Section 2).

In other words, can they predict how a specific person would think, believe, and reason in new
scenarios, given evidence of their past views? We formalize this broad challenge as average-to-
individual reasoning adaptation, a measurable task that targets intra-individual fidelity in human
simulation (formally defined in Section 2). This focus on modeling individualized reasoning com-
plements the broader Language–Agent–World (LAW) perspective, extending the agent dimension
by emphasizing reasoning with and about human minds rather than merely reproducing linguistic
patterns[8–10].

Motivation. Current benchmarks fail to capture this ability, across three key dimensions. 1 Intra-
agent vs. inter-agent fidelity. Existing pluralistic alignment benchmarks probe group dynamics
and social influence[11], but neglect whether models can faithfully reproduce reasoning within a
single agent, which is crucial for identity-consistent modeling. 2 Reasoning traces vs. behavioral
outcomes. Large-scale “digital twin” datasets such as Agent Bank [1] and Twin-2K-500 [12]
primarily assess static behavioral outcomes, but not the evolving reasoning trajectories of a single
individual, which are essential for credible social simulation [13]. 3 Open-ended vs. vignettes.
Commonsense and social reasoning benchmarks (e.g., SocialIQA, ATOMIC) often reduce diverse
answers to a single ground truth [14, 15]. Opinion-oriented datasets likewise emphasize aggregate
patterns over individual variation [2, 6]. Theory-of-Mind style tests typically rely on short vignettes
with designer labels [16, 17], which limits ecological validity and overlooks first-person reasoning
traces that could serve as a richer gold standard [18].

Methodology. Motivated by these gaps, we introduce HugAgent, a benchmark that targets intra-
agent fidelity by operationalizing average-to-individual reasoning adaptation as a measurable task.
For Dimension 1 , HugAgent shifts the granularity from inter-agent to intra-agent fidelity: given a
person’s profile and reasoning history, a model must predict both their current belief state and how
it would evolve when presented with new counterfactual evidence. In Dimension 2 , HugAgent
advances beyond static outcomes toward reasoning trajectories. It collects first-person, out-loud
self-reports as gold-standard reasoning traces. These traces offer a deeper target for prediction than
the choice outcomes or survey responses typically captured in lab experiments. To address Dimension
3 , instead of relying on vignette-style benchmarks, HugAgent builds evaluation around open-ended

contexts. We curated real-world topics, beginning with socially and politically controversial issues
that introduce inherent conflicts. Through sustained follow-up questions, the benchmark probes
participants’ deliberate, System 2 style reasoning[19, 20], transforming the dataset from toy settings
into complex, open-ended domains. For a broader discussion of prior work on personalization, social
reasoning, and user modeling in LLMs, we refer readers to Appendix A.

To build such a benchmark at scale while retaining ecological validity(i.e., the extent to which findings
reflect reasoning as it occurs in real-world contexts), HugAgent combines two complementary tracks.
A synthetic track provides large, controlled datasets where belief shifts and reasoning paths can
be systematically manipulated[21, 22]. A human-grounded track applies the same protocol to real
human participants, yielding data anchored in individual variation[23].

Contributions. Our contributions are fourfold:
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• What does it mean to adapt from the average to the individual? We formalize average-to-
individual reasoning adaptation as a measurable task: predicting an individual’s beliefs and
reasoning trajectory from partial self-reported data, rather than collapsing variation into an
“average” label.

• How well do today’s models perform? We introduce HugAgent, a dual-track benchmark
(synthetic + human) that evaluates both Belief State Inference and Belief Dynamics Update.
Initial experiments with state-of-the-art LLMs provide baseline results and reveal adaptation gaps.
https://github.com/jajamoa/HugAgent

• Where do they fail, and what can improve? Building on these evaluations, we conduct detailed
error analyses across synthetic agents, human participants, and state-of-the-art LLMs. This
uncovers recurring failure modes and points to concrete avenues for alignment.

• How can such evaluation scale and persist? We release the entire pipeline as open source, includ-
ing a semi-structured interview chatbot that elicits fine-grained, “out-loud” reasoning data on arbi-
trary topics. This provides the community with previously lacking resources for capturing not only
static answers but also the reasoning processes behind them, ensuring HugAgent is reproducible,
extensible, and sustainable. https://github.com/jajamoa/trace-your-thinking

By making “average-to-individual” reasoning adaptation measurable, HugAgent takes a first step
toward a reproducible framework for studying human simulation at the level of individual reasoning.

2 Problem Setup and Theoretical Framing
We operationalize individual reasoning through belief states (snapshots) and belief dynamics (updates
under interventions). This framing allows measurable comparison while respecting the diversity of
human reasoning paths.

2.1 Formalization

We formalize average-to-individual reasoning adaptation by modeling an individual i’s belief state
as a distribution over d factors

bi ≡ Pϕi
(s | Ci), s ∈ Rd,

with context Ci (e.g., demographics, transcripts). Under an intervention It, beliefs evolve via

bt+1
i = U(bti, It), ∆bti = Ebt+1

i
[s]− Ebti

[s].

Tasks. (i) Belief State Inference: infer stance/factor polarity from Ci. (ii) Belief Dynamics Update:
predict stance shifts ∆̂si given (Ci, I). Metrics include accuracy, mean absolute error (MAE), and
rank correlation.

2.2 Theoretical Anchors: Probabilistic and Causal Perspectives

We use normative models as anchors rather than assumptions. (1) Bayesian / PLoT. Idealized revision
follows Bayesian conditioning b′i(s) ∝ bi(s) p(I | s), interpreting language as probabilistic evidence
over latent stances. We also draw on the Probabilistic Language of Thought (PLoT) framework[24],
which extends Bayesian inference to compositional linguistic structures. (2) Structural Causal Mod-
els (SCM). Interventions act as do(I) on a causal graph of values/reasons, yielding counterfactual
belief shifts E[s | do(I)]. We additionally represent a person’s value–reason structure as a signed
directed graph Gi; we hypothesize that similarity between such graphs (e.g., via graph edit distance
or learned embeddings) may predict cross-domain transfer, motivating our Hypothesis H2 and left as
future work. Human reasoning deviates from these ideals; the anchors provide principled baselines
for analysis.

2.3 Guiding Hypotheses

Grounding HugAgent in theory enables us to frame four guiding hypotheses that serve as lenses for
interpreting empirical results, rather than assumptions to be fully verified:

• H1 (Intra-individual consistency): With sufficient context (e.g., demographic features or prior
transcripts), LLMs can stably capture an individual’s belief state.

• H2 (Cross-domain transfer bound): Reasoning patterns transfer partially across domains, and
accuracy under domain transfer is significantly lower than in-domain performance.

• H3 (Population prior reliance): Without individual context, LLMs default to global population
priors rather than individual-specific cues.
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• H4 (Context information gain): Prediction accuracy increases monotonically with context length,
until saturation.

These hypotheses move the benchmark beyond performance reporting: they test structural claims
about how LLMs approximate, or fail to approximate the individuality of human reasoning.

Validation roadmap. To substantiate these hypotheses, we highlight four key control experiments
that serve as evidence of individuality; later sections return to each in detail.

What counts as evidence of individuality? (control experiments)

• Population Prior Baseline – predict only from aggregate distributions (see Sec. 6.1).
• Identity Shuffle Control – shuffle person–context pairs (see Sec. 6.2).
• Per-Person Leave-One-Out – use partial history to predict held-out responses (see Sec. 4.2).
• Context-Length Ablation – vary context size to test information gain (see Sec. 5).

3 HugAgent Benchmark

Grounded in the theoretical setup in Section 2, we now introduce HugAgent, which translates these
principles into concrete tasks (Sec. 3.2), a scalable data collection pipeline (Sec. 3.3), and evaluation
protocols (Sec. 3.5).

Figure 2: Two benchmark tasks. Task 1 (Belief State Inference) infers stance and reasons from
prior context; Task 2 (Belief Dynamics Update) predicts stance shifts and its reasoning under new
evidence.

3.1 Design Principles

• Open-ended but deeper. Emphasize depth over breadth: semi-structured dialogue with targeted
follow-ups surfaces individuality while avoiding over-scaffolding; ground truth comes from
self-reports [25, 23, 1].
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• Two observable proxies. We evaluate (i) belief state inference and (ii) belief dynamics up-
date—tractable targets that avoid requiring exact trace imitation; cf. proxy-label benchmarks
[26–28].

• Dual track. Human interviews provide ecological realism; synthetic agents provide controlled
stress tests via scripted causal belief graphs—preventing circularity and enabling scale.

• Human ceiling. Test–retest reliability defines the upper bound, aligning with psychology standards
[29, 30] and recent large-scale simulations [12, 1].

See Appendix K for extended discussion.

3.2 Task Definition

We formalize reasoning adaptation as predicting how an individual’s belief state changes under new
evidence.

Belief representation. A belief at time t is bt = (st,wt), where st ∈ {1, . . . , 10} is a stance score
and wt is a distribution over K reason weights.

Belief update. Given evidence e, an update operator U produces bt+1 = U(bt, e). In humans, bt+1

comes from self-reports; in synthetic agents, from scripted rules with known ground truth.
Tasks. We instantiate two tasks: (i) Belief State Inference: predict (st,wt) from prior responses.
(ii) Belief Dynamics Update: predict (st+1,wt+1) given (bt, e). Figure 2 shows concrete examples
of both tasks in HugAgent.

Figure 3: HugAgent benchmark pipeline. Inputs (demographics, questionnaires, and transcripts) flow
through two components: a questionnaire that provides demographic anchors, stance baselines, and
counterfactual updates, and a semi-structured chatbot that elicits individualized reasoning. Together
these elements define two benchmark tasks: (i) belief state inference—recovering stance and factor
polarity from context, and (ii) belief dynamics update—predicting stance shifts and reweighting under
new evidence. (A) The chatbot maintains a causal belief network of factors, used to identify the most
critical nodes and edges for follow-up. (B) A question generator derives targeted, context-specific
probes from this network to structure the dialogue.

3.3 Building HugAgent: Scalable Elicitation of Individual Reasoning

HugAgent is built through a two–stage pipeline (Figure 3).

1. The questionnaire stage collects demographics, a baseline stance (st, 1–10), reason weights (wt,
1–5), and counterfactual interventions with updated stances and reasons. These structured responses
provide gold labels for Belief Dynamics Update and serve as anchors for aligning free text to factors.
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2. The chatbot stage elicits 8–20 question–answer pairs through semi-strutctured interview, combin-
ing open-ended elaborations (Context QAs) with concise polarity judgments (GT QAs). This setup
captures both participants’ belief, reasoning styles and explicit preferences on each decision factor.
Each transcript thus supports both benchmark tasks: Belief State Inference (using Context and GT
QAs) and Belief Dynamics Update (using Context QAs, questionnaire responses upon interventions).
Survey-provided updates are never revealed in dialogue, preventing leakage.

Finally, we establish a human reliability ceiling through test–retest elicitation of a subset of items,
reporting intra-individual consistency with Intraclass Correlation (ICC) and quadratic-weighted
kappa (QWK) with 95% confidence intervals. Further design choices, intervention phrasing, prompt
templates, and quality-control rules are detailed in Appendix K.

3.4 Dataset Statistics

Applying this pipeline yields HugAgent, a dataset spanning three socially salient domains: healthcare,
surveillance, and zoning. These domains were chosen for their ecological validity, diversity of
viewpoints, and internally rich trade-offs (e.g., affordability vs. neighborhood character, privacy vs.
safety).
Human track. From over 120 participants, we retained 54 whose survey and interview data met
predefined quality-control criteria (see Appendix M). Task 1 (belief state inference) contains 356
labeled questions, and Task 2 (belief dynamics update) contains 1,386 items, distributed as shown in
Table 1.
Synthetic track. We construct a parallel synthetic track by assigning each agent a scripted causal
belief network (CBN) that defines its reasoning structure and deterministic update rules. All syn-
thetic agents follow the same survey and interview protocol as in the human track, allowing direct
comparison under identical tasks. In total, the benchmark includes 500 synthetic agents, from which
we use a stratified subset of 50 agents for computation and analysis. Unless otherwise specified, all
experiments reported in this paper are conducted on this subset. Both the full and subset data are
included in the benchmark release. Detailed construction procedures are provided in Appendix N.

Human Track (N=54) Synthetic Track (N=500)

Task / Domain Health Surv. Zoning Total Health Surv. Zoning Total

Belief State Inf. 108 122 126 356 1,303 1,297 1,302 3,902
Belief Dyn. Update 472 364 550 1,386 3,888 2,610 3,818 10,316

Total Items 580 486 676 1,742 5,191 3,907 5,120 14,218

Table 1: Dataset statistics by task and domain. Human track (N=54 participants) provides ecological
validity; synthetic track (N=500 scripted agents) scales coverage.

3.5 Evaluation Protocols

Finally, we highlight the evaluation protocols that ensure HugAgent’s utility as a scientific benchmark.

Evaluation metrics. We evaluate belief state inference using accuracy, the proportion of exact
matches with ground-truth labels. For belief dynamics update, we report four metrics: (i) accuracy,
the proportion of predictions within a tolerance band of the true response (±1 for 5-point, ±2
for 10-point scales); (ii) mean absolute error (MAE), the average magnitude of deviation from
the ground truth, with all responses normalized to a 5-point scale for consistency; (iii) directional
accuracy measures whether the predicted belief update matches the ground truth in direction(increase,
decrease, or no change); and (iv) average to individual (ATI) score, following the GLUE [31] and
SuperGLUE [32] scoring paradigm, we derive an overall score via hierarchical aggregation, where
normalized task-specific metrics (accuracy, MAE, directional accuracy) are combined into belief
dynamics update and averaged with belief state inference, with human and random guess performance
used as upper and lower bounds for normalization. Formal definitions and computation details are
given in Appendix Q.1.
Leakage control. We masked attribution targets, drew interventions from external surveys, and
presented each item independently with minimal-overlap prompts (see Appendix J.1 for templates).
Human baselines. We re-contacted a subset of participants for a short-interval (14-day) test–retest
study. Across all sessions, 54 participants contributed data. Of these, 18 completed the retest, and 13
were retained following a demographic consistency check. Belief State Inference yielded an accuracy
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of 84.84% (SD = 8.90, 95% CI: [80.00, 89.68]). Belief Dynamics Update achieved an accuracy
of 85.66% (SD = 7.66, 95% CI: [80.91, 90.40]) and a mean absolute error of 0.68 (SD = 0.20,
95% CI: [0.55, 0.80]). The directional accuracy was 88.92% (SD = 9.89, 95% CI: [82.09, 96.24]).
These scores establish a human consistency ceiling, as outlined in Section 3.1, against which model
performance can be benchmarked.

4 Main Results

4.1 Baselines

We compare models against clear anchors: (i) an upper bound defined by real human performance,
measured through test–retest consistency (see Section 3.1); (ii) a lower bound defined by random
guessing, reflecting chance performance; and (iii) a set of strong pretrained language models,
including GPT, Gemini, LLaMA, and Qwen, which serve as high-performing but non-agentic baselines
without explicit memory, personalization, or retrieval components.

To evaluate the role of agent-like structure in modeling belief reasoning, we further include two
agent-style LLM baselines that incorporate memory or retrieval. The first is the Generative Agents
baseline, reproduced following the setup of Park et al. [33], using Qwen2.5-32B-instruct as the
base model. The second group includes two variants of retrieval-augmented generation (RAG).
The first, RAG, follows the standard setup [34], replacing the original full QA context with the top-k
retrieved QA pairs (k = 5). The second, RAG with Full Context, appends the retrieved QA pairs to
the original input, allowing the model to jointly condition on both. This variant evaluates whether
retrieval can serve as an auxiliary signal rather than a substitute for agent-specific context.

Detailed settings and full results are provided in Appendix C.

4.2 Overall Performance

Tables 2 summarize performance. We evaluate using the metrics introduced in Section 3.5. For
belief state inference, best-performing LLMs approach but do not match human accuracy, trailing
by 4–6 points. Open-source LLaMA and Qwen rival GPT-4o, while smaller or less aligned models
lag significantly. For belief dynamics update, gaps are larger: models frequently mispredict the
direction of stance change or fail to adjust reason weights, yielding higher error than human baseline.

Model
Belief State Inference Belief Dynamics Update

ATI (% ↑)Acc. (% ↑) Acc. (% ↑) MAE (↓) Dir. Acc. (% ↑)
Real Synth. Real Synth. Real Synth. Real Synth. Real

Human 84.84 — 85.66 — 0.68 — 88.92 — 100.00

OpenAI Models
GPT-4o 74.66±2.86 67.93±6.04 63.11±1.19 58.61±5.22 1.29±0.04 1.44±0.23 82.27±1.02 76.83±0.46 68.99±0.80

GPT-5-mini 75.30±2.13 62.78±9.63 58.21±2.41 57.25±5.78 1.43±0.08 1.47±0.22 77.02±2.02 73.69±3.76 63.44±2.25

o3-mini 75.12±4.49 69.67±8.87 64.54±4.91 56.48±7.42 1.22±0.12 1.45±0.26 71.29±2.87 64.34±4.24 62.84±1.82

Other Closed-Source Models
Gemini 2.0 Flash 69.95±6.01 59.66±5.73 60.55±3.19 54.73±7.52 1.35±0.03 1.48±0.25 83.31±0.19 68.58±0.00 61.73±0.20

DeepSeek-R1 75.43±0.94 70.75±6.00 64.88±2.94 61.16±2.82 1.29±0.03 1.38±0.19 79.69±0.91 76.20±1.10 68.91±1.11

Qwen-plus 77.57±1.27 67.81±3.65 58.93±2.45 55.29±8.40 1.40±0.05 1.49±0.26 77.17±0.61 75.82±4.48 67.26±0.94

Qwen-max 77.40±1.04 67.74±4.08 58.86±2.44 55.20±8.21 1.40±0.05 1.49±0.26 77.17±0.48 76.54±3.28 67.00±0.54

Open-Source Models
LLaMA 3.3 70B 76.39±4.33 71.74±7.73 67.57±4.08 58.35±6.17 1.24±0.08 1.49±0.25 79.56±0.36 74.93±2.48 71.47±0.28

Qwen2.5-32B-instr. 77.17±0.81 68.21±3.18 58.96±2.46 55.37±8.37 1.40±0.05 1.49±0.26 76.88±0.29 75.32±4.62 66.51±0.26

Qwen2.5-7B-instr. 77.18±1.61 67.81±3.32 58.82±2.38 55.33±8.35 1.40±0.04 1.49±0.26 77.12±0.80 74.95±4.38 66.63±1.31

Memory-Augmented Baselines
RAG1 75.46±3.01 63.06±8.68 51.90±1.42 51.85±7.92 1.57±0.05 1.56±0.27 72.25±0.57 66.70±2.71 57.06±0.94

RAG-FC1 77.56±1.20 72.82±3.74 59.97±1.44 59.34±4.67 1.39±0.04 1.45±0.21 76.80±0.80 76.81±1.53 67.43±0.65

Generative Agents1 76.19±0.96 73.48±3.82 58.22±2.51 55.43±7.63 1.40±0.05 1.49±0.26 76.13±2.45 82.76±0.36 64.29±1.87

Non-Learning Baselines
Global Majority 65.77±0.00 64.30±0.00 58.18±0.00 54.60±0.00 2.54±0.00 2.37±0.00 17.93±0.00 21.95±0.00 4.44±0.00

Random Guess 51.89±5.18 50.62±4.47 43.12±2.06 50.36±3.55 1.88±0.09 1.62±0.15 46.74±3.28 29.78±13.18 0.00±5.80

Table 2: Average results for both Belief State Inference and Belief Dynamics Update. Macro-
averages are reported as mean±std over 5 runs. Best-performing non-human (upper-bound) results in
each column are highlighted in bold.
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Task Model Health → Surv Surv → Zone Zone → Health Avg

Belief State Inference (Accuracy % ↑) Qwen2.5-32B-instr 53.52±1.52 58.69±1.10 55.08±1.20 55.76±2.54

GPT-4o 58.52±0.77 65.41±1.58 51.75±1.03 58.56±5.88

Belief Dynamics Update (Accuracy % ↑) Qwen2.5-32B-instr 44.41±0.98 24.84±0.60 30.15±0.35 33.13±8.58

GPT-4o 49.49±0.87 42.47±0.50 41.96±0.30 44.64±3.60

Belief Dynamics Update (MAE ↓) Qwen2.5-32B-instr 1.69±0.01 1.94±0.01 2.05±0.01 1.89±0.16

GPT-4o 1.55±0.01 1.60±0.00 1.71±0.00 1.62±0.07

Table 3: Cross-topic swap test: models are trained with QA context from one domain and evaluated
on another domain for the same participant. We report performance for Healthcare→ Surveillance,
Surveillance→ Zoning, Zoning→ Healthcare, and their average. Reported as mean ± std over 5
runs and across domains.

5 Main Findings

Finding 1: Preserving Identity Across Domains is Harder Than Expected

To evaluate whether models can leverage a person’s contextual information across domains and
exhibit transferable reasoning, we perform a cross-topic swap test. Each model is given QA context
from one domain and evaluated on another domain for the same participant (for example, using
context from Healthcare and testing on Surveillance). Based on Table 2, we selected GPT-4o and
Qwen2.5-32B-instr as representative models from two categories: closed-source SOTA and strong
open-source baseline.
The results show that reasoning patterns transfer only partially across domains, and accuracy un-
der domain transfer is significantly lower than in-domain performance. GPT-4o achieves only
58.56% belief-state accuracy on average compared to its within-domain score of 74.66%, while
Qwen2.5-32B-instr drops from 77.17% to 55.76%. In the Belief Dynamics Update task, GPT-4o
further declines from 63.11% to 44.64%. The degradation is most pronounced in belief dynamics up-
date, where compounding errors accumulate across topics. These findings indicate that current models
depend heavily on domain-specific linguistic and contextual cues, resulting in limited cross-domain
reasoning transfer. This underscores the importance of evaluating within-person, cross-domain
consistency as a key indicator of robust generalization, and suggests that improving transferability
requires focusing on essential, topic-relevant context rather than surface-level correlations.

Finding 2: More Context Doesn’t Always Help

Model Context Belief State Inference (Accuracy % ↑) Belief Dynamics Update (Accuracy % ↑) Belief Dynamics Update (MAE ↓)

Health Surv. Zone Avg Health Surv. Zone Avg Health Surv. Zone Avg

GPT-4o
5 QAs 68.89±0.51 73.93±1.07 72.22±0.00 71.68±2.26 61.48±0.35 67.80±0.45 63.27±0.36 64.19±2.78 1.26±0.01 1.19±0.01 1.24±0.00 1.23±0.03
10 QAs 67.59±1.73 72.30±0.37 72.06±0.66 70.65±2.46 62.29±0.33 64.56±0.39 65.82±0.39 64.22±1.55 1.28±0.00 1.26±0.01 1.21±0.01 1.25±0.03
20+ QAs 71.11±0.77 75.25±0.90 77.62±0.35 74.66±2.86 61.57±0.19 63.74±0.58 64.04±0.20 63.11±1.19 1.27±0.01 1.35±0.01 1.26±0.01 1.29±0.04

Gemini 2.0 Flash
5 QAs 61.30±0.41 65.25±0.45 65.08±0.00 63.87±1.92 59.70±0.09 65.71±0.30 62.25±0.21 62.56±2.56 1.36±0.00 1.23±0.00 1.34±0.00 1.31±0.06
10 QAs 60.19±0.65 64.75±0.00 71.27±0.35 65.40±4.72 58.22±0.28 62.58±0.23 65.20±0.16 62.00±2.99 1.37±0.00 1.30±0.01 1.26±0.00 1.31±0.05
20+ QAs 63.89±0.00 68.20±0.37 77.78±0.00 69.95±6.01 56.23±0.12 62.25±0.37 63.16±0.10 60.55±3.19 1.39±0.00 1.33±0.00 1.33±0.00 1.35±0.03

Qwen2.5-32B-instr
5 QAs 68.33±1.21 73.11±2.68 65.08±0.56 68.84±3.77 59.45±0.55 62.53±0.57 63.38±0.69 61.79±1.84 1.36±0.00 1.31±0.01 1.27±0.01 1.31±0.04
10 QAs 75.37±4.47 75.90±1.80 67.78±1.06 73.02±4.66 58.52±0.74 60.66±0.60 63.02±0.47 60.73±1.99 1.41±0.01 1.36±0.01 1.27±0.01 1.35±0.06
20+ QAs 77.96±0.41 76.56±0.45 76.98±0.79 77.17±0.81 56.82±0.41 57.80±0.25 62.25±0.16 58.96±2.46 1.43±0.00 1.43±0.01 1.33±0.01 1.40±0.05

Table 4: Question masking / length scaling for both Belief State Inference and Belief Dynamics
Update. Reported as mean ± std over 5 runs and across domains (healthcare, surveillance, zoning).
Best results per column are highlighted in bold.

To examine how context length influences model performance across tasks, we varied the num-
ber of Context QAs (5, 10, 20+). Based on Table 2, we selected GPT-4o, Gemini2.0Flash,
and Qwen2.5-32B-instr as representative models from three categories: closed-source SOTA,
lightweight efficient, and strong open-source baseline.
The core result is that belief-state accuracy rises monotonically with additional dialogue and saturates
at 20+ questions, whereas belief-update accuracy peaks at 5–10 questions before declining. Longer
transcripts provide richer cues for recovering belief states but also introduce noise that impairs belief
updating. This asymmetry suggests that context length benefits belief state inference through scale,
while belief dynamics update is vulnerable to cognitive overload, likely disrupting System2 reasoning
and prompting fallback to heuristic shortcuts[19, 20]. Future systems should therefore adaptively
select compact, high-signal spans rather than rely on maximal context.

1RAG [34], RAG-FC = RAG with Full Context [34], Generative Agents [33].
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6 Why it Happens: Ablations and Error Analysis
6.1 Global Prior vs. Full Context

Task Method Accuracy (% ↑) MAE (↓)

Healthcare Surveillance Zoning Avg Healthcare Surveillance Zoning Avg

Belief State Inference

GPT-4o (No-Context) 55.93±1.40 66.07±1.37 53.49±1.99 58.49±5.83 N/A
GPT-4o (Full) 71.11±0.77 75.25±0.90 77.62±0.35 74.66±2.86 N/A
Qwen2.5-32B (No-Context) 45.19±1.66 59.02±1.16 48.57±1.30 50.92±6.23 N/A
Qwen2.5-32B (Full) 77.96±0.41 76.56±0.45 76.98±0.79 77.17±0.81 N/A

Belief Dynamics Update

GPT-4o (No-Context) 34.62±0.68 48.24±0.31 36.62±0.52 39.83±6.24 1.77±0.01 1.51±0.01 1.84±0.01 1.70±0.15
GPT-4o (Full) 61.57±0.19 63.74±0.58 64.04±0.20 63.11±1.19 1.27±0.01 1.35±0.01 1.26±0.01 1.29±0.04
Qwen2.5-32B (No-Context) 34.58±0.55 33.90±0.60 27.89±0.38 32.12±3.15 1.89±0.01 1.75±0.01 1.99±0.01 1.88±0.10
Qwen2.5-32B (Full) 56.82±0.41 57.80±0.25 62.25±0.16 58.96±2.46 1.43±0.00 1.43±0.01 1.33±0.01 1.40±0.05

Table 5: Comparison of No-Context (population prior) and Full-Context (with transcripts) settings.
Reported as mean ± std over 5 runs.

Table 5 tests whether models depend only on population priors or can adapt to individual cues.
The No-Context setting gives only demographic background, while the Full-Context setting adds
transcripts and survey answers. Models show large gains from personalization: for example, GPT-4o’s
belief state inference accuracy rises from 58.49% with only demographic priors to 74.66% with
full context, and its belief dynamics update accuracy improves from roughly 39.83% to 63.11%.
The consistent gains in Full-Context show that models use personalized information rather than
global averages. This highlights that the benchmark can separate real belief inference from reliance
on general trends.

Method Belief State Inference Belief Dynamics Update
Accuracy (% ↑) Accuracy (% ↑) MAE (↓) Dir. Acc. (% ↑)

GPT-4o 54.44±6.37 39.30±2.84 1.93±0.10 63.56±0.76
Qwen2.5-32B 60.44±3.22 38.16±3.28 2.02±0.13 69.17±1.06

Table 6: Cross-person swap test: using QA context from one participant to predict another participant’s
responses in the same domain. Belief State Inference reports Accuracy only; Belief Update reports
Accuracy, MAE, and MSE. Reported as mean ± std over 5 runs and across domains.

6.2 Cross-Person Generalization

Tables 6 test how well models generalize when context is swapped across individuals.

In the cross-person setting, QA context from one participant is used to predict another participant’s
stance in the same domain. Here, accuracy falls even further—e.g., GPT-4o achieves only 39.30%
belief dynamics update accuracy on average across participants with an MAE of 1.93, underscoring
the difficulty of transferring reasoning across individuals. This probes whether models rely on
universal priors rather than individual cues. These tests show the limits of personalization: strong
within-domain gains do not guarantee transfer across people, highlighting the challenge of building
models that represent both individuality and general reasoning structures.

6.3 Error Analysis: Bias Patterns and Sources of Failure
Topic sensitivity. Performance varies systematically across topics. Within-domain, belief state
inference peaks in Surveillance for both models (LLaMA3.3-70B 80.66%; GPT-5-mini 76.89%).
For update, LLaMA3.3-70B performs best on Zoning (73.09%, MAE 1.14), whereas GPT-5-mini
peaks on Healthcare (59.92%, MAE 1.37).

Cross-topic transfer sharply degrades performance. Using Surveillance context to predict Zoning,
belief dynamics updates for Qwen2.5-32B-instr drop from in-domain Zoning (62.25%; MAE 1.33)
to 24.84% (MAE 1.94); GPT-4o falls from 64.04% (MAE 1.26) to 42.47% (MAE 1.60).

Implication. Topic structure systematically shapes performance; adopt domain-aware prompting/re-
trieval/adapters and calibrate update magnitudes per domain rather than assuming uniform behavior
across topics.

Directional error decomposition. We decompose directional errors into two components: (1)
change detection—the model’s ability to detect whether a belief change has occurred, and (2)
direction adjustment—the model’s ability to predict the direction of that change (increase, decrease,
or no change). (Detailed definitions in Appendix Q.1.)
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Across systems, change-detection errors dominate. In Healthcare, GPT-4o reaches only 49.36% in
change detection versus 88.89% for direction adjustment (DA 77.03%); Qwen2.5-32B-Instruct
shows a similar gap (33.19% vs. 84.29%, DA 68.96%). This asymmetry persists across domains:
models excel at direction adjustment yet falter in detecting when stance changes occur.

The pattern suggests that LLMs preserve stance polarity once updates are recognized but remain
insensitive to their timing. Even strong models (Qwen-Max, GPT-4o) attain only moderate directional
accuracy (∼ 77–82%), trailing humans by 7–12 points. Low MAE (e.g., o3-mini, 1.22) likewise
fails to guarantee correct update direction.

Implication. LLMs are directionally stable yet dynamically insensitive. Enhancing belief updates thus
calls for improved change detection—via context-aware memory, calibrated “no-change” thresholds,
or explicit reasoning-weight tracking—rather than further polarity tuning.

7 Discussion and Open Challenges
Large language models can approximate the average human response, but simulating the indi-
vidual—the central question motivating HugAgent—requires revisiting how we design reasoning
benchmarks and interpret fidelity.

Topic selection is not neutral. What we ask shapes who a model appears to simulate. Highly
controversial topics elicit richer value trade-offs and sharper updates; homogeneous topics compress
variation and inflate apparent accuracy. We propose treating topic choice as an explicit experimental
variable: (i) curate pairs of domains with high vs. low opinion dispersion; (ii) report results stratified
by a simple controversy index C (e.g., stance variance + polarity entropy) so scores are comparable
across corpora; (iii) add dilemma framings (e.g., fairness vs. safety) to probe value conflicts rather
than single-axis opinions. Practically, this turns “topic selection” from a hidden confound into a
controlled factor that the community can measure and replicate.

From intuition to deliberation: eliciting System 2 without over-scaffolding. Open-ended inter-
views risk collapsing into shallow System 1 reactions or over-guided narratives. Accuracy peaks
at modest context length, hinting at overload beyond that point. We propose lightweight controls
that foster deliberation while preserving individuality: (i) brief tension probes (“what would change
your mind?”), (ii) contrasting time-pressure vs. reflection, (iii) tracking simple deliberation proxies
(latency, self-corrections, counterfactual mentions). These signals do not enforce a single “correct”
trace, but provide anchors for interpreting model alignment with human update logic.

Comparative benchmarks, transfer, and ethics-by-design. Personalization that succeeds only
within-domain but fails across domains is not robust. We propose a comparative benchmark
protocol that (i) pairs controversial vs. homogeneous topics, (ii) contrasts intuition vs. deliberation,
and (iii) evaluates within-person, cross-domain transfer as a core metric. Preregistered topic panels
and per-item metadata (controversy index C, tension flags, latency) will aid comparability. Ethically,
tension induction must be consentful and minimal, with disclosed framings, capped length, and
opt-out. The challenge is designing evaluation that respects persons while probing the hard cases
where individuality matters most.

In short, moving from average to individual requires not only better models, but also better
questions—topics that surface trade-offs, protocols that invite careful thinking, and benchmarks
that reward cross-domain fidelity rather than single-domain fit. Framed within the broader Lan-
guage–Agent–World (LAW) perspective, these challenges highlight the next step for AI agents:
reasoning about human minds, not merely with language.

8 Limitations and Conclusion
Our study faces constraints such as a modest human sample and potential demographic bias, though
the synthetic track provides controlled variation and raw self-reports mitigate LLM cleaning effects.
Even so, HugAgent offers a benchmark for average-to-individual reasoning adaptation, uniting
ecological validity with scalability. Analyses expose structured failure modes in current LLMs
and motivate mitigation principles, positioning HugAgent as a reproducible testbed for models that
capture not only what people believe but how their reasoning evolves.
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A Related Work
Social Simulation, Digital Twins, and Population Panels. A growing line of work simulates
societies with LLM agents. Early “silicon samples” use LMs to approximate human samples in
stylized tasks [2], while Generative Agents extend to rich daily-life environments with memory and
social coordination [33]. This has scaled to population panels—e.g., simulations of 1,000 people [1]
and digital-twin datasets such as Twin-2K-500 [12]—as well as community/role-play platforms for
real-time social interaction [35] and personification benchmarks [22, 3]. These approaches provide
breadth and largely static outcome measures; HugAgent adds depth via think-aloud transcripts that
trace reasoning trajectories, counterfactual interventions to test belief updates, and a human test–retest
reliability ceiling to anchor claims [36, 29, 30].

Social Reasoning and Theory of Mind. Work on Theory of Mind (ToM) in AI draws from
developmental psychology tests such as the false-belief task [16], Sally-Anne [37], and Strange
Stories [38], later reformulated as computational tasks [39, 40]. Scaled language models brought
ToM into broad benchmarks [41, 42, 23, 17] and inspired synthetic testbeds such as BigToM [43],
HI-TOM [44], FANToM [45], and MMToM-QA [46]. More recent directions ground ToM in
dialogues and social contexts [47, 15, 48], or frame it through Bayesian belief attribution [49]. Yet
these benchmarks remain synthetic, vignette-based, and decontextualized, missing ecological and
demographic variability [5, 50]. Parallel lines in AI reasoning emphasize world and agent models:
causal world modeling [51, 10, 52] and the LAW framework, which coordinates world, agent, and
language models [9]. Within this framing, HugAgent extends ToM evaluation by asking whether
models can map natural language into personalized belief states and update them consistently under
interventions, bridging synthetic ToM tasks and socially grounded reasoning.
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B Auxiliary Dataset
Our core benchmark is designed around interview transcripts, where each data point consists of
demographic information, a context in the form of question–answer pairs, and ground-truth first-
person self-reports. This setup defines a clean belief inference language task: given demographic
cues and conversational context, models must infer individual beliefs and predict reactions.

To complement this benchmark, we also release an auxiliary demographics-only dataset (39 users,
each with survey responses and demographic attributes). While these records do not support direct
belief inference, they enable principled baselines and transfer settings. Concretely, we implemented a
demographic–linear regression model based on survey responses, and further tested Qwen-Plus on
the main belief dynamics update task with auxiliary supervision from a subset of 15 users. Results
from both the demographic-linear baseline and the augmented Qwen-Plus setting are reported in
Table 7, illustrating how population-level priors can inform personalized inference.

Table 7: Results on the auxiliary demographics-only setting. Comparison of a demographic-only
prior baseline and Qwen-Plus with auxiliary supervision across three domains. Higher accuracy and
lower MAE indicate better performance.

Domain Demographic-only prior Qwen-Plus w/ auxiliary data

Accuracy MAE Accuracy MAE

Healthcare 0.130 2.954 0.524 1.792
Zoning 0.202 2.954 0.474 1.765
Surveillance 0.081 2.797 0.589 1.819
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C HugAgent Benchmark Details
We introduce the HugAgent Benchmark (HUman-Grounded Theory of Mind), a new evaluation suite
for reasoning fidelity in generative agents. HugAgent formalizes the task of causal BN reconstruction
from human interviews, and provides (1) a dataset of annotated causal belief graphs derived from
natural language Q&A, and (2) multi-level evaluation metrics (node, edge, motif) to assess structural
alignment between human and agent reasoning.

Unlike prior benchmarks focused on behavioral imitation or chain-of-thought generation, HugAgent
directly evaluates whether agents can reconstruct the latent causal structures that underlie human
judgments. This benchmark responds to recent concerns that LLM-based agents risk flattening
individual identity representations by grounding evaluation in structured, human-annotated causal
beliefs.

Data schema and cognitive grounding

Inspired by cognitive science, we use causal BNs to represent the reasoning structures underlying
human decision-making. Rather than modeling surface discourse, our schema captures latent causal
dynamics by explicitly linking belief variables, affective states, and behavioral intentions in a directed
graph. This design supports psychologically grounded and structurally coherent representations of
human reasoning.

Schema Design Each participant’s causal BN is represented as a structured JSON object composed
of three main components: nodes, edges, and qa_history. This schema is designed to encode
causal beliefs extracted from interviews, with each element indexed by a unique ID to enable motif
analysis, simulation, and evidence tracing.

Nodes Each node represents a belief concept and includes a label, a model-generated confidence
score (ranging from 0.0 to 1.0), and a list of source_qa IDs that support the node’s existence. Nodes
also track their incoming_edges and outgoing_edges for efficient graph traversal.

Edges Edges capture directed causal links between nodes. Each edge includes a source node ID,
a target node ID, and an aggregate_confidence score reflecting the model’s overall belief in
the causal connection. A modifier (in the range [−1.0, 1.0]) represents the direction and strength of
influence: positive values indicate causal support, negative values indicate inhibition. Each edge is
backed by a list of individual QA-based evidence entries with associated confidence scores.

QA History The qa_history component stores raw interview responses, mapping each QA pair
to its corresponding extracted causal relations. Each QA entry includes the original question and
answer texts, as well as a list of extracted_pairs, where each pair links a source node to a target
node with a confidence score.

This data structure supports fine-grained analysis of belief formation, causal reasoning, and evidence
provenance across participants.

Dataset Construction

We collected over 100 interviews from participants recruited through the Prolific platform. Top-
ics—such as urban upzoning, surveillance cameras, and universal healthcare—were chosen to elicit
reflective, ecologically valid reasoning.

Transcript Collection

To construct structured causal BNs from qualitative interviews, we developed a semi-structured,
cognitively grounded elicitation framework. This framework guides LLMs in extracting inter-
pretable causal structures from natural language dialogue and generating follow-up questions that
balance open-ended exploration with targeted inquiry [53, 54].

Human Annotation Protocol

We asked annotators to label causal BNs using soft labels, capturing graded beliefs and allowing for
variation across annotators. Our human-in-the-loop annotation tool supports annotators in assigning
confidence scores to each node and edge[55].
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Annotators were also recruited from Prolific[50]. During selection, we followed three principles: (1)
double-blind annotation, (2) matching annotators with similar backgrounds, and (3) using shared
guidelines to maintain consistency. Annotation instructions were carefully designed to ensure
reproducibility and interpretability.

Evaluation Settings

All models are evaluated under a consistent inference setup. We fix the random seed to 42 and set
the temperature to 0.1 for all experiments. Models from the GPT and Gemini series are executed in
batch inference mode, while all other models use real-time completion inference. All outputs are
constrained using function calling to ensure structured and valid responses. Prompts adopt a pure
in-context learning format without any examples or reasoning demonstrations.

For the Generative Agents setting, following [33], we employ Qwen2.5-32B-instruct to analyze
the dialogue transcript and generate three high-level expert reflections that serve as auxiliary reasoning
cues during inference. For the two retrieval-augmented variants of RAG[34], we adopt a TF-IDF
retriever to identify the top five most relevant QA pairs.

Human Baselines

We re-contacted a subset of participants for a short-interval (14-day) test–retest study. Across all
sessions, 54 participants contributed data. Of these, 18 completed the retest, and 13 were retained
following a demographic consistency check.

Belief State Inference yielded an accuracy of 84.84% (SD = 8.90, 95% CI: [80.00, 89.68]). By topic,
accuracies were 87.50% for Surveillance (SD = 8.29, 95% CI: [82.81, 92.19]), 81.54% for Zoning
(SD = 15.11, 95% CI: [73.32, 89.75]), and 84.53% for Healthcare (SD = 13.90, 95% CI: [76.97,
92.09]).

Belief Dynamics Update achieved an accuracy of 85.66% (SD = 7.66, 95% CI: [80.91, 90.40]) and a
mean absolute error of 0.68 (SD = 0.20, 95% CI: [0.55, 0.80]). Across topics, accuracy was 85.75%
for Healthcare (SD = 10.68), 85.33% for Surveillance (SD = 12.98), and 85.86% for Zoning (SD
= 10.08). Corresponding mean absolute errors were 0.66 (SD = 0.28, 95% CI: [0.49, 0.83]) for
Healthcare, 0.72 (SD = 0.35, 95% CI: [0.50, 0.93]) for Surveillance, and 0.67 (SD = 0.28, 95% CI:
[0.49, 0.84]) for Zoning.

In the Belief Dynamics Update tasks, we decompose directional accuracy into two components:
(1) change detection—the model’s ability to detect whether a belief change has occurred, and (2)
direction adjustment—the model’s ability to predict the direction of that change (increase, decrease,
or no change) (detailed definitions are provided in Appendix Q.1).

Overall, the directional accuracy was 88.92% (SD = 9.89, 95% CI: [82.09, 96.24]). The results
across topics are summarized as follows:

• Healthcare: change detection = 80.00% (SD = 25.82, 95% CI: [61.53, 98.47]); direction adjust-
ment = 96.67% (SD = 10.54, 95% CI: [89.13, 100.00]); directional accuracy = 91.67% (SD =
11.06, 95% CI: [83.76, 99.58]).

• Surveillance: change detection = 90.00% (SD = 16.10, 95% CI: [78.48, 100.00]); direction
adjustment = 88.33% (SD = 19.33, 95% CI: [74.51, 100.00]); directional accuracy = 88.83% (SD
= 15.15, 95% CI: [77.99, 99.67]).

• Zoning: change detection = 80.00% (SD = 23.31, 95% CI: [63.33, 96.67]); direction adjustment
= 90.00% (SD = 21.08, 95% CI: [74.92, 100.00]); directional accuracy = 87.00% (SD = 18.14,
95% CI: [74.03, 99.97]).
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Full Results on Human Dataset

Model
Human Dataset (N=54)

Belief State Inference Belief Dynamics Update
Acc. (% ↑) Acc. (% ↑) MAE (↓)

Health Surveil. Zoning Health Surveil. Zoning Health Surveil. Zoning

Human 84.53 87.50 81.54 85.75 85.33 85.86 0.66 0.72 0.67

OpenAI Models
GPT-4o 71.11±0.77 75.25±0.90 77.62±0.35 61.57±0.19 63.74±0.58 64.04±0.20 1.27±0.01 1.35±0.01 1.26±0.01

GPT-5-mini 73.15±2.36 76.89±0.90 75.87±0.43 59.92±1.05 55.16±1.09 59.56±0.73 1.37±0.02 1.54±0.02 1.40±0.01

o3-mini 69.26±1.21 77.38±1.70 78.73±0.87 60.08±0.28 62.53±1.16 71.02±0.79 1.31±0.02 1.29±0.03 1.07±0.01

Other Closed-Source Models
Gemini 2.0 Flash 63.89±0.00 68.20±0.37 77.78±0.00 56.23±0.12 62.25±0.37 63.16±0.10 1.39±0.00 1.33±0.00 1.33±0.00

DeepSeek-R1-0528 76.11±0.41 75.41±1.16 74.76±0.66 61.44±0.58 68.30±0.63 64.91±0.41 1.33±0.00 1.27±0.02 1.26±0.01

Qwen-plus_2025-07-28 78.70±0.65 76.39±1.22 77.62±0.66 56.74±0.59 57.86±0.15 62.18±0.18 1.44±0.01 1.43±0.01 1.34±0.00

Qwen-max_2024-10-15 78.52±0.77 76.39±0.37 77.30±0.43 56.78±0.64 57.69±0.27 62.11±0.35 1.43±0.01 1.44±0.01 1.34±0.00

Open-Source Models
LLaMA_3.3_70B 70.74±0.51 80.66±0.45 77.78±0.00 64.28±0.38 65.33±0.23 73.09±0.31 1.31±0.01 1.29±0.01 1.14±0.01

Qwen2.5-32B-instr 77.96±0.41 76.56±0.45 76.98±0.79 56.82±0.41 57.80±0.25 62.25±0.16 1.43±0.00 1.43±0.01 1.33±0.01

Qwen2.5-7B-instr 78.33±0.51 75.74±2.06 77.46±0.43 56.82±0.41 57.64±0.45 62.00±0.34 1.43±0.01 1.43±0.01 1.34±0.01

Memory-Augmented Baselines
RAG1 71.67±0.51 78.36±1.37 76.35±0.35 50.64±0.58 53.68±0.60 51.38±0.24 1.60±0.01 1.50±0.00 1.60±0.00

RAG-FC1 77.22±0.83 76.72±0.93 78.73±0.87 58.73±0.55 59.34±0.34 61.85±0.15 1.43±0.01 1.41±0.01 1.33±0.01

Generative Agents2 76.11±0.41 77.21±0.37 75.24±0.66 57.67±0.76 55.66±0.69 61.35±0.38 1.43±0.01 1.44±0.01 1.34±0.00

Table 8: Results on Human dataset for belief state inference and belief dynamics update tasks across
three policy topics (Health, Surveillance, Zoning). Values are mean±std over 5 runs. For belief
dynamics update, both Accuracy and MAE are reported separately. Best non-human results per
column are in bold.

1RAG [34], RAG-FC = RAG with Full Context [34].
2Generative Agents [33].
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Model Belief Dynamics Update

Change Detection Acc. (%↑) Direction Adjustment Acc. (%↑) Dir. Acc. (%↑)

Health Surveil. Zoning Health Surveil. Zoning Health Surveil. Zoning

Human 80.00 90.00 80.00 96.67 88.33 90.00 91.67 88.83 87.00

OpenAI Models
GPT-4o 49.36±1.59 65.83±3.12 57.14±3.01 88.89±0.00 91.49±0.53 98.33±3.33 77.03±0.48 83.79±1.31 85.98±1.71

GPT-5-mini 46.81±4.66 65.83±6.12 60.95±3.56 82.95±2.56 90.67±5.33 82.05±9.48 72.11±2.84 83.22±3.06 75.72±7.17

o3-mini 50.64±4.54 55.83±4.25 59.05±5.71 76.43±4.84 79.58±3.64 78.59±12.06 68.69±3.33 72.45±3.10 72.72±8.67

Other Closed-Source Models
Gemini 2.0 Flash 38.30±0.00 70.83±0.00 62.86±1.90 100.00±0.00 83.33±0.00 100.00±0.00 81.49±0.00 79.58±0.00 88.86±0.57

DeepSeek-R1-0528 54.47±2.17 64.67±5.20 52.38±3.01 83.62±2.10 84.42±3.75 100.00±0.00 74.87±1.86 78.50±1.50 85.71±0.90

Qwen-plus_2025-07-28 34.04±2.33 63.01±1.94 66.67±0.00 85.24±0.95 83.03±0.61 92.31±0.00 69.88±0.97 77.02±0.89 84.62±0.00

Qwen-max_2024-10-15 34.89±1.04 63.33±1.67 66.67±0.00 85.71±0.00 82.05±2.56 92.31±0.00 70.47±0.31 76.44±1.29 84.62±0.00

Open-Source Models
LLaMA_3.3_70B 68.09±3.01 54.17±0.00 53.33±1.90 80.00±0.00 85.71±0.00 100.00±0.00 76.43±0.90 76.25±0.00 86.00±0.57

Qwen2.5-32B-instr 33.19±1.04 62.50±0.00 66.67±3.01 84.29±1.17 83.33±0.00 92.29±0.38 68.96±1.05 77.08±0.00 84.60±1.17

Qwen2.5-7B-instr 33.62±1.59 62.50±0.00 65.63±1.40 84.29±1.17 83.33±0.00 93.57±3.26 69.09±1.03 77.08±0.00 85.19±2.30

Memory-Augmented Baselines
RAG1 42.55±1.90 55.83±5.00 66.67±0.00 66.67±0.00 86.51±3.85 85.71±0.00 59.43±0.57 77.30±1.94 80.00±0.00

RAG-FC1 45.11±2.08 62.43±6.00 60.95±1.90 80.00±0.00 90.91±0.00 86.03±2.82 69.53±0.63 82.36±1.80 78.50±1.40

Generative Agents2 36.17±1.90 61.06±2.27 60.95±1.90 81.00±9.70 83.64±3.64 93.85±3.08 67.55±6.41 76.86±2.20 83.98±1.58

Table 9: Directional accuracy results on Human dataset for belief dynamics update task across three
policy topics (Health, Surveillance, Zoning). Values are mean±std over 5 runs. For each topic, we
report Change Detection Accuracy, Direction Adjustment Accuracy, and Directional Accuracy (Dir.
Acc). Best results per column are in bold.

Task Model Belief State Inference (Accuracy (% ↑)) Belief Dynamics Update (Accuracy (% ↑)) Belief Dynamics Update (MAE ↓)

Health Surv. Zone Avg Health Surv. Zone Avg Health Surv. Zone Avg

Swap-cross_person
Gemini 2.0 Flash 52.78±0.65 52.79±1.49 47.46±0.66 51.01±2.76 34.19±0.12 40.71±0.36 39.35±0.16 38.08±2.91 2.13±0.01 1.85±0.01 2.05±0.00 2.01±0.12

Qwen2.5-32B-instr 58.15±0.77 64.75±0.00 58.41±0.90 60.44±3.22 33.77±0.73 40.77±0.63 39.93±0.46 38.16±3.28 2.19±0.01 1.87±0.01 2.01±0.00 2.02±0.13

GPT-4o 50.93±7.29 61.31±0.37 51.11±0.71 54.45±6.37 37.37±0.19 43.13±0.75 37.38±0.28 39.30±2.84 2.02±0.01 1.80±0.01 1.98±0.01 1.93±0.10

Table 10: Human Cross_Person test: models trained on one participant and evaluated on another.
Reported as mean ± std over 5 runs and across domains (healthcare, surveillance, zoning).

1RAG [34], RAG-FC = RAG with Full Context [34].
2Generative Agents [33].
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Full Results on Synthetic Dataset

Model
Synthetic Dataset (N=50)

Belief State Inference Belief Dynamics Update
Acc. (% ↑) Acc. (% ↑) MAE (↓)

Health Surveil. Zoning Health Surveil. Zoning Health Surveil. Zoning

OpenAI Models
GPT-4o 60.76±0.00 75.00±0.77 68.03±0.58 52.71±0.29 65.00±0.35 58.11±0.48 1.72±0.00 1.18±0.01 1.41±0.01

GPT-5-mini 50.38±1.88 72.39±1.24 53.61±26.80 51.09±0.91 64.44±0.46 56.23±1.63 1.74±0.01 1.21±0.02 1.46±0.02

o3-mini 58.23±1.55 78.48±1.19 72.30±1.47 46.90±0.81 58.46±0.28 64.07±0.37 1.80±0.02 1.29±0.00 1.26±0.01

Other Closed-Source Models
Gemini 2.0 Flash 51.90±0.00 63.48±1.24 63.61±0.45 45.28±0.19 62.96±0.00 55.93±0.22 1.77±0.00 1.18±0.00 1.49±0.00

DeepSeek-R1-0528 62.78±1.13 75.87±1.42 73.61±0.69 60.52±0.18 64.75±0.40 58.21±0.45 1.59±0.01 1.15±0.01 1.40±0.01

Qwen-plus_2025-07-28 63.80±1.44 67.83±1.97 71.80±0.73 45.11±0.37 64.94±0.17 55.83±0.53 1.80±0.00 1.18±0.01 1.50±0.01

Qwen-max_2024-10-15 62.78±2.12 68.48±0.00 71.97±0.37 45.20±0.44 64.57±0.14 55.83±0.46 1.80±0.00 1.18±0.01 1.50±0.01

Open-Source Models
LLaMA_3.3_70B 61.27±1.13 76.09±0.00 77.87±0.00 51.44±0.65 57.65±0.34 65.96±0.21 1.82±0.01 1.32±0.00 1.32±0.00

Qwen2.5-32B-instr 64.30±0.56 68.70±0.49 71.64±0.93 45.24±0.39 65.00±0.17 55.88±0.54 1.80±0.00 1.18±0.00 1.50±0.01

Qwen2.5-7B-instr 63.80±1.13 68.48±1.33 71.15±0.90 45.11±0.29 64.81±0.22 56.08±0.25 1.80±0.00 1.18±0.01 1.50±0.01

Memory-Augmented Baselines
RAG1 51.39±1.44 67.61±0.90 70.16±1.37 43.49±0.28 61.98±0.40 50.07±0.32 1.85±0.00 1.22±0.01 1.61±0.00

RAG-FC1 68.10±1.65 76.09±1.09 74.26±1.10 53.41±0.45 64.26±0.46 60.35±0.59 1.70±0.01 1.20±0.01 1.44±0.01

Generative Agents2 68.61±0.57 77.39±0.91 74.43±0.37 46.24±0.68 64.26±0.26 55.78±0.21 1.79±0.01 1.17±0.00 1.52±0.01

Table 11: Results on Synthetic dataset for belief state inference and belief dynamics update tasks
across three policy topics (Health, Surveillance, Zoning). Values are mean±std over 5 runs. For belief
dynamics update, both Accuracy and MAE are reported separately. Best results per column are in
bold.

Model Context Belief State Inference (Accuracy (% ↑)) Belief Dynamics Update (Accuracy (% ↑)) Belief Dynamics Update (MAE ↓)

Health Surv. Zone Avg Health Surv. Zone Avg Health Surv. Zone Avg

GPT-4o
5 QAs 56.96±1.27 73.48±0.60 62.30±1.00 64.25±7.18 53.23±0.71 64.20±0.00 56.28±0.27 57.90±4.80 1.68±0.00 1.18±0.01 1.43±0.01 1.43±0.21

10 QAs 62.28±1.06 74.13±0.49 66.89±0.45 67.76±5.09 52.18±0.44 65.12±0.44 55.53±1.78 57.61±5.76 1.73±0.01 1.17±0.01 1.44±0.00 1.45±0.24

20+ QAs 60.76±0.00 75.00±0.77 68.03±0.58 67.93±6.04 52.71±0.29 65.00±0.35 58.11±0.48 58.61±5.22 1.72±0.00 1.18±0.01 1.41±0.01 1.44±0.23

Gemini 2.0 Flash
5 QAs 37.97±0.00 63.48±0.60 57.38±0.00 52.94±11.26 42.75±0.18 63.64±0.14 54.09±0.18 53.49±8.84 1.82±0.00 1.18±0.00 1.54±0.00 1.51±0.27

10 QAs 43.04±0.00 61.74±0.49 62.13±0.90 55.64±9.24 41.79±0.25 63.02±0.14 55.73±0.14 53.51±9.12 1.83±0.00 1.19±0.00 1.52±0.00 1.51±0.27

20+ QAs 51.90±0.00 63.48±1.24 63.61±0.45 59.66±5.73 45.28±0.20 62.96±0.00 55.93±0.22 54.73±7.52 1.77±0.00 1.18±0.00 1.49±0.00 1.48±0.25

Qwen2.5-32B-instr
5 QAs 47.34±2.12 67.61±1.19 66.56±0.37 60.50±9.73 45.37±0.57 63.70±0.71 53.00±0.54 54.02±7.80 1.84±0.01 1.18±0.01 1.56±0.01 1.53±0.28

10 QAs 59.24±1.39 68.70±0.91 70.82±0.73 66.25±5.30 44.76±0.41 64.75±0.14 54.74±0.62 54.75±8.46 1.83±0.01 1.18±0.01 1.52±0.01 1.51±0.28

20+ QAs 64.30±0.57 68.70±0.49 71.64±0.93 68.21±3.18 45.24±0.39 65.00±0.17 55.88±0.54 55.37±8.37 1.80±0.00 1.18±0.00 1.50±0.01 1.49±0.26

Table 12: Synthetic belief state inference and belief dynamics update performance across question
lengths (5Q, 10Q, 20Q) for GPT-4o, Gemini 2.0 Flash and Qwen2.5-32B-instr. Reported as mean ±
std over 5 runs and across domains (healthcare, surveillance, zoning). Best in each column (across
all models) is bolded.

Task Model Health → Surv Surv → Zone Zone → Health Avg.

Belief State Inference (Accuracy (% ↑))
GPT-4o 18.99±0.90 50.22±0.49 39.67±0.73 36.29±13.44

Gemini 2.0 Flash 17.97±2.26 38.91±0.91 20.49±1.30 25.79±9.77

Qwen2.5-32B-instr 22.78±1.55 48.26±1.97 45.57±0.73 38.87±11.91

Belief Dynamics Update (Accuracy (% ↑))
GPT-4o 43.62±0.71 55.43±0.64 35.58±0.28 44.88±8.45

Gemini 2.0 Flash 36.03±0.22 41.73±0.51 52.06±0.32 43.27±6.88

Qwen2.5-32B-instr 34.28±0.56 23.40±0.34 26.65±0.89 28.11±4.76

Belief Dynamics Update (MAE ↓)
GPT-4o 1.64±0.01 1.45±0.01 1.73±0.00 1.61±0.12

Gemini 2.0 Flash 1.97±0.00 1.70±0.01 1.62±0.01 1.76±0.15

Qwen2.5-32B-instr 2.16±0.01 1.88±0.01 2.12±0.01 2.05±0.13

Table 13: Synthetic Cross_Topic test: models are trained in one topic domain and evaluated on
another. Reported as mean ± std over 5 runs and across domains (healthcare, surveillance, zoning).

1RAG [34], RAG-FC = RAG with Full Context [34].
2Generative Agents [33].
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Task Model Belief State Inference (Accuracy (% ↑)) Belief Dynamics Update (Accuracy (% ↑)) Belief Dynamics Update (MAE (↓)

Health Surv. Zone Avg Health Surv. Zone Avg Health Surv. Zone Avg

Swap-cross_person
GPT-4o 41.52±1.06 54.35±0.00 33.11±0.73 42.99±9.06 40.17±0.22 52.90±0.35 36.72±0.50 43.27±7.21 2.04±0.00 1.54±0.00 2.00±0.00 1.86±0.24

Gemini 2.0 Flash 30.89±0.69 47.83±0.00 33.93±0.45 37.55±7.64 30.13±0.15 50.93±0.00 35.53±0.11 38.86±9.12 2.16±0.00 1.52±0.00 2.06±0.00 1.91±0.29

Qwen2.5-32B-instr 42.28±1.13 55.00±0.60 34.75±0.45 44.01±8.68 32.10±0.53 52.78±0.22 35.04±0.32 39.97±9.46 2.14±0.01 1.49±0.00 2.06±0.00 1.90±0.30

Table 14: Synthetic Cross_Person test: models trained on one participant and evaluated on another.
Reported as mean ± std over 5 runs and across domains (healthcare, surveillance, zoning).
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D Chatbot Design

Figure 4: Overview of the QA loop and data structures. The system integrates the Causal Belief
Network (CBN), Node Queue, and Question List to guide interaction. Stages regulate question
priorities, with an irreversible transition from Stage 1 to Stage 2 once anchor nodes ≥ 3.

Core Data Structures

The system is built on three key data structures: (i) the Causal Belief Network (CBN), (ii) the Node
Queue, and (iii) the Question List. Together with a staged QA loop, these structures support the
dynamic modeling of user beliefs and the generation of targeted questions.

Causal Belief Network (CBN)

The CBN is the central representation of the user’s belief system. It organizes concepts as nodes and
captures their relations as edges.

• Nodes. Nodes represent concepts in the belief system.
– Candidate Nodes: new concepts detected in user answers, under evaluation.
– Belief Nodes: stable concepts that have been upgraded from candidates (e.g., due to repeated

mentions or high user confidence).
– Anchor Nodes: a subset of belief nodes that play a special role in question generation and stage

transition.
• Edges. Edges encode causal or influence relations between nodes. They specify direction (source

→ target), polarity (positive/negative), and optionally strength.

Node Queue

The Node Queue maintains candidate nodes that may become belief nodes.

• Entry Condition: a new concept first appears in user responses.
• Upgrade Condition: node is promoted to belief node when thresholds are met (e.g., frequency of

mention, confidence expressed by the user).

Question List

The Question List stores both guiding questions and follow-up questions. It is dynamically updated
based on the current CBN and node queue, and it serves as the buffer for delivering the next question
to the user.

QA Loop Overview

The overall interaction loop proceeds as follows:
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1. Initialization. The CBN contains only a stance node.
2. User Input. User provides a new answer.
3. Update. Update the CBN and node queue based on the answer.
4. Question Generation. Generate new questions using the CBN and queues; append them to the

question list.
5. Next Question. Select and ask the next question from the list.

Two-Stage Design

The QA loop has two stages. The transition occurs when the number of anchor nodes ≥ 3. This
transition is one-way; Stage 2 never returns to Stage 1.

• Stage 1. Only Priority 2 questions are allowed. Rationale: with too few anchors, meaningful
relationship questions are not possible. The system must first accumulate important concepts to
avoid premature exploration.

• Stage 2. Questions are selected from a candidate list according to priority. Higher-priority items
are chosen first.

Question Priorities

• Priority 1 – Stance Connection.
Purpose: connect essential concepts to the user’s stance.
Condition: isolated anchor (out-degree = 0, not connected to stance).
Format: “How does {anchor} affect your support for {stance}? Positive or negative? How
strong?”
Example: “How does privacy protection affect your support for surveillance?”

• Priority 2 – Node Discovery / Upstream Exploration.
Purpose: discover new concepts or explore influencing factors of anchors.
Condition: in Stage 1 or anchor has fewest in-degrees.
Format (Stage 1): “Tell me more about {concept}.”
Format (Stage 2): “What factors influence {anchor}? Positive or negative?”
Examples: “Tell me more about public safety.”; “What factors influence government oversight?”

• Priority 3 – Relationship Strengthening.
Purpose: quantify the strength and direction of existing relationships.
Condition: edge requires parameters or graph pattern needs completion.
Format: “How strong is the relationship between {A} and {B}? Positive or negative?”
Example: “How does technological advancement affect privacy protection? Strong or weak?”

• Priority 4 – General Backup.
Purpose: fill in missing information at the end of the interview.
Condition: remaining questions ≤ 3 and candidate pool insufficient.
Format: “Anything else important we have not discussed?”
Example: “Any clarifications on your previous answers?”
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E Semi-Structured Interview and Causal Belief Network Formalization

Figure 5: Illustration of the semi-structured interview process and causal belief network construction.
The chatbot begins with open-ended questions and extracts candidate concepts from user responses
(Anchor Node Discovery). Once three or more anchors are identified, it transitions to targeted
follow-ups to expand causal relations (Anchor Expansion). Edges represent directional influences
with polarity, forming the evolving CBN.

Semi-Constructed Interview Design. We use GPT-4 (or Qwen for open-source deployments) as
the backbone of a semi-structured interviewer. The model follows a two-phase logic:

1. Anchor Node Discovery: From initial open-ended responses, the system uses noun-phrase mining
and causal phrase detection to extract candidate belief variables. Candidates that appear in multiple
QA pairs or show causal centrality are promoted to anchor nodes, representing key ideas around
which reasoning is structured.

2. Anchor Expansion: For each anchor node, the system asks targeted follow-ups (e.g., “What
causes this?” or “What does this influence?”). These responses are parsed into edges, which
represent directional causal relations with confidence scores and modifiers (positive or negative
influence).

causal BN Formalization. Each participant’s graph is a Directed Acyclic Graph (DAG), with nodes
vi labeled by semantically grounded belief variables, and edges eij denoting belief in the causal
influence from vi → vj . We capture the following metadata for each element:

• Node-level: Label, frequency across QAs, semantic role (external_state, internal_affect,
behavioral_intention), layer depth (e.g., experience→ value→ stance).

• Edge-level: Confidence (based on question phrasing), polarity (positive or negative), and QA
provenance.

Edge Probability Estimation. Each edge is assigned a probability P (vj |vi) based on linguistic
indicators in the answer and motif alignment scores:

P (vj |vi) = σ(w1 · scausal + w2 · slinguistic + w3 · smotif) (1)
where scausal captures explicit causal phrasing, slinguistic measures structural confidence from the
model, and smotif reflects alignment to previously seen cognitive motif patterns. σ is the logistic
function.

Demographic Consideration. To support downstream generalization and population modeling
(Phase III), each interview is paired with structured demographic data (age, housing status, transporta-
tion mode, etc.). These attributes allow later stages to interpolate motif distributions and simulate
representative reasoning across diverse population groups.

Stopping Criteria. The system continues alternating between node discovery and causal expansion
until one or more termination conditions are met: (1) no new anchor nodes emerge, (2) motif-based
reasoning paths reach convergence, or (3) information gain across simulated stances falls below a
threshold.
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Forward Simulation and Inference. Once an intervention is identified, the causal BN is used to
simulate the effects of this intervention. The intervention is applied to the graph as a DO-operation
which cuts all incoming edges to the intervened node and updates its distribution. This is followed by
a forward simulation to propagate the effects through the network.

Post-processing includes analyzing changes in node probabilities and identifying significant shifts,
particularly those related to policy objectives. These results help explain the agent’s behavior and
evaluate proposed interventions. This structured method empowers stakeholders to make data-driven
decisions based on causal dynamics.
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F Questionnaire General Design
The questionnaire serves as the foundational layer of HugAgent, designed to capture both baseline
beliefs and structured reasoning factors before participants engage in interactive chatbot interviews.
The survey was administered through the Prolific platform, ensuring a diverse and demographically
balanced pool of respondents. Importantly, not all participants were asked to complete the chatbot
phase; instead, all participants began with the questionnaire, and only a subset was later recruited
for semi-structured chatbot interviews. This two-stage design allows us to ground conversational
transcripts in an already standardized and validated set of structured responses.

The questionnaire is structured into three complementary components. First, participants provide
demographic information, including age, gender, education, income, housing status, neighborhood
context, and transportation habits. These variables are aligned with U.S. Census and urban planning
survey standards, enabling stratified analyses of systematic variability in beliefs across groups
(e.g., renters versus homeowners, high-income versus low-income). Second, participants answer
stance and intervention items, rating their support on a 1–10 scale and updating their stance under
hypothetical scenarios (e.g., reduced rent under upzoning, reduced household costs under universal
healthcare, reduced crime under surveillance). Third, each topic includes a standardized reason
pool, a set of common factors such as affordability, fairness, privacy, safety, and neighborhood
character. After reporting their stance, participants rate on a 1–5 scale how strongly each reason
influences their opinion. This structure provides interpretable ground-truth (GT) data for reasoning
dimensions and enables cross-participant comparability, since all individuals evaluate the same set of
reasons. By aggregating these structured ratings, we can test whether models not only predict overall
support levels but also recover the latent weighting of reasons that drive human decision-making.
These structured ratings also serve as a reference for aligning open-ended chatbot responses with
quantitative belief factors, creating a consistent bridge between free-text explanations and structured
data.

Question Types

We define distinct question types to systematically probe both interpretive reasoning (inferring hidden
beliefs) and predictive reasoning (anticipating belief change).

Type 1.1: Stance elicitation (baseline beliefs). Participants report initial support levels on a 1–10
scale (e.g., “How much do you support allowing taller apartment buildings in your neighborhood?”).
This provides the starting point for belief state modeling.

Type 1.2: Reason evaluation. Participants rate how strongly predefined reasons (e.g., economic
benefits, fairness, neighborhood character, privacy, efficiency) influence their stance on a 1–5 scale.
The reason pools are shared across all respondents within a topic, allowing structured comparison
across individuals and providing ground-truth data on how value dimensions shape beliefs.

Type 1.3: Contextualized interview beliefs. Through chatbot dialogue, participants explain or
justify their stance in natural language. These free-form responses provide latent belief evidence,
which models must interpret to infer hidden attitudes. The transcripts can be cross-validated against
the structured reason evaluations for consistency.

Type 2.1: Scenario-based interventions. Participants evaluate counterfactual scenarios (e.g., “If
rent prices fall by 15% after upzoning, how would your stance change?”). This probes dynamic
updating of beliefs in response to outcomes.

Type 2.2: Normative fairness interventions. Scenarios manipulate fairness dimensions (e.g., “If
upzoning applied equally to wealthy neighborhoods” or “If cameras were controlled by local boards”).
These tasks test whether models capture fairness-based belief shifts.

Type 2.3: Conditional trade-offs. Participants consider hybrid conditions (e.g., “Universal health-
care exists alongside private insurance” or “Surveillance footage stored for 48 hours only”). These
tasks require reasoning under institutional or design constraints.
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Task Type Upzoning Surveillance Cameras Universal Healthcare

Belief Infer-
ence

Q: “On a scale from 1 to
10, how much do you sup-
port allowing taller apart-
ment buildings in your
neighborhood?” A: “Prob-
ably around 3. I worry it
changes the character of
the area.”
Target: Low support
(3/10); belief: upzoning
harms neighborhood char-
acter.

Q: “How comfortable do
you feel being monitored
by public cameras?” A:
“Honestly, it makes me un-
easy. I don’t trust how the
footage is used.”
Target: Low comfort;
belief: privacy concerns
about surveillance.

Q: “Do you feel your cur-
rent health insurance pro-
vides adequate coverage?”
A: “Not really, I often
avoid going to specialists
due to cost.”
Target: Insurance inade-
quate; belief: high costs
limit access.

Reaction Pre-
diction

Scenario: “After the city
allows more apartments,
rent prices drop 15%.
Your monthly rent is no-
ticeably lower.”
Target: Support increases
(e.g., +2 on 1–10 scale).

Scenario: “After installing
cameras, neighborhood
break-ins fall and rob-
beries drop by 20%.”
Target: Support increases
(stronger acceptance).

Scenario: “After switch-
ing to universal healthcare,
household out-of-pocket
costs fall by $3,000 annu-
ally.”
Target: Support increases
(e.g., from 6/10 to 9/10).

Table 15: Illustrative examples of HugAgent questionnaire and interview tasks. Each domain includes
both belief inference and reaction prediction items, enabling evaluation of models on stance attribution
and dynamic belief updating.

G Zoning Opinion Questionnaire (Human Evaluation)
To rigorously evaluate the fidelity of our generative agents’ responses against real human participants,
we conducted a structured public opinion survey titled General Housing & Upzoning Public Opinion
Survey. The survey was carefully designed to facilitate comparison between human-generated
responses and those from LLM-based agents, specifically targeting residents of United states.

Motivation and Objectives

This survey aimed to assess public opinion on urban upzoning scenarios, capturing nuanced attitudes
toward housing policies and their underlying reasoning. Our goal was to determine whether generative
agents could reliably replicate human response patterns, especially regarding sensitive issues such as
neighborhood change, density increases, and emotional responses like YIMBY (Yes In My Backyard)
and NIMBY (Not In My Backyard).

Survey Structure and Methodology

The survey comprised two primary sections:

Section 1: Demographic and Background Information Participants provided detailed demo-
graphic data aligned with U.S. Census Bureau categories:

• Age
• Housing status (owner or renter)
• Income levels
• Occupation
• Marital status
• Presence of children
• Transportation mode
• Monthly rent as a percentage of income
• Residential mobility
• ZIP code or proximity-based location verification
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To ensure data quality, participants were required to explicitly answer an attention check question.

Section 2: Scenario-Based Opinion Measurement Participants were first asked general zoning
questions and rated their support for allowing larger, taller apartment buildings in their neighborhood
on a 1–10 Likert scale (1 = strongly oppose, 10 = strongly support). Each scenario was accompanied
by a set of related factors, which participants evaluated on a 1–5 scale (1 = no impact, 5 = very large
impact), regardless of whether the impact was positive or negative. The factors included:

• Housing supply and availability
• Affordability for low- and middle-income residents
• Neighborhood character and visual compatibility
• Traffic and parking availability
• Walkability and access to amenities
• Noise, congestion, or infrastructure strain
• Fairness and distribution of development
• Economic vitality for local businesses
• Building height/scale relative to surroundings
• Property values or homeownership concerns

Clarifying examples were provided to ensure consistent interpretation of impact ratings.

Data Collection and Implementation

The survey was implemented using Google Forms and distributed via the Prolific platform, with
compensation set at $12/hour. Participants were guided through the survey flow with embedded
instructions and examples to ensure comprehension and engagement.

Transparency

All survey items, design rationales, and filtering criteria are publicly documented to support repro-
ducibility and public trust. This enables rigorous evaluation of generative agents’ ability to simulate
human attitudes under complex, emotionally and politically sensitive policy conditions.
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H Universal Healthcare Questionnaire
Motivation and Objective

This survey was designed to evaluate whether a structured reasoning system—based on Bayesian
networks extracted from interviews and conditioned large language models (LLMs)—can simulate or
recover human judgments on complex policy issues. In this case, we focus on universal healthcare, a
topic involving tradeoffs across fairness, cost, autonomy, and trust.

Rather than simply measuring stance, the survey was constructed to expose the participant’s reasoning
pathway, enabling fidelity evaluation at both outcome and process levels.

Survey Structure and Methodology

The survey design draws on the four-stage cognitive model of survey response [56]:

• Comprehension: Questions were phrased clearly and definitions were provided (e.g., what
universal healthcare entails).

• Retrieval: Participants were asked to recall relevant experiences (e.g., delays in care, interactions
with public systems).

• Judgment: Participants evaluated tradeoffs and reflected on personal values.
• Response: Structured Likert scales captured quantified opinions.

Survey Components

The survey includes:

• Stance Rating: Support for universal healthcare on a 1–10 scale.
• Personal Experience: Items capturing healthcare access and insurance adequacy.
• Baseline Reason Evaluation: Participants rated 13 carefully constructed reasons (e.g., fairness,

efficiency, innovation) for their general influence on stance.

Counterfactual Scenarios

To probe reasoning dynamics and test the model’s sensitivity to causal perturbations, four counterfac-
tual scenarios were introduced, each followed by a stance re-rating and a focused subset of reasons.
Scenarios included:

1. National cost reduction with increased wait times.
2. Household savings of $3,000 annually.
3. Retention of private insurance alongside a public system.
4. Coverage limited to essential services.

Participants re-evaluated selected reasons in the context of each scenario (e.g., “I worry about tax
increases” or “Universal healthcare might reduce personal choice in care”) on a 1–5 scale, allowing
analysis of belief shifts.

Reason Design

Reasons were drawn from qualitative policy discourse and refined to:

• Reflect distinct value dimensions (e.g., equality, responsibility, institutional trust).
• Avoid biasing language (neutral framing, no moral triggers).
• Enable both positive and negative stance justifications across political orientations.

Each reason was independently interpretable and mapped to latent causal factors in the underlying
Bayesian model. Subsets of reasons were assigned to each counterfactual scenario to ensure relevance
while reducing redundancy.
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I Surveillance Camera Questionnaire

Motivation and Objective

This survey is designed to evaluate the reasoning fidelity of structured models such as Bayesian
Networks (BNs) when paired with large language models (LLMs). Specifically, it tests whether a
BN+LLM system can simulate human responses to policy questions about public surveillance more
faithfully than a baseline persona-based LLM. To do this, we use controlled question design inspired
by cognitive science and causal reasoning frameworks.

Survey Structure and Methodology

The survey design draws on the four-stage cognitive model of survey response [56]:

1. Comprehension: Understand the question and context.
2. Retrieval: Recall relevant experiences and beliefs.
3. Judgment: Synthesize and evaluate relevant considerations.
4. Response: Map judgment to a scale-based response.

This model guides both our baseline attitude elicitation and our counterfactual design. The survey
consists of:

Section 1: Baseline Stance and Experience Participants rate their general support for public
surveillance (1–10), followed by personal experiences such as feelings of safety, comfort, and negative
interactions with surveillance technology.

Section 2: General Reason Evaluation Participants evaluate the importance of twelve potential
reasons (1–5 Likert scale) influencing their baseline stance, including factors like privacy, crime
prevention, power misuse, and behavioral impacts.

Section 3: Counterfactual Scenarios and Dynamic Reasoning Participants are then presented
with three hypothetical surveillance policy changes:

• Crime Reduction vs. False Arrest Tradeoff
• Limited Data Retention (48h)
• Community-Controlled Surveillance

For each scenario:

• Participants rate how the new information affects their stance (1–10 scale).
• Then, they re-evaluate a scenario-specific subset of 3–5 reasons (1–5 scale) that are most relevant

under the new condition.

This design allows us to evaluate whether the model (and human) responses adjust not only the final
stance, but also the internal reasoning paths—a critical distinction for validating structural cognitive
models.

Design Highlights

• Cognitive fidelity: Question wording avoids surface cues and forces reasoning across multiple
values (e.g., privacy vs. safety, trust vs. control).

• Counterfactual sensitivity: Each scenario targets a specific edge in the causal BN, enabling us to
observe how reason weights shift under perturbation.

• Explanation delta: By comparing reason weights before and after each scenario, we quantify
whether the model exhibits structural adaptation or static stance mimicry.

Data Collection and Implementation

The survey was implemented using Google Forms and distributed via the Prolific platform, with
compensation set at $12/hour. Participants were guided through the survey flow with embedded
instructions and examples to ensure comprehension and engagement.
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Transparency

All survey items, design rationales, and filtering criteria are publicly documented to support repro-
ducibility and public trust. This enables rigorous evaluation of generative agents’ ability to simulate
human attitudes under complex, emotionally and politically sensitive policy conditions.
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J Prompt
J.1 Task formatting prompt

System Prompt

zoning: "You are an expert at analyzing conversations about urban policy to extract causal
beliefs.
surveillance": "You are an expert at analyzing conversations about surveillance and public
safety to extract causal beliefs.
healthcare": "You are an expert at analyzing conversations about healthcare policy to extract
causal beliefs.

User Prompt

Based on the following conversation about {conversation_topic}, identify ALL question-
answer pairs that reveal the person’s beliefs about causal relationships between different
factors.
Conversation: {context_text} Your task: 1. Find ALL Q&A pairs that show how the person
believes one factor affects another (up to 10 pairs) 2. For each pair, create a direct question
asking about the influence level using everyday language 3. Based on the person’s answer,
determine their belief about the effect.
Selection rule: - PRIORITIZE items with dependency_level >= 1 (needs-context). If fewer
than 10 such items exist, then fill the remainder with the best dependency_level = 0 items. -
Prefer diverse factor pairs; avoid near-duplicates.

Return JSON format as an array.
{answer_options_text}
Use simple, everyday language for the factors. Examples by topic:
Zoning: "building more housing" instead of "upzoning policies", "traffic congestion", "neigh-
borhood character" .
Surveillance: "installing cameras" instead of "surveillance systems", "crime rates", "privacy
concerns" .
Healthcare: "universal coverage" instead of "healthcare policy", "wait times", "healthcare
costs".
Return up to 10 belief inference questions maximum.

J.2 Evaluation prompt

System Prompt

You are an expert psychologist specializing in Theory of Mind and belief inference.
Your task: analyze conversation transcripts to infer what the participant believes about causal
relationships. Focus on understanding their mental model - what they think causes what, not
what is objectively true.
Consider their background, conversation patterns, and implicit beliefs expressed through
their responses. Base your inference strictly on evidence from their statements, not general
assumptions.

User Prompt

{Context QA + Demographic information}
Based on the evidence above (including Conversation History and Person’s Background),
respond with ONLY the single letter (options_str) that best represents this person’s belief.)
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K Extended Design Principles
Open-ended reasoning as principle Our benchmark targets reasoning as a dynamic and individu-
alized process, rather than static prediction. We therefore adopt an open-ended elicitation principle:
instead of pre-defining fixed question banks, HugAgent uses a single guiding question to initiate
a semi-structured conversation. All follow-up questions are generated adaptively within the same
dialogue, grounded in the participant’s own responses. This design enables deep, conversational
reasoning to unfold while minimizing artificial scaffolding from the chatbot itself. We do not claim
fully open-world coverage; rather, we emphasize open-domain extensibility: by simply swapping
the guiding question, the benchmark can be ported to new domains while maintaining consistency
in evaluation. Such minimal-interaction protocols align with prior work showing that lightweight
conversational scaffolds preserve ecological validity in human reasoning studies [57, 58, 15, 59].
This principle directly motivates the guiding-question chatbot protocol we describe in Appendix
D.

Proxy tasks of reasoning To evaluate whether models capture not only what individuals believe
but also how their beliefs evolve, we operationalize reasoning through two proxy tasks: belief state
inference (recovering stance and factor polarity from context) and belief dynamics update (predicting
stance shifts and reweighting under new evidence). These tasks follow the tradition of modeling belief
revision as a tractable proxy for underlying cognitive processes [60, 61]. While other proxies could
be envisioned, these two are the most direct operationalizations of individual reasoning trajectories,
balancing interpretability and task difficulty. This motivates our benchmark’s two-task structure,
detailed in Appendix D.

Dual-track design: human and synthetic agents Human data provide ecological validity: rich,
idiosyncratic reasoning paths embedded in natural language. Synthetic agents, by contrast, provide
controllability and scale: fully specified stance profiles and deterministic update rules allow stress-
testing model adaptation under known ground truth. Together, the two tracks are complementary:
humans as ecological baselines, synthetics as controlled stress tests. This mirrors dual-track designs
in cognitive science and simulation benchmarks, where naturalistic and synthetic data jointly enhance
validity and reproducibility [10, 62]. Synthetic agents are not intended to replace human data but to
serve as a complementary axis of evaluation. This dual-track design is what anchors HugAgent
between ecological realism and controlled generalization tests.

Extended Rationale: Synthetic Stage Justification Synthetic data in HugAgent follows the same
legitimacy principles as established ToM and social reasoning benchmarks. Rather than letting
LLMs freely invent beliefs, we first define a formal structure—a causal belief graph specifying nodes
(beliefs), edges (causal relations), and interventions (external stimuli). Synthetic agents then evolve
along this graph to generate new belief states and reasoning trajectories. The graph itself provides
the ground truth for evaluation (e.g., stance updates, trajectory alignment), while LLMs merely
render these states into natural language explanations. This ensures that labels are independently
controlled and falsifiable, avoiding the risk of self-validation. As in prior benchmarks, sampled
human verification is performed for quality assurance.

Upper bound via test–retest reliability A natural question is whether human annotators could
serve as the benchmark baseline. While this is common in many benchmarks, HugAgent tasks present
unique challenges: they involve long, naturalistic transcripts and fine-grained belief trajectories.
In principle, annotators could be asked to re-read transcripts and label stance updates, but such
procedures are slow, error-prone, and risk conflating annotators’ own heuristics with the original
participant’s reasoning. This creates a fidelity–feasibility tradeoff: while feasible, the outcome would
be a proxy of third-party interpretation, rather than a faithful measure of the individual’s reasoning
process.

Instead, we adopt test–retest reliability as the human ceiling. Here, the same participant is re-sampled
or re-interviewed, and the consistency of their own responses provides a direct measure of reliability.
This practice is well established in psychology and survey research, and has been adopted in recent
large-scale reasoning datasets facing similar challenges [33, 12]. Compared to annotator baselines,
test–retest reliability offers a more precise and ecologically valid upper bound for model performance,
aligned with the benchmark’s goal of capturing intra-individual reasoning fidelity. This principle
defines how we report the human ceiling in HugAgent.
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L Data Full Example
User’s Demographic:

Attribute Example (Anonymized Participant)

Housing Experience Has lived in the same residence for several years
Age 30
Moved Last Year Same house 1 year ago
Housing Status Owner-occupied
Transportation Car / Truck / Van
Household Income $75,000–$99,999
Occupation Sales and office occupations
Marital Status Not married
Children Has children
Neighborhood Safety Very safe. I rarely worry about crime
Health Insurance Private insurance, no disability
Education High school graduate or equivalent
Citizenship Native-born U.S. citizen
Financial Situation Gets by, but money is tight

Table 16: Example anonymized participant profile used in analysis (for illustration only). Personally
identifiable details have been generalized or omitted.

Interview QA

Note: The following excerpt reflects a simulated or anonymized participant’s responses. It may
contain biased or stereotypical opinions that do not represent the authors’ or dataset creators’ views.
It is included purely for analysis of belief attribution and reasoning behavior.

1. Q: To what extent do you support or oppose upzoning policies that allow for higher density
housing in traditionally single-family neighborhoods? Please explain your reasoning.
A: I don’t support it at all. I’m worried that it’ll cause overcrowding if cheaper apartments or
housing were made. Aside from that, we know that statistically, lower income people tend to have
more of the criminal population in them, isn’t that right? So this might cause the crime rates to go
up!

2. Q: What do you think are the most significant impacts, positive or negative, of increasing housing
density in residential neighborhoods?
A: I’ve mentioned the potential for crime rates to go up, that’s the real worry here. Lots of new
lower income people, lots of potential criminals.

3. Q: How do you think upzoning policies might affect housing affordability in urban areas?
A: They’d most likely lower the price of rent because of “competition”. But at what cost? The
safety of the people!

4. Q: What impact do you believe increased housing density might have on neighborhood character
and quality of life?
A: Safety for sure. Low income places simply have more potential for crimes due to people being
tempted to commit criminal acts for survival.

5. Q: How do you think upzoning might affect transportation systems and traffic congestion in cities?
A: It’s going to worsen! Look, there was a time when I used to take the bus to get to work every
day when I still didn’t have a car. I live in a big city and sometimes, the bus couldn’t take all of
us! That caused me to get late a couple of times since there wasn’t even any standing room. So
imagine, a rush of new low income people to this area, probably they don’t have cars so they’ll
rely on buses, it’ll just be extra strain on the buses and not everyone would be able to get on the
bus at all.

6. Q: What role do you believe local government should play in regulating housing development
and density?
A: The government really shouldn’t be too involved with many things. Just minimally involved.
Less government involvement, the better.

7. Q: How might environmental concerns factor into decisions about urban density and zoning?
A: I don’t personally care about these so-called “environmental concerns”. I’m not some kind of
environmental activist or terrified climate change believer. As long as something doesn’t dump
toxic waste or all sorts of hazardous material in my area, then it’s good.
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8. Q: What economic effects, both positive and negative, might result from changing zoning laws to
allow more multi-family housing?
A: More new people, more potential customers for businesses in the area obviously. BUT we
also have to think that these are low income people if we’re talking about low income housing.
So businesses targeting low income people would most likely benefit, but the more upscale ones
wouldn’t.

9. Q: How do you think the interests of current residents versus future residents should be balanced
when making zoning decisions?
A: The current residents should ALWAYS be prioritized, they were there first. New people should
always be considerate of the people living wherever they’re planning to move to. It’s just basic
human decency.

10. Q: What role do you think social equity and access to opportunity play in discussions about
zoning and housing policy?
A: I am totally against EQUITY. Equity means taking opportunities away from someone in order
to give it to somebody else who probably didn’t earn it. I don’t like the idea of redistributing what
a successful person has.

11. Q: How confident are you that changes in Higher density housing lead to changes in Support for
Upzoning? Does it have a positive effect (increasing it) or a negative effect (decreasing it)? How
strong is this effect?
A: It’s going to be NEGATIVE. If we’re talking about people, it’s not just quantity that we’re
supposed to worry about, but also the quality. So we can say “Don’t judge a book by their cover”,
but we also must think that people are in the situation they are for a reason. So if we’re going to
get flooded by low income people, we have to ask, “Why are they low income?” Of course not all
low income people are bad, but majority of criminals are low income people.

12. Q: What factors do you think influence Support for Upzoning, and how strong is their impact?
Please also indicate if these influences are positive (increasing) or negative (decreasing).
A: Definitely the idea of SAFETY is a huge factor. Just imagine you live in a peaceful neighbor-
hood where crime isn’t really a problem, then suddenly a huge number of new low income people
flood in to your community and suddenly kids start getting bullied at the playground, people start
getting mugged left and right. Safety is really a big concern!

13. Q: Does Crime rates have a positive or negative effect on Support for Upzoning, and how signifi-
cant is this effect? Does it have a positive effect (increasing it) or a negative effect (decreasing it)?
How strong is this effect?
A: That’s what I’ve been talking about this entire conversation, the potential for CRIME! As I’ve
already stated numerous times, it’s a MAJOR concern and an influx of low income people would
definitely affect the crime rate!

14. Q: Would small changes in Housing affordability lead to noticeable changes in Support for
Upzoning, or would it take larger shifts? Does it have a positive effect (increasing it) or a negative
effect (decreasing it)? How strong is this effect?
A: At first people would probably think things will be better because rent might go down a bit,
BUT that’s not guaranteed. Second, SAFETY is really something that people are probably not
willing to compromise.

15. Q: Would small changes in Safety lead to noticeable changes in Support for Upzoning, or would
it take larger shifts? Does it have a positive effect (increasing it) or a negative effect (decreasing
it)? How strong is this effect?
A: If there’s really no way about avoiding the creation of some kind of tall low income apartment
building for the sake of “equity”, then the next best thing would be to thoroughly do background
checks on all the renters. For example, there should be strictly nobody in there with a criminal
record.

16. Q: How would you describe the relationship between Low Income People and Support for
Upzoning? Is it a strong or weak connection? Does it have a positive effect (increasing it) or a
negative effect (decreasing it)? How strong is this effect?
A: Well of course low income people would support the creation of low income rental building.
But the problem is that people already living in the community, like me, wouldn’t support it at all
for fears of safety worsening.

17. Q: Is the effect of Minimal Regulation on Support for Upzoning immediate, or does it take time
to develop? Does it have a positive effect (increasing it) or a negative effect (decreasing it)? How
strong is this effect?
A: Any policy takes TIME to develop. Rushed policies just end up in disaster because it won’t be
well thought out.
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18. Q: Would small changes in Impact on businesses lead to noticeable changes in Support for
Upzoning, or would it take larger shifts? Does it have a positive effect (increasing it) or a negative
effect (decreasing it)? How strong is this effect?
A: No. As I’ve said, low income people will only provide benefit to businesses targeting low
income customers. Mid to upscale businesses wouldn’t benefit from them because they won’t
be able to afford their products and services. In short, not all businesses would be in support of
having some kind of low income housing in the area if all they’re going to be able to afford are
low income stuff.

19. Q: How would you describe the relationship between Basic human decency and Support for
Upzoning? Is it a strong or weak connection? Does it have a positive effect (increasing it) or a
negative effect (decreasing it)? How strong is this effect?
A: There are people who make decisions based on feelings alone. Yes, they’ll think it’s “decent”
to allow low income people to have low income housing in their community, BUT often, these
people don’t think about the consequences that would affect the people already living in the
community. They are too focused on helping others that they don’t realize they are causing harm
to themselves.

20. Q: Is the effect of Redistribution on Support for Upzoning immediate, or does it take time to
develop? Does it have a positive effect (increasing it) or a negative effect (decreasing it)? How
strong is this effect?
A: That’s definitely going to be a huge NEGATIVE right away. Nobody in their right mind
would want themselves to be compromised for others. So let’s think about what happens if in a
moderately wealthy area, they allowed low income housing in the name of “equity”. For actual
home owners (not renters), the value of their properties would go down. These are properties that
they’ve worked for years to maintain, and suddenly, in the name of “equity”, is it alright to allow
the values to go down? No of course not! So we have to always think about how low income
housing would affect the people already living in the community.

21. Q: Would small changes in Negative Effect lead to noticeable changes in Support for Upzoning,
or would it take larger shifts? Does it have a positive effect (increasing it) or a negative effect
(decreasing it)? How strong is this effect?
A: No, it’s called “Negative Effect” because it affects people in a bad way. Nobody would support
anything like that knowingly.

22. Q: What factors affect Upzoning policies, and which ones have the strongest influence? Please
also indicate if these influences are positive (increasing) or negative (decreasing).
A: As I’ve been saying this entire conversation, the major facor that affects people’s support for
low income housing is the SAFETY, the potential for crime rates to go up, and these things will
definitely always affect support for low income housing negatively.

23. Q: Does Community Resistance to Upzoning have a positive or negative effect on Support for
Upzoning, and how significant is this effect? Does it have a positive effect (increasing it) or a
negative effect (decreasing it)? How strong is this effect?
A: Of course community resistance won’t support low income housing, that’s the point. People
would resist these places from being built in order to protect the community from potential safety
concerns.

24. Q: How would you describe the relationship between Time for policy development and Support
for Upzoning? Is it a strong or weak connection? Does it have a positive effect (increasing it) or a
negative effect (decreasing it)? How strong is this effect?
A: Of course “Time” will always have something to do with whether low income housing would
be allowed or not. For example, maybe a politician would take his time forming some kind of
bill concerning low income housing and he’ll wait for enough public support before officially
launching it in order to increase its chances of succeeding.

25. Q: Would small changes in Low Income Housing lead to noticeable changes in Support for
Upzoning, or would it take larger shifts? Does it have a positive effect (increasing it) or a negative
effect (decreasing it)? How strong is this effect?
A: No, even small changes in low income housing won’t change people’s support for it because it
will negatively affect the community. People already know it’s most likely going to be the cause
of many safety concerns aside from property devaluation.

26. Q: Does Equity have a positive or negative effect on Support for Upzoning, and how significant is
this effect? Does it have a positive effect (increasing it) or a negative effect (decreasing it)? How
strong is this effect?
A: Equity has NEGATIVE effects on people already living in the community, because the point
of equity is to take from those people (land space) and to redistribute it to other people (the low
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income people). People might try to frame it as “helping the poor”, but you can help poor people
in other ways without harming the community.

27. Q: How would you describe the relationship between Support for low income housing and Support
for Upzoning? Is it a strong or weak connection? Does it have a positive effect (increasing it) or a
negative effect (decreasing it)? How strong is this effect?
A: People are directly against low income housing because it’s more likely to bring bad stuff with
it that good ones. The consequences outweigh the positives.

Sample Survey: Housing / Upzoning

Baseline Stance

• Q1. On a scale from 1 to 10, how much do you support or oppose allowing bigger, taller apartment
buildings in your neighborhood?

1 2 3 4 5 6 7 8 9 10
Strongly Oppose Neutral Strongly Support

Reason Evaluation (Baseline)

Q1r. How much do the following reasons influence your general opinion on upzoning?

Reason Scale (1–5)

Building more homes helps with the housing crisis. (A)
This gives more housing choices for middle- and lower-
income people. (B)
Taller buildings might change the look and feel of the neigh-
borhood. (C)
More traffic and parking is a real concern. (D)
I’m worried about my property value or investment. (I)

Scenario 1: Rent Drop

• Q2. After the city allows more apartments in low-density areas, rent prices drop 10–15%. Your
monthly rent is noticeably lower. It’s easier to find a decent place. How would this affect your
stance?

1 2 3 4 5 6 7 8 9 10
Much Less Supportive Neutral Much More Supportive

Reason Evaluation (Scenario 1)

Q2r. To what extent do the following reasons influence your stance?

Reason Scale (1–5)

Building more homes helps with the housing crisis. (A)
More traffic and parking is a real concern. (D)
Everyone should help handle the growth. (N)
More people means more business for local shops. (O)
I’d worry about noise and crowding on my block. (P)
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M Quality-Control Protocol
We applied a standardized protocol to ensure that only participants with reliable and reproducible
data were retained. The following criteria were applied sequentially:

1. Redundant responses: cases where the participant repeatedly produced near-identical statements
without substantive variation.

2. Meta-level questioning: transcripts dominated by repeated challenges to the validity of the task
itself rather than substantive reasoning about the topic.

3. Insufficient length: responses falling below a minimum threshold of tokens or turns, preventing
meaningful inference of reasoning structure.

4. Sparse causal belief networks: chatbot elicitation yielding fewer than five unique nodes, limiting
the interpretability of downstream causal graph construction.

This filtering ensured that the retained dataset reflects consistent engagement with the task, while
minimizing artifacts that could compromise the validity of subsequent analyses.
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N Synthetic Agent Construction (Algorithmic)
N.1 Problem Setting and Notation

We construct a synthetic agent population A for topics T =
{ZONING, HEALTHCARE, SURVEILLANCE}. Each agent a ∈ A for topic t ∈ T has (i) a
Causal Belief Network (CBN) G = (V,E), (ii) a demographic profile d, (iii) an initial belief
state b0 = (s0,w0) with stance s0 ∈ {1, . . . , 10} and reason weights w0 ∈ ∆K−1, and (iv) a
deterministic update operator U that maps (bt, e) 7→ bt+1 given an intervention e.

Topic-level statistics. From human CBN corpora we estimate topic-specific sufficient statistics
Θt = {µn, σn, µe, σe, αimp, βimp, αconf, βconf,V}: node/edge count moments (µn, σn) and (µe, σe),
Beta parameters for node importance and edge confidence, and a topic vocabulary V for label
generation. A content hash over source JSON files ensures cache validity.

N.2 CBN Sampling Model

Graph size. We draw |V | ∼ TruncNorm(µn, σn, [nmin, nmax]) and |E| ∼
min{LogNormal(µ′

e, σ
′
e), |V |(|V | − 1)/2} with log-space moments chosen to match (µe, σe).

Node attributes. For each v ∈ V :

importance(v) ∼ Beta(αimp, βimp), evidence(v) ∼ Poisson(λt).

Text label ℓ(v) is generated by sampling m ∈ {2, 3, 4} tokens from V (frequency-weighted) and
filling a topic template.

Edge attributes and topology. We form a hub–spoke backbone plus random residual edges.
For each selected hub h (top-q by importance), connect h→ u for u ∈ V \{h} with probability
proportional to 0.7 · importance(u) + 0.3 until a target degree. Each edge e = (u→v) gets:

conf(e) ∼ Beta(αconf, βconf), sign(e) ∈ {−1, 0,+1}with p+, p0, p−, weight(e) ∼ Beta(αw, βw).

We then add random non-duplicate edges until |E| is reached.

Stance node selection. Let deg(v) be (undirected) degree. Define score σ(v) = 0.7 ·
importance(v) + 0.3 · deg(v)/maxu deg(u). Sample stance node v⋆ from top-3 nodes according to
σ(v) (softmax). Ensure weak connectivity from v⋆ to all nodes (add minimal edges if needed).

N.3 Deterministic Update Operator

Let reasons be a fixed topic-specific set {r1, . . . , rK} aligned to V . Given intervention e encoded as
factor deltas ∆f ∈ R|V |, we update stance and reason weights:

st+1 = clip

st + ηs
∑

(u→stance)∈E

signu wu ∆fu, 1, 10

 , (2)

wt+1 = Normalize(wt + ηw M∆f) , Mk,u = g(rk, u), (3)

where wu is the edge weight into stance, ηs, ηw are step sizes, and g(·, ·) aligns reasons to graph
nodes (one-hot or soft map). This yields reproducible ground truth for stance shifts and reweighting.

N.4 Demographic Generator and Coupling

We sample a demographic profile d with correlated marginals: age bands, gender, education, income,
housing status, employment, location, children, and rent-burden. Simple rules induce a small stance
prior δ(d) (e.g., renter ⇒ +δ on pro-development; older age ⇒ −δ on rapid change). We set
s0 ← clip(s0 + δ(d), 1, 10).

N.5 Natural Language Realization

A realization module renders (G, e, bt, bt+1) to text: (i) paraphrase e with templates; (ii) describe
reasons using top-m nodes connected to v⋆ by high-confidence edges; (iii) optionally ask/answer
interview-style QAs. LLMs are used strictly as a renderer; labels remain from the scripted dynamics
in §N.3 to avoid circularity.
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Algorithm 1: GenerateAgent(t,Θt, seeds)
Input: topic t, stats Θt, RNG seeds
Output: agent (G, d, b0, {(ej , bj)}mj=1, text)

1 Sample |V |, |E|; create V with importance, evidence, label from V;
2 Build E via hubs + random; assign conf, sign, weight;
3 Select stance node v⋆; ensure connectivity;
4 Sample demographics d; set b0 = (s0,w0) and apply prior δ(d);
5 for j = 1 to m do
6 Sample intervention ej (topic-specific deltas ∆f );
7 bj ← U(bj−1, ej) using Eqns. (1)–(2);
8 Realize (ej , bj−1, bj) to text; append to transcript;
9 return packaged JSON: graph G, demographics d, {(ej , bj−1, bj)}, transcript;

N.6 End-to-End Generation

N.7 Complexity and Scaling

Graph sampling is O(|V |+ |E|); hub wiring adds O(|V | log |V |) for sorting. Per-agent conversation
of m turns is O(m) render calls. The pipeline trivially parallelizes across agents and topics.

N.8 Quality Control and Determinism

Graph validity: degree bounds, stance reachability, parameter ranges. Topic relevance: label
vocabulary coverage threshold. Determinism: all stochastic steps are seeded; topic stats are cached
with file hashes. Leakage control: interventions and post-update labels never appear in the dialogue
context used for model evaluation.

N.9 Release Schema

Records are released as JSON:

• belief_graph: nodes with label, importance; edges with source, target, sign, weight,
confidence; stance node id.

• demographic: age, gender, education, income, housing, employment, location, children, burden.
• state_before/state_after: stance (1–10), reason weights (1–5 or normalized).
• intervention: structured deltas and a natural-language paraphrase.
• transcript: ordered QA pairs (renderer output).

N.10 Human–Synthetic Similarity

To assess whether synthetic agents provide a faithful approximation of human reasoning structures,
we compare structural statistics of belief graphs across the two tracks. As shown in Figure 6, the
distributions of key properties—including graph size (nodes, edges), sparsity (edge density, average
degree), and semantic alignment (importance, confidence, anchor-node ratio)—exhibit strong overlap
between real and synthetic agents. Notably, synthetic graphs reproduce the long-tailed variation
in node and edge counts observed in human data, while maintaining comparable distributions of
stance-related weights. This alignment suggests that the synthetic track can serve as a scalable proxy
for human reasoning traces, capturing core structural regularities even as it abstracts away from
individual variability.

N.11 Limitations

Synthetic agents offer coverage and ablation control but abstract from human variability (noise,
inconsistency, framing sensitivity). Thus, results on this track are stress tests and should be interpreted
alongside the human-grounded track, which provides the ecological ceiling.
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Figure 6: Distributional comparison of structural statistics between human-grounded (blue) and
synthetic (red) belief graphs. Synthetic graphs replicate key patterns such as node/edge counts,
confidence levels, and anchor-node ratios, supporting their use as controlled stress-test agents.

O Benchmark Task Structure
To clarify how HugAgent maps input materials to evaluation tasks, we provide here a consolidated
overview of the benchmark structure. As shown in Figure 7, raw inputs include (i) demographic
profiles, (ii) structured questionnaires, and (iii) open-ended chatbot transcripts. These inputs are
transformed into two core task families:

• Task 1: Belief State Inference. Given a participant’s responses and contextual cues, models
must infer the person’s stance and factor-level attribution. Example questions include: “Does the
respondent view low-income housing as a positive or negative effect on property values?”

• Task 2: Belief Dynamics Update. After an intervention (e.g., rent decrease, policy change,
technological improvement), models must predict both the stance shift (1–10 scale) and the
reweighting of reasons (1–5 scale). Example questions include: “How would a 10% reduction in
rents affect the respondent’s stance on upzoning?”

Each topic domain—zoning, healthcare, and surveillance—is instantiated with multiple scenarios
and corresponding reason mappings. This ensures comparability across domains while preserving
topic-specific ecological validity.
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Figure 7: Overview of the HugAgent benchmark structure. Inputs (demographics, questionnaires,
and transcripts) are mapped to outputs, including belief state inference (Task 1) and belief dynamics
update (Task 2).

P User Journey and Use Cases of TRACE-YOUR-THINKING (A
Semi-structured Chatbot Eliciting Human Reasoning)

This appendix provides a detailed user guide and representative use cases for TRACE-YOUR-
THINKING, our semi-structured chatbot system designed to elicit human reasoning at scale. We
describe both participant-facing (user) and researcher-facing (admin) views, followed by system
outputs and illustrative use cases. We use open science practices as an example here. Our design
emphasizes three goals: (i) lowering barriers for participants, (ii) giving researchers flexible and
reliable control, and (iii) producing structured outputs that make reasoning analyzable at scale.
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Participant Journey (User View)

Participants experience a streamlined workflow that reduces friction while maximizing the richness
of collected reasoning.

Step 1: Consent and ID submission. Recruitment begins on the Prolific platform, where partic-
ipants are shown eligibility criteria and compensation details. Upon accepting the study, they are
redirected to a Google Form where they confirm basic requirements (age ≥ 18, residence within a
specified region, consent for anonymous data usage). Entering their Prolific ID links the responses
to the recruitment system, enabling follow-ups without storing personal identifiers, as is shown in
Figure 8.

Figure 8: Participant view of the onboarding and interview flow (Consent)

Figure 9: Participant view of the welcome page

Step 2: Login and onboarding. Participants are then redirected to the TRACE-YOUR-THINKING
website. After inputting their Prolific ID, they are guided through a short tutorial. This tutorial
introduces input modalities (typed text vs. voice-to-text) and explicitly informs users that all answers
can be revised either immediately or retrospectively. A persistent progress bar at the top of the
interface communicates task completion, reducing dropout risk by making expectations transparent.
This part is shown in Figure 9.

Step 3: Semi-structured interview. The core of the participant journey is the semi-structured
interview, which unfolds in a guided yet flexible flow: introduction→ guiding questions→ follow-up
probes→ final review. This design balances standardization with open-ended flexibility, allowing for
wide variation in content, style, and depth of responses.

Participants can choose between typed responses and spoken input, enabling a think-aloud protocol
that captures more spontaneous reasoning processes. Figure 10 illustrates the onboarding screen
where both input modes are explained, while Figure 11 shows a participant actively using voice
input to answer a question. Once the interview begins, participants can monitor their progress via a
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Figure 10: Participant view of the onboarding of the chatbot, including audio and text input

persistent progress bar (Figure 12), which reduces fatigue by making task completion transparent.
During processing, the interface will show the processing status while still generating new questions
and allow users to answer (Figure 13).

Participants can not only edit their responses immediately but also review the entire transcript at the
end of the interview. As shown in Figures 14 and 15, the system presents an overview of all questions
and answers, enabling users to backtrack, refine, and self-correct their reasoning. This mirrors how
real-world reasoning often evolves over multiple passes rather than being fixed in a single draft.

Step 4: Submission and compensation. Once satisfied, participants submit their responses. Fig-
ures 16 and 17 demonstrate the submission stage, where participants re-enter their Prolific ID to
confirm completion and finalize their session. The system redirects them back to Prolific, which
automatically verifies completion and issues compensation. This tight integration ensures high-quality
participation while minimizing administrative overhead.
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Figure 11: Participant view of using audio to give the answer

P.1 Researcher Journey (Admin View)

The system provides a dedicated control panel that makes data collection transparent, configurable,
and scalable. Unlike static survey platforms, admins can adapt the study design on the fly and extract
structured reasoning outputs.

Recruitment integration. Admins can publish tasks directly on Prolific, embedding the study link
into recruitment posts. Prolific’s filters (approval rate, demographics, geography) allow targeted
participant pools, while stored Prolific IDs support longitudinal follow-ups. This design enables
researchers to re-engage the same individuals across time or across topics, making it uniquely suitable
for longitudinal reasoning studies.

Session management. The Session Management dashboard (Fig. 18) displays all ongoing and
completed interviews with metadata including status, progress, and timestamps. From this panel,
admins can (i) reorder questions, (ii) export raw QA data, or (iii) export causal graphs for downstream
analysis. This unified view makes it easy to monitor study progress at scale and to recover high-fidelity
reasoning traces.

Configurable guiding questions. Admins can design and adjust the interview protocol using
a guiding question editor (Fig. 19). Each question has metadata (short text, full text, category),
can be toggled on/off, and can be reordered dynamically. This flexibility makes it possible to test
multiple hypotheses without rewriting the underlying system. In practice, this feature has been used
to swap tutorial vs. research questions and to experiment with different probing strategies, making
the platform versatile for diverse research programs.

Global settings. Admins can set a global interview topic (e.g., policy, healthcare, surveillance)
with a single configuration (Fig. 20). This allows open-ended reasoning tasks to be deployed across
arbitrary domains, ensuring that the platform is not tied to a fixed task. In effect, the system generalizes
beyond a dataset-collection tool to become a reusable infrastructure for eliciting reasoning in any
domain.

P.2 Research Outputs (System Features)

The system is designed to produce outputs that go beyond raw transcripts, giving researchers structured
and analyzable data.

Raw QA transcripts. All participant responses are preserved verbatim (Fig. 21). This ensures that
qualitative nuances (hesitations, personal anecdotes, colloquial phrasing) are not lost. At the same
time, transcripts provide the raw material for quantitative benchmarking, enabling evaluations of
stance classification, belief calibration, and reasoning depth. The ability to capture both structured and
noisy responses is a feature, not a limitation: it reflects the diversity of real-world human reasoning.

Dynamic causal graphs. The distinctive feature of TRACE-YOUR-THINKING is the automatic
construction of causal graphs in real time (Fig. 22). As participants answer questions, the system
incrementally extracts stance nodes (opinions), belief nodes (anchors), and candidate nodes (sup-
porting reasons). The graph expands as reasoning unfolds, producing a structured representation of
how beliefs and justifications interconnect. This design is important for two reasons: (i) it transforms
unstructured reasoning into analyzable graph data, and (ii) it enables researchers to trace belief
updates step by step, rather than relying only on final outcomes. These graphs can be exported for
downstream tasks such as reasoning alignment, structural consistency evaluation, or cross-domain
transfer prediction.
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Figure 12: Participant view of answering questions and the interview progress

P.3 Use Cases

The flexibility of the system enables multiple research paradigms:

• Baseline data collection: Build large-scale corpora of reasoning traces in a controlled domain
(e.g., housing policy), establishing benchmarks for human reasoning diversity.

• Cross-domain transfer: Instantly switch topics (e.g., from zoning to healthcare) by editing global
settings, to study how reasoning patterns generalize across domains.

• Longitudinal studies: Re-engage the same participants over weeks or months via Prolific IDs,
enabling the study of belief updates and reasoning drift.

• Human–model benchmarking: Compare LLM predictions against human causal graphs to
quantify intra-agent fidelity, context sensitivity, and adaptation gaps.
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Figure 13: Participant view while AI is processing questions, but the participant can still answer the
following questions without waiting
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Figure 14: Participant view of the overview of the questions and answers. One can edit and go back
to any of their answer.
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Figure 15: Participant view of the end of the overview of the questions and answers

Figure 16: Participant view of reentering prolific id for submission
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Figure 17: Participant view of the end of the test

Figure 18: Admin session management panel with status tracking, progress monitoring, and export
functionality. Researchers can monitor studies in real time and batch export reasoning data.
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Figure 19: Guiding question editor. Researchers can toggle tutorial vs. research questions, reorder
them dynamically, and experiment with alternative protocols. They can also choose to skip some
questions by changing the status.

Figure 20: Global interview settings. With one change, the system can adapt to entirely new domains,
enabling domain-agnostic deployment.
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Figure 21: Sample QA transcripts highlighting variation in response depth and style. The system
captures both structured argumentation and spontaneous informal commentary.
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Figure 22: Dynamic causal graph visualization. Nodes capture beliefs, stances, and supporting
reasons, updated continuously as the participant responds.
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Q Evaluation
Q.1 Evaluation Metrics

Let yi denote the ground-truth response for instance i, ŷi the model prediction, and N the total number
of instances. For belief dynamics update tasks, let yprev

i denote the participant’s pre-intervention
score.

Accuracy.

Acc =
1

N

N∑
i=1

1
[
|ŷi − yi| ≤ τ

]
,

where τ is the tolerance band (τ = 1 for 5-point scales, τ = 2 for 10-point scales).

Mean Absolute Error (MAE).

MAE =
1

N

N∑
i=1

|ŷi − yi|.

Directional Accuracy. We define directional accuracy as a two-stage weighted metric: (1) detecting
whether a belief change occurred, and (2) if so, correctly predicting the direction of change (increase,
decrease, or no change). To better reflect the importance of directional reasoning, a higher weight is
assigned to the second stage.

DirAcc = λ · 1
N

N∑
i=1

1[(∆yi = 0 ∧∆ŷi = 0) ∨ (∆yi ̸= 0 ∧∆ŷi ̸= 0)]

+ (1− λ) · 1

|C|
∑
i∈C

1[sgn(∆yi) = sgn(∆ŷi)] ,

(4)

where ∆ŷi = ŷi − ŷprev
i and ∆yi = yi − yprev

i denote predicted and true belief changes, respectively.
C = { i | ∆ŷi ̸= 0 ∧∆yi ̸= 0 } is the set of samples where both predicted and true beliefs changed.
We set λ = 0.3 by default, placing greater emphasis on directional correctness.

This weighting reflects the intuition that correctly inferring the direction of belief change is more
informative than merely detecting whether a change occurred. While the first stage (change detection)
captures a coarse perceptual judgment that can often be guessed in noisy or stable settings, the second
stage(directional correctness)reveals whether the model truly understands and reasons about belief
dynamics. Hence, emphasizing the latter better reflects a model’s fidelity to human-like reasoning
processes and its capacity to simulate belief evolution.

Average-to-Individual (ATI) Score. To provide a single comprehensive measure of model perfor-
mance across both static and dynamic belief tasks, we define a unified score, Average-to-Individual
(ATI) score, that integrates the Belief State Inference (BSI) and Belief Dynamics Update (BDU)
components into a normalized value within [0, 1]. Specifically, SBSI denotes the normalized accuracy
score for static belief state inference, while SBDU aggregates multiple metrics from the belief dynam-
ics update task, including tolerance accuracy, normalized MAE, and directional reasoning accuracy.
The unscaled ATI score is computed as:

ATIunscaled = 1
2SBSI +

1
2

[
1
2

(
1
2SBDU-mae-norm + 1

2SBDU-acc
)
+ 1

2SDirectional-acc

]
. (5)

where each subscore S· ∈ [0, 1] represents a normalized evaluation metric. For MAE-based compo-
nents, normalization is defined as:

SBDU-mae-norm = max
(
0, min(1, 1− MAE

MAEmax
)
)
, (6)

where MAEmax denotes the task-specific upper bound of allowable error. The unified score assigns
equal weights to the state component (SBSI) and the update component (SBDU). Within the update
branch, tolerance accuracy and MAE are equally weighted (0.5 each) to ensure a balanced consider-
ation of robustness and precision. The directional reasoning component (SDirectional-acc) is assigned
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an equal weight (0.5) relative to the combined MAE and accuracy branch, reflecting its comparable
importance in capturing belief-updating dynamics.

To facilitate interpretation relative to human performance and baseline behavior, we linearly rescale
ATIunscaled to a 0–100 scale:

ATI =
ATIunscaled − ATIrandom

ATIhuman − ATIrandom
× 100, (7)

where ATIrandom and ATIhuman denote the unscaled ATI scores of the random guess baseline and human
upper bound, respectively. Under this rescaling, a score of 0 indicates random-level performance,
while 100 represents human-level performance.

Q.2 Computation Details and Track Usage

Unless otherwise specified, all quantitative analyses and unified average to individual (ATI) score
computations are performed on the human track, which serves as the primary evaluation benchmark
due to its ecological validity and authentic reasoning diversity.

The synthetic track follows the same survey and interview protocol but is designed for auxiliary and
extensibility testing. It provides a controlled setting for examining model sensitivity, scaling behavior,
and cross-domain generalization under scripted causal belief networks (CBNs). While the human
track grounds evaluation in real participant reasoning, the synthetic track extends the benchmark
toward scalable stress testing and potential future applications in simulated social environments.

In practice, model predictions for both tasks—belief state inference (BSI) and belief dynamics update
(BDU)—are first computed independently. All metrics (accuracy, MAE, and directional accuracy)
are averaged across the three domains (healthcare, surveillance, zoning) before aggregation into
the unified score defined in Equation 5. Reported results in Section 4 and subsequent findings are
therefore based on the human track unless explicitly noted otherwise.
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R Use of LLM Usage
Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.

It is important to note that the LLM was not involved in the ideation, research methodology, or
experimental design. All research concepts, ideas, and analyses were developed and conducted by
the authors. The contributions of the LLM were solely focused on improving the linguistic quality of
the paper, with no involvement in the scientific content or data analysis.

The authors take full responsibility for the content of the manuscript, including any text generated or
polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines and
does not contribute to plagiarism or scientific misconduct.
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