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Abstract

While advancements in Vision Language Mod-001
els (VLMs) have significantly improved the002
alignment of visual and textual data, these mod-003
els primarily focus on aligning images with004
short descriptive captions. This focus limits005
their ability to handle complex text interactions,006
particularly with longer texts such as lengthy007
captions or documents, which have not been008
extensively explored yet. In this paper, we in-009
troduce Meet At The Embedding (MATE), a010
novel approach that combines the capabilities011
of VLMs with Large Language Models (LLMs)012
to overcome this challenge without the need013
for additional image-long text pairs. Specifi-014
cally, we replace the text encoder of the VLM015
with a pretrained LLM-based encoder that ex-016
cels in understanding long texts. To bridge the017
gap between VLM and LLM, MATE incorpo-018
rates a projection module that is trained in a019
multi-stage manner. It starts by aligning the020
embeddings from the VLM text encoder with021
those from the LLM using extensive text pairs.022
This module is then employed to seamlessly023
align image embeddings closely with LLM em-024
beddings. We propose two new cross-modal025
retrieval benchmarks to assess the task of con-026
necting images with long texts (lengthy cap-027
tions / documents). Extensive experimental028
results demonstrate that MATE effectively con-029
nects images with long texts, uncovering di-030
verse semantic relationships.031

1 Introduction032

Recent advancements in Vision Language Models033

(VLMs) such as CLIP (Radford et al., 2021) and034

others (Schuhmann et al., 2022; Jia et al., 2021;035

Li and et al., 2022) have successfully connected036

visual and textual data by embedding them into a037

shared space. These models exhibit robust gener-038

alization across various visual domains, including039

medical imaging, art, and remote sensing (Lin et al.,040

2023; Liu et al., 2023; Conde and Turgutlu, 2021;041

Hentschel et al., 2022; Singha et al., 2023; Li et al.,042
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first time playing 
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Disc dog (commonly called Frisbee dog) 
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ons, dogs and their human flying 
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Long Text

Figure 1: A long text can be linked with different images
(above) and an image can be associated with various do-
mains of texts (below). To facilitate these cross-modal
interactions, it is essential to establish a robust con-
nection between the embeddings of individual modal-
ity samples, while ensuring that both are contextually
aligned and semantically rich.

2023). The core strength of VLMs stems from 043

leveraging extensive image-caption pairs to obtain 044

generalized and robust representations across di- 045

verse visual domains. 046

Despite their success, most text encoders in cur- 047

rent VLMs are primarily designed for direct align- 048

ment between short captions and corresponding 049

images. For instance, the text encoder in CLIP has 050

a maximum context length of 77, and this limita- 051

tion also applies to its longer caption-based variants 052

(Yang et al., 2023; Fan et al., 2024; Zheng et al., 053

2024). As a result, these encoders struggle to fully 054

comprehend the rich textual context of longer texts, 055

such as captions exceeding 77 tokens or entire doc- 056

uments, that are related to images. Moreover, the 057

reliance on caption-only training samples limits the 058

ability to connect images with texts from various 059

domains. As shown in Figure 1, there are many 060

practical applications in associating images with 061
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various long texts which remain largely unexplored,062

prompting us to investigate this area further.063

In this work, we introduce a novel method named064

Meet At The Embedding (MATE), which aligns em-065

beddings to connect images and long texts. MATE066

leverages a Large Language Model (LLM) and067

VLMs without requiring additional image-long text068

pairs. Specifically, MATE aligns image embed-069

dings from a VLM with text embeddings from a070

pretrained LLM-based encoder (Wang et al., 2023),071

thereby enhancing image-long text interactions.072

The LLM-based encoder, trained on diverse text073

domains, develops a robust understanding of lan-074

guage and advanced reasoning capabilities for han-075

dling long texts. We leverage this capability to076

understand long texts and produce discriminative077

embeddings for retrieval.078

Our MATE model consists of the LLM encoder079

and the VLM’s image encoder, with an additional080

projection module that converts image embeddings081

into LLM-aligned embeddings. MATE progres-082

sively aligns the VLM embeddings with the LLM083

embeddings through a multi-stage process: text-to-084

LLM alignment and image-to-LLM alignment. In085

the text-to-LLM alignment stage, we first pre-train086

the projection module with large-scale captions087

to align the VLM text encoder with the LLM en-088

coder. Then, we fine-tune the module using query-089

document pairs (Nguyen et al., 2016) that contain090

rich textual information, inputting queries to the091

VLM text encoder and documents to the LLM. In092

the image-to-LLM alignment stage, we adapt this093

text-trained module to the VLM image encoder,094

aligning image embeddings with LLM embeddings095

using a minimal set of image-caption pairs. This ap-096

proach effectively connects images with long texts097

without requiring direct image-long text pairs.098

Furthermore, we introduce two new image-long099

text retrieval evaluation benchmarks: one for im-100

ages paired with detailed, human-annotated lengthy101

captions (Onoe et al., 2024) or generative model102

produced lengthy captions (Zheng et al., 2024),103

and another for images associated with documents,104

using pairs sourced from Wikipedia (Chen et al.,105

2023b; Hu et al., 2023). The results demonstrate106

that our MATE method effectively links images107

with long texts and uncovers diverse semantic re-108

lationships. This capability enhances intuitive re-109

trieval outcomes and advances our understanding110

of integrating complex textual and visual informa-111

tion, paving the way for diverse applications, in-112

cluding multi-lingual cases.113

We summarize our contributions as: 114

• To the best of our knowledge, this is the first 115

approach that addresses cross-modal interac- 116

tion at the image-long text level including doc- 117

uments, establishing a new research topic in 118

the field. 119

• We introduce the Meet At The Embedding 120

(MATE) method, which efficiently aligns 121

VLM and LLM embeddings to facilitate con- 122

nections between images and long texts. 123

• With our newly introduced benchmarks, we 124

demonstrate the superior performance of the 125

MATE method in cross-modal retrieval. 126

2 Related Work 127

Embedding-based Representation Learning. 128

By mapping given input samples into an embed- 129

ding space, embedding-based representation learn- 130

ing methods have been actively explored in the 131

fields of language (Su et al., 2023; Wang et al., 132

2022), vision (Qian et al., 2021; Chen et al., 2020b; 133

Zhang et al., 2022), audio (Jansen et al., 2018) 134

and many others. Various models have achieved 135

significant success by incorporating diverse intra- 136

modality samples at scale across different domains. 137

These models facilitate single-modality and multi- 138

domain representation learning, resulting in en- 139

hanced interactions. 140

On the other hand, VLMs (Radford et al., 2021; 141

Schuhmann et al., 2022; Jia et al., 2021; Li and 142

et al., 2022) have emerged as powerful tools for 143

bridging the modality gap between visual and tex- 144

tual data. These models utilize dual-encoder ar- 145

chitectures to encode images and text separately, 146

effectively aligning them within a common em- 147

bedding space that provides robust representations. 148

However, unlike the diverse images in the VLM 149

training sets, the text component is often limited 150

to short descriptive captions. This limitation may 151

restrict the depth of textual understanding and con- 152

textual richness that the models can achieve. Ef- 153

forts such as (Yang et al., 2023; Fan et al., 2024; 154

Zheng et al., 2024) have been made to mitigate 155

this issue by rewriting captions to be lengthy and 156

informative. Nevertheless, these methods still face 157

limitations because they require a costly captioning 158

process, and the resulting captions are still short, at 159

most 77 tokens. The longer caption-version CLIP 160

(Zhang et al., 2024) was also developed, but it is 161

still limited to 248 tokens, which is insufficient. 162
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Additionally, these models rely solely on image-163

caption pairs, which lack the capability to incorpo-164

rate complex reasoning that can be obtained from165

dense text. In this work, we propose a new efficient166

approach that connects a powerful LLM-based en-167

coder (Wang et al., 2023) with the VLM image168

encoder, not only enhancing the textual understand-169

ing capability but also enabling robust connections170

between long texts and images.171

Vision Language Cross-Modal Retrieval. The172

primary application of embedding-based represen-173

tation learning models is information retrieval,174

which leverages embeddings to assess the simi-175

larity between query and gallery samples. Effec-176

tive embedding models generate discriminative em-177

beddings by grasping the underlying semantics of178

data samples, thereby enhancing the accuracy of re-179

trieval results. Many existing methods in image and180

text retrieval focus on short captions related to im-181

ages or vice versa, or on composing image queries182

with brief textual modifications to retrieve related183

images (Chen et al., 2020a; Li et al., 2019a; Long184

et al., 2024; Jang and Lim, 2024). We identify a gap185

in cross-modal retrieval between images and long186

texts (lengthy captions / documents), where signif-187

icant potential remains unexplored. To this end,188

we propose new image and document retrieval ex-189

periments involving lengthy captions (Zheng et al.,190

2024; Onoe et al., 2024) and Wikipedia-style docu-191

ments (Chen et al., 2023b; Hu et al., 2023). These192

necessitate a comprehensive understanding of the193

long texts to accurately match related images from194

a large-scale database, and our MATE approach195

achieves the best retrieval results, demonstrating196

superior performance in understanding complex197

cross-modal interactions.198

3 Method199

In this section, we present our MATE method,200

which aims to establish image-long text alignment201

by employing a VLM image encoder and a pre-202

trained LLM-based encoder. It should be noted that203

MATE does not require additional image-long text204

pairs for training. The pre-trained CLIP (Schuh-205

mann et al., 2022) and LLM-based E5 (Wang et al.,206

2023) are utilized as our baseline models. First,207

we investigate how these models are trained to dis-208

tribute embeddings (in Section 3.1) to assess the209

feasibility of connecting these models. Next, we210

outline the multi-stage training strategy (in Section211

3.2) that efficiently achieves our goal.212

3.1 Preliminary 213

Renowned by CLIP, VLM models are trained using 214

a large dataset Dv = {(xn, tn)}Nn=1 consisting of 215

pairs of images (xn) and their corresponding cap- 216

tions (tn). These models utilize an image encoder 217

EI and a text encoder ET , which generate the im- 218

age embedding v ∈ Rka : v = EI(x) and the text 219

embedding w ∈ Rka : w = ET (t), both in the 220

same dimension ka. All embeddings are typically 221

l2-normalized to compute cosine similarity easily. 222

Then, the InfoNCE loss (also known as a con- 223

trastive loss) (Oord et al., 2018) is utilized to update 224

trainable parameters of both modality encoders as: 225

LV LM = Lnce(v,w) + Lnce(w,v) (1) 226

where Lnce is computed with the given embedding 227

vectors x and y as: 228

Lnce = −
NB∑
i=1

log
exp (xT

i · yi/τ)∑NB
j=1 exp (x

T
i · yj/τ)

(2) 229

for NB number of image-text pairs with tempera- 230

ture τ . This training objective results in an image 231

and its corresponding caption being aligned, while 232

those that are not paired are distanced. 233

Similarly, the LLM-based encoder E5 is also 234

updated using a contrastive approach. Unlike 235

VLM, it utilizes a query (qn)-document (dn) paired 236

text-only dataset Dl = {(qn, dn)}Nn=1, where the 237

query represents relatively shorter text compared 238

to the document. The query embedding q ∈ 239

Rkb : q = E5(q) and the document embedding 240

d ∈ Rkb : d = E5(d) are obtained with E5 as 241

kb-dimensional, l2-normalized vectors. 242

The training loss for the LLM encoder is applied 243

as: 244

LLLM = Lnce(q,d) (3) 245

which leads to embeddings of the query and its cor- 246

responding document to be closely aligned, while 247

non-paired instances become distant. Note that 248

both VLM and LLM embedding spaces are devel- 249

oped in a contrastive manner, and are presumed to 250

share some common representations. 251

3.2 Multi-stage Alignment 252

When building a connection between the VLM 253

image encoder and the LLM encoder, we could 254

consider utilizing image-long text pairs for training. 255

However, these pairs are scarce due to the complex- 256

ity of labeling, as defining what constitutes relevant 257
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Figure 2: Training pipeline of MATE: Two separate stages are applied with text-only or image-text pairs.

pairs is challenging. Thus, our idea is to train in-258

directly using existing datasets of image-caption259

pairs and query-document pairs in a multi-stage260

manner. This multi-stage approach is beneficial261

as it allows for incremental learning, where each262

stage builds upon the knowledge acquired in the263

previous one, transitioning from query-document264

(short text-long text) to image-caption. As a result,265

MATE can perform image-long text retrieval with-266

out directly relying on image-long text pairs. We267

achieve this by first aligning the text encoder of268

the VLM with the LLM (Section 3.2.1), and then269

connecting the image encoder of the VLM with the270

LLM (Section 3.2.2), as shown in Figure 2.271

Here, we employ an additional projection mod-272

ule ϕ, due to the differences in dimensionality and273

representation between VLM and LLM embed-274

dings. This module consists of a few linear layers275

that project VLM embeddings into the LLM em-276

bedding space. Specifically, ϕ takes VLM embed-277

dings as inputs and produces either u or ū, where278

u = ϕ(v) and ū = ϕ(w). Both u and ū are em-279

bedding vectors with the same kb-dimensionality280

as the LLM embeddings d.281

3.2.1 Text-to-LLM Alignment282

First, we pre-train the module ϕ by utilizing the283

VLM text encoder ET and the LLM encoder E5284

with a large-scale text-only dataset of captions (t),285

to reduce the gap between embeddings of VLM286

and LLM. We train ϕ to align ū, where ū = ϕ(w)287

and w = ET (t), with d̄, where d̄ = E5(t), in a288

contrastive manner using Equation 3.289

Then, we fine-tune ϕ with a text dataset con-290

figured with query-document pairs to provide fur- 291

ther context of long texts. This process helps ϕ to 292

better understand and align the nuances between 293

related texts, enhancing its ability to accurately 294

match VLM embeddings with the most relevant 295

documents. Similar to the pre-training stage, we 296

utilize ET and E5 with the query-document pairs 297

(q, d) to train ϕ to align ū and d̄ with Equation 298

3. We utilize the same number of caption pairs as 299

query-document pairs in a training batch to ensure 300

that ϕ remains robust across diverse captions. 301

Throughout these processes, we freeze the pa- 302

rameters of E5 and ET to preserve the original gen- 303

eralized representation of LLM embeddings and 304

ensure smooth integration with the corresponding 305

VLM image encoder EI in the subsequent stage. 306

3.2.2 Image-to-LLM Alignment 307

With ϕ trained on text-only data in the previous 308

stage, we initialize the parameters of the same ar- 309

chitecture ϕ in this stage to transfer dense textual 310

knowledge. Additionally, we apply LoRA (Hu 311

et al., 2021) parameters to both ϕ and EI to keep 312

the original parameters and train the entire model 313

efficiently. LoRA facilitates fine-tuning by intro- 314

ducing trainable low-rank matrices that adapt the 315

original weights of the model without directly mod- 316

ifying them. This approach helps preserve the orig- 317

inal model’s capabilities, allowing ϕ to retain its 318

understanding of query-document relationships. 319

Given a minimal set of image-caption pairs 320

(x, t), we aim to robustly connect image embed- 321

dings to LLM embeddings. Specifically, we seek to 322

align u, where u = ϕ(v) and v = EI(x), with d, 323
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Dataset Maximum Minimum Average

MSMARCO 807 / 465 9 / 11 81.48 / 90.27
DOCCI-Train 565 / 456 35 / 35 139.27 / 138.86
Oven 1837 / 2136 12 / 15 271.18 / 304.70
Infoseek 1514 / 1788 30 / 33 335.11 / 378.46

Table 1: Token count statistics per image with two dif-
ferent tokenizers: VLM (CLIP) / LLM (Mistral).

where d = ET (t). The learning is conducted using324

the VLM training objective as defined in Equation325

1. Ultimately, by utilizing a trained image encoder326

and projection module with the LLM, MATE can327

project both image and text into the LLM embed-328

ding space. This integration allows for seamless329

interactions between the visual data represented330

by VLM image embeddings and the textual data331

encapsulated in LLM-based representations.332

4 Experiments333

4.1 Setup334

Datasets. For MATE model training, we utilize the335

datasets as: text-only datasets for Section 3.2.1 in-336

clude a standard subset of image-caption pairs from337

the BLIP (Li and et al., 2022) pre-training stage,338

specifically 16M out of a total of 115M, where339

only the captions are used for pre-training. We use340

the 532K query-document pairs from MSMARCO341

(Nguyen et al., 2016) passage retrieval dataset for342

fine-tuning. For Section 3.2.2, we use the 585K343

image-caption pairs from LLaVA-alignment (Liu344

et al., 2024), which is collected from the CC3M345

(Sharma et al., 2018) dataset.346

To evaluate MATE and other models for the new347

image-long text cross-modal retrieval tasks, we re-348

configure existing image-lengthy caption paired349

datasets: DOCCI (Onoe et al., 2024) and CC3M-350

long (Zheng et al., 2024), and Wikipedia-based351

image-document paired datasets: Infoseek (Chen352

et al., 2023b) and Oven (Hu et al., 2023).353

Specifically, DOCCI contains about 1.5K354

high-resolution images accompanied by human-355

annotated, detailed descriptive captions. DOCCI356

is divided into a training set of 9.6K pairs and a357

test set of 5.1K pairs. We use the test set for image-358

lengthy caption retrieval experiments. CC3M-long359

features images and model-generated lengthy cap-360

tions from three different large multi-modal models361

(Liu et al., 2024; Chen et al., 2023a; Dai et al.,362

2024). We use 5K pairs of the Share-GPT4V-363

generated version for evaluation, ensuring no im-364

ages overlap with the LLaVA-alignment dataset.365

For image-document retrieval tests, we adopt In- 366

foseek (Chen et al., 2023b) and Oven (Hu et al., 367

2023) datasets provided by (Wei et al., 2023). Both 368

datasets include triplets of images, query text, and 369

document passages. We merge the passages to re- 370

construct the original lengthy documents. As a 371

result, the Infoseek dataset comprises 1.8K doc- 372

uments with 9.6K related images, averaging 5.3 373

paired images per document. The Oven dataset 374

includes 3.5K documents with 37.6K related im- 375

ages, averaging 10.7 paired images per document. 376

Examples can be found in Appendix A. 377

To further investigate whether the length of text 378

in each dataset is sufficient to be defined as long 379

texts, we report token count statistics using the 380

tokenizers from CLIP (Radford et al., 2021) and 381

Mistral (Jiang et al., 2023) in Table 1. The average 382

token counts across all datasets exceed the CLIP 383

text encoder’s maximum capacity of 77 tokens. 384

Evaluation Metrics. Following standards in re- 385

trieval evaluation (Radford et al., 2021; Li et al., 386

2019a; Jang and Lim, 2024), we report image- 387

lengthy caption retrieval results using recall scores 388

at top K (R@K) and employ mean Average Pre- 389

cision (mAP@K) for image-document retrieval to 390

better assess multi-positive connections. 391

Implementation Details. In this paper, we employ 392

the baseline VLM with CLIP-ViT-G/14 (Cherti 393

et al., 2023), which utilizes Transformer-based 394

image and text encoders. For the LLM-based 395

encoder, we use the instruction-tuned Mistral 396

7B (Jiang et al., 2023) and the fine-tuned E5 397

(Wang et al., 2023) model as a baseline with 398

the final embedding dimension of kb = 4, 096. 399

Pretrained weights provided by Hugging- 400

Face1 (Wolf et al., 2020) are applied to models as: 401

laion/CLIP-ViT-bigG-14-laion2B-39B-b160k, 402

intfloat/e5-mistral-7b-instruct. The pro- 403

jection module ϕ comprises three linear layers, 404

each followed by layer normalization and GELU 405

(Hendrycks and Gimpel, 2016) activation. The 406

intermediate hidden dimension of the linear layers 407

is set to four times the dimensionality of the output 408

embedding. We employ additional LoRA (Hu 409

et al., 2021) parameters for the image encoder 410

and ϕ in Section 3.2.2, configured as follows: 411

LoRAα = 16, rank = 16, and dropout = 0.1. 412

For training, we use 8 A100-80GB GPUs for 413

training and evaluation. The AdamW optimizer 414

(Loshchilov and Hutter, 2017) is employed with 415

1https://huggingface.co/models
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Type Method
Caption Query, Image Gallery Image Query, Caption Gallery

R@1 R@5 R@25 R@50 R@1 R@5 R@25 R@50

Results on DOCCI test

Zero-shot

CLIP (Cherti et al., 2023) 12.16 27.04 46.96 56.92 16.86 35.49 56.04 65.47
Long-CLIP (Zhang et al., 2024) 45.24 71.76 89.35 93.75 38.59 69.04 89.88 95.35
ALIGN (Jia et al., 2021) 62.37 85.31 96.27 98.10 59.88 82.65 94.25 96.61
BLIP (Li and et al., 2022) 54.10 79.55 93.27 96.22 54.69 80.29 94.33 96.96
MATE 73.45 93.78 98.94 99.67 62.86 87.98 97.67 99.22

Fine-tuned on
DOCCI Train

ALIGN (Jia et al., 2021) 70.20 90.75 98.06 99.16 67.22 88.47 97.29 98.78
BLIP-336 (Li and et al., 2022) 79.98 95.80 99.57 99.86 67.06 90.04 98.53 99.49
MATE-336 81.84 97.16 99.80 99.98 74.35 94.53 99.57 99.86
MATE-448 84.55 97.80 99.88 99.98 76.55 95.82 99.67 99.90

Results on CC3M-long test

Zero-shot

CLIP (Cherti et al., 2023) 3.46 7.54 15.32 19.68 9.96 21.64 38.62 46.16
Long-CLIP (Zhang et al., 2024) 54.06 75.42 87.66 90.84 51.34 73.46 87.32 90.80
ALIGN (Jia et al., 2021) 56.80 75.58 86.62 90.24 58.54 76.92 88.18 91.38
BLIP (Li and et al., 2022) 47.00 67.16 82.26 86.76 58.20 78.64 89.26 91.98
MATE 59.54 78.50 89.72 92.92 62.24 81.00 91.10 94.08

Table 2: Image and lengthy caption cross-modal retrieval results on DOCCI test set and CC3M-long test set. The
numbers ‘336’ and ‘448’ beside methods denote the image resolutions used for fine-tuning.

a learning rate of 1e-4 and a batch size of 4,096416

for the text-to-LLM training stage, and a learning417

rate of 3e-5 with a batch size of 512 for the image-418

to-LLM training stage. The temperature τ for the419

InfoNCE loss is fixed at 0.02, and we iterate the420

model for 1 epoch for the pre-training stage, and 3421

epochs for the fine-tuning stages.422

For evaluation, we compare MATE model with423

four VLMs: CLIP (CLIP-ViT-G/14 (Cherti et al.,424

2023)) and Long-CLIP (Zhang et al., 2024), both425

interpolated in their positional encoding to process426

lengthy texts up to 2,048 tokens, and ALIGN (Jia427

et al., 2021) and BLIP (Li and et al., 2022), which428

are based on BERT (Devlin et al., 2018) with a429

maximum token length of 512. For Long-CLIP, we430

use the LongCLIP-L model provided by the authors.431

For ALIGN, we utilize the Huggingface weights432

from kakaobrain/align-base, and for BLIP, we433

use the official model with ViT-L, pretrained on434

129M samples. For MATE, CLIP, and Long-CLIP,435

we process entire documents, while for ALIGN436

and BLIP, we truncate documents that exceed 512437

tokens due to their token length limitations. We438

ensure all artifacts used in our paper adhere to their439

specific licensing terms, permitting research use.440

4.2 Results on Image-Lengthy Caption441
DOCCI-test. The image-lengthy caption retrieval442

results on the DOCCI test set are reported in Ta-443

ble 2. We categorize the methods into two groups:444

zero-shot, which includes the original VLM models445

and our MATE model, and the fine-tuned version,446

which is trained on the DOCCI training set im-447

ages and captions. In the zero-shot scenario, CLIP448

shows the lowest performance due to its training 449

on shorter captions of less than 77 tokens, while 450

the average token count in the DOCCI dataset is 451

significantly higher. ALIGN achieves better scores 452

than Long-CLIP and BLIP primarily due to its abil- 453

ity to process larger images of width and height of 454

289 compared to 224 of others, and the fact that 455

the images in the DOCCI dataset are mostly of 456

much higher resolution. Despite using the same 457

CLIP image encoder, our MATE model achieves 458

significantly better retrieval results by successfully 459

leveraging the LLM encoder. 460

In terms of the fine-tuned case, we train the mod- 461

els using the fine-tuning setup for retrieval pro- 462

posed in BLIP (Li and et al., 2022). We fine-tune 463

ALIGN with images of width and height of 289 464

due to its architectural constraints, and utilize larger 465

scale images, 336 or 448, to fine-tune BLIP and 466

MATE to determine whether the models can be im- 467

proved with more visual information. We observe 468

that all models show improved retrieval scores, 469

with BLIP outperforming ALIGN by processing 470

larger images. Notably, MATE demonstrates a sig- 471

nificant performance gain and achieves the best 472

results when the largest images are used. This 473

demonstrates that MATE is effective at leveraging 474

increased visual details for enhanced performance. 475

CC3M-long. The experimental results on CC3M- 476

long test set with model-generated captions are 477

presented in Table 2. Similar to the observations 478

in human-annotated captions, our MATE achieves 479

the best retrieval performance. Compared to CLIP, 480

MATE shows an impressive average improvement 481
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Method
Document Query, Image Gallery Image Query, Document Gallery

mAP@5 mAP@10 mAP@25 mAP@50 mAP@5 mAP@10 mAP@25 mAP@50

Results on Infoseek

CLIP (Cherti et al., 2023) 2.78 3.89 5.25 6.08 15.13 16.13 16.80 17.06
Long-CLIP (Zhang et al., 2024) 10.03 13.46 17.67 19.60 30.60 32.34 33.22 33.49
ALIGN (Jia et al., 2021) 9.06 12.06 15.96 18.01 29.78 31.33 32.22 32.49
BLIP (Li and et al., 2022) 6.23 8.25 11.04 12.42 25.37 26.98 28.03 28.36
MATE 14.51 19.29 24.95 27.44 37.71 39.80 40.87 41.14

Results on Oven

CLIP (Cherti et al., 2023) 1.88 2.75 4.19 5.02 13.54 14.39 14.95 15.17
Long-CLIP (Zhang et al., 2024) 4.54 7.12 11.06 13.00 24.85 26.27 27.23 27.53
ALIGN (Jia et al., 2021) 5.72 8.50 12.61 14.69 26.92 28.25 29.08 29.35
BLIP (Li and et al., 2022) 3.44 5.23 8.07 9.58 21.61 22.95 23.88 24.22
MATE 8.54 12.98 19.74 22.52 34.60 36.30 37.34 37.67

Table 3: Image and document cross-modal retrieval results on Infoseek and Oven datasets.

Model Image
Resolution

Pre-train
Data Size

Encoder
Model Size

Embedding
Dimension (ka)

ViT-L 224 400M 300M 768
ViT-L-336 336 400M 303M 768
ViT-G 224 2B 1.8B 1280

Table 4: Details of CLIP variants’ image encoder.

of approximately 60.8 pp across all recall met-482

rics. When compared to the second-best perform-483

ing model, ALIGN, MATE still exhibits a notable484

average improvement of around 3.11 pp although485

MATE uses smaller scale images. These results486

highlight MATE’s robustness and accuracy in cap-487

turing exact matches from cross-modal samples,488

which is crucial as the reliance on generative mod-489

els grows and the need for effective evaluation490

mechanisms becomes more pronounced.491

4.3 Results on Image-Document492

Infoseek. The image-document retrieval results on493

the Infoseek dataset, as detailed in Table 3, high-494

light the outstanding performance of the MATE495

model in both retrieval scenarios. MATE signifi-496

cantly outperforms other models, achieving an av-497

erage improvement of approximately 17 pp and498

23.6 pp over CLIP, and 6.36 pp and 7.47 pp over499

Long-CLIP, across all evaluated metrics, respec-500

tively. This is particularly notable in the challeng-501

ing environment of matching documents to images502

and vice versa, where MATE leads with the high-503

est mAP scores across all evaluated metrics. This504

underscores MATE’s advanced effectiveness in nav-505

igating and extracting relevant information across506

different media types, setting a new benchmark for507

accuracy in cross-modal retrieval tasks.508

Oven. More challenging experiments conducted on509

the Oven dataset, which contains a far more exten-510

sive collection of images and documents, are shown511

in Table 3. The results demonstrate the superior512
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Figure 3: Measuring alignment between embeddings
of VLM image with VLM text (VLM-I to VLM-T),
and VLM image with LLM text (VLM-I to LLM). The
higher score indicates a closer alignment.

performance of MATE across all metrics compared 513

to other methods. Specifically, MATE significantly 514

outperforms other models, achieving an average im- 515

provement of approximately 12.49 pp and 21.97 pp 516

over CLIP, and 5.57 pp and 8.08 pp over ALIGN, 517

across all evaluated metrics, respectively. This 518

highlights MATE’s robustness and effectiveness in 519

handling complex cross-modal image-to-document 520

retrieval tasks involving diverse and large-scale 521

gallery samples. 522

4.4 Further Analysis 523

Investigation on Choice of Image Encoder. We 524

measure the alignment between three CLIP vari- 525

ants, as detailed in Table 4, and the LLM using the 526

metrics proposed in (Huh et al., 2024), to determine 527

which one is the most feasible for connection. The 528

scores are reported in Figure 3 using the image- 529

short caption pairs from the COCO test set (Lin 530

et al., 2014) and the image-lengthy caption pairs 531
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Configurations
Document Query, Image Gallery Image Query, Document Gallery

mAP@5 mAP@10 mAP@25 mAP@50 mAP@5 mAP@10 mAP@25 mAP@50

(a) Single linear layer w.o. ϕ 9.76 12.92 17.19 19.35 29.03 31.04 32.19 32.51
(b) ϕ w.o. pre-training in 3.2.1 12.54 16.76 21.84 24.21 34.92 37.10 38.18 38.48
(c) ϕ w.o. fine-tuning in 3.2.1 13.36 17.68 22.81 25.23 35.90 37.94 39.07 39.37
(d) Image encoder: ViT-L 13.02 17.11 22.44 24.85 36.23 38.31 39.34 39.64
(e) Image encoder: ViT-L-336 13.06 17.21 22.52 24.95 36.31 38.40 39.46 39.76
(f) More Image-caption pairs 14.41 18.82 24.06 26.34 36.86 39.01 40.05 40.34

(g) With all proposals 14.51 19.29 24.95 27.44 37.71 39.80 40.87 41.14

Table 5: Ablation study results on Infoseek dataset. ‘w.o.’ denotes without.

Method R@1 R@5 R@25 R@50

Chinese Caption Query, Image Gallery

w/o Fine-tuning on Chinese

CLIP (Cherti et al., 2023) 0.25 0.93 3.16 5.54
Long-CLIP (Cherti et al., 2023) 0.02 0.11 0.55 1.02
ALIGN (Jia et al., 2021) 0.40 1.36 5.22 8.70
BLIP (Li and et al., 2022) 0.11 0.45 1.91 3.57
MATE 33.64 61.12 84.61 92.91

w/ Fine-tuning on Chinese

CN-CLIP (Yang et al., 2022) 37.63 64.49 87.65 94.72

Image Query, Chinese Caption Gallery

w/o Fine-tuning on Chinese

CLIP (Cherti et al., 2023) 0.76 2.31 7.41 11.82
Long-CLIP (Cherti et al., 2023) 0.02 0.17 0.59 1.12
ALIGN (Jia et al., 2021) 0.93 3.08 9.13 14.37
BLIP (Li and et al., 2022) 0.34 1.25 4.27 7.05
MATE 31.05 57.72 84.59 92.76

w/ Fine-tuning on Chinese

CN-CLIP (Yang et al., 2022) 36.44 63.07 86.93 94.04

Table 6: Image and Chinese caption cross-modal re-
trieval results on COCO-CN (Li et al., 2019b) dataset.

from the DOCCI test set. Three key observations532

emerge from the results. First, larger encoder sizes533

yield higher alignment scores. Second, lengthy cap-534

tions result in higher scores. Lastly, and most inter-535

estingly, the alignment score of the VLM image to536

LLM generally exceeds that of the VLM image to537

VLM text and it is dominant for lengthy captions538

(DOCCI). Based on these findings, we hypothesize539

that the LLM encoder shares more common rep-540

resentations with the larger VLM image encoder.541

Consequently, we select the ViT-G image encoder542

as our baseline for image-long text connection.543

Ablation Study. To validate the proposed schemes544

of MATE, we perform an ablation study as shown545

in Table 5. We experiment with configurations546

(a, b, c) to evaluate the impact of the multi-stage547

training strategy. For (a), we directly connect the548

VLM image encoder with the LLM encoder with-549

out utilizing ϕ. For (b) and (c), we either remove550

the pretraining with large-scale captions or omit551

the fine-tuning with query-document pairs, respec-552

tively. The results confirm that combining all train-553

ing procedures significantly contributes to perfor- 554

mance gains. In experiments (d, e), we test dif- 555

ferent image encoders and find that the choice of 556

ViT-G achieves the best performance. In (f), we 557

increase the number of image-caption pairs utilized 558

in Section 3.2.2 from 0.58M to 3M and observe that 559

the performance is either saturated or slightly de- 560

graded, indicating that MATE does not require an 561

excessive number of image-caption pairs to achieve 562

optimal performance. Overall, the optimal perfor- 563

mance is achieved when all proposed components 564

are integrated. 565

Multilingual Capability. We test MATE’s cross- 566

modal retrieval with Chinese captions and images 567

from the CN-COCO dataset (Li et al., 2019b), 568

which includes 4.5K pairs. Despite not being 569

trained on image-Chinese caption pairs, MATE 570

shows decent performance and closely matches 571

to Chinese caption-based CN-CLIP (Yang et al., 572

2022), while other image-English caption-based 573

methods do not perform as well, as shown in Table 574

6. This success can be attributed to the multilingual 575

capabilities of the LLM encoder, enabling MATE to 576

effectively retrieve relevant content across different 577

languages without specific training, thus highlight- 578

ing its broad applicability. 579

5 Conclusion 580

In this paper, we introduce MATE, a novel method 581

that effectively bridges the gap between images 582

and extensive texts without paired data. MATE 583

integrates a pretrained LLM-based text encoder 584

with a VLM-based image encoder to efficiently 585

align image embeddings with text embeddings. 586

The process begins by aligning VLM text embed- 587

dings with LLM embeddings using extensive text 588

pairs, followed by aligning image embeddings with 589

these LLM embeddings. We also introduce new 590

benchmarks to test image-long text retrieval tasks, 591

demonstrating that MATE effectively connects im- 592

ages with extensive texts. This work pioneers a new 593

direction for research in cross-modal interactions. 594
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Limitations595

The proposed MATE approach, while innovative in596

bridging VLMs with LLMs to handle complex text-597

image interactions, presents certain limitations that598

warrant further exploration. Primarily, the reliance599

on a projection module to align embeddings from600

different models introduces potential challenges in601

maintaining semantic consistency across modali-602

ties, especially when scaling to diverse and exten-603

sive datasets. Additionally, the effectiveness of604

MATE in real-world scenarios where data may not605

be as cleanly labeled or structured as the datasets606

used in training remains to be thoroughly evalu-607

ated. On the broader impact front, MATE has the608

potential to significantly enhance the accessibility609

and interpretability of visual content across various610

domains, by enabling more nuanced and context-611

aware image-text associations.612
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An outdoor close-up of a tall metal daisy sculpture. The daisy has shiny, 
white fanned-out petals, and the embossed carpels in the center are 
painted yellow. It is facing the front, right at an angle. The ground 
below is a red brick, with a shadow of the sculpture visible on the 
surface right behind it. In the background, a tree line is visible. The 
daisy stretches right above the treetops, with a light blue sky above and 
puffy low clouds. The clouds are bright white right above the flower, 
with grayer clouds to the right and le<. DayAme.

Human-annotated Lengthy Caption Human-annotated Lengthy Caption
An indoor, close up shot of the side of 4 small horse toy figures placed on the 
side of the bathtub, with a white Ale wall directly behind the horses. The le< 
most horse is one third of the size compared to the others. The le< most horse 
is completely white with a black mane and tail. The horse second to the le< is 
brown with a brown mane and tail, with its le< half of its body covered in 
white with red dots. The third horse to the le< is dark brown with a black 
mane and tail. The horse all the way on the right is light brown with a black 
mane and tail. All the horses are facing to the right.

Figure 4: Examples of DOCCI test set of image-human annotated lengthy caption pairs.

In the image, a small black and white dog is the main subject. 
The dog is standing on a concrete floor, its body facing the 
camera while its head is slightly turned to the le<. The dog's 
collar is pink, and it's wearing a red tag, adding a pop of color to 
its black and white fur. Next to the dog, there's a green towel 
with a red and blue design on it, adding a touch of color to the 
scene. The towel and the dog are the only two objects in the 
image, creaAng a simple yet charming scene. The dog's posiAon 
next to the towel suggests it might have just been playing with it 
or is about to. The overall image gives a sense of a casual, 
everyday moment captured in Ame.

Spice is everything nice in dog!

The image captures a moment of tranquility featuring a cat. The cat, 
with its fur in shades of brown and black, is siDng on a pink surface. Its 
ears are perked up, indicaAng alertness, and its eyes are wide open, 
gazing directly into the camera. The cat's posiAon on the surface and 
its aFenAve gaze give the impression of a curious and aFenAve feline. 
The image does not contain any text or other discernible objects. The 
focus is solely on the cat and its interacAon with the viewer. The 
relaAve posiAon of the cat to the surface and the camera suggests that 
the cat is in the foreground, while the surface and the camera are in 
the background. The image does not provide any informaAon about 
the cat's acAons beyond siDng and looking. The overall composiAon of 
the image is simple yet engaging, with the cat as the central figure.

Domestic cat sitting on a desk and watching.

Generated Lengthy Caption Generated Lengthy Caption

Raw Caption Raw Caption

Figure 5: Examples of CC3M-long test set of image-generated lengthy caption pairs.

A Appendix809

Image-document Examples. We provide exam-810

ples of configured benchmarks to evaluate MATE811

and others using image-lengthy caption pairs in812

Figures 4 and 5. Examples of image-document813

pairs are shown in Figures 6, 7, 8, and 9.814
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La Recoleta Cemetery is a cemetery located in the Recoleta 
neighbourhood of Buenos Aires, Argentina. 
It contains the graves of notable people, including Eva Perón, 
presidents of Argentina, Nobel Prize winners, the founder of the 
Argentine Navy, and military commanders like Julio Argentino 
Roca. In 2011, the BBC hailed it as one of the world's best 
cemeteries, and in 2013, CNN listed it among the 10 most beautiful 
cemeteries in the world.
##History: Franciscan Recollect monks arrived in this area, then the 
outskirts of Buenos Aires, in the early eighteenth century. The 
cemetery is built around the Recollect Convent and a church, 
Our Lady of Pilar, built in 1732.
The order was disbanded in 1822, and the garden of the convent 
was converted into the first public cemetery in Buenos Aires. 
Inaugurated on 17 November of the same year under the name of 
Northern Cemetery, those responsible for its creation were the 
then-Governor Martin Rodríguez, who would be eventually buried 
in the cemetery, and government minister Bernardino Rivadavia.
The 1822 layout was done by French civil engineer Próspero 
Catelin, who also designed the current facade of the Buenos Aires 
Metropolitan Cathedral. The cemetery was last remodeled in 1881.
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Figure 6: An example of Infoseek dataset of image-document pair.

Mulberry (Broussone.a papyrifera, syn. "Morus 
papyrifera" L.) is a species of flowering plant in the 
family Moraceae. It is na.ve to Asia, where its range 
includes Taiwan, China, Japan, Korea, Southeast 
Asia, Myanmar, and India. It is widely cul.vated 
elsewhere and it grows as an introduced species in 
parts of Europe, the United States, and Africa. Other 
common names include tapa cloth tree.## 
Origin.Paper mulberry was used among ancient 
Austronesians in making barkcloth. It originates 
from subtropical regions in mainland Asia and is 
one of the best examples for the mainstream "Out 
of Taiwan" hypothesis of the Austronesian.
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Figure 7: An example of Infoseek dataset of image-document pair.
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An omnivore is an animal that has the ability to eat 
and survive on both plant and animal ma`er. 
Obtaining energy and nutrients from plant and animal 
ma`er, omnivores digest carbohydrates, protein, fat, 
and fiber, and metabolize the nutrients and energy of 
the sources absorbed. Oben, they have the ability to 
incorporate food sources such as algae, fungi, and 
bacteria into their diets come from diverse 
backgrounds that oben independently evolved 
sophisXcated consumpXon capabiliXes. For instance, 
dogs evolved from primarily carnivorous organisms 
(Carnivora) while pigs evolved from primarily 
herbivorous organisms (ArXodactyla). Despite this, 
physical characterisXcs such as tooth morphology.

Document

Figure 8: An example of Oven dataset of image-document pair.

A high-protein diet is a diet in which 20% or more of 
the total daily calories comes from protein. Most high 
protein diets are high in saturated fat and severely 
restrict intake of carbohydrates.Example foods in a 
high-protein diet include lean beef, chicken or poultry, 
pork, salmon and tuna, eggs, and soy. s have been 
criXcized as a type of fad diet and for promoXng 
misconcepXons about carbohydrates, insulin 
resistance and ketosis.## Health effects.A 2011 review 
concluded that a "long-term effect of high-protein 
diets is neither consistent nor conclusive." A 2014 
review noted that high-protein diets from animal 
sources.

Document

Figure 9: An example of Oven dataset of image-document pair.
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