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Abstract

Large language models (LLMs) are increasingly deployed in multi-turn control
settings, such as interface navigation and robot manipulation, where stability
over long horizons is critical. In this work, we provide a study of preference
alignment methods, including group-relative policy optimization (GRPO), direct
preference optimization (DPO), contrastive preference optimization (CPO), and a
GRPO variant with behavior cloning regularization, in two domains: a tokenized
gridworld and a shared-control racing task that necessitates long-horizon planning
and interaction. Rather than proposing a new algorithm, our goal is to analyze
stability trade-offs and clarify when existing approaches succeed or fail. We show
that (1) contrastive methods such as DPO and CPO risk policy degradation without
valid negatives, (2) such methods struggle to recover multi-modal behaviors from a
pre-trained initialization, and (3) adding behavior cloning regularization to GRPO
improves robustness in some multi-turn settings. Together, our findings provide
practical guidance for applying alignment techniques to long-horizon interactive
policies and highlight open challenges for stable, preference-aware LLM control.

1 Introduction

The successes of LLMs have sparked growing interest in deploying LLMs as generalist agents in multi-
turn domains, ranging from GUI interaction [58, 14, 57, 52] to robotic manipulation [33, 42, 5, 6, 15]
and autonomous driving [8, 27]. Unlike single-turn text generation, these settings amplify stability and
steerability concerns, as overconfident updates can erase useful behavior and contrastive learning can
lead to mode collapse without informative negative samples. In this work, we focus on understanding
how standard alignment objectives behave in long-horizon, multi-turn interactions, comparing GRPO
[49], DPO [45], CPO [55], and an imitation-learning-augmented GRPO across two controlled testbeds.
Rather than proposing a new algorithmic family, our goal is to surface practical stability trade-offs
and give guidance for long-horizon alignment in interactive multi-turn tasks.

In single-turn language domains, the problem of alignment, that is, how to refine a base model for
human-centric interaction, has received substantial attention. Techniques such as reinforcement
learning from human feedback (RLHF) [10, 31], direct preference optimization (DPO) [45], or
direct fine-tuning on preferences [15] have proven effective at shaping generations to satisfy user
preferences. However, these methods have not yet made the leap to multi-turn settings, such as
policy learning for control. Given the success of reinforcement learning (RL) applied to interactive
domains such as robotics [2, 35, 39] and the interest in extending LLMs for multi-turn control tasks
[33, 50], there is a clear gap in understanding how RLHF and DPO will extend to such settings.
Existing LLM-control agents rely on large imitation datasets [11, 18, 24] for supervised fine-tuning
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or use LLMs for planning or code generation at test time [37, 54], sidestepping the challenge of
direct policy learning. However, mapping from language to interactive actions remains a significant
obstacle for LLMs, as multi-turn control policies can fall into unrecoverable failure states, discover
bad local optima, or fail to generalize behaviors across domains and tasks owing to the covariate
shift between limited training data and the diversity of testing environments. This gap is especially
pressing in low-data or preference-sensitive domains such as assistive driving interventions [13],
where pre-training may be impractical and preferences may vary from user to user. Our goal is to
close this gap by aligning the inherent world knowledge of LLMs with the demands of multi-turn
embodied control tasks.

To this end, we critically evaluate a suite of alignment techniques for LLM-based policies in multi-
turn control settings. We first identify a connection between GRPO [49] and DPO [45], showing
that DPO can be interpreted as a binarized, constrained sampling version of GRPO (§ 4.1). This
connection motivates a principled modification to the GRPO objective, inspired by contrastive
preference optimization (CPO) [55], which we find improves stability by anchoring the policy to
behaviors that achieve high returns (§ 4.2). In this work, we focus on GRPO and DPO as they are
popular, simple, and effective techniques widely applied for LLM alignment.

We then present empirical results across two domains: a synthetic gridworld environment (§ 5.1),
and a high-fidelity driving simulator with multi-modal input data in which the LLM must learn to
control a high speed vehicle in a race (§ 5.2). In both settings, we train LLMs to act directly from
state representations (either expressed as raw text or consumed via multi-modal encoders that must
be learned online) and compare alignment approaches. Across both tasks, we find that adding a
behavior cloning regularization term can lead to improved stability and robustness in training, under
certain conditions. However, if the model is not regularized to a reference policy or if the model
repeatedly samples and imitates low-quality rollouts, behavior cloning regularization can lead to
policy degradation and worsen performance.

Together, our findings offer the first systematic study of preference alignment for LLM policies in
multi-turn control tasks. We show that while contrastive preference methods are promising, they
face drawbacks that are magnified by multi-turn control tasks. In particular, we find that once a
policy has collapsed or erased an important behavior, contrastive methods cannot recover, as errors
and instabilities compound over successive updates to degenerating policies. Our results underscore
the need for alignment methods that consider the sensitivity of multi-turn domains, and lay the
groundwork for future research on preference-aware interaction with generalist models.

Our contributions are threefold:

• We clarify the connection between GRPO and DPO, highlighting their shared optimization
structure and explaining when contrastive methods may become unstable.

• We systematically evaluate alignment methods across two multi-turn control domains,
finding stability trade-offs between GRPO, DPO, CPO, and GRPO with behavior cloning.

• We identify conditions under which behavior cloning regularization stabilizes GRPO, pro-
viding practical insights for training long-horizon, multi-turn LLM policies.

2 Related Work

LLM Alignment. Researchers have extensively considered methods to constrain LLMs to generate
text that is helpful, non-toxic, and better aligned with user expectations [3, 7, 12, 15, 29, 41]. While
much research focuses on cleaner preference-datasets, there are three primary algorithmic directions
for alignment: reinforcement learning from human feedback (RLHF) [41, 10, 49, 17, 4, 51], DPO
[45, 43, 55, 59, 23, 38], or supervised fine-tuning on labeled preference data [15]. Though many
frontier LLMs train under a combination of all three approaches [21, 34], the primary mechanisms
for alignment remain RLHF and DPO, both of which have established failure modes if the model
wanders out of distribution, is poorly pre-trained, or identifies sub-optimal reward hacking behaviors
[56, 28, 36, 19, 22]. The utility of these approaches for learning embodied policies remains unclear.

Long-Horizon LLM Policies. As LLMs make continuous progress on general language under-
standing, researchers increasingly look to apply LLMs as policies for complex tasks. Researchers
have applied LLMs to open-loop action generation via text output [27, 8] or single-turn interaction
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Figure 1: We compare alignment algorithms for learning LLM policies, examining contrastive and
RL methods on two long-horizon tasks of gridworld navigation and shared-control racing.

via code generation and planning [37, 1]. Recent work has begun to extend this line of research to
multi-turn interactions, such as interacting with web pages for shopping or search [58, 14, 57, 52].
Similarly, large vision-language-action models [33, 42, 5, 6, 15, 30] have demonstrated that LLMs
can effectively learn to generate plausible behaviors after training on large datasets for robot learning
[11]. In this work, we present an overview of alignment algorithms applied to LLM policies to
refine pre-trained behaviors or discover new behaviors through online exploration when applied to
long-horizon interaction tasks.

Behavior Cloning to Augment RL. Prior work has shown the benefits of combining behavior cloning
with RL, either as a warm-start [9, 46], as a mechanism for labeling rollouts [47], for bonuses to
exploration [40], or as a regularizing term for online preference learning [55, 20]. In this work, we
draw inspiration from such prior works in considering how behavior cloning to on-policy explorations
might stabilize LLM alignment.

3 Preliminaries

We begin by presenting background on Markov Decision Processes (MDPs) and policy gradient
methods before drawing connections between GRPO and DPO. We present additional preliminaries
on GRPO and DPO in Appendix C.

MDPs are defined by the tuple (S,A, P, r, γ), where S is a state space, A is an action space,
P (s′|s, a) is a transition distribution, r(s, a) is a reward function, and γ ∈ [0, 1) is a discount
factor. A policy π(a|s) defines a distribution over actions conditioned on state. In traditional
reinforcement learning, the goal is to learn a policy that maximizes expected cumulative reward:
π∗ = argmaxπ Eτ∼π [R(τ)] where R(τ) =

∑T
t=0 γ

tr(st, at), and τ is a completed sequence
(trajectory). In many applications of preference learning for LLMs, states are defined as the entire
token sequence up to any given timestep and actions are simply the next token to be added to the
sequence. For the remainder of this work, we adopt this convention. Similarly, we assume that
the state is always preceded by a language query, q, describing the goal. RLHF typically assumes
that rewards are assigned to individual tokens as they are produced or to the entire sequence upon
completion, and the discount factor γ = 1.

Policy Gradient Methods learn policies by estimating gradients of the expected return with respect
to the policy parameters. The foundational approach is REINFORCE [53], which learns to maximize
the likelihood of actions that lead to high returns, which has been further refined to maximizing the
likelihood of actions that yield high advantage in any given state:

∇θEτ∼πθ
[R(τ)] = Eτ∼πθ

[
T∑

t=0

∇θ log πθ(at|st) ·At

]
, (1)

where At is the advantage of taking action at in state st. This gradient encourages actions that yield
higher returns to be more likely under the policy, πθ.
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4 Learning Steerable LLM Policies

We now formally describe the connection between GRPO and DPO (§ 4.1), and introduce a simple
modification to help stabilize GRPO for control policies from online reinforcement learning(§ 4.2).
While our insights echo the DPO derivation and informal descriptions of DPO, our contribution
makes this equivalence explicit in the two-trajectory case, which predicts failure modes (e.g., no valid
negatives) that we observe empirically (§ 5).

4.1 From GRPO to Reference-Free DPO

Consider a group of trajectories T = {τ1, . . . , τn} generated by an LLM policy from the same initial
state and under the same objective prompt (e.g., “drive aggressively”). Each trajectory τ ∈ T is
associated with a scalar reward r(τ), either from a known reward function or from human preference
comparisons. Recall that GRPO computes a relative advantage for each trajectory by normalizing
reward within the group: Aτ = r(τ)−µT

σT +ϵ . For a group containing only two trajectories, τ+ and τ−

with rewards +1 and −1, respectively, the advantage for each trajectory is also exactly +1 and −1.
Per the standard policy gradient update (§ 3), we can observe that, in this specific case, the policy
gradient update is exactly the DPO learning update without a reference policy. In other words, with
two trajectories achieving returns of +1 and −1, the GRPO loss is exactly a reference-free DPO loss:∑

τ∈{τ+,τ−}

Aτ log πθ(τ) = 1 · log πθ(τ
+)− 1 · log πθ(τ

−) (2)

Under these assumptions, we can therefore interpret DPO as a constrained version of GRPO (or any
policy gradient method). Where GRPO weights actions or trajectories by their relative advantage and
samples from a group of multiple rollouts, DPO instead binarizes weights to either 1 or −1 (chosen
or rejected, respectively), and DPO samples only two of the group’s rollouts. While we recognize that
a group size of two is impractical, the connection illustrates that the algorithms are fundamentally
optimizing for very similar objectives, namely, to increase the frequency of high-advantage sequences
and decrease the frequency of low-advantage sequences. These similarities suggest that DPO may
work as an effective online learning approach for multi-turn control policies, but the binarization of
advantage and the truncated sampling (i.e., only using the best and worst rollouts from a group, rather
than sampling over the entire group) may lead to instability during training. This connection between
DPO and GRPO also motivates a refinement to GRPO, as prior work highlights potential failure
modes of DPO and proposes to a solution by adding a regularization term (§ 3) [55]. Considering this
prior work and the connection between GRPO and DPO, it is natural to then extend this regularization
term to GRPO for additional stability.

4.2 Building on GRPO with Behavior Cloning Regularization

To improve stability and convergence of GRPO for policy learning with LLMs, we propose a
modification akin to behavior cloning (BC) on high-advantage sequences introduced in [55] (Equation
6). Specifically, we augment the GRPO objective with a maximum likelihood term for highest-scoring
trajectory in each group:

LGRPO+(θ) = −Eτ∼D [min (r̂τ (θ)Aτ , clip(r̂τ (θ), 1− ϵ, 1 + ϵ)Aτ )]︸ ︷︷ ︸
GRPO objective

−λ log πθ(τ
+)︸ ︷︷ ︸

BC regularization

(3)

Where λ weights the contribution of the BC regularization term. This regularization term encourages
the policy to explicitly model high-quality behaviors while still learning from relative preferences.
In practice, we find that this reduces variance throughout training and improves the consistency of
aligned behavior, particularly when pre-training has already covered the space of desirable behaviors,
and the alignment stage is primarily about refining existing behaviors, rather than discovering new
behaviors. When performing policy gradient updates, we set λ = 1 for the first step of each batch
(while the update is still completely on-policy), and we set λ = 0 for subsequent steps with the same
data, to avoid overfitting to the highest-scoring trajectory.
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5 Evaluating Alignment in LLM Policies

We empirically evaluate the effectiveness of existing alignment techniques when applied to control
policies implemented via LLMs. Our evaluation spans two domains of increasing complexity: a
tokenized 2D gridworld and a high-fidelity shared-control racing environment. We use task objectives
as our target preferences, focusing our work on exploring the trade-offs between alignment algorithms
without noisy preference datasets or objectives. The alignment process is the same as in conventional
multi-turn alignment, as the algorithm still needs to fit an unknown objective in each domain.

We begin with a gridworld domain (Fig. 4) designed to isolate key challenges in alignment. This
environment enables precise control over reward functions and policy behaviors, allowing us to probe
both single-objective alignment and multi-objective steerability across conflicting goals (e.g., “go to
the bottom left” vs. “go to the top right”). We also evaluate the role of pre-training in this domain by
comparing models trained from scratch versus those pre-trained on relevant tasks for each experiment.

We then move to a significantly more complex embodied control task: high-performance racing
(Fig. 6) in a shared autonomy setting [13]. Here, the LLM must learn to act in a multimodal
environment, jointly interpreting state features (ego trajectory, map features) and predicting low-
level driving commands (steering, throttle, brake).This domain does not allow for passive pre-
training; shared control requires the policy to be actively in the loop, making offline data collection
impractical. The LLM must also learn to coordinate with a stochastic human-like partner, modeled as
a heuristic controller with randomized acceleration inputs. This setup presents a challenging testbed
for preference alignment, particularly under a limited data regime.

Across both domains, we begin with a Llama 3.2 1B Instruct [21] model as our base LLM. Actions are
selected by sampling from a distribution over only the action tokens added to the LLM’s vocabulary,
and actions are generated by conditioning on the full episode sequence (i.e., the prompt with
objectives and weights, and all current state-action pairs as interleaved tokens). The LLMs are
updated via LoRA [26], and word embedding matrices are unfrozen to enable learning of new state
and action tokens. Prompts, example sequences, and training details are included in the supplementary
material. For both domains, we compare the following alignment techniques: Direct Preference
Optimization (DPO) [45], Direct Preference Optimization Positive (DPO-P) [43], Contrastive
Preference Optimization (CPO) [55], Group Relative Policy Optimization (GRPO) [49], and Group
Relative Policy Optimization + BC Regularization (GRPO+BC) (§ 4.2)

5.1 Gridworld: Simplified Alignment in a Synthetic Domain

Environment and Tokenization. The state space for our gridworld experiments is set up as a
32× 32 grid. At each timestep, the agent observes its current location and selects an action from one
of 8 cardinal directions (N, NE, E, SE, S, SW, W, NW). For our pre-trained experiments, these new
tokens are first learned by imitating “expert” policies (learned by standard policy iteration).

Multi-turn interactions in this environment are structured as interleaved (state, action) token pairs,
with task descriptions prepended as a textual prompt (e.g., “go to the bottom left”). During training,
the initial state is always randomly sampled from anywhere on the grid, and for evaluation the initial
states are fixed to midpoints around the grid and to the center of the grid.

Reward Functions. We apply a set of clear rewards to evaluate alignment and steerability:

• Single-objective: Navigate to the top right corner,
• Complementary objectives: Navigate to the top right corner and follow a sigmoid curve,
• Opposing-objectives: Navigate to the top right corner or the bottom left corner, and
• Multi-objective: Navigate to any arbitrary binary mixture of corners (e.g., 30% top right +

70% top left) as dictated by the prompt

We provide visualizations and task prompt examples for each of these reward surfaces in the supple-
mentary material (§ D). These reward functions target different axes of investigation for alignment
of a long-horizon, multi-turn LLM policy. Results are averaged across five training seeds. Table 1
shows performance when aligning pre-trained models, where blue indicates improvement over the
pre-trained initialization and red indicates degradation from the initialization. Table 2 shows results
for aligning models without pre-training.
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Table 1: Alignment Performance (Pre-trained, Gridworld only)
Gridworld

Method Single Complementary Opposing Multi-Objective

DPO-P 0.74 ± 0.17 0.52 ± 0.03 0.51 ± 0.09 0.16 ± 0.02
DPO 0.82 ± 0.07 0.83 ± 0.01 0.94 ± 0.02 0.62 ± 0.01
CPO 0.96 ± 0.01 0.89 ± 0.01 0.90 ± 0.06 0.69 ± 0.01
GRPO 0.99 ± 0.01 0.87 ± 0.00 0.99 ± 0.00 0.65 ± 0.02
GRPO+BC 0.99 ± 0.01 0.88 ± 0.00 0.96 ± 0.01 0.64 ± 0.01

Table 2: Alignment Performance (From-scratch, Gridworld + Shared-Control Racing)
Gridworld Shared Control Racing

Method Single Complementary Opposing Multi-Objective No Noise Low Noise High Noise

DPO-P 1.00 ± 0.00 0.30 ± 0.02 0.11 ± 0.08 0.17 ± 0.01 -7.98 ± 0.93 -9.88 ± 1.33 -9.54 ± 1.10
DPO 1.00 ± 0.00 0.60 ± 0.02 0.42 ± 0.13 0.52 ± 0.02 9.76 ± 3.32 7.39 ± 4.92 5.52 ± 2.33
CPO 0.98 ± 0.01 0.88 ± 0.00 0.55 ± 0.12 0.47 ± 0.02 -29.76 ± 0.01 -29.75 ± 0.01 -29.73 ± 0.02
GRPO 0.98 ± 0.00 0.81 ± 0.01 0.89 ± 0.05 0.52 ± 0.02 0.73 ± 0.95 5.75 ± 3.57 5.01 ± 3.75
GRPO+BC 0.97 ± 0.00 0.87 ± 0.00 0.86 ± 0.04 0.66 ± 0.01 3.66 ± 2.91 1.57 ± 1.49 6.16 ± 2.10

Single Objective Experiments. For pre-trained models in the single-objective task, the base LLM is
first trained to imitate an optimal policy for navigating to any of the four corners of the grid. The
alignment process is therefore about refining the existing knowledge of the LLM to upsample one
mode (i.e., the top-right corner). This very simple task hides a complication for contrastive training
objectives, such as DPO, CPO, or DPO-P: the policy is already optimal, so there is no benefit to
negating any rollouts, as all rollouts at the start of alignment are optimal. This leads to instability in
contrastive methods, as rollouts are negated despite successfully achieving their desired objectives.
In Table 1, we present results for each alignment strategy, and we see that DPO-P and DPO both
result in reductions in performance compared to the initial policy (indicated by the red cell shading).
Meanwhile, the group-normalization of GRPO effectively diminishes gradients for a group of rollouts
with nearly identical returns, meaning that existing knowledge is not lost during alignment for a
pre-trained policy. Note that this issue is not present in models that are trained from scratch (Table 2).
We provide training curves in Fig. 14, where this phenomenon is more clearly visible.

Complementary Objective Experiments. For the complementary objective experiment, pre-training
enables the base-LLM to imitate an independent optimal policy for each objective (top-right and
sigmoid). The subsequent alignment process is necessary to blend the reward functions into a policy
which balances complementary objectives (a visualization of this function is shown in §D). As shown
in Tables 1 & 2, most alignment strategies are able to recover this behavior, effectively blending the
two objectives. We observe nearly the same results with and without pre-training, with slightly worse
performance for DPO and DPO-P. Under this reward function, BC leads to policy improvements as
both CPO and GRPO+BC are the top performing methods for models with and without pre-training.

Opposing Objective Experiments. The opposing objective experiment presents our first look at a
test-time steerable policy, as the LLM must learn distinct behaviors that are activated by a prompt. As
in the single-objective experiments, pre-trained base LLMs for the opposing objective experiments are
trained to imitate navigation to all four corners. The opposing objectives therefore probe alignment
strategies on their ability to recover distinct modes within a pre-training corpus, even when those
modes may be direct opposites. We find that this setting is particularly challenging for contrastive
preference methods (DPO, CPO, and DPO-P) when learning from scratch, as they seem to collapse to
a single mode (i.e., pick one corner at the expense of the other). Akin to the single-objective setting,
contrastive methods are also subject to degeneration when initialized with an optimal policy.

Multi-Objective Experiments. The multi-objective setting presents the most interesting alignment
challenge in our synthetic setup, as it encompasses our three previous setups in a single sweep. In this
setting, the base LLM is pre-trained to navigate to the four corners of the grid, but now the alignment
task is to learn a steerable policy over all binary mixtures of reward functions. For alignment in this
task, we first randomly sample a prompt and matching reward function from the set of all 52 possible
combinations of the four corners (e.g., 10% top-left + 90% bottom-right). The model then rolls out a
group of episodes under this randomly sampled reward function and performs alignment to learn to
satisfy this reward function-prompt pair.
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This challenge involves both retaining the existing knowledge of the LLM, learning new interpolated
behavior modes, and learning a steerable policy for any randomly sampled reward function. In
this setting, BC offers a substantial benefit for both contrastive and RL methods, as GRPO is more
stable with BC regularization, and CPO outperforms all methods. When we remove pre-training,
GRPO+BC achieves the highest performance, and in both settings (with and without pre-training),
BC regularization stabilizes GRPO’s training, preventing policy degradation. We show full training
curves in (§ H) to highlight this stabilizing effect, as GRPO suffers unexpected drops in performance
while GRPO+BC continuously improves throughout training.

5.2 Shared-Control Racing: High-Dimensional Online Alignment

While synthetic domains are useful for targeted analysis of algorithmic performance without con-
founding variables of multi-modality or complex control, we are interested in understanding how
to align LLMs as policies for more complex tasks. We therefore turn to shared-control racing as
a demonstration task featuring multimodal inputs (trajectory and map features), 2048 new action
tokens, and entirely online behavior learning without relevant pre-training data.

In this task, the LLM is sharing control of a vehicle with a synthetic human in a race against an
automated opponent. We use the CARLA driving simulator [16, 13], which features realistic physics
and vehicle dynamics. The LLM’s goal in this domain is to win a race against an automated opponent
while sharing control with a synthetic human driver. Both the partner agent (i.e., the synthetic human)
and the opponent agent are controlled by heuristics that follow an optimal racing line, and both agents
use random acceleration values to introduce stochasticity in the driving behaviors. As both agents are
programmed to follow the same racing line and the ego agent starts behind the opponent, the ego
agent will never win the race without input from the LLM. Therefore, we expect the LLM to learn
assistive behaviors that deviate from the racing line to overtake the opponent and win the race.

Rather than using text for state data, we define a trajectory encoder and a map encoder, each
consuming continuous-valued state features (e.g., position, velocity, orientation) and projecting those
features into input tokens for the LLM sequence. The trajectory and map encoders are fully-connected
networks mapping from input dimensions up to the LLM’s hidden dimension, and are trained from
scratch during the alignment process. Similarly, the LLM is initialized with new tokens for the 2048
possible actions it can take, and must learn the values for these embeddings from scratch over the
course of training. The reward function is defined as a mixture of: Progress (move towards the finish
line), Pass (overtake the opponent and get as far ahead as possible), Bounds (stay near the center of
the track), Collision (avoid collisions), Completion (cross the finish line).

In addition to partnering with the heuristic controller from training, we also evaluate each method
when paired with controllers that have random noise injected at each step. We experiment with a
“Low Noise” test (random normal with σ = 0.05) and a “High Noise” test (σ = 0.1).

We show the average reward achieved by the best-performing training run under five evaluation seeds
under the no noise, low noise, and high noise settings in Table 2, where blue indicates improvement
relative to the pure-pursuit agent driving alone (i.e., helpful assistance), and red indicates degradation
(i.e., harmful assistance). We also include example rollouts from each method in the supplementary
material to better illustrate the various behaviors learned by the assistive agents.

While this task is solved effectively by DPO and GRPO, we also see negative effects from BC
regularization, particularly when applying CPO. As the LLM is not pre-trained for multi-modal data,
early rollouts are highly random and sub-optimal. BC regularization therefore encourages imitation
of bad rollouts. Curiously, we also observe that GRPO scoring improves with “High noise”. This
owes to random acceleration values further propelling the ego agent down the track, particularly after
the ego has already taken the lead (i.e., random noise can widen the gap after taking the lead).

6 Discussion

Examining our results first in the gridworld domains, we find that most off-the-shelf alignment
techniques can learn effective multi-turn policies for control in this simple domain, depending on
their pre-training and the difficulty of the task. Interestingly, we observe that aligning pre-trained
models with contrastive methods can actually lead to policy degradation if the pre-trained policy
is already optimal (Table 1). While from-scratch policies discover optimal behavior and remain stable,
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we observe degeneration if the pre-trained base model has already memorized perfect behavior. This
degeneration appears to be related to the lack of valid negative examples when the model is already
optimal. In appendix § G we show log probabilities of the chosen and rejected rollouts when training a
from-scratch vs. pre-trained DPO model on the simplest gridworld task (single reward), showing that
the pre-trained model cannot separate positive and negative rollouts. This result highlights a potential
failure mode: contrastive methods require valid negative examples to avoid degeneration, and
negative samples become increasingly rare as the model becomes increasingly optimal. This
finding reflects prior work on failure modes of DPO, identifying that DPO can get stuck in bad
local optima without an effective reward model [36, 56], which may also indicate attempts to “push
apart” sequences that are not meaningfully different. Training with group-relative advantage, on the
other hand, will simply zero out advantage for a batch that is uniformly optimal, thereby effectively
stopping training if the model is optimal and potentially avoiding this pitfall.

In the opposing- and multi-objective tasks, we observe that contrastive methods are prone to
collapse when they explore online to discover multi-modal behaviors. Specifically, CPO and DPO
achieve high returns with pre-trained LLMs (Table 1), but collapse to only a small subset of alignment
objectives when they must discover opposing behaviors online (Table 2). GRPO and GRPO+BC, on
the other hand, are well-suited to online exploration, and exhibit less degradation when switching
from pre-trained to from-scratch LLM policies. We present full training curves in the supplementary
material (§ H) to illustrate this degradation for both contrastive and RL-based methods.

Finally, considering our high-fidelity shared-control racing domain, we find that most alignment
algorithms are able to discover effective assistive strategies (i.e., multi-turn control policies) with
online exploration and reward-labeled trajectories (see Table 2). We observe that the CPO policy is
degenerate, always opting to drive directly out of bounds as fast as possible. This appears to be the
result of falling into a bad local optimum, as this achieves higher reward than completely stopping or
crashing, which are other likely behaviors early in training. Unfortunately, under the CPO objective,
there is no reference policy or regularization to prevent the model from doubling-down on this bad
local optimum, thereby leading to rapid policy degradation. DPO and GRPO learn successful assistive
strategies, and the resulting LLM is robust to noisy partner agents, despite being trained under the
“no noise” setting. This finding reinforces the potential upsides of using LLMs as actors, as the model
appears to generalize out-of-the-box to new evaluation settings.

In summary, we find that:

1. Contrastive alignment strategies (such as DPO) are ill-suited to refine policies that are
already optimal, as they require valid negatives and degenerate if all rollouts are optimal.

2. Contrastive alignment strategies struggle when they must discover multi-modal behav-
ior distributions or policies from a pre-trained model.

3. Group-relative advantage offers more stable gradient updates for refining already-
optimal policies, as there is little or no negative gradient applied to high-scoring rollouts.

4. Adding a BC regularization term helps to stabilize GRPO’s training, particularly for a
pre-trained model, reducing the risk of policy degradation without harming exploration.

7 Conclusion & Future Work

As LLMs tackle long-horizon, multi-turn tasks, alignment introduces unique challenges of stability,
preference optimization, and steerability. In this work we systematically compared alignment methods
for LLM policies, highlighting their strengths and pitfalls in online, low-data, and multi-objective
settings. We showed that GRPO can be viewed as a weighted, reference-free variant of DPO, and
that adding behavior cloning regularization improves stability in certain regimes. Our results provide
practical guidance: stability often comes from combining online learning with implicit regularization,
while contrastive methods risk degeneration without valid negatives.

There are several directions for future work. A natural extension of GRPO+BC is to study sensitivity
to the BC weight and consider refinements such as advantage-weighted regularization. More broadly,
improving steerability and multi-modal behavior discovery for contrastive methods remains an open
challenge. Finally, while our gridworld experiments examined multi-objective mixtures, future work
could investigate rich text-only multi-turn tasks such as interactive planning, web navigation, or
collaborative creativity, where long-term consistency plays a larger role in successful interaction.
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A Broader Impact Statement

As with much of the current LLM research, there are potential positive and negative consequences
of our research into embodied LLM policies. Any alignment technique can be used for improving
safety, user satisfaction, or usability of an embodied policy, but it can likewise be used to make a
model deceptive, dangerous, or antagonistic. Further, hidden LLM biases can have unforeseen effects
on embodied LLM policies. While these are valid concerns that one must address before releasing an
embodied LLM into the wild, they are beyond the scope of this work.

In this work, we have demonstrated an example of applying an LLM to learning to share vehicle
control with a synthetic human in a high-speed race against an automated opponent. In reality,
deploying such a system would require significant engineering to produce ensure safe operation and
alignment between the user and the embodied policy, which we have not addressed in this work.

Our work has provided insights into failure modes for applying off-the-shelf alignment algorithms to
embodied policy learning. Our findings, such as identifying that common techniques (e.g., DPO)
struggle to discover multi-modal behaviors, may provide useful insights to future researchers and
engineers looking to build safer and more reliable embodied policies via LLMs.

B Limitations

Our work has several limitations that we would like to specifically mention. First, while many
contemporary works are pursuing embodied LLM policies, the specific pre-training recipes, fine-
tuning schemes, and action decoding strategies vary across these works, and these may all have
effects on the resulting performance of different alignment algorithms. Our hope with this work is to
illustrate the trends that we observe in alignment algorithm performance and to specifically call out
the problem of embodied alignment, not to present the definitive characterization of alignment for
embodied LLM policies. Second, while our work considered multimodal input from trajectory and
map features, we have not explored image input or pre-trained VLA models [42, 33, 5]. While our
findings in theory generalize to any method that similarly tokenizes input modalities into the LLM
sequence, this remains untested. Finally, our work is confined to a 1B Llama3 model, and we have
not evaluated how these findings scale to significantly larger models.

C Preliminaries: PPO, GRPO, & DPO

Proximal Policy Optimization (PPO) [48] builds on REINFORCE by improving stability and sample
efficiency, introducing a clipped surrogate objective that limits the scale of policy updates:

LPPO(θ) = Et [min (r̂t(θ)At, clip(r̂t(θ), 1− ϵ, 1 + ϵ)At)] , (4)

where r̂t(θ) =
πθ(at|st)
πθold (at|st) is the probability ratio between the new and old policies, and ϵ is a clipping

parameter. PPO offers improved stability and simplicity relative to base policy-gradient methods,
while retaining high performance.

Group Relative Policy Optimization (GRPO) [49] simplifies the learning process by computing
advantage using rewards from a group of rollouts with the same initial state and the same objective,
rather than relying on a value function to score rollouts. GRPO computes a relative advantage for each
trajectory by normalizing its reward within the group: Aτ = r(τ)−µT

σT +ϵ where µT and σT are the mean
and standard deviation of rewards within a group T , and ϵ is a small constant for numerical stability.
In practice, GRPO can make learning more stable while reducing the computational requirement
for training, as we do not need to concurrently learn a value function to compute advantage scores.
Given these advantages, we opt to investigate GRPO over PPO for embodied policy learning.

Direct Preference Optimization (DPO) [45] further simplifies preference learning by directly
optimizing a policy to satisfy human preferences, without learning an intermediate reward model or
applying reinforcement learning algorithms. Given trajectory pairs (τ+, τ−) and a shared prompt q,
DPO minimizes the reference-model-regularized binary preference loss:

LDPO(θ) = −E(q,τ+,τ−)∼D

[
log σ̂

(
β

(
log

πθ(τ
+ | q)

πref(τ+ | q)
− log

πθ(τ
− | q)

πref(τ− | q)

))]
(5)
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where πθ is the preference-aligned policy, πref is the reference policy, log σ̂ is the log-sigmoid
function, and β is an inverse temperature parameter. This formulation is both efficient and robust, and
has been widely adopted in large-scale LLM alignment. Subsequent work introduced modifications to
the sampling strategies for DPO [44, 32] that leverage additional information from a group of rollouts
rather than simple binary comparisons. The recently introduced Contrastive Preference Optimization
(CPO) [55] approach drops the reference policy normalization in DPO and adds a log-likelihood
maximization term for the preferred trajectory, τ+:

LCPO(θ) = −E(q,τ+,τ−)∼D
[
log σ̂

(
β
(
log πθ(τ

+ | q)− log πθ(τ
− | q)

))
− λ log πθ(τ

+ | q)
]

(6)

which can be interpreted as a behavior-cloning regularizer [25]. While a simple and effective
modification, CPO risks degeneration if applied to online exploration by blindly supervising to a
preferred sequence and by abandoning a reference policy. However, assuming access to clean data
and a performant initialization, this modification allows CPO to improve over DPO.

D Gridworld Reward Surfaces and Prompts

Figure 2: Four corner reward functions for our synthetic gridworld experiments.

Our work uses five base reward functions: navigation to the four corners of the grid (Figure 2,
and travel along the sigmoid function. For our Single Objective experiments, we align only to
the top-right objective. For our Complementary Objectives, we blend the top-right and sigmoid
functions, leading to the reward function visualized in Figure 3 (encouraging the agent to travel to the
sigmoid function and then to the top-right of the grid). For the Opposing Objectives, the agent is
aligned to the top-right or the bottom-left objective, depending on the input prompt, but the same
model must learn to satisfy both behaviors by conditioning on the input prompt. Finally, for the Multi-
Objective experiment, we blend all 10% mixtures of the four corner reward functions. This leads to
52 possible reward functions (e.g., 10% top-left + 90% top-right), where the optimal behaviors are
often overlapping or related (e.g., travel along the top of the grid and towards the top-right corner),
but specific instantiations of the optimal behaviors will vary for each pair of functions.

The prompts used for our gridworld domains all follow the form:

{Reward description}: {weight} {state_0} {action_0} {state_1} {action_1}...

For example, when considering our Single-Objective, Opposing-Objective, or Multi-Objective
setting, model might see:

Go to the top right: 1.0, Go to the bottom left: 0.0, Go to the top left: 0.0, Go
to the bottom right: 0.0. <|-s(15,15)-|><|a:N|><|-s(15,16)-|><|a:N|>...

for an episode starting in the center of the grid and moving up.

For our Complementary Objective setting, the model prompt would instead be:

Go to the top right: 0.3, Go to the sigmoid: 0.7 <|-s(15,15)-|><|a:N|><|-s(15,16)
-|><|a:N|>...
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Figure 3: Blended reward for top-right + sigmoid

We present example rollouts under a well aligned model (Figure 4) and a model that suffers mode
collapse (Figure 5) to illustrate the domain, the task, and examples of successful and unsuccessful
policies.

(a) Left-Side Start (b) Center Start

Figure 4: Gridworld rollouts under a model that is successfully aligned to the target reward function.
Lighter colors indicate more reward, and the red line illustrates the model’s path.

E Shared Control Prompts and Rollouts

When the embodied LLM is deployed to the shared control setting, it receives the following prompt:

Stay central: 0.5. Penalty for collisions: -5.0. Follow: 0.0. Stay left: 0.0.
Overtake: 0.2. Proceed: 1.0. Stay right: 0.0. {Map tokens} {Trajectory tokens}

where multi-modal map data is encoded and slotted into the “{Map token}” and trajectory input data
is encoded and slotted into the “{Trajectory token}” spots.

We show a visual example from the CARLA simulator for a rollout in Figure 6, and we show example
rollouts using each method (and one with no assistance) in Figures 7 - 12.
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(a) Left-Side Start (b) Center Start

Figure 5: Gridworld rollouts under a model that has suffered mode collapse, navigating towards the
bottom left regardless of the input prompt and reward function. Lighter colors indicate more reward,
and the red line illustrates the model’s path.

Figure 6: Shared-control rollout learned using DPO for alignment. The LLM learns a highly
successful, albeit unexpected, strategy of crashing into the opponent, suffering a collision penalty but
gaining significantly more long-term reward via the pass objective.

F Training Details

To pre-train our gridworld agents, we first generate optimal rollouts under each reward mixture using
value iteration with γ = 0.95 and a convergence threshold of 10−4. The maximum rollout length is
set to 64 steps, which we re-use in our alignment setup. The grid size is set to 32 × 32.

Model: We use a LLaMA-3.2-1B-Instruct backbone with a LoRA adapter (r=16, α=16,
dropout=0.1) applied to attention, MLP, and word embedding layers. The tokenizer is extended with
special tokens for states and actions (e.g., <|s:(x,y)|>, <|a:NE|> in the gridworld, or <|a:1024|>
in the shared-control domain).

Optimization details: Note that we use 5000 episodes for our Multi-Objective experiments, as
these took longer to converge.
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Figure 7: Shared-control rollout with only the pure-pursuit agent (i.e., no assistance). We see that the
ego agent simply follows the opponent, failing to win the race.

Figure 8: Shared-control rollout with DPO-P assistance. We see that the ego agent simply follows the
opponent, failing to win the race.

Figure 9: Shared-control rollout with DPO assistance. DPO learns an effective assistive strategy,
deliberately crashing into the opponent to “fish tail” the opponent off the track, and then easily
winning the race. While this strategy incurs a reward penalty for collisions, the net effect is a highly
positive return due to the significant distance between the ego and the opponent, and due to the ego’s
chance to win and obtain the race completion bonus.
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Figure 10: Shared-control rollout with CPO assistance. CPO degenerates into a bad local optimum,
identifying that the left side enables quick gains per the “progress” reward, and avoids penalties per
the “collision” reward. However, this strategy, while superior to other early exploration strategies, is
clearly sub-optimal. Unfortunately, without reference policy regularization and with a BC term to
reinforce the best rollout in each group, CPO becomes trapped in this behavior and further reinforces
itself for the remainder of training.

Figure 11: Shared-control rollout with GRPO assistance. GRPO identifies a similar strategy to DPO,
spinning out the opponent to open up a wide lead and gain significant “pass” reward bonuses.

Figure 12: Shared-control rollout with GRPO + BC regularization assistance. GRPO + BC also learns
to collide with the opponent, ramming the opponent into a wall and continuing the race. However,
GRPO+BC learns to maximize acceleration away from this collision, to gain as much “progress” and
“pass” reward as possible, which then causes the ego agent to leave the track bounds prematurely.
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Algorithm 1 Supervision Loop for Preference Optimization

Require: Policy model πθ, reward functions R, batch size B, group size G
1: for each training episode do
2: for each batch in B do
3: Sample reward function λ ∼ R
4: Generate G trajectories {τi}Gi=1 from policy πθ with reward prompt λ
5: for each trajectory τi do
6: Compute per-step rewards rti = R(τ ti ) using weights λ
7: Compute discounted returns Rτ =

∑
t γ

trti
8: end for
9: Compute normalized advantages Aτ using group statistics

10: end for
11: Update model using selected preference learning algorithm
12: end for

Parameter Value

Episodes 200 (or 5000)
Group size 8
Batch size 4
Max steps per rollout 64
Learning rate 5× 10−5

Optimizer AdamW
Clip coefficient (GRPO) [-0.2, +0.4]
DPO β 0.1
DPO-P hinge λ 1.0

All experiments are conducted on a single NVIDIA RTX Ada 6000 48Gb GPU. Single Objective,
Complementary Objective, and Opposing Objective experiments take, on average, 50-60 minutes
to complete. Multi-Objective experiments take, on average, 18-24 hours to complete. Shared
Control experiments take, on average, 15-18 hours to complete.

G DPO Degeneration Investigation

In Section 6, we discuss a possible failure mode of DPO and of contrastive methods more broadly:
when such methods are pre-trained to near optimal solutions, they do not generate valid negative
samples, thereby leading the model to degenerate when performing gradient updates. Here, we
present a small investigation into this phenomenon. We re-trained two DPO models, one from-scratch
and one with pre-training, on our simple Single Objective gridworld setting. For every gradient
step over the course of training, we plotted the log probabilities of the chosen sequence, τ+, and the
rejected sequence, τ−. Figure 13a shows these log probabilities as they evolve over the course of
from-scratch training, while Figure 13b shows the log probabilities over the course of pre-trained
training. From these figures, it is clear that the pre-trained model is a much harder time disentangling
the two sequences, as we see that the chosen sequence does not begin to diverge from the rejected
sequence until nearly halfway through training. Conversely, in the from-scratch experiment, the
sequence likelihoods begin to diverge almost immediately, suggesting a clean learning signal that the
model is able to exploit for better gradients (and returns).

H Training Curves For All Domains

In this section, we provide training curves for our synthetic and shared-control tasks. In particular,
these figures highlight the policy degradation that we discuss in Section 6, particularly Figures 14 &
16, where the pre-trained model is optimal, but the contrastive methods degenerate.
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(a) Chosen and Rejected Log Probs When Training
From Scratch

(b) Chosen and Rejected Log Probs When Training
From a Pre-Trained Initialization

Figure 13: Log probabilities for an LLM policy being aligned using DPO in a simple gridworld.

(a) Pretrained (b) From Scratch

Figure 14: Single Reward

(a) Pretrained (b) From Scratch

Figure 15: Complementary Rewards
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(a) Pretrained (b) From Scratch

Figure 16: Opposing Rewards

(a) Pretrained (b) From Scratch

Figure 17: Reward Mixtures

Figure 18: Shared-Control Racing Reward Over Training
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