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ABSTRACT

Masking strategies commonly employed in natural language processing are still
underexplored in vision tasks such as concept learning, where conventional meth-
ods typically rely on full images. However, using masked images diversifies per-
ceptual inputs, potentially offering significant advantages in concept learning with
large-scale Transformer models. To this end, we propose Multi-layer Concept
Map (MCM), the first work to devise an efficient concept learning method based
on masked images. In particular, we introduce an asymmetric concept learning ar-
chitecture by establishing correlations between different encoder and decoder lay-
ers, updating concept tokens using backward gradients from reconstruction tasks.
The learned concept tokens at various levels of granularity help either reconstruct
the masked image patches by filling in gaps or guide the reconstruction results
in a direction that reflects specific concepts. Moreover, we present both quanti-
tative and qualitative results across a wide range of metrics, demonstrating that
MCM significantly reduces computational costs by training on fewer than 75% of
the total image patches while enhancing concept prediction performance. Addi-
tionally, editing specific concept tokens in the latent space enables targeted image
generation from masked images, aligning both the visible contextual patches and
the provided concepts. By further adjusting the testing time mask ratio, we could
produce a range of reconstructions that blend the visible patches with the provided
concepts, proportional to the chosen ratios.

1 INTRODUCTION

Humans often learn concepts through contextual understanding by recognizing relationships among
features. Similarly, in a reconstruction task, masking a large portion of the input enables the model to
leverage context from unmasked regions, thereby potentially enhancing the learning of dependencies
that define concepts. By deprioritizing pixel-level details, the masking strategy encourages the focus
on consistent features across instances, leading to better generalization. While masking strategies
are well-studied in language tasks, they still remain underexplored in vision tasks, particularly in
the context of concept learning, where existing studies typically focus on learning from full images.
Consequently, we aim to investigate whether the masking objective diversifies perceptual inputs and
could provide additional benefits for concept learning with large-scale Transformer models.

We propose the Multi-layer Concept Map (MCM) method to facilitate masked concept learning
through vision reconstruction tasks. Specifically, we leverage cross-attention for learning concept
tokens at various granularity levels from masked images. These concept tokens assist in reconstruct-
ing input images by filling gaps or guiding reconstruction results in a specific direction for effective
concept manipulation. Our method employs an asymmetric concept learning architecture, establish-
ing correlations between different encoder and decoder layers (Figure 1). This architecture allows
concept tokens to be updated using backward gradients from reconstruction tasks, enabling decoder
layers to focus on distinct encoder layer outputs and enhancing reconstruction performance.

MCM is an efficient method for masked concept learning with significantly reduced computational
cost, achieved by masking large portions of image patches and using an asymmetric model architec-
ture. Nevertheless, extensive experimental results demonstrate that MCM could also enhance con-
cept prediction performance compared to conventional methods. Furthermore, even with extremely
limited input information, the model effectively learns a set of concepts that guide reconstruction
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results in a specific direction for concept manipulation. The reconstructed images align with the
visible unmasked image tokens while reflecting the provided concept tokens. Consequently, MCM
learns effective concept tokens by training on less than 75% of the total image patches, achieving
enhanced or competitive performance in both prediction and reconstruction tasks.

Overall, our main contributions are three-fold:

(1) We propose the Multi-layer Concept Map (MCM) method to facilitate masked concept learning
through vision reconstruction tasks, which involves the masked concept encoder and multi-layer
concept mapping architecture.

(2) This study investigates two dedicated loss functions to enhance the model’s ability in concept
prediction, especially for training on unbalanced concept classes, i.e., the disentanglement loss and
weighted concept loss.

(3) The extensive quantitative and qualitative analysis involves concept prediction performance,
reconstruction quality measured by Fréchet Inception Distance, computational cost, and diverse
visualizations. MCM learns effective concept tokens using less than 75% of image patches while
achieving competitive performance.

The remainder of this paper is structured as follows. Section 2 reviews the most recent work on
masked image reconstruction and disentangled representation learning. Section 3 demonstrates the
essential definitions, assumptions, and technical underpinnings of the proposed method. Section 4
presents a thorough examination using a broad range of metrics to assess concept prediction and
reconstruction performance. Section 5 concludes our findings and gives out future directions.

2 RELATED WORK

2.1 MASKED IMAGE RECONSTRUCTION

Masked image modeling has emerged as a pivotal learning technique in computer vision He et al.
(2022); Yue et al. (2023); Zheng et al. (2023); Chen et al. (2023); Fu et al. (2024). For instance,
Masked Autoencoders He et al. (2022) learn to reconstruct missing patches given only a small subset
of visible patches reducing computational cost. Masked Diffusion Transformer Zheng et al. (2023);
Gao et al. (2023) demonstrates enhanced training efficiency and generation results using a denoising
diffusion objective on masked images. Cross-Attention Masked Autoencoders Fu et al. (2024) used
cross-attention in the decoder to query visible tokens for masked image patch reconstruction. The
cross-attention component takes a weighted sum of the visible tokens across different input blocks
to fuse the features for each decoder block, leveraging low-level information for reconstruction.

2.2 DISENTANGLED REPRESENTATION LEARNING

Disentangled concept learning Bengio et al. (2013); Higgins et al. (2017); Locatello et al. (2019);
Härkönen et al. (2020); Anirudh et al. (2021); Yang et al. (2022); Sun et al. (2023); Ismail et al.
(2023) aims to uncover the underlying explanatory factors hidden within observed data. For exam-
ple, methods such as β-VAE Higgins et al. (2017) and FactorVAE Kim & Mnih (2018) search for
directions in the latent space that correlate with distinct human-interpretable concepts. Moreover,
Concept Tokenization Yang et al. (2022) focuses on learning disentangled object representations
and inspecting latent traversals for various factors. Additionally, Concept Bottleneck models Ismail
et al. (2023); Yuksekgonul et al. (2022); Oikarinen et al. (2023); Yang et al. (2023) learn repre-
sentations that correspond to specific human-understandable concepts. Energy-based methods Du
et al. (2020); Li et al. (2022); Du et al. (2023) aim to compute energy functions of various concepts
and combine their probability distributions achieving conjunctions, disjunctions, and negations of
various concepts.

Conventional concept learning methods typically rely on fully observable images for training. While
masking strategies have proven effective in reducing computational cost in natural language process-
ing, their usage in concept learning tasks remains underexplored. This is primarily because masking
a large portion of image patches greatly limits the information available for disentangling effective
concepts. To address this challenge, we integrate learnable concept tokens at various granularity lev-
els into the masked reconstruction process using the asymmetric Multi-layer Concept Map (MCM)
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(a) MCM randomly masks an image. A set of learn-
able concepts is learned at each encoder layer along-
side the visible tokens. Learnable mask tokens ini-
tialized with Gaussian noise are added at the masked
positions in the encoder output. The decoder then
utilizes the mask tokens for reconstruction via cross-
attention, leveraging concept tokens at various gran-
ularities. For computational efficiency, in the asym-
metric architecture, concept tokens from every two
encoder layers are used.

(b) In the encoder layer, self-attention and a feedfor-
ward network (FFN) process the input visible tokens,
while cross-attention updates concept tokens using
the input tokens, followed by an FFN. Skip connec-
tions and layer normalization are utilized throughout.
In the decoder layer, cross-attention updates mask to-
kens using concept tokens learned from specific en-
coder layers as keys and values. The decoder layer
also employs an FFN, skip connections, and layer
normalization.

Figure 1: (a) The architecture of the proposed Multi-layer Concept Map (MCM) method. (b) The
detailed framework of the encoder and decoder layers.

architecture. This approach could not only reduce computational cost for learning effective concepts
but also enhance model’s concept prediction capability. Our goal is to advance the masked concept
learning objective, paving the way for more efficient model architectures.

3 METHOD

In this section, we introduce the Multi-layer Concept Map (MCM) method, which involves the
masked concept encoder and multi-layer concept decoder architecture. In addition to the recon-
struction target, we devise two dedicated loss functions to enhance the model’s concept prediction,
especially for unbalanced concept classes, i.e., the disentanglement loss and weighted concept loss.

3.1 CONCEPT ENCODING FROM MASKED IMAGES

MCM employs multiple encoder layers to encode visible tokens and learn concept tokens at various
granularity levels. Then, decoder layers aim to reconstruct the masked patches using the concept
tokens and contextual information from the visible tokens. In particular, MCM divides images
into patches and processes them using attention mechanisms Vaswani et al. (2017). While model
architectures such as convolution layers could also be used for encoding and decoding, the masking
strategy is typically utilized in Transformer models.

Let x ∈ RH×W×C be an input image, where (H,W ) represents the resolution of the im-
age and C is the number of channels. The image x is partitioned into a sequence of patches
xp ∈ RN×(P 2·C), where (P, P ) denotes the resolution of each patch, and N = HW

P 2 is the to-
tal number of patches. These patches are then mapped to embeddings vp ∈ RN×E via a linear
projection WP ∈ R(P 2·C)×E . With a mask ratio r, we randomly remove ⌊rN⌋ tokens from the
input, leaving only N − ⌊rN⌋ visible tokens as input vmasked ∈ R(N−⌊rN⌋)×E to the model. A
higher mask ratio enhances computational efficiency but reduces contextual information for concept
learning. Therefore, an optimal mask ratio likely exists, balancing both efficiency and performance.
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An encoder model that consists of multiple attention layers takes the encoded visible tokens
vmasked ∈ R(N−⌊rN⌋)×E and a set of learnable concept tokens C0 ∈ RM×E as the input (Fig-
ure 1). Notably, we initialize the concept tokens using Gaussian noise and share them across
batch samples. Then, for each encoder layer lencoder, we employ multi-head cross-attention to
update the concept tokens Clencoder ∈ RM×E using the visible patch tokens vlencoder

masked as the key
and value. As a result, the output of an attention head i is a weighted sum of the values,

i.e., softmax
(

WQ
i Clencoder (W

K
i v

lencoder
masked )T√

E

)
WV

i vlencoder
masked, where WQ, WK , andWV are the projection

weights for the query, key, and value, respectively. Finally, we use a feedforward network to ob-
tain Clencoder+1. Note that we do not employ self-attention for the learned concept tokens, which
enables individual concept updates thus diversifying concept tokens. Moreover, we process the
visible patch tokens vlencoder+1

masked for extracting high-level contextual information. In particular, we
employ self-attention followed by a feedforward network to learn associations among visible to-
kens. For learning both concept and visible patch tokens, the skip connection and layer normal-
ization is employed throughout. All the feedforward networks consist of two linear layers with
a GELU activation Hendrycks & Gimpel (2016) in between. We stack multiple concept encoder
layers lencoder ∈ {1, 2, . . . , Lencoder} in depth to obtain the latent representations of concept tokens
CLencoder and visible tokens vLencoder

masked as the outputs of the encoder model.

3.2 IMAGE DECODING WITH MULTI-LAYER CONCEPT MAPPING

To reconstruct the masked patches, we add learnable mask tokens vinit ∈ R⌊N×r⌋×E at the positions
of masked patches in the encoder output. These mask tokens are initialized with values drawn
from a Gaussian distribution. Notably, we concatenate and rearrange the visible tokens vLencoder

masked ∈
R(N−⌊N×r⌋)×E and the mask tokens vinit ∈ R⌊N×r⌋×E based on the mask indices Z ∈ R⌊N×γ⌋,
as the decoder input v0full ∈ RN×E . Moreover, the decoder model computes on the full N image
tokens that are much more than the N − ⌊N × r⌋ visible tokens processed by the encoder model.
To alleviate the computational cost induced by the decoding process with the full patch length, we
employ an asymmetric architecture for the decoder using half the number of layers as the encoder.

A specific multi-layer concept mapping architecture is devised based on cross-attention components
between paired encoder and decoder layers. This enables the reconstruction of mask tokens using
the learned concept tokens from various encoder layers. With the asymmetric architecture, every
two encoder layer’s concept tokens are utilized for reconstructing the mask tokens of a specific
decoder layer through cross-attention MHA(·), using the concept tokens as the key and value, i.e.,
v̂ldecoder

full ← MHA(vldecoder
full , CLencoder−2ldecoder). Then, a feedforward network FF(·) computes the decoder

layer output vldecoder+1
full ← FF(v̂ldecoder

full ). Note that we refrain from using self-attention in the decoder
model to prevent the model from overly focusing on contextual visible tokens, allowing the model
to prioritize the concept token learning. Consequently, after stacking Ldecoder decoder layers, the full
tokens vLdecoder

full are converted into a pixel-level image x̂ ∈ RN×(P 2×3) as the reconstruction result.

3.2.1 MASKED RECONSTRUCTION LOSS

MCM updates learnable concept tokens through a reconstruction objective. In particular, we com-
pute the reconstruction loss between the decoder output x̂ and the input image x using the mean
squared error loss: ℓMSE(X,C0) = 1

B

∑B
i=1 (x̂i − xi)

2
. To enhance computational efficiency, we

specifically compute the loss for the mask tokens as follows:

ℓre(X,C0) =

∑N
j=1 ℓ

j
MSE · 1[j ∈ Z]

⌊N × γ⌋
,

where Z is the indices of mask tokens, 1[j ∈ Z] is an indicator function that outputs 1 if the jth
token is a masked position and 0 otherwise, and ℓjMSE is the mean squared error loss for the jth token.

3.2.2 DISENTANGLEMENT LOSS

We aim to encourage the model to learn mutually exclusive representations for various concept
tokens, thus enhancing its generalization to unseen test samples. We devise a disentanglement loss
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by randomly swapping a concept in the latent space with its antonym and identifying the modified
concepts from reconstruction results. In particular, given an image x and its predicted concepts
CLencoder in the latent space, we select a specific concept position j ∈ {1, 2, ...,M} based on a random
binary mask U ∈ {0, 1}M , where exactly one position has a value of 1, indicating where the concept
modification occurs. We then replace the concept Cj

Lencoder
with its antonym tokenO(Cj

Lencoder
), where

O(·) is a function that maps a concept to its antonym. The decoder fdecoder then reconstructs an image
x̃ with the modified concepts ĈLencoder . Intuitively, if the model learns the differences among concepts,
the predicted concepts in the reconstruction results would show modifications only in the selected
one. To verify this, we input a reconstruction result x̃ into the encoder fencoder to obtain the predicted
concepts C̃Lencoder , which are expected to match the modified concepts ĈLencoder . Consequently, we
devise the disentanglement loss as follows:

ĉiLencoder
= {Uj · O(ci,jLencoder

) + (1− Uj) · ci,jLencoder
}Mj=1,

c̃iLencoder
= fencoderfdecoder(ĉ

i
Lencoder

),

ℓdisentangle(X,C0, U) =
1

B

B∑
i=1

(
ĉiLencoder

− c̃iLencoder

)2
.

3.2.3 WEIGHTED CONCEPT LOSS

Concepts involved in a dataset are often biased. To encourage the model to focus more on underrep-
resented concepts during training, we further propose the weighted concept loss to adjust the impact
of each concept’s prediction error using the concept’s frequency in a batch. In the latent space, we
utilize a set of concept embeddings Cprototype learned through approaches such as self-supervised
learning, where numerical concept labels are converted to semantic embeddings of specific con-
cepts, each with a dimension E. Notably, given a batch of size B and the predicted concept tokens
ci,jLencoder

, for each sample i and concept index j, the loss is formulated as:

ℓconcept =
1

B

B∑
i=1

M∑
j=1

wi,j ·
(
ci,jLencoder

− ci,jprototype

)2

,

where wi,j represents a weight assigned to the error of the concept j in sample i. These weights
are inversely proportional to the frequency values of the concepts in the batch:wi,j =

S

freq(ci,jprototype)+ϵ
,

where freq(ci,jprototype) is the frequency of the concept ci,jprototype in the batch {{ci,jprototype}Mj=1}Bi=1, S is
a scaling constant to control the magnitude of the weights, and ϵ is a small constant added to avoid
division by zero and to smooth the weights. The weighted concept loss gives higher importance
to less frequent concepts by increasing their corresponding weights. Conversely, more frequent
concepts have lower weights with reduced contribution. Additionally, we use coefficients α and β
to balance the various loss components, i.e., L(X,C0, Cprototype, U) = ℓre+α ·ℓdisentangle+β ·ℓconcept.

4 EXPERIMENTS

This section describes the detailed experimental settings. We present both quantitative and qual-
itative results on concept prediction performance, reconstruction quality, and computational cost,
followed by extensive ablation studies. We demonstrate the method’s image editing capability by
showing how specific concept features could be disentangled exclusively from input images and how
multiple concepts in the latent space could be combined. The results indicate that using an optimized
mask ratio not only reduces computational cost but enhances model concept learning performance.

4.1 SETTINGS

4.1.1 DATASETS

We conduct our experiments on the CelebA dataset Liu et al. (2015), a large-scale collection of
celebrity face images annotated with rich binary attributes that capture diverse factors of variation.
From this dataset, we select a subset of 11 semantically meaningful concepts exhibiting different
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Table 1: Performance metrics at different mask ratios for small, base, and large-sized models. Note
that since higher input image resolutions generally yield higher FID scores for larger models, we
typically compare FID scores given the same image complexity.

Size Mask Ratio Accuracy↑ Precision↑ Recall↑ F1-Score↑ FID↓ Training T (h)↓

Small

0.0 0.877 0.514 0.563 0.537 1.053 4.13
0.1 0.878 0.518 0.566 0.541 1.263 4.08
0.25 0.882 0.521 0.57 0.544 1.438 4.03
0.5 0.884 0.523 0.572 0.546 2.045 3.87
0.75 0.854 0.496 0.542 0.518 4.655 3.76
0.9 0.845 0.487 0.531 0.508 10.97 3.57

Base

0.0 0.935 0.857 0.815 0.835 1.972 6.45
0.1 0.943 0.876 0.828 0.851 1.886 6.33
0.25 0.945 0.881 0.839 0.860 1.884 6.12
0.5 0.942 0.888 0.812 0.849 2.67 6.0
0.75 0.935 0.901 0.786 0.839 5.386 5.79
0.9 0.917 0.847 0.729 0.784 14.279 5.51

Large

0.0 0.946 0.807 0.785 0.796 4.195 9.82
0.1 0.925 0.753 0.74 0.746 4.033 9.76
0.25 0.955 0.821 0.796 0.808 4.027 9.65
0.5 0.937 0.739 0.714 0.726 5.871 8.93
0.75 0.913 0.652 0.674 0.663 7.755 8.23
0.9 0.835 0.528 0.533 0.53 12.993 8.11

Table 2: Model performance comparison using base-sized models. The results show that MCM
achieves superior concept-learning performance, while other baselines augmented with the concept-
learning objective either underperform in accuracy or suffer from degraded reconstruction quality.

Method Accuracy↑ Precision↑ Recall↑ F1-Score↑ FID↓ Size (M)

MCM 0.945 0.881 0.839 0.860 1.884 112.2
MCM + Weighted and Disentangle Losses 0.946 0.886 0.859 0.872 1.605

Masked Autoencoder He et al. (2022) 0.537 0.809 0.750 0.778 1.274 114.8
Masked DiT v2 Gao et al. (2023) 0.735 0.189 0.241 0.146 32.38 87.0

Cross-Attention MAE Fu et al. (2024) 0.703 0.437 0.673 0.469 3.295 53.2
Concept Tokenization Yang et al. (2022) 0.925 0.756 0.686 0.719 3.971 118.7

CLIP-Based MAE He et al. (2022) 0.908 0.788 0.731 0.759 6.059 94.5

levels of frequency and visual distinctiveness (please refer to Appendix A.2 for distribution details).
To enable systematic evaluation across positive and negative attributes, we construct antonymic
counterparts by prefixing each concept with “Not” (e.g., Smiling vs. Not Smiling). This design
enables performance evaluation under both frequent and underrepresented concepts, while ensuring
a balanced treatment of concept presence and absence.

4.1.2 MODELS

Models of varying sizes (Small, Base, and Large) were trained with hyperparameters tailored to their
complexity. For the detailed architecture settings, please refer to Appendix A.1. To learn concept
tokens that contribute not only to concept prediction but to masked image reconstruction tasks,
we convert binary concept labels into 512-dimensional embeddings using a pretrained CLIP model
Radford et al. (2021). These concept embeddings provide guidance in the latent space, facilitating
the reconstruction of masked patches. All experiments were performed using four A100 GPUs.

4.2 QUANTITATIVE RESULTS

4.2.1 CONCEPT PREDICTION AND RECONSTRUCTION PERFORMANCE

We aim to study how various training mask ratios affect the model’s performance in the concept
prediction and reconstruction tasks. We measure numerical prediction performance based on ac-
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Table 3: Ablation studies on the various components of MCM.

Method Accuracy↑ Precision↑ Recall↑ F1-Score↑ FID↓
Default MCM 0.945 0.881 0.839 0.860 1.884

W/ Weighted Loss 0.946 0.886 0.852 0.869 1.734
W/ Disentanglement Loss 0.945 0.893 0.841 0.866 1.584

W/ Weighted and Disentanglement Losses 0.946 0.886 0.859 0.872 1.605

W/O Branches 0.925 0.756 0.686 0.719 3.971
W/O Learnable Latent Concepts 0.944 0.831 0.781 0.805 2.535

Repetitive Latent Concepts 0.926 0.753 0.706 0.729 2.167

curacy, precision, recall, and F1 score, evaluating reconstruction performance based on the Fréchet
Inception Distance (FID) score. Table 1 demonstrates the impact of varying training mask ratios,
showing an optimized mask ratio of 0.5 for the small-sized model and 0.25 for the base and large-
sized models. For each entry, we trained the small and base-sized models for 500 epochs and the
large-sized model for 100 epochs. In particular, for the base and large-sized models, as the mask
ratio increases beyond 0.25, accuracy and F1-score start to decline, and FID increases substantially.

Figure 2: The t-SNE visualization of learned
concept tokens in the latent space of MCM.

Table 2 demonstrates the comparison with baseline
methods including the Masked Autoencoder (MAE)
He et al. (2022), the Masked Diffusion Transformer
v2 (Masked DiT v2) Gao et al. (2023), the Cross-
Attention MAE Fu et al. (2024), the Concept Tok-
enization method Yang et al. (2022), and the CLIP-
Based MAE He et al. (2022). For the CLIP-Based
MAE model, we employ concept embeddings from
the pretrained CLIP model to supervise represen-
tation learning in the MAE’s latent space. For
the other methods, we follow the architecture de-
signs and hyperparameter settings of the base-sized
model. For concept prediction, we leverage the la-
tent representations of the unmasked visible tokens
as input to an MLP attached to the model, with bi-
nary concept labels from the CelebA dataset at each
concept position. All models are trained from scratch. Note that our method (MCM) does not re-
quire binary concept labels for training. Instead, it learns a set of specific concept tokens directly in
the latent space, as illustrated in Figure 2.

The comparison demonstrates that, even with supervised guidance from binary labels, MAE falls
short of achieving concept-learning performance comparable to the proposed MCM method. The
advantages of the proposed MCM are evident not only in its superior concept prediction accuracy but
also in its novel image editing capabilities for masked image reconstruction, which is a functionality
that MAE cannot provide. Additional comparison of the reconstruction results are presented in
Figure 6. Moreover, inducing the concept-learning objective into other methods, such as Masked
DiT v2, substantially degrades their masked reconstruction ability, as reflected in lower FID scores.
In comparison to MCM, these methods neither attain competitive concept-learning performance nor
support editing of masked images.

4.2.2 ABLATION STUDIES

We conducted extensive ablation studies to evaluate the benefits of the various components in the
proposed MCM method. In addition to the ablations for the proposed two types of losses, i.e., the
weighted concept loss and disentanglement loss, we specifically consider the following ablations:

(1) W/O Branches: Instead of using learned concept tokens from different encoder layers with the
cross-attention mechanism, self-attention is employed to process concept tokens sequentially at each
decoder layer, similar to Yang et al. (2022).
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(a) Image reconstruction results for the
large-sized model. With masked images
as inputs, the model reconstructs plausi-
ble complete images from the unmasked
patches. Note that the presented images
are all test-time results, which precludes the
possibility of data memorization.

(b) Image editing results. For MCM-Small, from left to right:
‘Not Smiling’, ‘Male’, ‘Eyeglasses’, and ‘Eyeglasses + Male
+ Bangs + Mustache’. The learned concept tokens exhibit
compositional abilities for the reconstruction task. Moreover,
for MCM-Base, left: original; right: ‘Smiling + Eyeglasses’.
We demonstrate enhanced image editing quality when scaling
up the model.

Figure 3: Masked image reconstruction and editing results using a high test-time mask ratio of 75%.

(2) W/O Learnable Latent Concepts: We replace the learnable concept tokens at each encoder
layer with the fixed concept label embeddings cprototype, which query the encoder layer’s output
via cross-attention. The resulting weighted encoder output is then employed as the input to the
corresponding decoder layer, i.e., v̂ldecoder

full ← MHA(vldecoder
full ,MHA(cprototype, v

lencoder
masked))where lencoder =

Lencoder − 2ldecoder.

(3) Repetitive Latent Concepts: The learned concept tokens in the latent space are used as the keys
and values for cross-attention computations across all decoder layers. In other words, we replace the
encoder’s layer-wise learned concept embeddings with the same latent concept embeddings.

The weighted concept loss balances gradient assignments for imbalanced concept classes, thus im-
proving recall with enhanced sensitivity to minority classes (‘W/ Weighted Loss’ ablation in Table
3). The disentanglement loss enhances the decoder’s capability to reconstruct masked images from
concept tokens, thereby enhancing reconstruction quality with significantly reduced FID scores.
Consequently, incorporating both losses resulted in the best concept prediction performance, as
evaluated by the test accuracy and F1-score, while maintaining a low FID score of 1.605, effec-
tively balancing image quality. Moreover, the branches architecture plays a significant role in en-
hancing performance, as its absence led to a sizable decrease in F1-score and an increase in FID
(‘W/O Branches’ ablation). The ‘W/O Learnable Latent Concepts’ ablation and ‘Repetitive Latent
Concepts’ ablation highlight the efficacy of the proposed concept learning mechanism via cross-
attention. While ablating these components was not as impactful as removing the branches them-
selves, it still resulted in degraded performance for both concept prediction and reconstruction tasks.
Consequently, the complete model, with all components included, achieved the best performance.

4.3 QUALITATIVE RESULTS

4.3.1 MASKED IMAGE RECONSTRUCTION AND EDITING

Masked image reconstruction involves predicting the original image from a partially masked input,
where patches are randomly removed. We demonstrate the performance of our approach (training
mask ratio 25%) in reconstructing images with a significant portion of patches masked during testing
(e.g., 75%) in Figure 3a. Additionally, by providing specific text-based concept tokens, we can
traverse the concept latent space and manipulate the reconstruction of the masked patches. The
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Figure 4: We could employ masks of any arbitrary size during the test phase. A larger mask size
(e.g., 95%) provides a reconstruction that better represents the edited concepts, while a smaller mask
size (e.g., 0%) generates images that align more closely with the contexts.

resulting image is reconstructed to align with both the contextual unmasked patches and the specified
concepts. Notably, we can either activate each concept individually or combine multiple concepts,
as illustrated in Figure 3b. We also compare editing results across various model sizes with different
computational costs, highlighting that the model’s ability to perform masked image editing and
reconstruction improves progressively as it scales. In comparison to MCM, methods such as Masked
Autoencoder He et al. (2022) lack the ability for image editing while reconstructing the masked
image patches. Inducing the concept learning ability in methods such as Masked DiT v2 Gao et al.
(2023) can also lead to a substantial degradation in output image quality, as shown in Appendix A.4.

4.3.2 VARYING THE TEST MASK RATIO

Figure 4 illustrates how the reconstruction results change with different mask ratios during testing,
producing a range of reconstructed images that blend visible contextual patches with the provided
concepts, proportional to the chosen ratio.

5 CONCLUSIONS

We introduced the Multi-layer Concept Map (MCM) for efficient concept learning from masked
images. MCM employs a reconstruction target enhanced by the weighted concept and disentan-
glement losses, reducing computational cost while maintaining competitive performance in concept
learning. MCM enables effective image editing, producing diverse blends of concepts that align
with visible contextual patches for the reconstruction task. We hope this work contributes to more
efficient concept learning and enhanced interpretability with large-scale Transformer models.

Limitations. Unlike conventional concept learning methods that rely on binary labels, MCM uti-
lizes concept embeddings derived through self-supervised learning with the pretrained CLIP model.
However, in practice, collecting paired concept-image samples is still necessary for learning effec-
tive concept embeddings. Moreover, the concept latent space is not inherently designed for continual
learning, where concept classes evolve over time. Future research on dynamically expanding and
reusing learned concepts would be valuable for enhancing adaptability in such settings.
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A APPENDIX

A.1 MODEL SETTINGS

Common parameters across all models (Table 4) include the AdamW optimizer with a learning rate
of 1× 10−3, a weight decay of 0.01, four self-attention heads, hidden layer size of 512, and a batch
size of 1024. The Small model features 2 encoder layers, 1 decoder layer, an MLP size of 128, and
was trained for 500 epochs on 48x48 images with a patch size of 6. The Base model expands to
6 encoder layers, 3 decoder layers, an MLP size of 512, and used 96x96 images with a patch size
of 8. Finally, the Large model utilizes 12 encoder layers, 6 decoder layers, an MLP size of 1024,
and 192x192 images with the same patch size of 8 but was trained for only 100 epochs due to its
increased complexity. The coefficients α and β have a default value of one.

A.2 UNBALANCED CONCEPT CLASS DISTRIBUTION IN CELEBA

The concepts in CelebA exhibit varying frequencies (see Figure 5); for instance, ”Mustache” is a
rare concept, making it particularly challenging to learn. Consequently, we devise the weighted
concept loss to tackle the challenge posed by unbalanced concept classes effectively.

A.3 ALGORITHM

The complete algorithm is demonstrated in Algorithm 1.

A.4 COMPARISON OF MASKED IMAGE RECONSTRUCTION QUALITY

We demonstrate in Figure 6 the difference in reconstruction quality of the methods discussed in the
experiment section. In particular, we found that although the Masked Autoencoder (MAE) achieves
a better FID score, its reconstruction results cannot be edited using the learned concepts. Moreover,
methods such as MDTv2 suffer from substantial degradation in output image quality. Our method
MCM, however, achieved a balance between reconstruction quality and concept-based image editing
ability.
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Table 4: Hyperparameters for different model sizes

Parameter Value

Common Parameters
Optimizer AdamW
Weight decay 0.01
Learning rate 1× 10−3

Number of self-attention heads 4
Size of hidden layers 512
Batch size 1024
Small Model Parameters
Number of encoder layers 2
Number of decoder layers 1
Size of MLP 128
Epochs 500
Image size (CelebA) 48
Patch size (CelebA) 6
Number of parameters 46.0M
Base Model Parameters
Number of encoder layers 6
Number of decoder layers 3
Size of MLP 512
Epochs 500
Image size (CelebA) 96
Patch size (CelebA) 8
Number of parameters 112.2M
Large Model Parameters
Number of encoder layers 12
Number of decoder layers 6
Size of MLP 1024
Epochs 100
Image size (CelebA) 192
Patch size (CelebA) 8
Number of parameters 377.3M

A.5 DESIGN OF THE TESTING TIME MASK

We compare the editing results between the random mask and the square mask methods in Figure 7.
Using a random mask generated an image that aligned with both the visible contextual tokens and
the provided concepts. However, a square mask produced unnatural and repetitive editing results
across samples, which failed to fit the visible contextual tokens.
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Figure 5: Unbalanced concept classes in the CelebA dataset.

MAE MDTv2Original MCM + editing (ours)MCM (ours)

Figure 6: A comparison of image reconstruction quality among different methods learning from
masked images.
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Figure 7: Image editing with different mask shapes based on the concept set ‘Male + Eyeglasses +
Mustache + Smiling’. The random mask method reconstructs the masked patches while preserving
consistency with the specific image contexts. In contrast, the square mask fails to produce diverse
results across multiple contexts.
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Algorithm 1 Multi-layer Concept Map (MCM)

1: Input: image patches: X ∈ RB×N×(P2×C); image tokens: Vp ∈ RB×N×E ; learnable concept tokens:
C0 ∈ RB×M×E ; concept embeddings: Cprototype ∈ RB×M×E .

2: Vmasked ∈ RB×(N−⌊N×r⌋)×E ← Randomly mask input tokens with a ratio r

▷Mask indices: Z ∈ R⌊N×r⌋.
3: Encoder
4: for layer lencoder = 1, 2, . . . , Lencoder do
5: Ĉlencoder ← MHA(Clencoder , V

lencoder
masked , V

lencoder
masked ) ▷ query, key, value.

6: Clencoder+1 ← FF(Ĉlencoder)
7: if Every two encoder layers then
8: Add Clencoder+1 to the list of learned concepts Cencoder{C3, C5, .., Clencoder+1, ..}
9: end if

10: V̂ lencoder
masked ← SA(V lencoder

masked )

11: V
lencoder+1

masked ← FF(V̂ lencoder
masked )

12: end for
13: The weighted concept loss: ℓconcept(CLencoder , Cprototype) =

1
B

∑B
i=1

∑M
j=1 wi,j ·

(
ci,jLencoder

− ci,jprototype

)2

.

14: Decoder
15: Initialize learnable mask tokens Vinit ∈ RB×⌊N×γ⌋×E with values drawn from a Gaussian distribution.
16: V 0

full ← Concatenate V
Lencoder

masked and Vinit, and rearrange based on the mask indices Z ∈ R⌊N×γ⌋.
17: for layer ldecoder = 1, 2, . . . , Ldecoder do
18: Retrieve learned concepts from the encoder Cldecoder ← Cencoder[−ldecoder].
19: V̂ ldecoder

full ← MHA(V ldecoder
full , Cldecoder , Cldecoder).

20: V
ldecoder+1

full ← FF(V̂ ldecoder
full )

21: end for
22: Convert V Ldecoder

full into pixel level images X̂ ∈ RB×N×(P2×C)

23: Compute the masked reconstruction loss: ℓre(X,C0) =
1
B

∑N
j=1

∑B
i=1(x̂i,j−xi,j)

2·1[j∈Z]

⌊N×γ⌋ .

24:
25: Disentanglement Loss
26: Select a specific concept position j ∈ {1, 2, ...,M} based on a random binary mask U ∈ {0, 1}M .
27: Replace the concept Cj

Lencoder
with its antonym tokenO(Cj

Lencoder
): ĉiLencoder

= {Uj ·O(ci,jLencoder
)+(1−Uj) ·

ci,jLencoder
}Mj=1.

28: Reconstruct an image based on the modified concepts: x̃i ← fdecoder(ĉ
i
Lencoder

).

29: Predict the concepts in x̃i using the encoder: c̃iLencoder
← fencoder(x̃i).

30: Compute the disentanglement loss: ℓdisentangle(X,C0, U) = 1
B

∑B
i=1

(
ĉiLencoder

− c̃iLencoder

)2
.

31: The final loss: L(X,C0, Cprototype, U) = ℓre(X,C0)+α·ℓdisentangle(X,C0, U)+β ·ℓconcept(X,C0, Cprototype)
▷α, β : coefficients.
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