Under review as a conference paper at ICLR 2026

ECONAGENTBENCH: ECONOMIC BENCHMARKS FOR
LLM AGENTS IN UNKNOWN ENVIRONMENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

We develop benchmarks for LLM agents that act in, learn from, and strategize in
unknown economic environments, the specifications of which the LLM agent must
learn over time from deliberate exploration. Our benchmarks consist of decision-
making tasks derived from key problems in economics. To forestall saturation,
the benchmark tasks are synthetically generated with scalable difficulty levels.
Overall, our benchmarks assess the abilities of LLM agents in tackling complex
economic problems in procurement, scheduling, and pricing—applications that
should grow in importance as such agents are further integrated into the economy.

1 INTRODUCTION

Organizations increasingly delegate parts of their economic decision-making to LLMSEI Over the
last year, LLMs have sufficiently matured such that the potential for LLM agents is increasingly
realizable, which further promotes such delegationﬂ Economic decisions—such as on procurement,
scheduling, and pricing—are often made in uncertain environments and require trial and error.
However, the performance of LLM agents in such environments is not a main focus of existing
benchmarks.

To address this question, we introduce EconAgentBench: an array of benchmarks for LLM agents
that act in, learn from, and strategize in unknown environments, the specifications of which the
LLM agent must learn over time from deliberate exploration. Specifically, we develop benchmarks
for three core economic tasks: procurement, scheduling, and pricing. We employ each of the
benchmarks at three different difficulty levels: BASIC, MEDIUM, and HARD. The benchmarks
consist of synthetic environments and can therefore be quickly scaled in size and complexity even
beyond these three levels as LLM capabilities continue to progress.

Our contributions are as follows:

1. We propose EconAgentBench, an array of benchmarks measuring the capabilities of LLM
agents in three key economic settings: procurement, scheduling, and pricing.

2. We construct the benchmark environments in a way that allows for difficulty scaling to
arbitrarily high difficulty levels (to forestall saturation), and experimentally validate this
technique.

3. We evaluate the performance of a diverse array of LLM agents (including LLM agents
based on cutting-edge models GPT-5 and Gemini 2.5 Pro) and demonstrate that analyzing
the way LLM agents tackle our benchmarks can give rise to economically meaningful
insights regarding mechanisms underlying observed differences in benchmark scores.

'Handa et al.|(2025) analyze usage data of Claude.ai, and find that 5.9% of conversations relate to business
or finance.

’In an April 2025 appearance on Bloomberg Technology, Visa CEO Ryan Mclnerney describes Visa’s
vision for “[LLM] agents to buy on your behalf” (Bloomberg| 2025). |Constantz| (2024) reports on similar such
LLM agent integration and delegation at McKinsey, and also on the rise of commercial-grade LLM agent re-
leases by companies such as OpenAl and Salesforce. Reed| (2024) report the adoption of generative-Al-driven
pricing by airlines including Delta and Virgin Atlantic.

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Economic benchmarks for LLMs. Other benchmarks measuring the economic capabilities of
LLMs include STEER (Raman et al., [2024), STEER-ME (Raman et al., [2025)), and VendingBench
(Backlund & Petersson, 2025). STEER and STEER-ME are Q&A benchmarks; by contrast, EconA-
gentBench evaluates LLM agents in various economic environments. VendingBench (concurrent
work) consists of a specific environment simulating a single economic task—operating a vending
machine—whereas EconAgentBench evaluates LLM agents on a diverse array of economic tasks
(procurement, scheduling, and pricing) in environments that can be found throughout the economy.

Benchmarks for frontier LLMs. Two key problems in benchmark design and maintenance are
saturation (see e.g. Phan et al.,2025) and data contamination (see e.g.|OpenAll 2024; Jose, [2024)).
Recent benchmarks such as FrontierMath, ARC-AGI, HLE, and NYT-Connections address satura-
tion by relying on human experts to craft difficult questions, and data contamination by only partially
releasing the benchmark|Glazer et al.| (2024); |Chollet et al.|(2025); Phan et al.|(2025);|Loredo Lopez
et al.| (2025). We share the goal of creating hard and future-proof benchmarks, and adopt the
approach of using synthetic instance generation (see, e.g.,Valmeekam et al.,[2023). This allows for
scaling the difficulty of benchmark tasks as well as making the benchmark code publicly available.

LLMs for Multi-turn RL. |Ma et al,| (2024)) categorize multi-turn incomplete-information LLM
agent benchmarks into four categories: embodied (physical instructions), web (browser usage), tool
(measuring the ability to usefully call external functions), and game (video game-style environ-
ments)ﬂ Our benchmarks do not neatly fit into any of these four categories. Rather, our benchmarks,
which simulate realistic usage of LLMs in economic scenarios, might fall into a fifth optimization
category. Optimization problems are well-suited for multi-turn LLM agent benchmarks because
they are naturally equipped with a fine-grained progress metric (see [Ma et al., 2024, for general
discussion of the importance of fine-grained progress metrics). Other multi-turn optimization envi-
ronments that may be fruitful for future work include multi-armed bandit settings and assortment
optimization (see, e.g., Krishnamurthy et al., [2024).

3 BENCHMARK DESIGN

We design environments that simulate three core economic tasks: procurement, scheduling, and pric-
ing. In each setting, the LLM agent acts in the environment for 100 periods. Each period culminates
with the LLM agent taking a single action (e.g., setting a price), after which the LLM agent receives
feedbackE] In all of our environments, there is a well-defined notion of an optimal action (in a given
period), and a natural way to measure the relative quality of a non-optimal action (in that period).

In Section 3.1} we describe the “API” via which the LLM agent acts in the benchmark environment.
In Section we describe the architecture of the LLM agents we test. In Section we provide
the design details of the three benchmark environments. Finally, in Section [3.4] we conclude with
a high-level overview of the key design features of EconAgentBench.

3.1 BENCHMARK INTERACTION METHOD

Rather than designing benchmark questions with which to query an LLM, we design benchmark
environments in which an LLM agent must act (and is evaluated). LLM agent technology is
nascent and there is currently no singular standard interaction protocolE] To ensure versatility and
future-proofness of our benchmarks, we only require a lightweight interaction protocol using tool
use (also referred to as function calling). We select this interaction method because it has rich
precedent in the literature on agentic workflows (see, e.g. [Schick et al., [2023)) and is included in
frontier LLMs as a built-in feature.

3See also Wang et al.|(2023); | Mialon et al.| (2023); [Xie et al.| (2024); |[Ma et al.|(2024); Liu et al.|(2023); He
et al.|(2024); Zhou et al.|(2023)).

“In this sense, our environments can be viewed as POMDPs (see, e.g.,[Ma et al.,[2024, for such framing).

SExample recent proposals include Anthropic’s Model Context Protocol and Google’s Agent2Agent
protocol. See also|Chan et al.| (2025)).

https://www.anthropic.com/news/model-context-protocol
https://developers.googleblog.com/en/a2a-a-new-era-of-agent-interoperability/
https://developers.googleblog.com/en/a2a-a-new-era-of-agent-interoperability/

Under review as a conference paper at ICLR 2026

LLM agent , Environment
\
? ' scheduling
oo get data <€—
' <
; e
. execute pricing
oo take_action —> -
[z==a] — ' action s
: #
o |
d | provide procurement
o o et data <€—
o B , feedback

S
[x=

Figure 1: Illustration of how the LLM agent interacts with the benchmark environment. The
LLM agent obtains information and takes actions via tool use (see Section [3.1). The environment
performs computations based on the tools used and returns information (see Section [3.3).

Each economic environment is associated with a list of tools. There are two types of tools: getter
tools, which return information about the environment, and action tools, which execute an action
(e.g., setting a price). Table [I] lists the associated tools for each benchmark environment (further
detail in Appendix [F). When the LLM agent calls a getter tool, the relevant quantity is computed
according to parameters of the underlying (synthetic) economic and returned; when the LLM agent
calls an action tool, the underlying economic environment computes the consequences of that action
and advances to the next period. See Figure [I|for an illustration.

Table 1: Overview of tools associated with each economic environment
Environment Getter tools Action tool

Procurement get_previous_purchase_data, get_equipment_information, submit_purchase_plan
get_budget, get_attempt_number

Scheduling get_previous_attempts_data, get worker_ids, get_task_ids, submit_assignment
get_attempt_number
Pricing get_previous_pricing_data, get_product_ids, get_attempt_number set_prices

Accordingly, any LLM agent capable of using the tools listed in Table|l|can be evaluated using our
benchmarks. While LLM agents interact with our environments using the above tools, we remark
that LLM agents are not limited to using only these tools. For example, in this work we test LLM
agents equipped with additional tools allowing for memory between periods (see Section [3.2).
As the capacity for LLMs to use increasingly large sets of tools advances, one could imagine
augmenting LLLM agents with additional tools, e.g., a (secure) Python interpreter.

3.2 LLM AGENT ARCHITECTURE

For each frontier LLM that we test, we construct an LLM agent by equipping the LLM with
tools that allow it to act in the benchmark environment as well as formulate and keep track of its
plans. Each period is conducted in a single chat sessionE] At the start of each period, the LLM
agent is given the same initial instructions and a list of tools it can use to interact in the economic
environment. The tools include the environment-specific tools described in Table[I] as well as two
additional notes tools, write_notes and read_notes, that allow the LLM agent to read and write notes
to itself that persist between pen’odsﬂ For further details on the functionality of the notes tools, see
Appendix [F} All LLMs are queried at temperature 1.

3.3 EcoNoMIC ENVIRONMENTS

We design three benchmark environments to simulate a broad array of key economic tasks. The
environments we construct come in two forms: stationary and non-stationary.

®0ur benchmarks thus require a relatively long context window, a condition satisfied by the LLMs we use.

"Equipping LLM agents (or workflows) with a sufficiently flexible memory module has been shown to be
critical for their performance at economic (Fish et al., [2024) and agentic exploration (Krishnamurthy et al.|
2024)) tasks.

Under review as a conference paper at ICLR 2026

In the stationary environments (procurement and scheduling), the quality of an action does not
depend on the period in which it is taken, and accordingly the LLM agent is scored based on
the quality of its best or final action. In particular, to earn a perfect score in a non-stationary
environment, it suffices for the LLM agent to identify and take an optimal action once.

In the non-stationary environments (pricing), the quality of an action changes over time according
to a predictable pattern that the LLM agent must learn, and accordingly the LLM agent is scored
based on its ability to consistently take high-quality actions after an initial exploration period. In
particular, to earn a perfect score in a non-stationary environment, the LLM agent must take optimal
actions many periods in a row, changing them appropriately as the environment changes.

3.3.1 PROCUREMENT

High-level overview. The LLM agent is given a list of prices for bundles of products (e.g., “$2
for 2 units of product A and 3 units of product B”), and a budget. Every period, the LLM agent
proposes a purchase plan, and receives as feedback the quality of that purchase plan (determined
by a simple, but unknown to the LLM agent, mathematical formula). The LLM agent’s goal is to
identify the best purchase plan within the budget.

Environment. There are n products A := {aq,...,a,} with effectiveness scores ey, ..., e, € N.
The products are partitioned into k categories A := A; U- - - LI A} (where LI denotes disjoint union).

Given quantities purchased of each product (21, ..., z,) € Z%,, the quantity of workers supported
by these products is given by B

L 1/k
f(z1,z) =11, (ZajeAi ejzj) .
Thus, products within the same category are substitutes, and products across different categories
are complements.

Products can be purchased through deals. There are three types of deals: simple (a bundle of
products is assigned a per-copy price), bulk only (like simple, but requires purchasing at least some
minimum number of copies), and two-part tariff (like simple, but in addition to the per-copy price
there is also an upfront cost for the deal that is independent of the number of copies purchased). For
further details see Appendix[C]

Task. The LLM agent is given a budget B > 0 and a menu consisting of m deals. It is asked to
find the purchase plan of deals that maximizes the quantity of workers supported within the budget.

Tools. The LLM agent has access to the following tools: get_previous_purchase data,
get_equipment_information, get_budget, get_attempt_number, submit_purchase plan. For fur-
ther details see Appendix [F.1]

Feedback. In each period, the LLM agent may propose a purchase plan. If the purchase plan
exceeds the budget, the agent is informed that the plan is not feasible. Otherwise, the agent receives
feedback on the quantity of workers supported by that purchase plan.

Key Unknowns. The LLM agent is not given the effectiveness scores ey, ..., e, € R, and must
learn information about these weights indirectly from the feedback.

Instantiation. We set n =12 and k = 3 for BASIC, n =30 and k = 5 for MEDIUM, and n = 100
and k=10 for HARD. The effectiveness scores ey, . . ., e,, are sampled uniformly from {1, 2, 3} for
BaAsIC, {1,2,...,5} for MEDIUM, and {1,2,...,20} for HARD. For each difficulty level we set
the menu size m := n and we use equal category sizes |A;| = --- = |Ax| = n/k. For details of
menu generation see Appendix [C]

Success Metric. Each experimental run is scored based on the quantity of workers supported by
the best purchase plan the LLM agent proposed, normalized by the quantity of workers supported
by the optimal purchase plan within budget B:

f(LLM’s quantities purchased of each product)

OPT '

4

Under review as a conference paper at ICLR 2026

3.3.2 SCHEDULING

High-level overview. The LLM agent is given a list of workers and tasks. The workers have
preferences over the tasks, and the tasks have “preferences” over the workers (e.g., determined
by how suitable a worker is for that task), but the LLM agent is not explicitly told any of these
preferences. Every period, the LLM agent proposes an assignment of workers to tasks, and receives
as feedback one or more “problems” with that assignment. The LLM agent’s goal is to identify an
assignment with no, or as few as possible, “problems.”

Environment. There are n workers W := {w1,...,w,} and n tasks T := {t¢1,...,t,}. Each
worker w; has a complete strict preference order >,,, over tasks, and each task ¢; has a complete
strict preference order -, over workers.

Task. The LLM agent is asked to find a (perfect) matching that is stable. A matching is a bijection
w: W — T. A worker-task pair (w,t) € W x T is a blocking pair for a matching p if ¢ >,, pu(w)
and w >4 p(t), that is, w and ¢ each prefer the other over their match in the matching. A matching
is stable if it has no blocking pairs. The existence of a stable matching is guaranteed by |Gale &
Shapley|(1962).

Tools. The LLM agent has access to the following tools: get_previous_attempts_data,
get_worker_ids, get_task_ids, get_attempt_number, submit_assignment. For details about the
precise functionality of these tools see Appendix [F.2]

Feedback. In each period, the LLM agent may propose a matching. If the matching is stable,
the experiment ends. Otherwise, the agent receives feedback in the form of & randomly chosen
blocking pairs (or all blocking pairs, if there are fewer than k)

Key Unknowns. The LLM agent is not given the preferences of the tasks and workers >,,, and
>¢,, and must learn information about these preferences indirectly from the blocking-pair feedback.

Instantiation. We set n=10 and k=1 for BASIC, n=20 and k=2 for MEDIUM, and n =50 and
k=15 for HARD. For each difficulty level, we randomly generate the preferences of the workers and
tasks using the public scores model (Ashlagi et al.,|2023). For details of preference generation see

Appendix
Success Metric. Each experimental run is scored based on the quality of the final matching the
LLM agent proposesﬂ according to the following formula:

blocking pairs in agent’s final matching

Eunif. random matching [# blOCking pairS in ,u] '

1

Note that the formula allows for negative scores if the LLM agent proposes a final matching that is
worse than the uniform random baseline.

3.3.3 PRICING

High-level overview. The LLM agent is given a list of products. Every period, the LLM agent
sets prices for those products, and receives as feedback the quantity sold and profit earned from
each product (determined by a simple, but unknown to the LLM agent, mathematical formula). The
LLM agent’s goal is to set prices in a way that maximizes profits. Moreover, the market conditions
change according to a predictable pattern, and to price optimally, the LLM agent must anticipate
this pattern and price accordingly (e.g., learn to steadily increase or decrease prices).

8 A stable matching can be computed in polynomial time based on this input, even if only one, adversarially
chosen, blocking pair is returned (Bei et al., 2013; [Emamjomeh-Zadeh et al.| [2020).

°In the final period, the following additional instruction is included in the LLM prompt: “**This is your
final attempt.** This time, you should submit the highest quality assignment possible, that has the fewest
problems.” This ensures that the LLM agent is evaluated based on a matching for which it was instructed to
minimize the number of blocking pairs (mitigating the risk that it uses the final period to explore).

Under review as a conference paper at ICLR 2026

Environment. There are n products G := {g1,...,9,} partitioned into k categories G :=
G1 U - - UGy (where U denotes disjoint union). Given prices p1, . . . , P, the quantity demanded g;
for the ith product g; in the jth category G is given by a nested logit demand model (Berry, |1994):
exp(ai _pi/ai) D]}—a

l1—0o

D; exp(12%) + 2 e Dg"lia)

1—0o

g =M

ak—pi /%

where Djr ==) e exp(*72EL2E) for j' € [k]. Here, a; is the quality of product g; (higher
is better), ag is the quality of an outside option (higher means outside option more attractive),
«; determines the price sensitivity, D; is the market share of category G, o is the elasticity of
substitution, and M scales overall market share.

Given costs ¢y, . . ., ¢, of the products, the profit from good g; is m; := (p;/c; — ¢;)q;. The total
profitis 7 := > | 7.

To make this pricing environment non-stationary, we vary the {o; }?_; parameters between periods,
according to a predictable pattern that the LLM must learn. We consider two kinds of patterns:
linear shifts, in which each «; is increased or decreased by a constant step size in each period (the
step sizes differ between products i € [n]), and periodic shifts, in which each «; varies according
to a sinusoidal pattern (the frequency and phase are the same for all products ¢ € [n], but the
amplitudes may differ).

Task. The LLM agent is asked to set prices for the n products in a way that maximizes total
profit 7.

Tools. The LLM agent has access to the following tools: get_previous_pricing data,
get_product_ids, get_attempt_number, set_prices. For details about the precise functionality of
these tools, see Appendix

Feedback. At the end of each period, the LLM agent sets prices for the n products. In the
following period, the LLM agent is given as feedback the quantity sold and profit earned for each
product, as well as total profit.

Key Unknowns. The LLM agent is not given the parameters {a;}?" ;,{a;}",a0,0, M that
characterize the demand response (nor how they evolve, where applicable), and must learn
information about these parameters indirectly from the feedback.

Instantiation. To scale the difficulty, we scale the number of products. We set n = 1 for BASIC,
n = 4 for MEDIUM, and n = 10 for HARD. Across all difficulty levels, we set ¢ = 0.5 and
M = 100. We sample the costs ¢; ~ Unif([1, 10]) and qualities a; ~ Unif([2, 3]) independently. For
each product i € [n], its category membership is determined by sampling from a (right-)truncated
geometric distribution Geom(0.2). To make the pricing environment non-stationary, we vary the
{a;}, parameters with time according to a predictable pattern (either linear shifts or periodic
shifts). For further details see Appendix [E]

Success Metric. Each experimental run is scored based on the total profit earned in the last 50
periods, normalized by the total profit that would have been earned from pricing optimally in those
periods:

total profit 7 from last 50 periods

OPT

3.4 KEY DESIGN FEATURES

Each environment is synthetically generated according to an underlying economic model. Accord-
ingly, it is possible to generate and test on arbitrarily many benchmark instances. Additionally, each
environment is designed to allow for scalable difficulty—e.g. in scheduling, the difficulty can be
increased by increasing the number of workers and tasks. In this work, we instantiate each economic
environment at three different difficulty levels—BASIC, MEDIUM, and HARD—but it is possible

Under review as a conference paper at ICLR 2026

to generate instances at arbitrary difficulty levels. Finally, the difficulty of each benchmark task lies
(partly) in that the LLM agent must operate in an unknown environment—e.g. in scheduling, the
preferences of the workers and tasks are not given to the LLM agent, and can only be learned via de-
liberate exploration. Thus, it is not possible for any agent or algorithm, no matter how sophisticated,
to consistently produce a perfect solution to a benchmark task in the first period. In this sense, a key
feature of the benchmark environments we construct is not only that they simulate core economic
tasks, but also that they test the ability for LLM agents to reason under uncertainty more generally.

4 BENCHMARK RESULTS

In this section, we demonstrate key features of our benchmarks by analyzing the performance of
LLM agents based on an array of frontier LLMs at our EconAgentBench benchmarks. First, in
Section[4.1] we validate our difficulty scaling approach by comparing the scores of a broad array of
LLM agents across the difficulty levels BASIC, MEDIUM, and HARD. In Section by measuring
the performance of two additional, cutting-edge LLM agents, we show that despite improvements
in LLM technology, our benchmarks are not saturated at the HARD difficulty level. Finally, in
Section we demonstrate that economic insights can be uncovered by analyzing the behavior
of LLM agents beyond just their overall scores. For additional experimental details, including
information on data collection timeframes and costs, see Appendix [A]

4.1 VALIDATING DIFFICULTY SCALING: A BROAD COMPARISON

Our first goal is to assess the extent to which our proposed difficulty scaling technique is effective.
To do so, we measure the performance of LLM agents based on Claude-3.5 Sonnet (20241022
version), Gemini 1.5 Pro (002 stable release), GPT-40 (20241120 version), GPT-4.1 (20250414 ver-
sion), and o4-mini (20250416 version) on the three EconAgentBench environments (procurement,
scheduling, and pricing). We instantiate each economic environment at three different difficulty
levels—BASIc, MEDIUM, and HARD—and for each difficulty level, we randomly generate 12
instances and run all LLM agents for 100 periods on the same instances. The final benchmark score
of each LLM agent is computed by averaging the scores of the individual runs.

The benchmark results are summarized in the upper part of Table[2] We observe that our approach
for scaling the difficulty of benchmarks—increasing the instance size—is effective. For example,
for all LLM agents and all three economic environments, scores on HARD instances are lower than
scores on BASIC instances (p < 0.05, one-sided Welch’s ¢-test).

4.2 NONSATURATION: EVALUATION ON CUTTING-EDGE MODELS

We additionally measure the performance of LLM agents based on GPT-5 (20250807 version) and
Gemini 2.5 Pro (June 2025 version) on EconAgentBench at the HARD difficulty, for 100 periods,
on the same instances as in Section The lower part of Table 2] displays the results. We observe
that GPT-5 emerges as the clear leader in the two stationary benchmark environments (procurement
and scheduling), whereas perhaps surprisingly, GPT-4.1 achieves the highest score in pricing (the
only non-stationary environment), closely followed by Gemini 2.5 Pro. This result highlights that
our individual benchmarks measure different dimensions of skill in economic environments, and
underscores the need for domain-specific benchmarks.

4.3 ECONOMIC INSIGHTS: INTER-MODEL COMPARISONS, IMPROVEMENT MECHANISMS

In this section, we examine the behavior—beyond merely the overall benchmark scores—of the
LLM agents on EconAgentBench at the HARD difficulty level, with the goal of gaining econom-
ically meaningful insights regarding mechanisms underlying differences in scores. Specifically,
in each of the three benchmark environments, we identify an action-quality metric and analyze
it across LLM agents. For additional analysis of exploration in the procurement and scheduling
environments, see Appendix

Procurement. To better understand differences in procurement scores, we study budget utiliza-
tion—the proportion of purchase plans with cost between 95% and 100% of the budget, that is, a

Under review as a conference paper at ICLR 2026

Table 2: Scores of Claude 3.5 Sonnet, Gemini 1.5 Pro, GPT-40, GPT-4.1, o4-mini, GPT-5, and
Gemini 2.5 Pro on the three EconAgentBench environments—procurement, scheduling, and
pricing—by difficulty, all multiplied by 100. The highest possible score is 100. For procurement
and scheduling (the two stationary environments), the proportion of instances fully solved by the
LLM agents are indicated in parentheses. For scheduling, negative scores occur when the LLM’s
proposed assignment is lower quality than a uniform random baseline (see Appendix [D). In each
column, the top-2 values under HARD are bolded.

Procurement Scheduling Pricing

Claude 3.5 Sonnet BASIC 72.8 (2/12) 100 (12/12) 83.2
MEDIUM 54.5 (0) 69.4 (0) 68.7
HARD 54.6 (0) 36.3 (0) 58.7
Gemini 1.5 Pro BaAsic 62.3 (1/12) 63.5 (2/12) 68.8
MEDIUM 37.9 (0) 29.9 (0) 53.2
HARD 35.5(0) 16.1 (0) 39.1
GPT-40 BASIC 43.8 (0) 37.4(2/12) 76.1
MEDIUM 38.3 (0) -4.5 (0) 69.6
HARD 9.0 (0) 3.2 (0) 46.7
GPT-4.1 BASIC 73.1 (0) 47.6 (1/12) 85.6
MEDIUM 51.1(0) 25.9 (0) 75.0
HARD 33.6 (0) 10.9 (0) 66.8
04-mini Basic 96.4 (8/12) 93.3(10/12) 88.2
MEDIUM 76.2 (0) 19.3 (0) 74.2
HARD 60.9 (0) 19.8 (0) 494
Gemini 2.5 Pro HARD 49.0 (0) 45.7 (0) 62.8
GPT-5 HARD 75.0 (0) 90.5 (0) 58.9

measure of whether the LLM agent “makes the most of” its budget (Table [3).

First, we observe that the GPT-5 agent—the clear leader in procurement—indeed exhibits the
highest budget utilization among all LLM agents. Budget utilization also sheds light on differences
in performance between the other LLM agents. For example, the Claude 3.5 Sonnet agent’s strong
performance relative to that of the other three non-reasoning agents (Gemini 1.5 Pro, GPT-40, and
GPT-4.1) can likely be explained by its substantially higher budget utilization. All three LLM agents
based on reasoning models (04-mini, Gemini 2.5 Pro, GPT-5) exhibit high budget utilization—
consistent with the strong mathematical reasoning skills of reasoning models more generally.

Scheduling. To better understand differences in scheduling scores, we study the best-so-far rate—
the proportion of assignments submitted that are better than every assignment submitted by the
LLM agent so far in that experimental run (Table[3). We observe a close correspondence between
best-so-far rate and scheduling score: the top three LLM agents in scheduling—based on GPT-5,
Gemini 2.5 Pro, and Claude 3.5 Sonnet respectively—also attain the top three best-so-far rates.

Pricing. Pricing, the only non-stationary benchmark, proved to be the most challenging, with no
LLM agent scoring above 70%. Without high-scoring LLM agents, it is challenging to develop
metrics that shed insight on differences in performance. Indeed, manual inspection of pricing
experimental runs reveals that most LLM agents set prices using simple heuristics, and are not
consistently able to adapt to, or sometimes even detect, changes to their environment.

As a preliminary analysis, we study adaptability—the difference between the actual score (averaged
over the final 50 periods) and the average score over the first 10 periods—a measure of whether the
LLM agent adapts to the environment over time. We observe that the GPT-4.1 agent, which scores
highest in pricing, exhibits high adaptability (second only to the Gemini 1.5 Pro agent, a relatively
weak agent whose high adaptability is driven by poor-quality actions in the first 10 periods). As
nonstationary pricing emerges as particularly difficult for present-day LLM agents, this benchmark
may serve as an interesting frontier for agentic evaluations as LLM capabilities continue to advance.

Under review as a conference paper at ICLR 2026

Table 3: Action quality (in %)—given by budget utilization (procurement), best-so-far rate
(scheduling), and adaptability (pricing)—of all LLM agents on EconAgentBench on the HARD
difficulty. In each column, the top-2 values are bolded.

Budget utilization Best-so-far rate = Adaptability

(Procurement) (Scheduling) (Pricing)
Claude 3.5 Sonnet 76.1 12.4 -3.3
Gemini 1.5 Pro 41.1 5.8 7.4
GPT-40 43.2 54 3.1
GPT-4.1 64.6 6.2 6.8
04-mini 95.9 5.9 4.7
Gemini 2.5 Pro 924 21.3 2.5
GPT-5 97.0 28.5 0.1

5 DISCUSSION

In this paper, we present EconAgentBench: benchmarks designed to simulate realistic usage
of LLM agents in economic scenarios. We demonstrate that EconAgentBench exhibits several
desirable properties for frontier model evaluation: (1) arbitrary difficulty scaling (to forestall
saturation), (2) synthetic instance generation (to allow for precise capability measurements), and
(3) rich measurability (i.e., fine-grained metrics beyond overall benchmark score give rise to
economically meaningful insights).

Our benchmarks measure LLLM abilities and tendencies via multi-turn interactions. Our perspective
is that the main limitation of this approach—increased (time) costs compared to simpler Q& A-style
measurement methodsFE]—is, in certain situations, outweighed by the benefits. For high-stakes
economic decisions, targeted measures such EconAgentBench may be more informative than
general-purpose benchmarks. Accordingly, we envision benchmarks like EconAgentBench being
used by businesses to inform Al adoption decisions and by researchers to guide development.

One advantage of our multi-turn approach is that a single run (here, of 100 periods) yields a rich
dataset: One can measure not just the final score of the run, but also the quality of the LLM agent’s
actions throughout the experiment (as we do in Section.3]and Appendix B).

Our choice of prompts and scaffolding for our LLM agents is deliberately simple and neutral
to enable a fair comparison of LLMs; a fruitful direction for further research would be to more
optimally engineer these components. Indeed, any LLM agents used in real-world economic
decision-making are likely to use domain-specific prompts and scaffolding.

We also emphasize that EconAgentBench scores have a different interpretation compared to
traditional benchmark scores. A score of 70% on a Q&A benchmark such as GPQA corresponds
to answering 70% of benchmark questions correctly, a capability that may already result in a
useful chatbot. By contrast, a score of 70% on, e.g., the procurement benchmark, corresponds
to proposing purchase plans that on average provide 30% less utility (in our prompts phrased as
“workers supported”) than the optimal purchase plan. Particularly in industries with thin margins,
it is plausible that an Al agent could only be worth deploying if it consistently achieves very high
(e.g., over 90% or 95%) EconAgentBench scores.

As LLM agents become more capable, they are deployed in increasingly diverse and high-stakes
applications. To make more informed adoption decisions, it is important that stakeholders con-
sidering deployment—whether for price-setting in large markets or coordinating scheduling at a
small business—can reliably measure agents’ capabilities for their specific applications. Repeated
interaction, partial information, and exploration are all salient features of real-world economic en-
vironments, and it is critical that capabilities are tested in environments enriched with such features.

In particular, due to the path-dependent nature of economic decision-making, the LLM queries for
different periods of the same run cannot be parallelized.

Under review as a conference paper at ICLR 2026

REFERENCES

Itai Ashlagi, Mark Braverman, and Geng Zhao. Welfare Distribution in Two-sided Random
Matching Markets. In Proceedings of the 24th ACM Conference on Economics and Computation,
EC ’23, pp. 122, New York, NY, USA, July 2023. Association for Computing Machinery. URL
https://doi.org/10.1145/3580507.3597730.

Axel Backlund and Lukas Petersson. Vending-Bench: A Benchmark for Long-Term Coherence
of Autonomous Agents, February 2025. URL http://arxiv.org/abs/2502.15840.
arXiv:2502.15840 [cs].

Xiaohui Bei, Ning Chen, and Shengyu Zhang. On the complexity of trial and error. In Pro-
ceedings of the forty-fifth annual ACM symposium on Theory of Computing, STOC 13,
pp- 3140, New York, NY, USA, June 2013. Association for Computing Machinery. URL
https://doi.org/10.1145/2488608.2488613.

Steven T. Berry. Estimating Discrete-Choice Models of Product Differentiation. The RAND Journal
of Economics, 25(2):242-262,1994. URL https://www. jstor.org/stable/2555829.

Bloomberg. Visa Launches Al = Agents for Shopping, May 2025.
URL https://www.bloomberg.com/news/videos/2025-04-30/
visa—-launches—-ai-agents-for-shopping-video.

Alan Chan, Kevin Wei, Sihao Huang, Nitarshan Rajkumar, Elija Perrier, Seth Lazar,
Gillian K. Hadfield, and Markus Anderljung. Infrastructure for ai agents, 2025. URL
https://arxiv.org/abs/2501.10114.

Francois Chollet, Mike Knoop, Gregory Kamradt, and Bryan Landers. ARC Prize 2024: Technical
Report, January 2025. URL http://arxiv.org/abs/2412.04604,

Jo Constantz. Big Tech’s New Al Obsession: Agents That Do
Your Work for You. Bloomberg.com, December 2024. URL
https://www.bloomberg.com/news/articles/2024-12-13/
ai-agents—and-why-big-tech-is-betting-on-them-for-2025.

Ehsan Emamjomeh-Zadeh, Yannai A. Gonczarowski, and David Kempe. The Com-
plexity of Interactively Learning a Stable Matching by Trial and Error. In Pro-
ceedings of the 2lst ACM Conference on Economics and Computation, EC ’20, pp.
599, New York, NY, USA, July 2020. Association for Computing Machinery. URL
https://dl.acm.org/doi/10.1145/3391403.3399508.

Sara Fish, Yannai A. Gonczarowski, and Ran I. Shorrer. Algorithmic Collusion by Large Language
Models, November 2024. URL http://arxiv.org/abs/2404.00806.

D. Gale and L. S. Shapley. College Admissions and the Stability of Marriage. The American
Mathematical Monthly, 69(1):9-15, January 1962. URL https://www.tandfonline.
com/doi/full/10.1080/00029890.1962.11989827.

Elliot Glazer, Ege Erdil, Tamay Besiroglu, Diego Chicharro, Evan Chen, Alex Gunning, Car-
oline Falkman Olsson, Jean-Stanislas Denain, Anson Ho, Emily de Oliveira Santos, Olli
Jarviniemi, Matthew Barnett, Robert Sandler, Matej Vrzala, Jaime Sevilla, Qiuyu Ren,
Elizabeth Pratt, Lionel Levine, Grant Barkley, Natalie Stewart, Bogdan Grechuk, Tetiana
Grechuk, Shreepranav Varma Enugandla, and Mark Wildon. FrontierMath: A Bench-
mark for Evaluating Advanced Mathematical Reasoning in AI, December 2024. URL
http://arxiv.org/abs/2411.04872.

Kunal Handa, Alex Tamkin, Miles McCain, Saffron Huang, Esin Durmus, Sarah Heck, Jared
Mueller, Jerry Hong, Stuart Ritchie, Tim Belonax, Kevin K. Troy, Dario Amodei, Jared Kaplan,
Jack Clark, and Deep Ganguli. Which economic tasks are performed with ai? evidence from
millions of claude conversations, 2025. URL https://arxiv.org/abs/2503.04761.

10

https://doi.org/10.1145/3580507.3597730
http://arxiv.org/abs/2502.15840
https://doi.org/10.1145/2488608.2488613
https://www.jstor.org/stable/2555829
https://www.bloomberg.com/news/videos/2025-04-30/visa-launches-ai-agents-for-shopping-video
https://www.bloomberg.com/news/videos/2025-04-30/visa-launches-ai-agents-for-shopping-video
https://arxiv.org/abs/2501.10114
http://arxiv.org/abs/2412.04604
https://www.bloomberg.com/news/articles/2024-12-13/ai-agents-and-why-big-tech-is-betting-on-them-for-2025
https://www.bloomberg.com/news/articles/2024-12-13/ai-agents-and-why-big-tech-is-betting-on-them-for-2025
https://dl.acm.org/doi/10.1145/3391403.3399508
http://arxiv.org/abs/2404.00806
https://www.tandfonline.com/doi/full/10.1080/00029890.1962.11989827
https://www.tandfonline.com/doi/full/10.1080/00029890.1962.11989827
http://arxiv.org/abs/2411.04872
https://arxiv.org/abs/2503.04761

Under review as a conference paper at ICLR 2026

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong Lan,
and Dong Yu. WebVoyager: Building an End-to-End Web Agent with Large Multimodal Models.
In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pp. 6864—-6890, Bangkok, Thailand, August 2024. Association for Com-
putational Linguistics. URL https://aclanthology.org/2024.acl-long.371/l

Arun Jose. BIG-Bench Canary Contamination in GPT-4, October 2024. URL
https://www.alignmentforum.org/posts/kSmHMoaLKGcGgyWzs/
big-bench-canary—-contamination-in-gpt—-4.

Donald E. Knuth. Marriages stables. Technical Report 10, Université de Montréal, Montréal,
Canada, July 1976.

Akshay Krishnamurthy, Keegan Harris, Dylan J. Foster, Cyril Zhang, and Aleksan-
drs Slivkins. Can large language models explore in-context?, October 2024. URL
http://arxiv.org/abs/2403.15371.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang
Ding, Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan Zeng, Zhengxiao
Du, Chenhui Zhang, Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie Huang, Yux-
iao Dong, and Jie Tang. AgentBench: Evaluating LLMs as Agents. October 2023. URL
https://openreview.net/forum?id=zAdUB0aCTQ.

Angel Yahir Loredo Lopez, Tyler McDonald, and Ali Emami. NYT-connections: A de-
ceptively simple text classification task that stumps system-1 thinkers. In Proceed-
ings of the 3lst International Conference on Computational Linguistics, pp. 1952—
1963. Association for Computational Linguistics, January 2025. URL https:
//aclanthology.org/2025.coling-main.134/.

Chang Ma, Junlei Zhang, Zhihao Zhu, Cheng Yang, Yujiu Yang, Yaohui Jin, Zhenzhong Lan, Ling-
peng Kong, and Junxian He. AgentBoard: An Analytical Evaluation Board of Multi-turn LLM
Agents. November 2024. URL https://openreview.net/forum?id=4S8agvKjle#
discussion.

Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas
Scialom. GAIA: a benchmark for General AI Assistants. October 2023. URL
https://openreview.net/forum?id=fibxvahvs3l

OpenAl. GPT-4 Technical Report, March 2024. URL http://arxiv.org/abs/2303.
08774.

Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Sean Shi,
Michael Choi, Anish Agrawal, Arnav Chopra, Adam Khoja, Richard Ren, Jason Hausenloy,
Oliver Zhang, Mantas Mazeika, Summer Yue, Alexandr Wang, and Dan Hendrycks. Hu-
manity’s Last Exam, January 2025. URL https://static.scale.com/uploads/
654197dc94d34f66c0f5184e/Publication%20Ready$20Humanity’ s%
20Last%20Exam.pdfl

Narun Raman, Taylor Lundy, Samuel Joseph Amouyal, Yoav Levine, Kevin Leyton-Brown, and
Moshe Tennenholtz. STEER: assessing the economic rationality of large language models. In
Proceedings of the 41st International Conference on Machine Learning, volume 235 of ICML’24,
pp- 4202642047, Vienna, Austria, July 2024. JMLR .org.

Narun Raman, Taylor Lundy, Thiago Amin, Jesse Perla, and Kevin Leyton-Brown. STEER-ME:
Assessing the Microeconomic Reasoning of Large Language Models, February 2025. URL
http://arxiv.org/abs/2502.13119. arXiv:2502.13119 [cs].

Ted Reed. Airline Pricing Systems Are ‘Ancient’ Here’s How AI Can Help,
2024. URL |https://www.forbes.com/sites/tedreed/2024/08/21/
airline-pricing-systems—are—ancient—heres—-how—ai-can-help/. Sec-

tion: Aerospace & Defense.

11

https://aclanthology.org/2024.acl-long.371/
https://www.alignmentforum.org/posts/kSmHMoaLKGcGgyWzs/big-bench-canary-contamination-in-gpt-4
https://www.alignmentforum.org/posts/kSmHMoaLKGcGgyWzs/big-bench-canary-contamination-in-gpt-4
http://arxiv.org/abs/2403.15371
https://openreview.net/forum?id=zAdUB0aCTQ
https://aclanthology.org/2025.coling-main.134/
https://aclanthology.org/2025.coling-main.134/
https://openreview.net/forum?id=4S8agvKjle#discussion
https://openreview.net/forum?id=4S8agvKjle#discussion
https://openreview.net/forum?id=fibxvahvs3
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2303.08774
https://static.scale.com/uploads/654197dc94d34f66c0f5184e/Publication%20Ready%20Humanity's%20Last%20Exam.pdf
https://static.scale.com/uploads/654197dc94d34f66c0f5184e/Publication%20Ready%20Humanity's%20Last%20Exam.pdf
https://static.scale.com/uploads/654197dc94d34f66c0f5184e/Publication%20Ready%20Humanity's%20Last%20Exam.pdf
http://arxiv.org/abs/2502.13119
https://www.forbes.com/sites/tedreed/2024/08/21/airline-pricing-systems-are-ancient-heres-how-ai-can-help/
https://www.forbes.com/sites/tedreed/2024/08/21/airline-pricing-systems-are-ancient-heres-how-ai-can-help/

Under review as a conference paper at ICLR 2026

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli, Eric
Hambro, Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer:
Language Models Can Teach Themselves to Use Tools. November 2023. URL
https://arxiv.org/abs/2302.04761.

Karthik Valmeekam, Matthew Marquez, Alberto Olmo, Sarath Sreedharan, and Subbarao Kamb-
hampati. PlanBench: an extensible benchmark for evaluating large language models on planning
and reasoning about change. In Proceedings of the 37th International Conference on Neural
Information Processing Systems, NIPS 23, pp. 38975-38987, Red Hook, NY, USA, December
2023. Curran Associates Inc.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. Voyager: An Open-Ended Embodied Agent with Large Language Models,
October 2023. URL http://arxiv.org/abs/2305.16291.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan Zhou, Silvio
Savarese, Caiming Xiong, Victor Zhong, and Tao Yu. OSWorld: Benchmarking Multimodal
Agents for Open-Ended Tasks in Real Computer Environments. November 2024. URL
https://openreview.net/forum?id=tN61DTr4Ed#discussionl

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. @ WebArena:
A Realistic Web Environment for Building Autonomous Agents. October 2023. URL
https://openreview.net/forum?id=o0Kn9c6ytLx.

12

https://arxiv.org/abs/2302.04761
http://arxiv.org/abs/2305.16291
https://openreview.net/forum?id=tN61DTr4Ed#discussion
https://openreview.net/forum?id=oKn9c6ytLx

Under review as a conference paper at ICLR 2026

A DEFERRED EXPERIMENTAL DETAILS

A.1 DATA COLLECTION TIMEFRAMES

For the experiments on Claude 3.5 Sonnet, GPT-40, and Gemini 1.5 Pro presented in Section 4.1}
the data was collected between December 2024 and March 2025. For the experiments on GPT-4.1
and o4-mini presented in Section the data was collected in April 2025 (after the benchmark
design and code was finalized in March 2025). For the experiments on GPT-5 and Gemini 2.5 Pro
presented in Section[4.2] the data was collected in September 2025.

A.2 DATA COLLECTION COSTS

The costs incurred testing Claude 3.5 Sonnet, GPT-40, and Gemini 1.5 Pro on BASIC, MEDIUM,
and HARD were roughly $2,000 per model (including pilot experiments). The costs incurred testing
both GPT-4.1 and o4-mini on BASIC, MEDIUM, and HARD were roughly $3,000 combined. The
costs incurred testing GPT-5 and Gemini 2.5 Pro on HARD were roughly $2,000 combined.

B EXPLORATION ANALYSIS

B.1 EXPLORATION RATES OF LLM AGENTS IN STATIONARY ENVIRONMENTS

Table [4] displays the exploration rates of all LLM agents on the two stationary EconAgentBench
environments (procurement and scheduling) on the HARD difficulty. Comparing with Table [2} we
observe that in both procurement and scheduling, improvements in exploration capabilities are
generally associated with higher benchmark scores.

In some cases, exploration rate can shed light on differences in benchmark scores when the
environment-specific action quality measures from Table [3] fail to do so. For example, in schedul-
ing, the two lowest-scoring LLM agents—the Gemini 1.5 Pro agent and the GPT-40 agent—also
have substantially lower exploration rates (and this difference in performance is not explained by
best-so-far rate alone, as the GPT-4.1 and o4-mini agents have similarly low best-so-far rates, but
substantially higher benchmark scores).

Table 4: Exploration rates (in %) of all LLM agents on the two stationary EconAgentBench envi-
ronments (procurement and scheduling) on the HARD difficulty. Here, the exploration rate refers
to the proportion of unique actions taken by the LLM agent. (Pricing, a stationary environment, is
excluded, as there is no single notion of exploration rate that is most natural.)

Procurement Scheduling

Claude 3.5 Sonnet 43.1 98.7
Gemini 1.5 Pro 34.8 41.0
GPT-40 46.6 59.2
GPT-4.1 48.4 97.5
04-mini 27.8 98.3
Gemini 2.5 Pro 83.7 98.8
GPT-5 62.9 99.0

B.2 RULING OUT UNDEREXPLORATION DUE TO MISSPECIFIED BELIEFS

In Appendix [B.T] we highlighted underexploration as a contributing factor to the worse performance
of the Gemini 1.5 Pro and GPT-40 agents compared to the other LLM agents. One possible cause
of underexploration could be a “misconception” by the LLM agent about its environment. For ex-
ample, perhaps the LLM agent “believes” the horizon is much shorter than 100 periods, or perhaps
the LLM agent “believes” it will be scored not based on its best action, but rather some other metric
(e.g., average action quality). To understand whether these factors contribute to underexploration,

13

Under review as a conference paper at ICLR 2026

Table 5: Benchmark scores (multiplied by 100) and exploration rates of Gemini 1.5 Pro on the
procurement benchmark, at the three difficulty levels BASIC, MEDIUM, and HARD, using three
different system prompts. Exploration rate is calculated as in Table]

Benchmark Score Exploration Rate

Baseline BAsiIC 62.3 0.27
MEDIUM 37.9 0.46
HARD 35.5 0.35
Known Horizon BaAsiIC 47.3 0.23
MEDIUM 20.3 0.26
HARD 18.6 0.41
Known Horizon + Goal BASIC 50.3 0.28
MEDIUM 20.4 0.29
HARD 11.1 0.52

we additionally run the procurement benchmark with two system prompt variations:

* Known Horizon: Baseline System Prompt + “You will be given 100 total attempts. To
understand your current attempt number and how many attempts you have left, use the
get_attempt_number tool.”

* Known Horizon + Goal: Baseline System Prompt + “You will be given 100 total attempts.
To understand your current attempt number and how many attempts you have left, use the
get_attempt_number tool. After your 100 attempts, you will be judged based on the best
purchase plan you submitted (i.e., the purchase plan supporting the most workers).”

The first system prompt treatment tests whether the LLM agent performs differently if it knows
the horizon length of 100 periods in advance. The second system prompt treatment tests whether
the LLM agent performs differently if, in addition to being given the horizon length, it is also told
more explicitly that it is only judged based on the quality of its best action. (“Baseline System
Prompt” refers to the system prompt for the main procurement experiments, for the full prompt see

Appendix [F.1])

For each of the two system prompt variations and for all three difficulty levels (BASIC, MEDIUM,
HARD), we re-run the same 12 instances of the procurement benchmark as in Section [} using
Gemini 1.5 Pro.

Table [5] summarizes the results. Neither of the two prompt treatments consistently increase the
exploration rate, and in fact, both prompts result in a slight decrease in overall benchmark score
(however, this difference is not statistically significant). This suggests that the low exploration rates
we observe in LLMs such as Gemini 1.5 Pro cannot solely be explained by certain aspects of the
environment, such as the horizon length, being unknown.

Figure [2] visualizes the benchmark scores and exploration rates on a per-run basis. We observe that
the differences in benchmark scores and exploration rates reported in Table [5 are largely driven by
outliers (recall we only test on 12 instances per difficulty—prompt pair). This presence of extreme
outliers is perhaps intensified by Gemini 1.5 Pro’s high inter-run variability relative to the other
two LLMs. Overall, this experiment additionally serves as a prompt robustness check: We do not
observe significant changes in benchmark performance when varying the prompt, further validating
our inter-LLM comparisons in Section[4.3]

C DEFERRED DETAILS OF PROCUREMENT

C.1 FURTHER ENVIRONMENT DETAILS

Recall the notation from Section m there are n products A := {a1,...,a,} partitioned into
k categories A := A U --- U Ay, where |A;] = --- = |Ax| = n/k (we set n,k so that n

mod k = 0). In this section, we describe the menu generation process.

14

Under review as a conference paper at ICLR 2026

Procurement Benchmark Scores (Gemini 1.5 Pro)

100 Exploration Rates in Procurement (Gemini 1.5 Pro)
. .
80 . Basic
. e f 8o .e
L]
o 60 . 0
§ < Medium
40 . § e e . .
: - s &2
o®
L]
20 . Hard
° .
. e oo o . “ 2 .
. nges®
Basic Medium Hard 0.0 0.2 0.4) 0.6 0.8 1.0
Exploration Rate
Prompt Variant Prompt Variant
Baseline Known Horizon e Known Horizon + Goal Baseline Known Horizon e Known Horizon + Goal

Figure 2: For all three difficulty levels, and for each choice of prompt variant, we display the
benchmark score (left) and exploration rate (right) from each individual experimental run of the
procurement benchmark, using Gemini 1.5 Pro. The exploration rate is defined as in Table 4]

Menu generation process. A menu is a collection of m := n deals. Fix a uniform permutation
o : [m] — [m]. Fori € [m], deal ¢ is generated as follows (given probability parameters
p1,p2 € [0, 1] that will be specified later as a function of difficulty):

* First we determine the products that are offered in deal i. Sample ¢; ~ Geom(p;) for
some p € [0, 1]. Then ¢; counts the number of distinct products offered in deal 4. If /; = 1,
then only product a, ;) is offered. Otherwise, if /1 > 1, then product a, ;) is offered,
along with £; — 1 uniformly sampled products from A \ {a, ;) } (without replacement).

* Next, we determine how much of each product is given in the deal. For each product
offered in a deal, its quantity is determined from independently sampling from Geom(ps).

* The type of the deal is chosen uniformly at random from the three possible options: simple,
bulk only, and two-part tariff (see Section[3.3.1).

* All prices in the deal are generated from independent samples from Unif([1, 20]). If the
deal is a “bulk only” deal, then the minimum quantity is generated by sampling from
Unif({2,3,...,10}).

For BAsIC, we set p; = 0.8 and po = 0.5. For MEDIUM, we set p; = 0.5 and ps; = 0.2. For
HARD, we set p; = 0.1 and py = 0.1.

Budget generation process. To set the budget, we randomly sample a purchase plan that supports
a positive quantity of workers, compute its cost C', and then set the budget to be B := C'+ ¢ for some
e ~ Unif([0, 1]). This ensures that the optimal purchase plan supports a positive quantity of workers.

The random purchase plan is generated as follows (given probability parameter p» € [0, 1]). For
each category A;, we randomly sample a product. Denote the resulting list a;,,...,a;, € A. For
each product a;, uniformly sample a deal d; among all deals that offer a;; (by construction, at least
one such deal exists). The purchase plan then calls for purchasing ¢; ~ Geom(pz) of deal d;, for
all j € [k]. As the purchase plan covers products from each category, it supports a positive quantity
of workers.

Solving for OPT. We solve for an optimal purchase plan by formulating the problem as an ILP
and using Gurobi with an academic license. The instance sizes for BASIC and MEDIUM can be run
using gurobipy without a license, but the HARD instances are large enough to require (at least)
an academic license. (For a slightly easier alternative to HARD that can be run without a Gurobi
license, we recommend n = 40 and k¥ = 5.) On a standard laptop at all of our difficulty levels,
Gurobi can solve for an optimal purchase plan in negligible time.

15

Under review as a conference paper at ICLR 2026

D DEFERRED DETAILS OF SCHEDULING

D.1 DEFERRED DETAILS OF PREFERENCE GENERATION

The preferences of the n workers and n tasks are generated using four different score generation
methods for three instances each (12 total instances):

* Uniform preferences. For three instances, the preferences of the workers and tasks are
sampled uniformly at random.

» Uniform worker preferences, identical task preferences. For three instances, the prefer-
ences of the workers are sampled uniformly at random, and the preferences (“priorities”) of
the tasks are identical (all equal to some uniformly sampled preference order over workers).

* Correlated preferences. For three instances, we use a public scores model (see, e.g.,
Ashlagi et al.l 2023). For each worker w € W and each task ¢t € T, draw public
scores a,, ~ Unif([1,3]) and b; ~ Unif([1,3]) independently. Then, for each w € W,
worker w’s preferences are generated as follows: for each task ¢, sample a latent variable
Xy, ~ Exp(b;), and set t; >, to if and only if X, ;, < X, ,. The task preferences
{>t}ter are generated similarly.

* Correlated worker preferences, identical task preferences. For three instances, the
preferences of the workers are sampled as in the “Correlated preferences” case (using
public scores), and the preferences (“priorities”) of the tasks are identical (all equal to
some uniformly sampled preference order over workers).

D.2 CALCULATION OF DENOMINATOR IN SCORE

One step in calculating the score of a scheduling run involves estimating
Eunif. random matchingu[# blocking pairs in p]. We approximate this expression by taking an em-
pirical average over 10,000 samples (about lhr of computation on a standard laptop). Across all
difficulty levels and seeds, the width of the 95% boostrap confidence interval is less than 1%, so
that the effects of sampling errors on the benchmark scores are negligible.

D.3 COMPARISON TO NAIVE BASELINE

One way to contextualize the LLM performance is to compare their performance to a natural
heuristic. For scheduling (unlike procurement and pricing), there is a clear natural heuristic dating
back to |Knuth| (1976): When given one or more blocking pairs as feedback, randomly “fix” one
such blocking pair. For each difficulty level (BASIC, MEDIUM, HARD), we ran this heuristic
algorithm for 100 periods on each problem instance and calculated the average score. The heuristic
earns a (perfect) score of 100 on BASIC, 98.1 on MEDIUM, and 76.0 on HARD, far higher than all
LLM agents at all difficulties (except the GPT-5 agent on HARD, and the Claude 3.5 Sonnet agent
on BASIC, which also fully solves all instances). This indicates that scheduling is still relatively
difficult for the LLM agents we study, and that this benchmark can serve as a measure of advanced
economic decision-making capabilities.

E DEFERRED DETAILS OF PRICING

Further instance generation details. The initial values of {«;}?_, are determined from sampling
ot ~ Unif([1, 10]) independently. For linear shifts, the evolution for each product i € [n] is
determined by a random offset A; ~ Unif(—ai" /2N, ol /2N), where N = 100 is the number of
periods. For periodic shifts, the frequency is sampled from Unif({10, 11, .. .,20}) (same frequency
for all products), and amplitude of product i € [n] is sampled from Unif([a™" /4, a™/2]).

F PROMPTS

Each period is conducted in a single chat session. The system prompt contains high-level in-
structions for the LLM agent about the task. The initial prompt is the initial message in the

16

Under review as a conference paper at ICLR 2026

chat, and instructs the LLM agent to use tools. The tools are environment-specific, and consist
of getter functions (e.g., get _previous_purchase_data), notes functions (read._notes,
write_notes), and final action functions (e.g., submit_purchase_plan, always listed last).
When the LLM agent calls one or more tools, it receives as a response the tool results, followed by
the reply prompt, which instructs the LLM agent to use more tools. When the LLLM agent calls the
final action function, the chat session is cleared and the period advances.

Below, we provide the specific system, initial, and reply prompts for each task. We also provide the
tool definitions using Anthropic’s function calling syntax. (When using non-Anthropic LLMs, we
convert the tool syntax appropriately).

F.1 PROCUREMENT
F.1.1 SYSTEM PROMPT

Your job is to manage the purchase of equipment. You will have
access to various offers for different kinds of equipment. Some
kinds of equipment may serve the same purpose as others but may

be more or less effective. Your goal is to maximize the number of
workers that the equipment you purchase can support, while staying
on budget. You will need to use trial and error to deduce what

is best to purchase, and in particular how effective each type

of equipment is. It is critical that you thoroughly explore all
possible options to identify the optimal purchase plan. It would
be costly to lock in on a non-optimal purchase plan, so make sure
to thoroughly assess your options. You can do your job by using
various tools available to you, listed below. Always make your
decision informed by data. Along the way, read and write your
reasoning, strategies, and insights using the notes tools.

F.1.2 INITIAL PROMPT

Now you can start using the tools to devise a purchase plan for
this attempt. The chat history will reset when you submit a plan,
but you’ll still have access to all data from previous attempts
via the respective tools (get_previous_purchase_data, read.-notes).

F.1.3 REPLY PROMPT

Now use more tools.

F.1.4 TooOL DEFINITIONS

{

"name": "get_previous_purchase_data",
"description": "Returns all data from previous
purchases. Always read this data before submitting a plan.",
"input_schema": {"type": "object", "properties": {}},
by
{
"name": "get_equipment_information",
"description":
"Returns the list of offer IDs and their costs.",
"input_schema": {"type": "object", "properties": {}},
by
{
"name": "get_budget",
"description": "Returns the budget for your purchase plan.",
"input_schema": {"type": "object", "properties": {}},

}y

17

Under review as a conference paper at ICLR 2026

"name": "get_attempt_number",
"description": "Returns the current attempt
number, O-indexed. (E.g., if you're on attempt 4, this returns
4, and there have been 4 previous attempts (0, 1, 2, and 3.)",
"input_schema": {"type": "object", "properties": {}},
by
{
"name": "write_notes",
"description":
"Append notes to the notes file for this attempt.",
"input_schema": {
"type" . "object",
"properties": {
"notes": {
"type" . "string",
"description": "Your notes for the current

attempt. Write down your reasoning, strategies,
and insights here, as well as anything that
might be useful to a future copy of yourself.",
}
}y

"required": ["notes"],
by
by
{
"name": "read_notes",
"description": "Read the notes you wrote during

that attempt. These notes may have useful information about
the reasoning and strategies behind your previous actions.",

"input_schema": {
"type": "object",
"properties": {
"attempt_number": {
"type": "integer",

"description":
"The attempt number to read notes from.",
}
}y

"required": ["attempt_number"],
by
by
{
"name": "submit_purchase_plan",
"description": "Submit your purchase plan for this attempt.

For example, if you wanted to purchase 2 units of Offer_1 and
3 units of Offer_2, you would write the plan as \"{'Offer_1"':
2, 'Offer_2': 3\"}. When calling the submit_purchase_plan
tool, pass it as a single argument called purchase_plan,
which should be a string representation of a dictionary
mapping offer IDs to the number of units to purchase.",

"input_schema": {
"type": "object",
"properties": {
"purchase_plan": {
"type": "string",

"description":
"A string representation of a dictionary mapping
offer IDs to the number of units to purchase.",

18

Under review as a conference paper at ICLR 2026

}
b
"required": ["purchase_plan"],
Hy
br

F.1.5 EXAMPLE TOOL OUTPUT FOR GET_PREVIOUS_PURCHASE_DATA

Attempt O:

Purchase plan

proposed: {'Offer_4': 1, 'Offer_9': 1, 'Offer_11': 1, 'Offer_12"':
1, 'Offer_1': 0, 'Offer_2': 0, 'Offer_3': 0, 'Offer 5':

0, 'Offer_6': 0, 'Offer_7': 0, 'Offer_8': 0, 'Offer_10': 0}
Purchase

plan results: supports 4.67 workers and incurs cost of 50.04

Attempt 1:

Purchase

plan proposed: {'Offer_4': 3, 'Offer_9': 2, 'Offer_10': 1,
'Offer_7': 1, 'Offer_1': 0, 'Offer_2': 0, 'Offer 3': 0, 'Offer_5':
0, 'Offer_6': 0, 'Offer_8': 0, 'Offer_11': 0, 'Offer_12': 0}
Purchase

plan results: supports 0.00 workers and incurs cost of 87.54

F.1.6 EXAMPLE TOOL OUTPUT FOR GET_EQUIPMENT_INFORMATION

- Offer_1: [additional

upfront cost $19.47] $17.69 for 1 unit of Al and 1 unit of B2

- Offer_2: [minimum order quantity 2] $10.68 for 2 units of Bl

— Offer_3: [minimum

order quantity 3] $12.49 for 1 unit of Cl and 1 unit of B3

- Offer_4: $1.38 for 2 units of B2, 1 unit of A4, and 1 unit of Bl
Offer_5: [additional upfront cost $9.39] $19.61 for 2 units of B4
- Offer_6: [additional upfront cost $7.83] $10.14 for 1 unit of C2
Offer_7: [additional upfront cost $14.08] $17.73 for 2 units of A3
- Offer_8: [additional upfront cost $18.45] $5.12 for 1 unit of C4
- Offer_9: $11.74 for 3 units of B3

- Offer_10:

[additional upfront cost $17.44] $10.67 for 5 units of A4

- Offer_11: $18.42 for 1 unit of C3 and 2 units of B2

- Offer_12: $18.50 for 2 units of A2

F.1.7 EXAMPLE TOOL OUTPUT FOR GET_BUDGET

109.98

F.1.8 EXAMPLE TOOL OUTPUT FOR GET_ATTEMPT_NUMBER

2

F.1.9 EXAMPLE TOOL OUTPUT FOR WRITE_NOTES

Successfully wrote notes.

F.1.10 EXAMPLE TOOL OUTPUT FOR READ_NOTES

Initial Analysis for Attempt O:

19

Under review as a conference paper at ICLR 2026

Budget: $109.98

Equipment Categories:

- A series (Al, A2, A3, A4)
- B series (B1l, B2, B3, B4)
- C series (Cl1, C2, C3, C4)

Key Observations:

1. We have no previous purchase data to learn from

2. Some offers have upfront costs and minimum order quantities

3. Need

to experiment to understand which combinations are most effective

Strategy for first attempt:

- Try to get a mix of different equipment types (A, B, C series)
- Avoid too many offers with upfront costs in first attempt

— Focus on offers that give multiple units or combinations

Will try a balanced approach with:

- Offer_4 ($1.38): Good value, multiple types (B2, A4, Bl)
- Offer_9 ($11.74): 3 units of B3

- Offer_11 ($18.42): C3 + 2 B2

- Offer_12 ($18.50): 2 units of A2

This combination will give us coverage
across all series (A, B, C) without too much upfront cost risk.

F.2 SCHEDULING

F.2.1 SYSTEM PROMPT

Your job is to assign workers to tasks, where each worker gets
exactly one task. Your goal is to produce a valid assignment
using trial and error: if your proposed assignment is not valid,
you will be informed of its problem(s) and asked to submit another
assignment. You can do your job by using various tools available
to you, listed below. Always make your decision informed by data.
Along the way, read and write your reasoning, strategies, and
insights using the notes tools.

F.2.2 INITIAL PROMPT: FOR ALL PERIODS EXCEPT THE LAST

Now you can start using the tools to devise an assignment. The
chat history will reset when you submit an assignment, but you’ll
still have access to all data from previous attempts via the
respective tools (get_previous_attempts._data, read._notes).

F.2.3 INITIAL PROMPT: LAST PERIOD

Now you can start using the tools to devise an assignment.

The chat history will reset when you submit an assignment,

but you'll still have access to all data from previous attempts
via the respective tools (get_previous_attempts_data, read_notes).

**This is your final attempt.xx This time, you should submit the
highest quality assignment possible, that has the fewest problems.

20

Under review as a conference paper at ICLR 2026

F.2.4 REPLY PROMPT

Now use more tools.

F.2.5 TooL DEFINITIONS

{
"name": "get_previous_attempts_data",
"description": "Returns
all data from previous assignments tried and why they didn't
work. Always read this data before submitting an assignment.",

"input_schema": {"type": "object", "properties": {}},
b
{
"name": "get_attempt_number",
"description": "Returns the current attempt number,
0-indexed. (E.g., if you're on attempt #4, this returns 4,
and you've made 4 previous attempts (#0, #1, #2, and #3).)",
"input_schema": {"type": "object", "properties": {}},
b
{
"name": "get_worker_ids",
"description":
"Returns the list of worker IDs to be assigned.",
"input_schema": {"type": "object", "properties": {}},
b
{
"name": "get_task_ids",
"description": "Returns the list of task IDs to be assigned.",
"input_schema": {"type": "object", "properties": {}},
by
{
"name": "write_notes",
"description":
"Append notes to the notes file for this attempt.",
"input_schema": {
"type" . "object",
"properties": ({
"notes": {
"type" . "string",
"description": "Your notes for the current

attempt. Write down your reasoning, strategies,
and insights here, as well as anything that
might be useful to a future copy of yourself.",
}
}y

"required": ["notes"],
bo
by
{
"name": "read_notes",
"description": "Read the notes you wrote during that

attempt number. These notes may have useful information about
the reasoning and strategies behind that previous attempt.",

"input_schema": {
"type": "object",
"properties": {
"attempt_number": {
"type": "integer",

21

Under review as a conference paper at ICLR 2026

"description":
"The attempt number to read notes from.",
}
by

"required": ["attempt_number"],
bo
by
{
"name": "submit_assignment",
"description": "Submit an attempt at a valid assignment

of workers to tasks. For example, if you had workers
A,B,C and tasks 1,2,3, you would write the assignment as"
+ nmmnn "{IAI: lll, IBI: lZl, ICI: 13l}ll. When
calling the submit_assignment tool, pass it a single argument
called assignment, which should be a string representation
of a dictionary mapping worker IDs to task IDs.""",
"input_schema": {
"type": "object",
"properties": {
"assignment": {
"type": "string",
"description":
"A string representation of a dictionary mapping
worker IDs to task IDs. The keys should consist
of all worker IDs and the values should consist of

all task IDs (each task assigned exactly once).",
}
}y

"required": ["assignment"],

by

F.2.6 EXAMPLE TOOL OUTPUT FOR GET_PREVIOUS_ATTEMPTS_DATA

Attempt O:

Assignment proposed:

{'wi': 'T1', 'W2': 'T2', 'W3': 'T3', 'W4': 'T4', 'W5': 'T5',
'we': 'T6', 'w7': 'T7', 'Ww8': 'T8', 'Wo9': 'T9', 'W10': 'T10'}

(1) Problem with assignment: worker W1

was matched to task Tl and worker W5 was assigned to T5.
However, worker Wl would have preferred task T5, and in
fact worker Wl is more suited to task T5 than worker W5.

Attempt 1:

Assignment proposed:

{'wi': 'T5', 'w2': 'T2', 'W3': 'T3', 'W4': 'T4', 'w5': 'T1',
'we': 'T6', 'w7': 'T7', 'Ww8': 'T8', 'Wo': 'T9', 'W10': 'T10'}

(1) Problem with assignment: worker W6

was matched to task T6 and worker W3 was assigned to T3.
However, worker W6 would have preferred task T3, and in
fact worker W6 is more suited to task T3 than worker W3.

F.2.7 EXAMPLE TOOL OUTPUT FOR GET_ATTEMPT_NUMBER

2

F.2.8 EXAMPLE TOOL OUTPUT FOR GET_-WORKER_IDS

['wl', 'w2', 'wWw3', 'w4', 'ws', 'we', 'W7', 'w8', 'W9', 'W10']

22

Under review as a conference paper at ICLR 2026

F.2.9 EXAMPLE TOOL OUTPUT FOR GET_TASK_IDS

(‘r', 'rt2', 'r3', 'rt4', 'T5', 'T6', 'T7', 'T8', 'T9', 'T10']

F.2.10 EXAMPLE TOOL OUTPUT FOR READ_NOTES

Attempt O:
Assigning workers to tasks sequentially in the order they appear.

F.3 PRICING
F.3.1 SYSTEM PROMPT

Your job is to make price-setting decisions

for a user. Your goal is to price in a way that maximizes

the user's profits. To do so, you should use trial and error to
explore many different pricing strategies, and use this experience
to inform your decisions. It is critical that you thoroughly
explore all possible options to identify the optimal pricing
strategy. It would be costly to lock in on a non-optimal price,

so make sure to thoroughly assess your options. You can do your
job by using various tools available to you, listed below. Always
make your decision informed by data. Along the way, read and write
your reasoning, strategies, and insights using the notes tools.

F.3.2 INITIAL PROMPT

Now you can start using the tools to make your price-setting
decisions. The chat history will reset after you set the price,
but you'll still have access to all data from previous attempts
via the respective tools (get_previous_pricing_data, read_notes).

Additional information:
it is not recommended to set any prices above {upper_bound_price}.

F.3.3 REPLY PROMPT

Now use more tools.

F.3.4 TooL DEFINITIONS
[

"name": "get_previous_pricing_data",

"description":

"Returns all data from previous pricing decisions.
Returns the user's previous prices set, quantities

sold, per-unit costs, and profits earned. Always read
this data before making a final price-setting decision.",

"input_schema": {"type": "object", "properties": {}},
}y
{

"name": "get_product_ids",

"description": "Returns

a list of all IDs of products that you are pricing.",

"input_schema": {"type": "object", "properties": {}},
y
{

"name": "get_attempt_number",

23

Under review as a conference paper at ICLR 2026

"description":
"Returns the current attempt number, 0O-indexed.
(E.g., if you're on attempt 4, this returns 4, and

there have been 4 previous attempts (0, 1, 2, and 3.)",
"input_schema": {"type": "object", "properties": {}},
bo
{
"name": "write_notes",
"description":
"Append notes to the notes file for this attempt.",
"input_schema": {
"type" : "object n,
"properties": {
"notes": {
"type" : "string",
"description":

"Your notes for the current attempt.
Write down your reasoning, strategies, and
insights here, as well as anything that might
be useful to a future copy of yourself.",
}
by

"required": ["notes"],
I
by
{
"name": "read_notes",
"description": "Read the notes you wrote during that

attempt. These notes may have useful information about the
reasoning and strategies behind your previous actions.",

"input_schema": {
"type": "object",
"properties": {
"attempt_number": {
"type": "integer",
"description":

"The attempt number to read notes from.",

}
s

"required": ["attempt_number"],
by
bo
{
"name": "set_prices",
"description": "Submit

your pricing plan for this attempt. For example, if you
wanted to set the price of Product_1 to 10 and Product_2
to 20, you would write the plan as \"{'Product_1"':
10, 'Product_2': 20\"}. When calling the set_prices
tool, pass it as a single argument called prices_dict_str,
which should be a string representation of
a dictionary mapping product IDs to the prices to set. ",
"input_schema": {
"type" . "object ",
"properties": ({
"prices_dict_str": {
thpen . "string",

24

Under review as a conference paper at ICLR 2026

"description":
"A string representation of a dictionary
mapping product IDs to the prices to set.
The keys should consist of all the product
IDs, and the corresponding values should
be the prices to set for each product.",
by
by
"required": ["prices_dict_str"],
}y
by

F.3.5 EXAMPLE TOOL OUTPUT FOR GET_PREVIOUS_PRICING_DATA

Attempt O:
Product_1:
Price: 20.00
Quantity: 24.76
Profit: 40.92
Cost: 1.72

Attempt 1:
Product_1:
Price: 28.00
Quantity: 7.81
Profit: 23.50
Cost: 1.72

F.3.6 EXAMPLE TOOL OUTPUT FOR GET_PRODUCT_IDS

['"Product_1"]

F.3.7 EXAMPLE TOOL OUTPUT FOR GET_ATTEMPT_NUMBER

2

F.3.8 EXAMPLE TOOL OUTPUT FOR READ_NOTES

Starting

fresh with Product_1. Since I can see that we shouldn't set prices
above 38.11 and this is the first attempt, I'll start with a
moderate price point to assess demand. I'll try setting the price
at 20.00 for Product_1, which is roughly in the middle of the
range from 0 to 38.11. This will give us a baseline to understand
demand elasticity and help inform future pricing decisions.

25

	Introduction
	Related Work
	Benchmark Design
	Benchmark Interaction Method
	LLM Agent Architecture
	Economic Environments
	Procurement
	Scheduling
	Pricing

	Key Design Features

	Benchmark Results
	Validating Difficulty Scaling: A Broad Comparison
	Nonsaturation: Evaluation on Cutting-edge Models
	Economic Insights: Inter-Model Comparisons, Improvement Mechanisms

	Discussion
	Deferred Experimental Details
	Data Collection Timeframes
	Data Collection Costs

	Exploration Analysis
	Exploration Rates of LLM Agents in Stationary Environments
	Ruling Out Underexploration Due To Misspecified Beliefs

	Deferred Details of Procurement
	Further Environment Details

	Deferred Details of Scheduling
	Deferred Details of Preference Generation
	Calculation of Denominator in Score
	Comparison to Naïve Baseline

	Deferred Details of Pricing
	Prompts
	Procurement
	System Prompt
	Initial Prompt
	Reply Prompt
	Tool Definitions
	Example Tool Output for get_previous_purchase_data
	Example Tool Output for get_equipment_information
	Example Tool Output For get_budget
	Example Tool Output For get_attempt_number
	Example Tool Output for write_notes
	Example Tool Output for read_notes

	Scheduling
	System Prompt
	Initial Prompt: For All Periods Except the Last
	Initial Prompt: Last Period
	Reply Prompt
	Tool Definitions
	Example Tool Output for get_previous_attempts_data
	Example Tool Output for get_attempt_number
	Example Tool Output for get_worker_ids
	Example Tool Output for get_task_ids
	Example Tool Output for read_notes

	Pricing
	System Prompt
	Initial Prompt
	Reply Prompt
	Tool Definitions
	Example Tool Output for get_previous_pricing_data
	Example Tool Output for get_product_ids
	Example Tool Output for get_attempt_number
	Example Tool Output for read_notes

