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Abstract

Large language models (LLMs) with one or001
more fine-tuning phases have become neces-002
sary to unlock various capabilities, enabling003
LLMs to follow natural language instructions004
and align with human preferences. However, it005
carries the risk of catastrophic forgetting during006
sequential training, the parametric knowledge007
or the ability learned in previous stages may be008
overwhelmed by incoming training data. This009
paper finds that LLMs can restore some orig-010
inal knowledge by regularly resetting partial011
parameters. Inspired by this, we introduce Half012
Fine-Tuning (HFT) for LLMs, as a substitute013
for full fine-tuning (FFT), to mitigate the forget-014
ting issues, where half of the parameters are se-015
lected to learn new tasks. In contrast, the other016
half are frozen to retain previous knowledge.017
We provide a feasibility analysis from the opti-018
mization perspective and interpret the parame-019
ter selection operation as a regularization term.020
HFT could be seamlessly integrated into exist-021
ing fine-tuning frameworks without changing022
the model architecture. Extensive experiments023
and analysis on supervised fine-tuning, direct024
preference optimization, and continual learn-025
ing consistently demonstrate the effectiveness,026
robustness, and efficiency of HFT. Compared027
with FFT, HFT not only significantly alleviates028
the forgetting problem, but also achieves the029
best performance in a series of downstream030
benchmarks, with an approximately 30% re-031
duction in training time.032

1 Introduction033

Large language models (LLMs) bring immense034

revolutions to various natural language processing035

applications with powerful language understanding036

and generation capabilities. Unsupervised large-037

scale pre-training for learning basic world knowl-038

edge (hereinafter referred to as basic knowledge),039

followed by one or more fine-tuning phases with040

supervised data or human feedback, is becoming a041

new training paradigm in the era of LLMs (Ouyang 042

et al., 2022; Achiam et al., 2023; Touvron et al., 043

2023). As the fine-tuning phase proceeds, the enor- 044

mous potential of LLMs is gradually unleashed to 045

handle various downstream tasks, while the para- 046

metric knowledge previously learned and stored 047

in the pre-trained model might face a considerable 048

risk of catastrophic forgetting (Lin et al., 2024; 049

Neeman et al., 2023; Dong et al., 2024). To main- 050

tain intrinsic basic knowledge, the most straight- 051

forward idea is to keep the pre-trained parameters 052

unchanged and include extra modules (e.g., LoRAs 053

or adapters) for learning task-specific abilities (Dou 054

et al., 2023; Wu et al., 2024a). However, such ar- 055

chitectural modifications pose significant obstacles 056

to model deployment and continual fine-tuning. 057

Without changing model architecture, full fine- 058

tuning (FFT) methods update all parameters to im- 059

prove the performance of downstream tasks (Zhang 060

et al., 2023c), in which the element-wise parameter 061

difference between fine-tuned and pre-trained mod- 062

els (i.e., task vector) represents the knowledge shift 063

during fine-tuning (Ilharco et al., 2023). Herein, 064

a desirable task vector is expected to keep basic 065

knowledge of pre-trained models and learn new 066

specialized knowledge. Interestingly, recent work 067

shows that partial dropping or trimming of the task 068

vector has only milder impacts on target task (Ya- 069

dav et al., 2023; Yu et al., 2023). In other words, 070

partial new parameters are sufficient for the learn- 071

ing of new abilities, so the upcoming question is, is 072

it possible that a portion of old parameters could 073

maintain the capabilities of the pre-trained model? 074

To answer this question, we start with LLAMA 2- 075

7B and LLAMA 2-CHAT-7B, and attempt to reset 076

partial parameters of the chat-model to the pre- 077

trained model, then prob the general abilities and 078

basic knowledge of these models (see Figure 1). As 079

a representative general-purpose fine-tuning prac- 080

tice, there is some improvement in the general abili- 081

ties of LLAMA 2-CHAT-7B, while the basic knowl- 082
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Figure 1: Performance of LLAMA 2-7B, LLAMA 2-CHAT-7B, and the Half-Reset model on six general abilities and
three basic knowledge benchmarks. It is interesting that simply resetting half of the parameters of the chat-model to
the pre-trained model could roughly restore a significant amount of forgotten basic knowledge while maintaining
high-level general abilities performance.

edge falls off a cliff. It is consistent with previous083

observations, indicating the destruction of paramet-084

ric knowledge stored in LLAMA 2-7B (Dou et al.,085

2023). To balance the emerging general abilities086

and the inherent basic knowledge, we intuitively087

select and reset half of the parameters1 of LLAMA088

2-CHAT-7B and are pleasantly surprised to find089

that the Half-Reset model greatly resumes the ba-090

sic knowledge in LLAMA 2-7B while remaining091

the excellent general abilities of LLAMA 2-CHAT-092

7B (More details in Section 2).093

Inspired by these above observations, we pro-094

pose Half Fine-Tuning (HFT), a simple yet effec-095

tive approach for the training of LLMs and fur-096

ther extrapolate it to the continual fine-tuning sce-097

narios. Specifically, in each round of fine-tuning,098

we randomly select and freeze half of the parame-099

ters, and only update the other half, which allows100

the model to retain the ability of the startup point101

while learning downstream tasks. Note that HFT102

does not change the model architecture or tradi-103

tional fine-tuning paradigm, thus theoretically it104

can be applied to any setting where the standard105

full fine-tuning is previously applicable, including106

but not limited to supervised fine-tuning (SFT),107

direct preference optimization (DPO), continual108

learning (CL), etc.109

To evaluate the effectiveness of HFT in instruc-110

tion fine-tuning settings, we conduct extensive ex-111

periments with TÜLU V2 (Ivison et al., 2023) for112

SFT and UltraFeedback (Cui et al., 2023) for DPO.113

Simultaneously, we also extend experiments on114

TRACE (Wang et al., 2023a) for CL (i.e. multi-115

1Here, we keep the embedding and lm_head layers un-
changed as LLAMA 2-CHAT-7B, and select 50% of the pa-
rameters in transformer layers. The parameter ratios in this
paper all follow this statistical calibre.

round fine-tuning) to validate the proposed method 116

in a more extreme scenario. Experimental results 117

demonstrate that HFT not only exhibits excellent 118

talent in alleviating catastrophic forgetting but also 119

achieves comparable or even better performance 120

in learning new abilities compared to FFT. Fur- 121

ther analysis reveals that regardless of which half 122

(or even only about half) of the parameters are 123

selected, HFT is capable of attaining tolerable per- 124

formance gains and impressive efficiency improve- 125

ments, which brings considerable competition to 126

the routine fine-tuning paradigm. In summary, the 127

main contributions of this paper are as follows: 128

(1) We reveal that by resetting half of the fine- 129

tuned parameters to the startup state, it is possible 130

to preliminary restore the primeval ability while 131

maintaining new learning ability, which poses new 132

opportunities to alleviate catastrophic forgetting 133

and obtain an all-around LLM. 134

(2) We propose Half Fine-Tuning (HFT), which 135

entails freezing half of the parameters while train- 136

ing the other half. It allows LLMs to acquire new 137

abilities while retaining and utilizing previously 138

learned knowledge in various training settings. 139

(3) Extensive experiments and analyses demon- 140

strate the effectiveness and efficiency of HFT. With- 141

out any alterations to the model architecture, HFT, 142

as a plug-and-play solution with only a few lines 143

of code, exhibits the potential to supersede FFT in 144

the era of LLMs. 145

2 Pilot Experiments 146

Considering that the partial task vector is capable 147

of maintaining new abilities (Yadav et al., 2023; Yu 148

et al., 2023), we attempt to roll back the primaeval 149

abilities of pre-trained models by resetting the re- 150

maining part of the task vector, thereby alleviating 151
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Figure 2: The schematic procedure of HFT with LLAMA 2’s architecture. In each stage, we selectively freeze half
of the parameters at the category-level and update the other half. Best viewed in color.

the catastrophic forgetting problem caused by fine-152

tuning. In this section, We employ the representa-153

tive well-aligned LLM, LLAMA 2-CHAT-7B, and154

the corresponding pre-trained backbone, LLAMA155

2-7B, as models for analysis.156

Setup. To balance the original abilities and the157

enhanced capabilities gained through instruction158

tuning, we simply choose to reset 50% of the pa-159

rameters in LLAMA 2-CHAT-7B to LLAMA 2-7B,160

so that half of the parameters are hoped to align161

with the new tasks, while the other half is intended162

to restore the old capabilities. In the implementa-163

tion, we randomly select half of each transformer164

layer according to the category of the parameter165

matrix. Specifically, we choose two from four self-166

attention matrices (i.e., WQ, WK , WV , WO),167

and for the odd parameter number in LLAMA’s168

feed-forward layers (i.e., Wup, Wdown, Wgate),169

we randomly select half of the transformer layers170

to choose two matrices and the other half to choose171

one. Such a fine-grained selection strategy ensures172

that the Half-Reset operation rolls back exactly173

50% of the parameters.174

To assess the performance of the pre-trained,175

chat, and half-reset models on both new and old ca-176

pabilities, we follow (Ivison et al., 2023) and (Dou177

et al., 2023) to introduce two categories of eval-178

uation benchmarks: (1) General Abilities, in-179

cluding MMLU, GSM8K, BBH, TyDiQA, Truth-180

fulQA, and HumanEval, which measure the LLMs’181

newly enhanced abilities to perform specific down-182

stream tasks like examination, reasoning, and cod-183

ing. (2) Basic Knowledge, including NaturalQues-184

tion, TriviaQA, and HotpotQA, which reflect the185

parametric world knowledge in the pre-trained 186

model and could be used to evaluate retention of 187

the primeval capabilities. For more details about 188

the datasets and evaluation metrics, please refer to 189

Appendix A.2.1 and A.2.2 190

Results. From Figure 1, it is intuitive to observe 191

significant improvement of LLAMA 2-CHAT-7B 192

on several general ability benchmarks, as well as 193

the comprehensive decline on the basic knowledge 194

benchmarks. When selectively restoring half pa- 195

rameters to the pre-trained LLAMA 2-7B model, 196

although there is a slight performance loss in the 197

overall performance of general abilities, we wit- 198

ness the remarkable recovery of basic knowledge. 199

In Appendix A.3.1, we attempt other possible half- 200

reset solutions and provide more numerical results, 201

all of which exhibit similar phenomena. 202

In conclusion, the pilot experiments demonstrate 203

that (1) full parameter fine-tuning with large-scale 204

instruction data disrupts the basic knowledge stored 205

within pre-trained LLMs. (2) Through a simple 206

half-reset operation, it is possible to restore the 207

forgotten knowledge partially. Take another step 208

forward, these findings open a new door for model 209

merging, inspiring us to preserve some mastered 210

abilities of the startup point by freezing partial 211

parameters during fine-tuning. 212

3 Methodology 213

Without loss of generality, we consider a sequential 214

(continual) learning setting with multiple tasks T , 215

in which each task corresponds to a set of input- 216

output pairs Dt =
{
xtn, y

t
n

}N t

n=1
. In the training 217

process, a single model aligns all the tasks sequen- 218
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tially, with only access to the specific dataset Dt219

at t-th round. Formerly, given an LLM parame-220

terized by θ, the entire process aims to optimize221

the following objective, which encompasses all the222

tasks,223

J (θ) = max
θ

∑
t∈{1,|T |}

∑
(xtn,y

t
n)∈Dt

logPθt
(
ytn|xtn

)
, (1)224

where logP(·) represents the probability distribu-225

tion of the model’s output. When there is only226

one task, the learning process degenerates into the227

standard supervised fine-tuning (SFT) form.228

Half Fine-Tuning. Next, we accordingly pro-229

pose Half Fine-Tuning (HFT) to learn the upcom-230

ing new task while maintaining and utilizing old231

abilities. Figure 2 illustrates the overall work-232

flow of HFT, regarding the intermediate repeti-233

tive transformer layers, we divide each layer into234

three blocks: self-attention, feed-forward, and lay-235

ernorm, so as half of each block is selected for236

updating in this round, while the remaining half237

is frozen. Note that the frozen and updated pa-238

rameters vary among each training round. In this239

way, HFT is more conducive to maintaining relative240

knowledge parity across different rounds during the241

sequential alignment process, thus exhibiting sig-242

nificant scalability in successive training. From the243

formula perspective, we define the parameters that244

remain unchanged during the t-th round as ψt, and245

correspondingly, the parameters that align to the246

upcoming tasks as ϑt (i.e., θt = {ϑt, ψt}). The247

training objective in Equation 1 thus changes to248

J (θ) = max
θ

∑
t∈{1,|T |}

∑
(xtn,y

t
n)∈Dt

logP{ϑt,ψt}
(
ytn|xtn

)
,

s.t. ϑt ← ϑt−1 − η∇ϑL
(
θt−1) , ψt ← ψt−1 ,

(2)249

where η and L(·) represent the learning rate and250

loss function, ∇ϑ indicates that we only consider251

the gradients of selected parameters in fine-tuning.252

Why Half Fine-Tuning Works. Excluding253

heuristic motivations, we are also interested in the254

theoretical principles behind HFT. Theoretically,255

HFT could be regarded as exerting a parameter-256

level mask to vanilla FFT. In this part, we bor-257

row the thread in (Fu et al., 2022) to interpret258

why HFT works from the perspective of optimiza-259

tion. Given a pre-trained model M0 with param-260

eters θ0, the fine-tuned model M with parame-261

ters θ has the same structure as M0 such that262

∥θ − θ0∥0 ≤ p dim(θ), where p = 0.5 in HFT.263

Next, we denote M ∈ {0, 1}m×m as a mask di-264

agonal matrix on the parameter, in which the di- 265

agonal is equal to 1 if the parameter is selected, 266

thus the fine-tuning procedure can be formulated 267

as θ = θ0 +M∆θ, where ∆θ is the task vector. 268

In that case, HFT solves an optimization problem 269

with constraints min∆θ,M L(θ0+M∆θ) such that 270

∥M∥0 = ⌊mp⌋; Mij = 0, ∀i ̸= j; Mii ∈ {0, 1}. 271

where L is the loss function, ⌊·⌋ is the floor func- 272

tion, m is the parameter numbers. By integrating 273

previous conditions, the optimization procedure of 274

HFT can be reformulated as 275

O = min
θ
L(θ) s.t. ∥(I −M)(θ − θ0)∥2 = 0, (3) 276

With Lagrangian duality, solving the constrained 277

optimization problem is equivalent to solving the 278

following unconstrained optimization problem 279

OL = min
θ

max
λ
L(θ) + λ∥(I −M)(θ − θ0)∥2, (4) 280

where λ is the Lagrange multiplier. Based on 281

the Minimax inequality, it is intuitive to derive 282

that minθ maxλ L(θ) + λ∥(I −M)(θ − θ0)∥2 ≥ 283

maxλminθ L(θ) + λ∥(I − M)(θ − θ0)∥2 ≥ 284

minθ L(θ) + ∥(I −M)(θ − θ0)∥2. In conclusion, 285

the optimization process of HFT is equivalent to op- 286

timizing the upper bound of the FFT loss function 287

L(θ) with a regularization term ∥(I−M)(θ−θ0)∥2. 288

From the optimization perspective, such regulariza- 289

tion (with an appropriate sparsityM ) contributes to 290

the stability of the sparse fine-tuned model (Radiya- 291

Dixit and Wang, 2020; Fu et al., 2022), meaning 292

that HFT has the opportunity to achieve results 293

comparable to or even better than FFT. 294

4 Experiments 295

In this section, we primarily report the experimen- 296

tal results of full fine-tuning (FFT) and the pro- 297

posed half fine-tuning (HFT) on supervised fine- 298

tuning (with TÜLU V2 (Ivison et al., 2023) as 299

training set), human preference alignment (with 300

UltraFeedback (Cui et al., 2023)), and continual 301

learning (with TRACE (Wang et al., 2023a)) sce- 302

narios, in which direct preference optimization 303

(DPO) (Rafailov et al., 2023) is used to learn hu- 304

man preferences. Following (Ivison et al., 2023) 305

and (Wang et al., 2023a), we employ LLAMA 2 and 306

LLAMA 2-CHAT as the backbone model, respec- 307

tively. Apendix A.2 shows more information about 308

implementations and Appendix A.3 proposes more 309

additional experiments consisting of the compar- 310

ison with more baselines, the impact of learning 311

rates and random seeds, the exploration of DPO on 312
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HFT-based models, efficiency analysis and many313

other detailed results.314

4.1 Experiments on Instruction Tuning315

Setup. We employ the general abilities and ba-316

sic knowledge benchmarks mentioned in Section317

2 to evaluate various models under the instruction318

tuning settings. In Appendix A.3.3, we introduce319

a series of sparse fine-tuning and model merging320

methods as additional baselines. To assess the con-321

versation ability, we also compare these models on322

AlpacaEval 2.0 (see Appendix A.3.8).323

Results on Improving General Abilities. Re-324

sults in Table 1 demonstrate the effectiveness of our325

proposed HFT method, which simultaneously im-326

proves different specialized abilities by selectively327

fine-tuning half of the parameters. Specifically,328

compared to FFT under the SFT setting, HFT leads329

to an overall performance improvement of 1.9% on330

LLAMA 2-7B and 2.9% when scaling to LLAMA331

2-13B. Furthermore, as we continue to perform332

DPO on SFT models, we observe that updating the333

policy model with HFT does not hinder the model334

from learning human preferences. In sum, the HFT335

method has strong robustness to adapt to differ-336

ent fine-tuning algorithms. Besides, we also review337

the Half-Reset method in Section 2, but the benefits338

of this approach are not robust, and we attribute it339

to the randomness of parameter operations. In com-340

parison, HFT achieves a more stable performance341

improvement through the learning process, while342

avoiding the complexity of the two-stage process343

of fully updating followed by partially resetting.344

Results on Preserving Basic Knowledge.345

When it comes to basic knowledge, as depicted346

in Table 2, both SFT and DPO exhibit a signifi-347

cant decline across all three benchmarks. Notably,348

HFT demonstrates excellent talent in preserving349

basic knowledge, consistently outperforming fully350

updating parameters during SFT and DPO. For351

example, during the SFT stage, HFT achieves im-352

provements of 3.4% and 2.9% with LLAMA 2-7B353

and LLAMA 2-13B compared to FFT, respectively.354

It is worth mentioning that Half-Reset also shows355

a stable performance in alleviating knowledge for-356

getting, which once again confirms the motivation357

to keep partial initial parameters unchanged.358

Remark. HFT not only effectively preserves359

a certain degree of basic knowledge of the pre-360

trained model, but also utilizes this knowledge to361

achieve better learning of new abilities.362

4.2 Experiments on Continual Learning 363

Setup. We evaluate the performance in the con- 364

tinual learning setting (with TRACE (Wang et al., 365

2023a)), using four representative approaches and 366

attempt to replace FFT with HFT. (1) SeqFT: It is 367

a standard for sequentially learning all parameters 368

of downstream tasks. (2) GEM (Lopez-Paz and 369

Ranzato, 2017): It leverages episode memories to 370

avoid forgetting, but it consumes extra computation 371

time like other regularization-based methods. (3) 372

Replay: It is a common strategy, here we integrate 373

alignment data from LIMA (Zhou et al., 2023) into 374

the replay memory and replaying 10% of histor- 375

ical data. (4) LoraSeqFT (Hu et al., 2022): It 376

sequentially updates the low-rank matrices while 377

keeping the backbone fixed. Note that the LoRA- 378

based method modifies the model architecture and 379

is not suitable for combination with HFT. Follow- 380

ing (Wang et al., 2023a), we start with LLAMA 2- 381

CHAT-7B/13B, adopt Overall Performance (OP) 382

and Backward Transfer (BWT) as the evaluation 383

metrics (Appendix A.2.2 details the calculation pro- 384

cess). Besides, we also report the general abilities 385

and basic knowledge of various models after the 386

final round of learning (see Appendix A.3.5). 387

Results. Table 3 shows that the three FFT ap- 388

proaches could all benefit from equipping HFT. 389

Specifically, HFT brings performance improve- 390

ments of 5.7% and 2.0% on the OP metric in the Se- 391

qFT and GEM settings, respectively. It also boosts 392

the performance with 4.6%, 0.7%, and 2.0% on 393

the BWT metric based on the LLAMA 2-CHAT- 394

7B. When scaling the model to 13b, HFT could 395

also achieve superior performances. Further, fine- 396

tuning with full parameters often suffers from se- 397

vere catastrophic forgetting in the 5-th round (see 398

Appendix A.3.11), while HFT does not experience 399

such a problem in any of the rounds, making the 400

learning process more stable. Besides, LoraSeqFT 401

exhibits notably suboptimal performance in this 402

setting. We assume that the knowledge capacity of 403

the LoRA parameter is quite limited, thus resulting 404

in considerable forgetting during the process of se- 405

quential training. On the contrary, HFT is based 406

on a full set of parameters and selects half of the 407

parameters to be fine-tuned in each round, which 408

has a stronger knowledge tolerance. 409

Remark. HFT is naturally suitable for scenarios 410

with continual fine-tuning, and (almost all) meth- 411

ods with FFT can be further improved by assem- 412

bling HFT, highlighting the plug-and-play feature. 413

5



MMLU GSM8K BBH TyDiQA TruthfulQA HumanEval

Overall(factuality) (reasoning) (reasoning) (multilingual) (truthful) (coding)

EM EM EM F1 MC2 Pass@10
(0-shot) (8-shot, CoT) (3-shot, CoT) (1-shot, GP) (0-shot) (0-shot)

Pre-trained models
LLAMA 2-7B 41.6 12.0 39.9 48.4 38.5 26.2 34.4
LLAMA 2-13B 52.2 34.5 50.7 50.3 49.8 32.7 45.0

Supervised Fine-Tuning (SFT) on TÜLU V2
LLAMA 2-7B-SFT 48.5 25.0 42.2 51.2 41.7 36.9 41.0
LLAMA 2-7B-SFT (R) 48.4 23.0 43.4 52.4 42.5 32.5 40.4
LLAMA 2-7B-SFT (H) 50.8 30.5 43.6 52.3 45.4 34.6 42.9 (+1.9)

LLAMA 2-13B-SFT 50.6 45.0 47.8 55.0 42.6 42.4 47.2
LLAMA 2-13B-SFT (R) 52.7 46.0 52.8 55.5 46.8 41.4 49.2
LLAMA 2-13B-SFT (H) 54.5 46.5 53.7 56.7 45.7 43.5 50.1 (+2.9)

Direct Preference Optimization (DPO) on UltraFeedback
LLAMA 2-7B-DPO 48.9 28.0 42.9 50.2 45.7 35.6 41.9
LLAMA 2-7B-DPO (R) 49.0 28.5 43.1 50.3 43.3 34.8 41.5
LLAMA 2-7B-DPO (H) 48.8 25.5 42.8 51.1 45.5 36.7 41.7 (-0.2)

LLAMA 2-13B-DPO 52.0 44.0 47.1 51.5 45.5 44.3 47.4
LLAMA 2-13B-DPO (R) 51.5 46.5 48.2 53.7 43.7 42.7 47.7
LLAMA 2-13B-DPO (H) 51.8 48.5 49.9 52.9 45.3 41.0 48.2 (+0.8)

Table 1: Results on general ability benchmarks of various models with instruction tuning (SFT, DPO), in which the
default setting is FFT, R and H refer to the proposed Half-Reset and Half Fine-Tuning methods, respectively. Bold
text denotes the best result in each group. More baselines in Table 9.

NaturalQuestion TriviaQA HotpotQA Overall(EM, 0-shot) (EM, 0-shot) (EM, 0-shot)

Pre-trained models
LLAMA 2-7B 12.9 40.2 15.6 22.9
LLAMA 2-13B 9.6 24.0 13.4 15.7

Supervised Fine-Tuning (SFT) on TÜLU V2
LLAMA 2-7B-SFT 3.2 26.4 14.5 14.7
LLAMA 2-7B-SFT (R) 7.3 26.4 14.4 16.0
LLAMA 2-7B-SFT (H) 6.2 32.8 15.4 18.1 (+3.4)

LLAMA 2-13B-SFT 0.7 9.2 4.9 4.9
LLAMA 2-13B-SFT (R) 1.8 13.5 5.3 6.9
LLAMA 2-13B-SFT (H) 2.7 12.4 8.2 7.8 (+2.9)

Direct Preference Optimization (DPO) on UltraFeedback
LLAMA 2-7B-DPO 1.4 20.8 10.0 10.7
LLAMA 2-7B-DPO (R) 2.0 23.6 12.1 12.6
LLAMA 2-7B-DPO (H) 1.9 22.9 12.8 12.5 (+1.8)

LLAMA 2-13B-DPO 0.1 4.4 2.4 2.3
LLAMA 2-13B-DPO (R) 0.3 6.5 3.8 3.5
LLAMA 2-13B-DPO (H) 0.2 5.5 3.0 2.9 (+0.6)

Table 2: Results on basic knowledge benchmarks of
various models with instruction tuning.

4.3 Impact of Parameter Selection414

HFT heuristically selects parameters to be tuned or415

frozen. We hope to reveal the impact of parameter416

selection from parameter radio and selection strat-417

egy, to discuss the universality of the methodology.418

Impact of Trainable Parameter Ratio. Firstly,419

we traverse the radio of parameters to be fine-tuned420

at a granularity of ∼10% and evaluate the impact421

in both single-round and multi-round fine-tuning422

scenarios. From Figure 3, we observe that most of423

the results with only updating partial parameters424

are superior to FFT, and the performance is quite425

satisfactory when the trainable parameter radio426

is around 50%. In SFT, the performance of basic427

knowledge shows a clear downward trend with the428

increase of parameter ratio, while the general abili-429

ties slowly rise, which allows updating half or less430

FFT HFT

OP BWT OP BWT

LLAMA 2-CHAT-7B
LoraSeqFT 6.4 -45.2% - -
SeqFT 45.7 -10.2% 51.3 (+5.6) -5.6% (+4.6)

GEM 48.2 -7.9% 50.2 (+2.0) -5.9% (+2.0)

Replay 54.3 1.4% 54.1 (-0.2) +2.1% (+0.7)

LLAMA 2-CHAT-13B
LoraSeqFT 26.5 -30.0% - -
SeqFT 49.0 -9.4% 52.0 (+3.0) -8.5% (+0.9)

GEM 50.4 -8.9% 53.6 (+3.2) -6.1% (+2.8)

Replay 54.7 -0.6% 57.4 (+2.7) +1.6% (+2.2)

Table 3: OP and BWT on TRACE with different strate-
gies, OP measures the learning of new tasks and BWT
measures the forgetting of old tasks.

of the parameters to have good performance. Mean- 431

while, when selecting half of the parameters during 432

continual learning, the model reaches a balance of 433

abilities between each round of tasks, resulting in a 434

more robust training procedure and optimal perfor- 435

mance. This observation again confirms the early 436

conjecture about catastrophic forgetting, especially 437

in continual learning, it is necessary to freeze a 438

portion of parameters in each round to preserve 439

the capabilities of the previous models. Not only 440

that, we also find that fixing partial parameters can 441

improve training efficiency (see Table 8), and HFT 442

could shorten the training time by 30% in FFT. 443

Impact of Selection Strategy. Next, we con- 444

sider other possible strategies for selecting half 445

of the parameters: (1) Model-level. It arbitrarily 446
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Figure 3: Performance concerning different trainable parameter ratios. The solid lines mark the performance of
HFT with various ratios and the dashed lines mark the FFT baseline.

chooses half the number of parameter matrices,447

which may prevent the parameter ratio from accu-448

rately reaching 50%. (2) Layer-level. It selects449

all parameters of a layer every other layer. (3)450

Category-level. It selects based on parameter cat-451

egories, which is the default strategy used in this452

paper, and ensures the accurate selection of 50%453

of the parameters. Table 4 reports the results of454

performing HFT on TRACE with sequential fine-455

tuning (SeqFT). The first noteworthy phenomenon456

is that all three selection strategies outperform the457

standard FFT, which once again confirms the moti-458

vation that freezing some parameters helps balance459

the old and new abilities in continual fine-tuning.460

Moreover, the category-level selection wins the best461

performance, we attribute it to the fine-grained462

strategy that maximizes the interaction between463

updated and non-updated parameters. From the464

perspective of model merging, it minimizes the465

damage to ready-made capabilities when perform-466

ing a 50% dropout on the task vector, thereby pro-467

viding greater possibilities for learning new tasks468

based on existing knowledge.469

OP BWT

SeqFT (FFT) 45.7 -10.2%

SeqFT (Model-level HFT) 46.9 (+1.2) -9.2% (+1.0%)

SeqFT (Layer-level HFT) 47.9 (+2.2) -8.3% (+1.9%)

SeqFT (Category-level HFT) 51.3 (+5.6) -5.6% (+4.6%)

Table 4: Different strategies for selecting half of the
parameters on TRACE.

Remark. HFT is robust and insensitive to param-470

eter selection, and selecting approximately 50% of471

the parameters with a reasonable selection strategy472

could achieve acceptable improvements.473

5 Discussion 474

In this section, we further discuss the parameter 475

changes in the fine-tuning process to deepen the 476

understanding of HFT. We review the influence of 477

embedding and lm_head layers, and visualize the 478

parameter variations during successive training. 479

Revisit the Embedding and LM_head Layers. 480

HFT defaults to updating the embedding and 481

lm_head layers. Here, we aim to explore the 482

roles of these two layers. Specifically, we freeze 483

them while maintaining the same selection strategy 484

and report results in SFT and continual learning. 485

Since freezing the embedding and lm_head lay- 486

ers slightly reduces trainable parameters, we also 487

include two models with similar parameter ratios 488

that only freeze the parameters in transformer 489

layers, to mitigate the impact of parameter ra- 490

tio. As shown in Table 5, freezing these two lay- 491

ers leads to a substantial decline in knowledge- 492

intensive benchmarks, especially for QA-related 493

tasks. Experimental results in Table 6 witness an- 494

other phenomenon, where forgetting metric BWT 495

significantly increases while the learning metric 496

OP faces a cliff-like decrease. Detailed results 497

in Appendix A.3.9 reveal that there is a substan- 498

tial decline in the performance of ScienceQA. To 499

this extent, a preliminary conjecture emerges that 500

the embedding and lm_head store information are 501

highly relevant to world knowledge, so it is crucial 502

to update them during the fine-tuning process. 503

Parameters Variation Analysis. To intuitively 504

perceive the difference in model parameters be- 505

tween HFT and FFT, we visualize parameter vari- 506

ations of fine-tuned models relative to the ini- 507

tial model (LLAMA 2-CHAT-7B) during continual 508

learning on TRACE. On the one hand, we group 509

two adjacent layers and calculate the average vari- 510

7



MMLU GSM BBH TyDi Truthful Human Natural Trivia Hotpot Overall8K QA QA Eval Questions QA QA

HFT38.9% (update E,H) 49.9 26.0 44.6 52.3 45.0 33.2 6.3 24.0 14.1 32.8
HFT50.0% (update E,H) 50.8 30.5 43.6 52.3 45.4 34.6 6.2 32.8 15.4 34.6
HFT61.1% (update E,H) 49.0 29.5 42.7 50.6 49.6 35.4 6.6 31.3 16.1 34.5

HFT50.0% (freeze E,H) 51.4 29.0 45.0 50.5 45.2 35.0 3.2 24.1 13.7 33.0

Table 5: General abilities and basic knowledge performance of HFT models fine-tuned on TÜLU V2 without
embedding (E) and lm_head (H) layers. Note that the subscript indicates the proportion of selected parameters of
transformer layers.
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Figure 4: Parameters variations of the last round model fine-tuned on TRACE relative to the starting point LLAMA
2-CHAT-7B. The outer blue circle indicates FFT and the inner red circle indicates HFT.

OP BWT

HFT38.9% (update E,H) 49.6 -5.6%
HFT50.0% (update E,H) 51.3 -5.6%
HFT61.1% (update E,H) 49.9 -5.6%

HFT50.0% (freeze E,H) 46.1 -2.2%

Table 6: OP and BWT scores of HFT models fine-tuned
on TRACE without embedding and lm_head layers.

ation of self-attention and feed-forward blocks,511

where average variation refers to the average of512

all matrix differences in the block of two models.513

On the other hand, based on the selected number514

of times in these eight rounds of fine-tuning, we515

compare the average variation of each block with516

FFT. Figure 4 shows variations from the perspec-517

tive of the transformer block and selected time,518

respectively. Interestingly, we find that: (1) The pa-519

rameter variation of each layer using HFT is fainter520

than those using FFT. (2) There is no significant521

difference in parameter variation between shallow522

and deep transformer layers, which is consistent in523

both fine-tuning settings. (3) The deviation from524

pre-trained parameters increases linearly with the525

time of selection, and the variations of parameters526

selected eight times are very similar to FFT. There-527

fore, the excessive offset of task vectors may not528

necessarily lead to an improvement in downstream 529

performance but result in forgetting existing capa- 530

bilities. HFT seeks subtle balance by pulling back 531

the task vector, alleviating catastrophic forgetting 532

when learning subsequent tasks. 533

6 Conclusion 534

In this paper, we observe that rolling back half 535

of the parameters to the pre-trained state may re- 536

cover partial knowledge of the startup model while 537

holding the performance of downstream tasks. Tak- 538

ing inspiration from this, we propose HFT, which 539

adopts a category-level strategy to select half of the 540

parameters for updating in each training round, and 541

the remaining parameters are expected to maintain 542

the learned knowledge. Extensive experiments on 543

supervised fine-tuning, direct preference optimiza- 544

tion, and continual learning scenarios demonstrate 545

the effectiveness of HFT. It not only alleviates the 546

catastrophic forgetting in preceding capabilities but 547

also achieves comparable or even superior perfor- 548

mance than FFT in downstream tasks. Further anal- 549

ysis shows that HFT is robust to selection strategies 550

and selected parameter numbers. Moreover, HFT 551

does not change the model architecture, making 552

it easy to implement and scale, especially under 553

successive fine-tuning scenarios. 554
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Limitations555

Half Fine-Tuning (HFT) achieves a balanced per-556

formance in general abilities and basic knowledge557

benchmarks. It outperforms the Full Fine-Tuning558

(FFT) strategy while saving approximately 30% of559

training time, and is scalable for scenarios with560

continual fine-tuning. In contrast, the widely used561

Sparse Fine-Tuning methods such as LoRA fall562

short of HFT in overall performance, and in more563

challenging scenarios like continual fine-tuning,564

these methods fail and lead to performance col-565

lapses. We believe that HFT has the potential566

to become a successor to FFT in nearly all sce-567

narios due to its superior performance and faster568

training speed. Nonetheless, there are still some569

limitations to this paper. Firstly, due to computa-570

tional resource constraints, we experiment with the571

most representative open-source models LLAMA572

2-7B and LLAMA 2-13B, without scaling to larger573

or other family models. Secondly, we validate574

HFT on the standard dense transformer architec-575

ture, while other architectures such as Mixture-of-576

Experts (MoE) are not discussed in this paper. We577

believe that HFT is sufficient to adapt to other ar-578

chitectures and models, which warrants further re-579

search and exploration. In the future, we will strive580

to explore the potential of HFT in a wider range581

and diverse architecture models, while also refining582

selection methods to further improve performance.583
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A Appendix923

A.1 Related Work924

Sparse Fine-Tuning. With the continuous in-925

crease in the number of language model param-926

eters, sparse fine-tuning (a.k.a. parameter-efficient927

fine-tuning (PEFT)) offers an effective solution by928

reducing trainable parameters while achieving com-929

parable performance to FFT (Fu et al., 2022; Ding930

et al., 2023; Han et al., 2024). Adapter (Houlsby931

et al., 2019; Mahabadi et al., 2021; Zhang et al.,932

2023a) and LoRA (Hu et al., 2022; Dou et al., 2023;933

Dettmers et al., 2023), the two most famous kinds934

of work, freeze the initial model weight and inject935

an adapter or a trainable rank decomposition ma-936

trices into each layer. However, these approaches937

change the model architecture and therefore re-938

quire customized deployment. Keeping the archi-939

tecture unchanged, DiffPruning (Guo et al., 2021)940

learns a sparse diff vector for each task, enabling 941

PEFT to scale well with new tasks. BitFit (Za- 942

ken et al., 2021) only fine-tunes the bias terms 943

of BERT and achieves considerably good perfor- 944

mance. Unfortunately, these methods designed for 945

specific tasks or networks (e.g., bias) are unsuit- 946

able for modern general-purpose large-scale mod- 947

els. From the perspective of low GPU memory 948

overhead, BAdam (Luo et al., 2024) randomly di- 949

vides the entire parameter into multiple blocks and 950

updates each block sequentially, LISA (Pan et al., 951

2024) changes the granularity of blocks at the layer 952

level. Besides, Mixout (Lee et al., 2020) resets a 953

portion of neurons to a pre-trained state in each 954

training step. In this way, all parameters in BAdam, 955

LISA, and Mixout are updated, which is different 956

from HFT and not conducive to continual learning. 957

Continual Learning. Continual learning aims 958

to develop learning algorithms that can accumulate 959

knowledge on non-stationary data, and vanilla FFT 960

has been proven to lead to severe catastrophic for- 961

getting issues when adapting to incoming stream- 962

ing tasks (Luo et al., 2023; Wang et al., 2024). 963

To address this issue, experience replay (Rolnick 964

et al., 2019; Peng et al., 2024) is a widely used 965

technique that incorporates a portion of data from 966

previous rounds into the current training process. 967

Regularization-based models (Kirkpatrick et al., 968

2017; Lopez-Paz and Ranzato, 2017) introduce 969

additional terms in the loss function to penalize 970

changes in crucial weights. Parameter-allocation 971

approaches (Li et al., 2019; Gurbuz and Dovrolis, 972

2022) feature an isolated parameter subspace dedi- 973

cated to each task throughout the network. When 974

LLMs enter the era of billions of parameters, re- 975

searchers prefer to use progressive prompts (Raz- 976

daibiedina et al., 2023) or PEFT (Dou et al., 2023; 977

Wu et al., 2024a) to tune a powerful general back- 978

bone for specific tasks or domains (Wu et al., 979

2024b). Instead of introducing auxiliary modules 980

or losses, HFT explores a new direction based on 981

the characteristics of LLMs, proving that random 982

parameter selection is sufficient to achieve pass- 983

able performance and has the potential to become 984

a successor to FFT. 985

A.2 Experimental Setup 986

A.2.1 Datasets 987

To validate the performance of supervised fine- 988

tuning, we choose TÜLU V2 (Ivison et al., 2023) 989

which is a combination of high-quality open re- 990
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Algorithm 1: Algorithm of HFT with Category-Leval Parameter Selection
Input: Pre-trained model θ0
Initialize sequential training task T with data Dt, feed-forward block container FFNs=[], self-attention block container
SANs=[], and layernorm block container LNs=[].

for t = 1 to |T | do
// Set all parameters to retain gradients before each fine-tuning stage
foreach param in θt−1 do

param.requires_grad = True

// Omit the embedding and lm_head layer
mark_layers = random.sample(transformer_layers, len(transformer_layers)//2)
foreach layer in transformer_layers do

foreach param in layer do
if param belongs to FFN block then

FFNs.append(param)

else if param belongs to SAN block then
SANs.append(param)

else
LNs.append(param)

// For FFNs with an odd number of parameters in one layer, the number of selected parameters in half of the
layers is rounded up, while the other half is rounded down.

if layer in mark_layers then
freeze_ffn = random.sample(FFNs, ⌈len(FFNs)/2⌉)

else
freeze_ffn = random.sample(FFNs, ⌊len(FFNs)/2⌋)

freeze_san = random.sample(SANs, len(SANs)//2)
freeze_ln = random.sample(LNs, len(LNs)//2)
foreach param in freeze_ffn, freeze_san and freeze_ln do

param.requires_grad = False

Set FFNs, SANs and LNs to []

Model training process on with dataset Dt

Output: Fine-tuned model θ|T |

sources, including datasets (1) created by re-991

searchers from existing NLP datasets (e.g. Su-992

perNI (Wang et al., 2022)), (2) written by hu-993

mans (e.g. Dolly (Conover et al., 2023) and Open994

Assistant (Köpf et al., 2023)), (3) generated by995

LLMs (e.g. Self-Instruct (Wang et al., 2023b),996

Alpaca (Taori et al., 2023) and Baize (Xu et al.,997

2023)), (4) comprised of user-shared prompts ac-998

companied by model-generated completions (e.g.999

ShareGPT (Chiang et al., 2023)), and (5) developed1000

for specific abilities (e.g. CoT (Wei et al., 2022)1001

for chain-of-thought and Code-Alpaca (Chaudhary,1002

2023) for code generation). To examine the ca-1003

pacity for reinstating a fraction of impaired capa-1004

bilities while adhering to human preferences, we1005

utilize UltraFeedback (Cui et al., 2023) which1006

is a large-scale, high-quality, and diversified pref-1007

erence dataset. For continual learning, we select1008

TRACE (Wang et al., 2023a), a novel benchmark1009

designed for continual learning (CL) in LLMs, to1010

evaluate catastrophic forgetting in standard CL set-1011

tings. TRACE consists of 8 distinct datasets span-1012

ning challenging tasks, domain-specific tasks, mul-1013

tilingual capabilities, code generation, and mathe-1014

matical reasoning. 1015

A.2.2 Evaluation Metrics 1016

Supervised Fine-Tuning and Direct Preference 1017

Optimization. To validate the effectiveness of 1018

our method, we employ general abilities and basic 1019

knowledge benchmarks to assess the performance 1020

in learning new tasks and preserving the original 1021

capabilities, respectively. Specifically, for the gen- 1022

eral abilities benchmarks, we include the following 1023

evaluation sets to test various abilities. (1) Factual 1024

knowledge: To assess the LLMs’ factual knowl- 1025

edge, we employ the Massive Multitask Language 1026

Understanding dataset (MMLU) (Hendrycks et al., 1027

2021). MMLU comprises a collection of ques- 1028

tions across 57 subjects from elementary to pro- 1029

fessional difficulty levels. We report the 5-shot 1030

accuracy based on answer perplexity. (2) Reason- 1031

ing: We utilize the test split of the Grade School 1032

Math (GSM8K) dataset (Cobbe et al., 2021) and 1033

Big-Bench-Hard (BBH) (Suzgun et al., 2023) to 1034

evaluate the reasoning abilities. We report the 1035

8-shot accuracy and the exact match (EM) rates 1036

for GSM8K and BBH, respectively. (3) Multi- 1037
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LLAMA 2- LLAMA 2- Model-level Layer-level Category-level
7B CHAT-7B Half-Reset Half-Reset Half-Reset

MMLU (EM, 0-shot) 41.6 47.0 46.2 45.8 46.7
GSM (ACC, 8-shot) 12.0 26.0 8.0 22.0 24.0
BBH (EM, 0-shot) 39.9 39.2 41.0 39.5 37.7
TyDiQA (F1, 1-shot) 48.4 43.6 46.3 44.2 44.9
TruthfulQA (MC2, 0-shot) 38.5 46.0 41.7 43.1 41.7
HumanEval (Pass@10) 26.2 23.9 26.8 25.0 22.0
Overall (General Ability) 34.4 37.6 35.0 36.6 36.2

NaturalQuestion (EM, 0-shot) 12.9 7.2 8.2 11.2 10.9
TriviaQA (EM, 0-shot) 40.2 3.3 18.3 21.3 21.3
HotpotQA (EM, 0-shot) 15.6 6.6 7.4 9.9 9.0
Overall (World Knowledge) 22.9 5.7 11.3 12.4 13.7

Overall 30.6 27.0 27.1 28.5 28.7

Table 7: General abilities and basic knowledge results of LLAMA 2-7B, the well-aligned model LLAMA 2-CHAT-7B,
and our proposed three half-reset approaches.

# Trainable Parameters (%) 8.3 22.3 30.6 38.9 50.0 61.1 69.4 77.7 91.7 100

Runtime (%) 48.0 52.2 56.4 64.0 68.5 72.5 85.1 85.2 89.0 100
∆ (%) -52.0 -47.8 -43.6 -36.0 -31.5 -27.5 -14.9 -14.8 -11.0 0.0

Table 8: Efficiency analysis among different ratios of trainable parameters, in which FFT as a reference value and
underline marks HFT proposed in this paper.

lingualism: To evaluate multilingual capabilities,1038

we employ TyDiQA (Clark et al., 2020), a multi-1039

lingual question-answering benchmark that covers1040

11 typologically diverse languages. We adopt the1041

gold-passage setup, where a passage containing1042

the reference answer is provided, and report the F11043

score. (4) Coding: To evaluate the LLMs’ ability1044

to generate functionally correct programs from doc-1045

strings, we utilize HumanEval (Chen et al., 2021)1046

and report the pass@10 performance. (5) Truth-1047

ful: We incorporate TruthfulQA (Lin et al., 2022)1048

to assess the ability to avoid generating known1049

falsehoods resulting from misconceptions or false1050

beliefs while providing informative responses. (6)1051

Conversation: We use AlpacaEval 2.0 (Li et al.,1052

2023) to evaluate the instruction-following abilities.1053

AlpacaEval is an LLM-based automatic evaluation1054

metric. In this paper, we calculate the win rates1055

against the GPT-4-preview-1106. We include the1056

following three datasets for basic knowledge bench-1057

marks to validate the basic knowledge preserved in1058

LLMs: (1) NaturalQuestion (Kwiatkowski et al.,1059

2019), (2) TriviaQA (Han et al., 2019), and (3)1060

HotpotQA (Yang et al., 2018).1061

Continual Learning. For continual learning eval-1062

uations, following (Wang et al., 2023a), we use1063

Overall Performance (OP) and Backward Transfer1064

(BWT) scores as the main metrics in CL settings.1065

In terms of the formula, after incrementally learn-1066

ing the t-th task, the performance on the i-th task 1067

(where i ≤ t) is denoted as St,i. The OP and BWT 1068

scores can be calculated as 1069

OPt =
1

t

t∑
i=1

St,i, BWTt =
1

t

t−1∑
i=1

(St,i − Si,i) . (5) 1070

We utilize accuracy as the primary evalua- 1071

tion metric for C-STANCE, FOMC, ScienceQA, 1072

NumGLUE-cm, and NumGLUE-ds. In the case of 1073

Py150, we employ similarity as the evaluation met- 1074

ric. Moreover, for the evaluation of MeetingBank 1075

and 20Minuten, we employ the ROUGE-L metric. 1076

A.2.3 Implementation Details 1077

Following (Ivison et al., 2023), in the SFT phase 1078

on TÜLU V2, we adopt a linear-decreasing learn- 1079

ing rate of 2e-5 with a 0.3 warmup ratio and train 1080

for 2 epochs. For the human preference alignment 1081

phase on UltraFeedback, we use direct preference 1082

optimization (Rafailov et al., 2023) to align the fine- 1083

tuned LLMs on TÜLU V2. We use a learning rate 1084

of 5e-7 and a global batch size of 32. Due to the 1085

context length of 4096 used during LLAMA 2 pre- 1086

training, as referenced in the (Ivison et al., 2023) 1087

code repository issues, we set a maximum sequence 1088

length of 4096 during the SFT stage. However, due 1089

to hardware resource limitations, the maximum se- 1090

quence length is reduced to 1024 during the DPO 1091

stage under LLAMA 2-13B. During the contin- 1092

ual learning phase, following (Wang et al., 2023a), 1093
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MMLU GSM BBH TyDi Truthful Human Natural Trivia Hotpot Overall8K QA QA Eval Question QA QA

Sparse Fine-tuning Baselines
LoRA 46.8 18.0 39.5 51.7 44.8 27.3 12.7 36.2 17.8 32.8
QLoRA 38.0 2.5 37.2 15.0 40.6 24.0 12.7 43.2 15.5 25.4
AdaLoRA 47.2 19.5 39.1 51.9 44.4 30.2 12.3 37.5 16.9 33.2
P-tuning 44.7 16.5 36.9 50.2 43.6 26.5 12.8 40.9 17.3 32.2
Mixout 48.1 24.5 41.0 49.8 42.3 33.7 4.5 28.2 15.5 32.0

Model Merging Baselines
TIES (P+S) 47.8 25.5 40.2 50.1 43.3 30.2 5.5 31.7 14.4 32.1
DARE (P+S) 49.2 28.5 42.9 53.0 44.4 32.8 6.1 30.7 15.1 33.6
TIES (S+D) 39.6 1.5 39.7 16.1 38.4 23.3 12.9 40.2 15.6 25.3
DARE (S+D) 45.8 16.5 40.4 50.0 42.7 27.6 5.8 32.7 14.1 30.6
Average (S+D) 49.0 22.0 45.1 52.8 42.5 32.6 7.5 35.6 14.0 33.5

HFT (S) 50.8 30.5 43.6 52.3 45.4 34.6 6.2 32.8 15.4 34.6

Table 9: General abilities and basic knowledge performance of more baselines. In model merging baselines, P, S
and D refer to Pre-trained, SFT and DPO models, respectively.

MMLU GSM BBH TyDi Truthful Human Natural Trivia Hotpot Overall8K QA QA Eval Question QA QA

DPO (FFT-based, 7b) 48.8 25.5 42.8 51.1 45.5 36.7 1.9 22.9 12.8 32.0
DPO (HFT-based, 7b) 50.7 30.5 42.8 43.9 49.8 35.1 1.0 20.4 5.9 31.1
DPO (FFT-based, 13b) 51.8 48.5 49.9 52.9 45.3 41.0 0.2 5.5 3.0 33.1
DPO (HFT-based, 13b) 55.0 45.5 51.4 53.2 49.5 42.9 0.3 4.9 4.7 34.2

Table 10: General abilities and basic knowledge performance of DPO stage (with HFT), which is initialized with
HFT-based SFT models fine-tuned on TÜLU V2.

we employ a fixed learning rate of 1e-5 and fine-1094

tune the eight sub-datasets for different numbers1095

of epochs: 5, 3, 7, 5, 3, 5, 5, and 7 epochs, respec-1096

tively. The global batch size for both stages is set1097

to 128. All our experiments are conducted on one1098

machine equipped with 8x80G Nvidia A100. Al-1099

gorithm 1 introduce the detailed implementations1100

of our proposed fine-grained selecting approach of1101

HFT. Additionally, to evaluate the SFT and DPO1102

models, we employ a chat format, using special-1103

ized tokens <|user|> and <|assistant|> to mark1104

user utterances and target assistant responses, re-1105

spectively. However, we use a standard language1106

format for HumanEval and the basic knowledge1107

benchmarks when evaluating pre-trained models.1108

A.3 Additional Experiments1109

A.3.1 Detailed Results of Pilot Experiments1110

Table 7 presents the detailed results of pilot exper-1111

iments conducted in Section 2. We also compare1112

two additional model-level and layer-level param-1113

eter selection methods here. The results indicate1114

that the category-level selection approach achieves1115

the highest overall performance, consistent with1116

the follow-up training setting conclusion.1117

A.3.2 Efficiency Analysis 1118

We conduct a comparison of the runtime costs for 1119

different ratios of trainable parameters. Specifi- 1120

cally, we fine-tuned LLAMA 2-7B on TÜLU V2 1121

and record the total duration from the start to the 1122

end of the training program. The results in Table 8 1123

demonstrate that, without specific optimization, all 1124

models with varying ratios of trainable parame- 1125

ters can reduce the training time. As expected, as 1126

the proportion of trainable parameters increases, 1127

the training duration also increases. Notably, our 1128

HFT method achieves a 31.5% reduction in train- 1129

ing time, significantly decreasing the training cost 1130

for extremely large-scale instruction datasets. 1131

A.3.3 More Baselines of Instruction Tuning 1132

We highlight that the motivation of HFT is to al- 1133

leviate the catastrophic forgetting problem during 1134

fine-tuning without changing the model architec- 1135

ture, which distinguishes it from PEFT methods 1136

such as LoRA. Based on this, we also introduce 1137

two extra groups of methods to illustrate the ef- 1138

fectiveness of HFT. Specifically, we compare four 1139

sparse fine-tuning methods, LoRA (Hu et al., 2022), 1140

QLoRA (Dettmers et al., 2023), AdaLoRA (Zhang 1141

et al., 2023b), P-Tuning (Liu et al., 2022), and 1142

Mixout (Lee et al., 2020) as well as three model 1143

merging methods, Average merging, TIES merg- 1144
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MMLU GSM BBH TyDi Truthful Human Natural Trivia Hotpot Overall8K QA QA Eval Question QA QA

SeqFT-7b 35.5 3.0 24.3 39.1 42.7 0.3 10.0 23.9 14.0 21.4
GEM-7b 40.1 3.5 17.0 33.4 41.4 2.2 10.0 19.6 14.0 20.1
Replay-7b 45.9 4.5 35.2 41.6 39.6 8.5 11.6 36.1 14.2 26.4
LoraSeqFT-7b 43.3 11.0 30.7 35.5 41.7 8.8 8.7 24.7 13.4 24.2
SeqFT-7b (H) 44.1 3.5 30.8 41.1 41.8 1.6 11.3 38.9 14.4 25.3 (+3.9)

GEM-7b (H) 45.1 5.0 32.3 34.9 43.0 2.7 10.4 35.9 13.7 24.8 (+4.7)

Replay-7b (H) 47.9 11.0 38.8 42.6 42.5 12.7 10.7 38.4 12.9 28.6 (+2.2)

SeqFT-13b 39.7 5.0 27.9 41.0 41.4 0.0 12.7 44.3 16.3 25.4
Replay-13b 49.0 3.5 40.1 37.7 43.1 12.0 12.5 6.7 13.3 24.2
GEM-13b 47.2 4.0 37.6 36.3 43.0 10.0 10.8 10.2 12.1 23.5
LoraSeqFT-13b 43.3 15.0 42.4 43.1 40.5 18.2 10.6 37.6 16.2 29.7
SeqFT-13b (H) 50.0 7.0 46.3 47.2 41.4 11.2 14.7 50.6 18.7 31.9 (+6.5)

GEM-13b (H) 49.9 9.5 46.5 38.2 45.1 18.9 9.8 39.7 14.2 30.2 (+6.7)

Replay-13b (H) 50.0 10.5 47.1 39.6 45.8 20.1 10.1 41.1 14.0 30.9 (+2.3)

Table 11: General abilities and basic knowledge performance of the final round models fine-tuned on TRACE. We
compare four different fine-tuning methods and our HFT approach start from LLAMA 2-CHAT-7B and LLAMA
2-CHAT-13B.

FFT FFT HFT FFT HFT
(linear,1e-5) (linear,2e-5) (linear,2e-5) (cosine,2e-5) (cosine,2e-5)

MMLU (EM, 0-shot) 49.2 48.5 50.8 47.8 50.6
GSM (ACC, 8-shot) 24.5 25.0 30.5 25.5 31.5
BBH (EM, 0-shot) 41.8 42.2 43.6 42.2 44.4
TyDiQA (F1, 1-shot) 51.5 51.2 52.3 51.2 52.8
TruthfulQA (MC2, 0-shot) 40.2 41.7 45.4 42.6 46.4
HumanEval (Pass@10) 36.0 36.9 34.6 34.3 33.7
Overall (General Ability) 40.4 41.0 42.9 40.6 43.2

NaturalQuestion (EM, 0-shot) 4.9 3.2 6.2 3.5 6.4
TriviaQA (EM, 0-shot) 22.7 26.4 32.8 27.6 33.6
HotpotQA (EM, 0-shot) 13.4 14.5 15.4 13.1 14.7
Overall (World Knowledge) 13.7 14.7 18.1 14.7 18.2

Overall 31.5 32.2 34.6 32.0 34.9

Table 12: General abilities and basic knowledge of LLAMA 2 7B based on different learning rates.

ing (Yadav et al., 2023), and DARE (Yu et al.,1145

2023). The experimental results are shown in Ta-1146

ble 9, demonstrating that the HFT method achieves1147

the best trade-off in both general abilities and ba-1148

sic knowledge benchmarks. The sparse fine-tuning1149

methods preserve more basic knowledge but suf-1150

fer more performance degradation in the general1151

abilities evaluation, which is consistent with the1152

previous conclusion that LoRA learns less and for-1153

gets less (Biderman et al., 2024). On the other hand,1154

the model merging methods, in general, also per-1155

form worse than HFT. Additionally, model merg-1156

ing methods require FFT training followed by task1157

vector pruning, making them more complex and1158

time-consuming due to the two-stage process.1159

A.3.4 Direct Preference Optimization with1160

HFT-based Models1161

In Section 4.1, we initialize our DPO process with1162

the FFT model. In this section, we investigate the1163

performance of the DPO process when initialized1164

with the HFT model. The experimental results are 1165

shown in Table 10. We observe that while the DPO 1166

process on the HFT model performs better in cer- 1167

tain general abilities„ it experiences minor losses 1168

in overall performance under LLAMA 2-7B. How- 1169

ever, the situation is reversed in LLAMA 2-13B, 1170

where the DPO deployed on the HFT model outper- 1171

forms the FFT-initialized DPO. Nonetheless, DPO 1172

equipped with HFT tends to improve performance 1173

compared to DPO with FFT consistently. 1174

A.3.5 General Abilities and Basic Knowledge 1175

of Continual Fine-tuned Models 1176

We also evaluate the models mentioned in Sec- 1177

tion 4.2 on general abilities and basic knowledge 1178

benchmarks. The experimental results are pre- 1179

sented in Table 11. We observe that after 8 rounds 1180

of fine-tuning on consecutive tasks, the models 1181

fine-tuned with the HFT method consistently out- 1182

perform the FFT models in terms of overall per- 1183

formance. This further confirms the effectiveness 1184
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HFT HFT HFT HFT HFT
(seed 1) (seed 2) (seed 3) (seed 4) (seed 5)

MMLU (EM, 0-shot) 50.8 49.9 50.2 51.2 50.5
GSM (ACC, 8-shot) 30.5 31.0 30.5 28.5 29.5
BBH (EM, 0-shot) 43.6 43.2 42.9 43.4 44.1
TyDiQA (F1, 1-shot) 52.3 52.3 53.2 52.8 51.7
TruthfulQA (MC2, 0-shot) 45.4 45.7 44.7 45.2 44.9
HumanEval (Pass@10) 34.6 35.1 34.8 34.7 35.2
Overall (General Ability) 42.9 42.9 42.7 42.6 42.7

NaturalQuestion (EM, 0-shot) 6.2 6.1 5.9 6.1 6.4
TriviaQA (EM, 0-shot) 32.8 31.9 33.4 33.1 33.0
HotpotQA (EM, 0-shot) 15.4 15.4 15.6 14.9 15.6
Overall (World Knowledge) 18.1 17.8 18.3 18.0 18.3

Overall 34.6 34.5 34.6 34.4 34.6

Table 13: General abilities and basic knowledge of LLAMA 2 7B based on different random seeds.

Models AlpacaEval 2.0

LLAMA 2-7B-SFT 6.96
LLAMA 2-7B-SFT (R) 2.98
LLAMA 2-7B-SFT (H) 5.59

LLAMA 2-7B-DPO 10.68
LLAMA 2-7B-DPO (R) 8.44
LLAMA 2-7B-DPO (H) 9.07

LLAMA 2-13B-SFT 8.32
LLAMA 2-13B-SFT (R) 11.93
LLAMA 2-13B-SFT (H) 10.43

LLAMA 2-13B-DPO 11.55
LLAMA 2-13B-DPO (R) 12.55
LLAMA 2-13B-DPO (H) 11.68

Table 14: Evaluation results on AlpacaEval 2.0.

of HFT in preserving the original capabilities of1185

the model and mitigating catastrophic forgetting.1186

Furthermore, although LoRA preserves more layer1187

parameters unchanged, it still performs worse com-1188

pared to HFT. We believe this may be attributed1189

to the low-rank decomposition resulting in a lim-1190

ited number of trainable parameters. Merging the1191

LoRA weights back into the original model could1192

potentially disrupt the original parameter space to1193

a greater extent.1194

A.3.6 The Impact of Learning Rates1195

To validate whether our approach indeed leverages1196

the frozen parameters to mitigate the catastrophic1197

forgetting, rather than being equivalent to the ef-1198

fects brought about by a reduced learning rate, we1199

compare the half learning rate and the cosine learn-1200

ing rate schedule to demonstrate further that the1201

way HFT alleviates forgetting is not depending on 1202

learning rate but is indeed due to the role played 1203

by the frozen parameters. As shown in Tabel 12, 1204

we observe that upon halving the learning rate, the 1205

overall performance declines, with no significant 1206

recovery in the performance on world knowledge, 1207

thereby underscoring the capability of HFT in mit- 1208

igating catastrophic forgetting. Moreover, under 1209

the cosine learning rate schedule, HFT still outper- 1210

forms FFT, which also demonstrates the robustness 1211

of HFT to variations in the learning rate. 1212

A.3.7 The Impact of Randomness 1213

Here, we discuss a series of factors related to the 1214

randomness of HFT, including different trainable 1215

parameter ratios and selection methods. Note that 1216

in the continual learning setting, we randomly se- 1217

lect trainable parameters for each fine-tuning pro- 1218

cess, with a total of 8 random selections. The signif- 1219

icant performance improvement of HFT over FFT 1220

indicates that it is not sensitive to fine-grained pa- 1221

rameter selection. For all that, we also supplement 1222

a randomness experiment under the instruction tun- 1223

ing setting with 5 different random seeds (i.e. pa- 1224

rameter selections). As shown in Table 13, among 1225

these 5 trials, HFT exhibits minimal variations and 1226

a stable lead relative to FFT, demonstrating its ro- 1227

bustness again. 1228

A.3.8 Evaluation on AlpacaEval 1229

As shown in Table 14, we evaluate different mod- 1230

els on AlpacaEval 2.0. The results indicate that 1231

our method is less effective than FFT on LLAMA 1232

2-7B. However, a reversal occurs when the model 1233
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Task\Round 1 2 3 4 5 6 7 8

C-STANCE 50.1 48.0 47.2 45.8 46.4 46.2 46.3 48.0
FOMC - 69.0 66.1 65.7 65.7 64.7 63.9 66.9
MeetingBank - - 37.5 34.5 34.2 32.7 31.9 33.2
Py150 - - - 51.2 50.3 49.8 49.2 50.8
ScienceQA - - - - 58.1 58.0 56.8 56.2
NumGLUE-cm - - - - - 33.3 25.9 29.6
NumGLUE-ds - - - - - - 45.8 43.1
20Minuten - - - - - - - 40.6

OP 50.1 58.5 50.3 49.3 50.9 47.5 45.7 46.1
BWT - - - - - - - -2.2%

Table 15: Detailed results on TRACE with 50.0% trainable parameters while freezing embedding and lm_head
layers.

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 49.2 43.7 43.2 44.2 44.2 44.4 43.7 45.1
FOMC - 71.0 64.3 65.3 60.7 65.9 65.1 63.3
MeetingBank - - 46.9 37.7 35.4 39.0 38.5 36.9
Py150 - - - 57.9 52.6 53.6 53.6 53.4
ScienceQA - - - - 85.7 77.5 71.8 74.8
NumGLUE-cm - - - - - 33.3 29.6 33.3
NumGLUE-ds - - - - - - 56.6 48.9
20Minuten - - - - - - - 41.1

OP 49.2 57.4 51.5 51.3 55.7 52.3 51.3 49.6
BWT - - - - - - - -5.6%

Table 16: Detailed results on TRACE with 38.9% trainable parameters while updating embedding and lm_head
layers.

size scales up to 13b, where our approach outper-1234

forms the FFT models comprehensively. This sug-1235

gests that our method has greater potential on much1236

larger-scale LLMs, as supported by the experimen-1237

tal results in Table 1, which show a larger improve-1238

ment of HFT compared to FFT on LLAMA 2-13B1239

compared to LLAMA 2-7B. Interestingly, the Half-1240

Reset method performs well on LLAMA 2-13B1241

but shows completely different results on LLAMA1242

2-7B. This suggests that simply resetting half of1243

the parameters may not provide consistent perfor-1244

mance since the model is trained on the full set of1245

parameters.1246

A.3.9 Detailed Results of Revisiting1247

Embedding and LM_Head Layers1248

Table 15 details the results of freezing the input and1249

output layers. Meanwhile, Table 16 and 17 show1250

the detailed results of the two adjacent numbers of1251

parameter settings on TRACE.1252

A.3.10 Detailed Results of Different 1253

Parameter Selection Strategies 1254

Table 18 and 19 provide the detailed results on 1255

TRACE with model-level and layer-level parameter 1256

selection strategies mentioned in Section 4.3. 1257

A.3.11 Detailed Results of TRACE 1258

Table 20 to 33 show the detailed results of different 1259

models and approaches of each round during the 1260

continual learning on TRACE. 1261
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Task\Round 1 2 3 4 5 6 7 8

C-STANCE 45.3 50.8 50.9 51.4 51.3 51.4 51.1 53.3
FOMC - 72.8 63.7 65.7 6.3 68.3 69.0 67.9
MeetingBank - - 48.9 41.1 38.3 41.3 41.1 40.0
Py150 - - - 57.3 50.3 52.8 52.9 52.9
ScienceQA - - - - 88.2 70.6 67.3 69.4
NumGLUE-cm - - - - - 30.9 28.4 21.0
NumGLUE-ds - - - - - - 59.4 53.5
20Minuten - - - - - - - 40.8

OP 45.3 61.8 54.5 53.9 46.9 52.6 52.7 49.9
BWT - - - - - - - -5.6%

Table 17: Detailed results on TRACE with 61.1% trainable parameters while updating embedding and lm_head
layers.

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 49.3 49.1 48.8 50.2 50.0 48.9 48.1 49.2
FOMC - 70.6 57.5 53.8 42.7 54.4 58.1 55.2
MeetingBank - - 48.9 37.8 36.5 38.2 37.3 38.9
Py150 - - - 57.7 55.4 55.9 54.8 55.7
ScienceQA - - - - 87.7 59.8 54.2 56.4
NumGLUE-cm - - - - - 38.3 22.2 25.9
NumGLUE-ds - - - - - - 55.7 53.5
20Minuten - - - - - - - 40.7

OP 49.3 59.9 51.7 49.9 54.5 49.3 47.2 46.9
BWT - - - - - - - -9.2%

Table 18: Detailed results on TRACE with model-level parameter selection.

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 50.8 41.4 44.6 46.5 47.5 48.6 48.2 49.0
FOMC - 72.2 58.5 54.6 1.8 46.8 50.2 50.0
MeetingBank - - 47.1 34.7 34.5 37.2 38.6 37.1
Py150 - - - 56.5 53.3 53.8 54.2 54.1
ScienceQA - - - - 88.5 84.4 76.2 77.5
NumGLUE-cm - - - - - 35.8 28.4 21.0
NumGLUE-ds - - - - - - 57.2 52.9
20Minuten - - - - - - - 41.5

OP 50.8 56.8 50.1 48.1 45.1 51.1 50.4 47.9
BWT - - - - - - - -8.3%

Table 19: Detailed results on TRACE with layer-level parameter selection.

19



Task\Round 1 2 3 4 5 6 7 8

C-STANCE 48.5 49.7 48.5 48.3 6.7 47.4 47.2 48.7
FOMC - 71.6 46.6 46.4 0.4 43.1 42.9 44.0
MeetingBank - - 49.0 39.9 40.8 37.6 34.5 37.9
Py150 - - - 57.0 49.2 54.5 54.2 54.0
ScienceQA - - - - 89.1 71.5 44.6 60.6
NumGLUE-cm - - - - - 30.9 24.7 25.9
NumGLUE-ds - - - - - - 59.4 52.6
20Minuten - - - - - - - 41.5

OP 48.5 60.7 48.0 47.9 37.2 47.5 43.9 45.7
BWT - - - - - - - -10.2%

Table 20: Detailed results on TRACE with SeqFT (start from LLAMA 2-CHAT-7B).

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 49.4 47.6 45.6 46.4 47.8 49.5 49.1 49.3
FOMC - 71.8 57.7 59.1 46.0 66.5 67.3 66.3
MeetingBank - - 47.4 39.1 31.2 38.6 38.4 35.7
Py150 - - - 57.4 52.1 54.8 55.0 55.0
ScienceQA - - - - 87.4 82.1 77.6 75.3
NumGLUE-cm - - - - - 42.0 30.9 32.1
NumGLUE-ds - - - - - - 58.5 55.1
20Minuten - - - - - - - 41.3

OP 49.4 59.7 50.2 50.5 52.9 55.6 53.8 51.3
BWT - - - - - - - -5.6%

Table 21: Detailed results on TRACE with SeqFT and HFT (start from LLAMA 2-CHAT-7B).

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 50.0 48.9 48.4 47.7 13.0 46.5 45.7 48.1
FOMC - 69.4 60.3 59.7 0.4 56.5 57.1 58.5
MeetingBank - - 49.0 40.4 38.4 38.8 34.8 39.0
Py150 - - - 56.7 51.2 54.0 53.6 53.8
ScienceQA - - - - 89.5 64.2 29.5 54.5
NumGLUE-cm - - - - - 33.3 32.1 33.3
NumGLUE-ds - - - - - - 59.7 57.2
20Minuten - - - - - - - 40.8

OP 50.0 59.2 52.6 51.1 38.5 48.9 44.6 48.2
BWT - - - - - - - -7.9%

Table 22: Detailed results on TRACE with GEM (start from LLAMA 2-CHAT-7B).
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Task\Round 1 2 3 4 5 6 7 8

C-STANCE 50.3 49.0 47.0 48.3 50.0 50.7 50.1 51.3
FOMC - 70.0 58.9 60.1 36.1 63.9 65.9 65.5
MeetingBank - - 47.5 40.2 38.2 39.2 39.0 37.9
Py150 - - - 57.0 53.0 55.3 55.1 54.6
ScienceQA - - - - 88.4 76.8 70.1 68.4
NumGLUE-cm - - - - - 34.6 24.7 29.6
NumGLUE-ds - - - - - - 60.0 53.6
20Minuten - - - - - - - 41.0

OP 50.3 59.5 51.1 51.4 53.1 53.4 52.1 50.2
BWT - - - - - - - -5.9%

Table 23: Detailed results on TRACE with GEM and HFT (start from LLAMA 2-CHAT-7B).

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 51.7 50.1 49.4 48.2 50.6 49.7 49.9 52.0
FOMC - 64.9 68.1 70.2 70.0 70.0 70.6 70.0
MeetingBank - - 43.4 48.0 46.1 46.5 46.4 44.8
Py150 - - - 53.9 55.0 54.1 54.0 53.5
ScienceQA - - - - 81.9 86.0 86.3 87.5
NumGLUE-cm - - - - - 30.9 32.1 32.1
NumGLUE-ds - - - - - - 55.7 53.5
20Minuten - - - - - - - 40.6

OP 51.7 57.5 53.6 55.1 60.7 56.2 56.4 54.3
BWT - - - - - - - 1.4%

Table 24: Detailed results on TRACE with Replay (start from LLAMA 2-CHAT-7B).

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 47.7 53.5 50.6 51.0 50.8 50.2 51.1 52.1
FOMC - 61.1 69.4 70.8 69.8 70.2 69.4 69.8
MeetingBank - - 39.3 47.1 47.0 46.0 46.7 47.3
Py150 - - - 55.3 56.3 56.3 56.5 55.6
ScienceQA - - - - 87.3 52.2 85.0 84.8
NumGLUE-cm - - - - - 37.0 29.6 32.1
NumGLUE-ds - - - - - - 48.0 50.5
20Minuten - - - - - - - 40.5

OP 47.7 57.3 53.1 56.1 62.2 52.0 55.2 54.1
BWT - - - - - - - +2.1%

Table 25: Detailed results on TRACE with Replay and HFT (start from LLAMA 2-CHAT-7B).
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Task\Round 1 2 3 4 5 6 7 8

C-STANCE 51.6 48.1 47.4 46.9 24.1 12.0 4.1 7.9
FOMC - 68.8 58.3 52.6 0.0 48.4 44.2 1.4
MeetingBank - - 45.7 10.6 5.9 1.1 2.7 3.0
Py150 - - - 58.6 20.8 46.8 45.2 0.4
ScienceQA - - - - 66.1 50.7 41.3 0.0
NumGLUE-cm - - - - - 33.3 27.2 0.0
NumGLUE-ds - - - - - - 50.5 0.0
20Minuten - - - - - - - 38.1

OP 51.6 58.5 50.5 42.2 23.4 32.1 30.7 6.4
BWT - - - - - - - -45.2%

Table 26: Detailed results on TRACE with LoRASeqFT (start from LLAMA 2-CHAT-7B).

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 51.3 34.9 37.6 40.0 41.0 44.2 43.8 44.9
FOMC - 70.0 57.5 52.6 4.2 49.0 47.2 49.8
MeetingBank - - 50.5 44.9 44.4 45.7 44.7 41.9
Py150 - - - 56.8 54.9 54.4 53.1 54.6
ScienceQA - - - - 91.3 73.5 66.1 73.9
NumGLUE-cm - - - - - 43.2 28.4 25.9
NumGLUE-ds - - - - - - 62.5 59.4
20Minuten - - - - - - - 41.4

OP 51.3 52.5 48.5 48.6 47.2 51.7 49.4 49.0
BWT - - - - - - - -9.4%

Table 27: Detailed results of on TRACE with SeqFT (start from LLAMA 2-CHAT-13B).

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 54.2 52.2 54.7 55.2 55.3 54.3 54.6 55.5
FOMC - 73.4 56.7 54.6 38.3 43.1 41.9 50.2
MeetingBank - - 48.9 44.4 44.1 45.5 45.9 43.6
Py150 - - - 58.9 56.3 56.4 56.7 56.3
ScienceQA - - - - 89.7 84.3 74.5 74.6
NumGLUE-cm - - - - - 54.3 33.3 35.8
NumGLUE-ds - - - - - - 64.0 59.4
20Minuten - - - - - - - 40.9

OP 54.2 62.8 53.4 53.3 56.7 56.3 53.0 52.0
BWT - - - - - - - -8.5%

Table 28: Detailed results on TRACE with SeqFT and HFT (start from LLAMA 2-CHAT-13B).
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Task\Round 1 2 3 4 5 6 7 8

C-STANCE 51.5 47.2 46.7 48.1 19.0 47.4 48.3 49.2
FOMC - 70.5 59.4 60.2 0.0 60.7 58.2 61.2
MeetingBank - - 52.3 47.6 40.5 40.6 43.2 41.5
Py150 - - - 60.7 60.2 53.6 54.6 55.7
ScienceQA - - - - 92.7 78.5 30.6 60.5
NumGLUE-cm - - - - - 43.7 33.3 33.3
NumGLUE-ds - - - - - - 61.7 60.2
20Minuten - - - - - - - 41.8

OP 51.5 58.9 52.8 54.2 42.5 54.1 47.1 50.4
BWT - - - - - - - -8.9%

Table 29: Detailed results on TRACE with GEM (start from LLAMA 2-CHAT-13B).

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 52.4 51.5 48.9 49.6 51.5 51.0 50.2 51.5
FOMC - 73.4 60.8 61.9 44.4 65.3 68.9 67.2
MeetingBank - - 50.2 47.6 41.2 43.3 40.9 41.8
Py150 - - - 61.7 60.1 60.3 58.7 57.5
ScienceQA - - - - 93.0 88.7 78.9 77.7
NumGLUE-cm - - - - - 44.4 33.3 36.7
NumGLUE-ds - - - - - - 61.9 55.7
20Minuten - - - - - - - 40.6

OP 52.4 62.5 53.3 55.2 58.0 58.8 56.1 53.6
BWT - - - - - - - -6.1%

Table 30: Detailed results on TRACE with GEM and HFT (start from LLAMA 2-CHAT-13B).

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 48.8 51.3 48.5 49.3 49.2 47.5 46.7 51.4
FOMC - 62.3 70.6 72.4 71.2 71.2 70.8 73.0
MeetingBank - - 44.9 48.2 47.4 48.5 47.1 47.5
Py150 - - - 53.9 55.1 54.2 47.5 53.3
ScienceQA - - - - 89.5 91.6 90.7 89.6
NumGLUE-cm - - - - - 45.7 29.6 30.9
NumGLUE-ds - - - - - - 57.5 52.3
20Minuten - - - - - - - 39.7

OP 48.8 56.8 54.7 56.0 62.5 59.8 55.7 54.7
BWT - - - - - - - -0.6%

Table 31: Detailed results on TRACE with Replay (start from LLAMA 2-CHAT-13B).
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Task\Round 1 2 3 4 5 6 7 8

C-STANCE 50.2 52.5 53.8 53.0 53.4 52.7 52.4 52.1
FOMC - 61.3 74.2 71.2 71.8 73.2 72.4 73.6
MeetingBank - - 48.5 48.7 47.0 46.9 48.6 47.6
Py150 - - - 55.7 58.2 55.4 54.0 54.5
ScienceQA - - - - 83.3 90.0 90.1 89.7
NumGLUE-cm - - - - - 45.7 48.1 43.2
NumGLUE-ds - - - - - - 60.9 57.5
20Minuten - - - - - - - 41.0

OP 50.2 56.9 58.8 57.2 62.7 60.7 60.9 57.4
BWT - - - - - - - +1.6%

Table 32: Detailed results on TRACE with Replay and HFT (start from LLAMA 2-CHAT-13B).

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 52.4 44.4 45.1 39.0 0.0 41.8 41.1 12.4
FOMC - 67.1 58.3 43.8 2.2 60.3 57.8 0.0
MeetingBank - - 47.3 11.3 18.2 14.6 3.2 12.2
Py150 - - - 59.2 40.0 47.7 50.0 23.6
ScienceQA - - - - 75.4 70.3 71.0 67.7
NumGLUE-cm - - - - - 47.5 28.5 25.7
NumGLUE-ds - - - - - - 61.3 28.6
20Minuten - - - - - - - 41.6

OP 52.4 55.8 50.2 38.3 27.2 47.0 44.7 26.5
BWT - - - - - - - -30.0%

Table 33: Detailed results on TRACE with LoRASeqFT (start from LLAMA 2-CHAT-13B).
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