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Abstract

With the rise of social media, users are exposed
to many misleading claims. However, the per-
vasive noise inherent in these posts presents
a challenge in identifying precise and promi-
nent claims that require verification. Extracting
the important claims from such posts is ardu-
ous and time-consuming, yet it is an underex-
plored problem. Here, we aim to bridge this
gap. We introduce a novel task, Claim Normal-
ization (aka ClaimNorm), which aims to de-
compose complex and noisy social media posts
into more straightforward and understandable
forms, termed normalized claims. We propose
CACN, a pioneering approach that leverages
chain-of-thought and claim check-worthiness
estimation, mimicking human reasoning pro-
cesses, to comprehend intricate claims. More-
over, we capitalize on the in-context learning
capabilities of large language models to provide
guidance and to improve claim normalization.
To evaluate the effectiveness of our proposed
model, we meticulously compile a comprehen-
sive real-world dataset, CLAN, comprising more
than 6k instances of social media posts along-
side their respective normalized claims. Our ex-
periments demonstrate that CACN outperforms
several baselines across various evaluation mea-
sures. Finally, our rigorous error analysis vali-
dates CACN’s capabilities and pitfalls.1

1 Introduction

Social media have enabled a new way of commu-
nication, breaking down geographical barriers and
bringing unprecedented opportunities for knowl-
edge exchange. However, this has also presented a
growing threat to society, e.g., during the 2016 US
Presidential Election (Allcott and Gentzkow, 2017),
the COVID-19 pandemic (Alam et al., 2021; Rocha
et al., 2021; Nakov et al., 2022a), the Ukraine–
Russia conflict (Khaldarova and Pantti, 2016), etc.

1We release our dataset and code at https://github.
com/LCS2-IIITD/CACN-EMNLP-2023

Figure 1: Illustration of our proposed Claim Normaliza-
tion task, highlighting the normalized claims authored
by fact-checkers for social media posts from distinct
social media platforms.

False claims are an intrinsic aspect of fabricated
news, rumors, propaganda, and misinformation.
Journalists and fact-checkers work tirelessly to as-
sess the factuality of such claims in spoken and/or
written form, sifting through an avalanche of claims
and pieces of evidence to determine the truth. To
further address this pressing issue, several indepen-
dent fact-checking organizations have emerged in
recent years, such as Snopes,2 FullFact,3 and Poli-
tiFact,4 which play a crucial role in verifying the
accuracy of online content. However, the rate at
which online information is being disseminated far
outpaces the capacity of fact-checkers, making it
difficult to verify every single claim. This, in turn,
leaves numerous unverified claims circulating on-
line, potentially reaching millions before they can
be verified.

2https://www.snopes.com
3https://fullfact.org
4https://www.politifact.com

https://github.com/LCS2-IIITD/CACN-EMNLP-2023
https://github.com/LCS2-IIITD/CACN-EMNLP-2023
https://www.snopes.com
https://fullfact.org
 https://www.politifact.com


While the complete automation of the fact-
checking pipeline may pose hazards to account-
ability and reliability, several recent studies have
targeted identifying downstream tasks suitable for
automation, such as detecting claims (Daxenberger
et al., 2017; Chakrabarty et al., 2019; Gangi Reddy
et al., 2022b), evaluating their worthiness for fact-
checking (Gencheva et al., 2017; Jaradat et al.,
2018; Wright and Augenstein, 2020), making sure
they were not fact-checked before (Shaar et al.,
2020, 2022a,b; Hardalov et al., 2022), and vali-
dating them by retrieving relevant shreds of evi-
dence (Zhi et al., 2017; Hanselowski et al., 2018;
Soleimani et al., 2020; Pan et al., 2023). See also
a recent survey on automated fact-checking for as-
sisting human fact-checkers (Nakov et al., 2021a).

In light of the growing challenges faced by fact-
checkers in verifying the factuality of social media
claims, we propose the novel task of claim normal-
ization. This task aims to extract and to simplify
the central assertion made in a long, noisy social
media post. This can improve the efficacy and
curtail the workload of fact-checkers while main-
taining high precision and conscientiousness. We
provide a more detailed explanation of why the
claim normalization task is essential and illustrate
its significance in Appendix A.1.

In our problem formulation, given an input so-
cial media claim, the system needs to simplify it
in a concise form that contains the post’s central
assertion that fact-checkers can easily verify. To
better understand our motivation, we illustrate the
task in Figure 1. The first social media post reads,

‘Cyanocobalamin is a synthetic form of Vitamin
B12...If you’re on B12 supplements, throw them
away.’ This post contains some extraneous infor-
mation that has no relevance for fact-checkers. As a
result, they distil the information and summarize it
as, ‘Cyanocobalamin, the most common form of Vi-
tamin B12, is toxic.’ Fact-checkers tasked with veri-
fying the accuracy of such noisy posts need to read
through them and condense their content to obtain
a concise claim that can be easily fact-checked. Un-
fortunately, this process can be exceedingly time-
consuming. By automating the claim normalization
process, fact-checkers can work more efficiently.
Another aspect is that fact-checkers often choose
what to fact-check based on the virality of a claim,
for which they need to be able to recognize when
the same claim appears in a slightly different form,
and claim normalization is essential for this.

Our contributions are as follows:

• We introduce the novel task of claim normaliza-
tion, which seeks to detect the core claim in a
given piece of text.

• We present a meticulously curated high-quality
dataset specifically tailored for claim normaliza-
tion of noisy social media posts.

• We propose a robust framework for claim nor-
malization, incorporating chain-of-thought, in-
context learning, and claim check-worthiness es-
timation to comprehend intricate claims.

• We conduct a thorough error analysis, which can
inform future research.

2 Related Work

Claim Analysis. Previous work has focused on
distinct aspects of claims, including claim detec-
tion (Daxenberger et al., 2017; Gupta et al., 2021;
Sundriyal et al., 2021; Gangi Reddy et al., 2022a,b),
claim check-worthiness estimation (Hassan et al.,
2017; Gencheva et al., 2017; Barrón-Cedeño et al.,
2018; Jaradat et al., 2018; Vasileva et al., 2019;
Barrón-Cedeño et al., 2020; Konstantinovskiy et al.,
2021), claim span identification (Sundriyal et al.,
2022), etc. By curating the AAWD corpus, Bender
et al. (2011) pioneered the efforts in claim detec-
tion, the foremost step in the fact-checking tasks.
Following this, linguistically motivated features,
including sentiment, syntax, context-free gram-
mar, and parse trees, were frequently used (Dax-
enberger et al., 2017; Lippi and Torroni, 2015;
Levy et al., 2017; Sundriyal et al., 2021). Re-
cently, large language models (LLMs) have also
been used for claim detection (Chakrabarty et al.,
2019; Barrón-Cedeño et al., 2020; Gupta et al.,
2021; Gangi Reddy et al., 2022a,b).

Most previous work on claim detection and ex-
traction primarily concentrated on adapting to text
that comes from similar distributions or topics.
Moreover, it often relied on well-structured for-
mal writing. In contrast, our objective is to develop
a system that specifically addresses the challenges
posed by posts in social media and aims to ex-
tract the central claim in a more simplified manner,
which goes beyond extracting a text subspan in a so-
cial media post and aims at abstractive claim extrac-
tion that mimics what professional fact-checkers do.
To the best of our knowledge, we are the first to
address the task of claim extraction in this very
practical formulation.



Text Summarization. The task of claim normal-
ization is closely related to the task of text summa-
rization. In the latter, given a lengthy document,
the goal is to summarize it into a much shorter sum-
mary. Previous work on text summarization has
explored various approaches, including large pre-
trained seq2seq models to generate high-quality
summaries (Radford et al., 2019; Lewis et al., 2020;
Raffel et al., 2020).

One issue has been the faithfulness of the sum-
mary with respect to the source. To address this,
Kryscinski et al. (2020) introduced FactCC, a
weakly-supervised BERT-based entailment model,
which augments the dataset with artificially in-
troduced faithfulness errors. Similarly, (Utama
et al., 2022) trained a model for detecting factual
inconsistencies in data from controllable text gen-
eration that perturbs human-annotated summaries,
introducing varying types of factual inconsisten-
cies. Durmus et al. (2020) proposed a question-
answering framework that compares answers from
the summary to those from the original text.

All these approaches primarily focused on
general-purpose summarization and did not provide
means for models to generate summaries primarily
focusing on specific needs. To address this limi-
tation, controlled summarization was introduced
(Fan et al., 2018). One aspect of controlled sum-
marization is length control, in which users can set
their preferred summary length (Rush et al., 2015;
Kikuchi et al., 2016). Recent research has dis-
covered that, despite their fluency and coherence,
state-of-the-art abstractive summarization systems
produce summaries with contradictory information.

While text summarization systems can assist in
condensing social media posts into shorter sum-
maries, their primary goal is not to ensure verifia-
bility. It aims to capture the key points of the text
rather than emphasizing the specific claims within
the text that need to be fact-checked. Our task
of claim normalization, on the other hand, works
at an entirely different level. It needs a thorough
understanding of the claims made in the social me-
dia post and strives to ensure that the normalized
claims are not only consistent with the original post,
but are also self-contained and verifiable.

Despite the progress in text summarization, the
task of claim normalization remains underexplored.
In this work, we aim to tackle this challenging prob-
lem by developing a robust approach specifically
tailored to the unique aspects of this task.

3 Dataset

Existing text summarization datasets have not
specifically addressed the need for claim-oriented
summaries. To address this gap, we propose a
novel dataset CLAN (Claim Normalization), consist-
ing of fact-checked social media posts paired with
concise claim-oriented summaries (known as nor-
malized claims), created by fact-checkers as part of
the verification process. As a result, our dataset is
not subjected to external annotation, thus averting
potential biases and ensuring its high quality.

3.1 Data Collection

We gathered our fact-checked post and claim pairs
from two sources: (i) Google Fact-Check Explorer5

and (ii) ClaimReview Schema.6

Google Fact-Check Explorer. We acquired a list
of fact-checked claims from multiple reputed fact-
check sources via Google Fact-Check Explorer’s
API (GFC). This data collection pipeline followed
a three-step process. First, we extracted the title,
which is usually a single-sentence short summary
of the information being fact-checked, and the fact-
checking site’s URL. This step yielded a total of
22,405 unique fact-checks. We then proceeded to
retrieve the social media post and the associated
claim review if they were available on the fact-
checking site. Due to the collected posts having
already undergone fact-checking and containing
misleading claims, a significant number of them
were unavailable for inclusion in our dataset. More-
over, a significant number of the posts only con-
tained images or videos, which were unsuitable for
our task at hand. As a result, we were left with a
considerably smaller number of relevant instances.
We also noted that in certain instances, the title
in the Google Fact-Check Explorer and the claim
review were identical; consequently, we included
only one in the final dataset.

The ClaimReview Schema. We targeted the
ClaimReview Schema elements with an entry for
reviewed items as they were relevant to our require-
ments. Out of 44,478 entries, only 22,428 had this
particular field. Therefore, we had to filter out the
remaining entries. Next, we extracted all the links
to social media posts and their corresponding claim
reviews provided by the fact-checkers.

5https://toolbox.google.com/factcheck/explorer
6https://schema.org/ClaimReview

https://toolbox.google.com/factcheck/explorer
https://schema.org/ClaimReview


Social Media Post Normalized Claim

1 Research into the dangers of cooking with aluminum foil has found that some of the toxic
metal can contaminate food. Increased levels of aluminum in the body have been linked
to osteoporosis, and Alzheimer’s disease.

Cooking in Aluminum foil causes Alzheimer’s
Disease.

2 Did you know when ur child turns 6. U can add them as authorized user to one of ur
credit cards. Never give them card, & all payments u make from 6 to 18 goes to ur child
credit too..ur kid will have a unbelievable credit score from years of payment history.

6-year-old kids can be added as authorized users
on all credit cards.

3 As if it couldn’t get any worse. #Hope4Cancer says #RootCanal causes #CANCER
Solution... Rip Cancer patients teeth out. Monsters #FalseHope4Cancer
#ProtectCancerPatients

Having a root canal can cause cancer.

Root canal treatment causes cancer

Table 1: Examples of social media posts and their corresponding normalized claims from CLAN. The first two
examples come from the training set and each has one reference normalized claim, while the last one comes from
the test set, and thus it has two reference normalized claims.

Figure 2: Histogram of the cosine similarity between the
social media posts and the corresponding normalized
claims from our CLAN dataset.

As mentioned above, we only processed textual
claims and excluded other modalities, such as audio
or video. Further, we ensured that all the entries
were in English.

3.2 Data Statistics and Analysis

By using both of these data collection methods and
by exercising careful consideration, we curated a
total of 6,388 instances. To ensure the creation
of a diverse and high-quality test set, we chose
posts that comprised not one, but two reference
normalized claims (c.f. Sec 3.1). This enabled
us to capture different aspects and perspectives of
the normalized claims by including multiple refer-
ences, thereby increasing the test set’s robustness
and reliability. Representative examples from our
dataset are shown in Table 1, and the final dataset
statistics are shown in Table 2.

Dataset Train Val Test Overall

Total number of pairs 5,341 594 453 6,388
Avg. length of posts 39.52 37.12 57.97 44.87
Avg. length of claims 16.47 17.24 15.41 16.37

Table 2: Statistics about our CLAN dataset.

Figure 2 shows an analysis of the cosine sim-
ilarities between the social media posts and the
corresponding normalized claims. We can see that
the cosine similarities are consistently low for most
examples, demonstrating that claim normalization
involves more than just summarizing the social me-
dia post. This highlights the need for a specialized
effort to accurately identify, extract, and normalize
the claims within social media posts.

4 Proposed Approach

In this section, we explain our proposed
approach, Check-worthiness Aware Claim
Normalization (CACN), which aims to integrate
task-specific information with large language
models (LLMs). We focus our experiments
on GPT-3 (text-davinci-003) (Brown et al.,
2020). Our approach amalgamates two key ideas:
(i) chain-of-thought prompting and (ii) reverse
check-worthiness.

Chain-of-Thought Prompting. The realm of
chain-of-thought (CoT) prompting has emerged
as a veritable tour de force within LLMs (Wei et al.,
2022). Instead of undergoing the laborious process
of fine-tuning individual model checkpoints for ev-
ery new task, we use CoT to navigate the complex-
ity of claim normalization by using step-by-step
reasoning. To accomplish this, we use claim check-
worthiness, as described in the following subsec-
tion. This enables the model to iteratively enhance
its comprehension and effectively generate precise
normalized claims while eliminating the need for
extensive fine-tuning.

Our proposed prompt example is shown in Fig-
ure 3. Chain-of-thought approaches a complicated
problem by efficiently breaking it into a sequence
of simpler intermediate stages.



Figure 3: Illustration of our proposed approach. To generate a normalized claim, we use the CACN prompt template,
which encompasses explicit task instruction and relevant in-context examples, as well as chain-of-thought reasoning.

Reverse Check-Worthiness. The idea about re-
verse check-worthiness originates from the task
of check-worthiness estimation, which in turn is
an integral part of the manual fact-checking pro-
cess (Nakov et al., 2021b). We leverage check-
worthiness to steer the model’s attention toward
salient and pertinent information. By giving the
model the ability to produce rationales in natural
language that clearly explain the sequence of rea-
soning stages leading to the solution, we strengthen
its capacity for cognitive reasoning with unwaver-
ing efficacy. Based on prior research on claim
check-worthiness (Barrón-Cedeño et al., 2018;
Shaar et al., 2021; Nakov et al., 2022b), we direct
our model to prioritize claims that meet specific
criteria within the given social media post. These
criteria include identifying claims within social me-
dia posts that (i) contain verifiable factual claims,
(ii) have a higher likelihood of being false, (iii) are
of general public interest, (iv) are likely to be harm-
ful, and (v) are worth fact-checking. For instance,
in Figure 3, the claim normalization process be-
gins by identifying the central claim within the in-
put social media post. Subsequently, we reckon
the claim’s verifiability, i.e., whether it is self-
contained and verifiable (e.g., as opposed to not
containing a claim or expressing an opinion, etc.).
We further evaluate the likelihood of the claim be-
ing false and its overall check-worthiness. This
step-by-step process ensures a comprehensive anal-
ysis of the central claim’s characteristics, allowing
for effective claim normalization. By incorporating
these aspects into our approach, we aim to improve
the model’s ability to identify and prioritize claims
that require scrutiny and verification.

5 Experimental Setup

Baseline Models. For comparison, we use sev-
eral state-of-the-art generative systems and catego-
rize them into two groups: (i) Pre-trained Large
Language Models (PLMs): T5 (Raffel et al., 2020),
BART (Lewis et al., 2020), FLAN-T5 (Chung et al.,
2022), and PEGASUS (Zhang et al., 2020). For
T5, BART, and FLAN-T5, we use base and large
model sizes. For PEGASUS, we use the reddit
model. (ii) In-context Learning Model: GPT-3
(text-davinci-003) (Brown et al., 2020).

Evaluation Measures. To evaluate lexical over-
lap, we use ROUGE (1, 2, L) and BLEU-4 (Pa-
pineni et al., 2002). We further use METEOR
(Banerjee and Lavie, 2005) and BERTScore (Zhang
et al., 2019) to assess the similarity between the
gold and the generated normalized claims.

Zero-Shot Learning. Zero-shot learning aims to
apply the previously acquired capabilities of PLMs
to similar tasks in a low domain. We hereby assess
its suitability for the claim normalization task.

Few-Shot Learning. We adopt few-shot learning
with 10, 20, 50, and 100 training examples. This
gradual exposure to additional labeled data aims
to enhance the models’ ability to generate accurate
and contextually appropriate normalized claims.

Prompt Tuning. Prompt-tuning entails adding
a specific prefix to the model’s input customized
to the downstream tasks (Zhang et al., 2023). We
investigate the impact of affixing different prompts
to the given posts on the performance of T5-based
and GPT-3 models. To exert control over the gener-
ated normalized claims, we use five control aspects:



tokens, abstractness, number of sentences, claim-
centricity, and entity-centricity. A comprehensive
description of all these prompts is given in the Ap-
pendix (A.2).

In-Context Learning. LLMs have the remark-
able ability to tackle diverse tasks with a mini-
mal amount of examples given in-context learn-
ing prompts (Brown et al., 2020). We use GPT-3
(text-davinci-003) with three different prompts:
(i) direct prompt (DIRECT), (ii) question-guided
prompt (Q-GUIDED), and (iii) zero-shot chain-of-
thought (ZS-CoT). Detailed prompt templates are
given in Appendix A.3.

6 Experiments and Evaluation

Our experiments reveal that our CACN outperforms
all baselines across most evaluation measures. We
further examine all systems aiming to answer the
research questions listed below.

Do meticulously crafted prompts enhance the
performance of generative models? The find-
ings exhibit a significant performance improvement
when using prompt-tuning, specifically with in-
context examples. Table 3 shows the effectiveness
of various prompts across all evaluation measures.
However, a notable enhancement of approximately
2–3 points absolute is observed for all semantic
measures when transitioning from conventional
prompts to our proposed approach when using the
same in-context examples. This emphasizes the im-
portance of our framework tailored for the specific
task. Moreover, an upsurge in ROUGE-F1 scores
(1, 2, and L) emphasizes the resemblance between
the generated normalized claims and such created
by humans. This, in turn, validates the incorpo-
ration of the “reverse check-worthiness” chain-of-
thought process, which effectively integrates task-
specific information into the generative system. We
also attempt prompt-tuning in a zero-shot setup; the
results are shown in the Appendix (A.2). To sum-
marize, the deliberate design of prompts, along
with in-context learning, substantially enhances the
performance of generative models.

Is training models on a specific task less effective
than in-context learning with a few examples?
We observe substantial disparities in the perfor-
mance of models trained on task-specific data com-
pared to using in-context learning with a limited
number of examples, as shown in Table 3.

We can see that the models exposed to in-context
examples showcase superior performance, high-
lighting their efficacy in capturing task-specific
patterns. While the trained models exhibit ex-
cellence in lexical metrics, their performance in
semantic metrics is noticeably lower. Notably,
BARTLARGE , trained on our dataset, outperforms
other trained models by sizable margins. These
results strongly underline that, within the realm
of LLMs, incorporating prompt-tuning with in-
context learning holds more promise, leading to
enhanced generalization capabilities.

Do models demonstrate inherent proficiency in
generating normalized claims with minimal or no
prior training? We examine the potential benefits
of zero-shot and few-shot learning to investigate
the inherent proficiency in generating normalized
claims. The zero-shot and the few-shot results are
shown in Table 4. Zero-shot learning, which relies
solely on the pre-trained language model without
any task-specific fine-tuning, performs quite well.
On the other hand, few-shot learning does not re-
sult in significant improvements. Surprisingly, the
models trained using few-shot learning perform
slightly worse than zero-shot learning, where the
models have no exposure to task-specific data. Af-
ter training on ten examples, the performance of
FLAN-T5LARGE drops by 6 BERTScore points
absolute, and it continues to decline as more ex-
amples are provided.7 This unexpected result sug-
gests that few-shot learning may be unsuitable for
this intricate and complex task. The limited num-
ber of examples provided during few-shot learning
may have been insufficient for the models to gen-
eralize and capture the underlying patterns of nor-
malized claims effectively. Moreover, introducing
task-specific data might have introduced conflicting
information as these models were never trained on
this task, leading to a degradation in performance.

7 Qualitative Analysis

Error Analysis. To comprehend the performance
of CACN, we strive to qualitatively analyze the errors
committed by our model in this section. Table 5
shows some randomly selected instances from our
test dataset, along with gold normalized claims
and predictions from CACN. For comparison, we
also show predictions from two best-performing
baselines, BARTLARGE and DIRECT.

7See Appendix (A.4) for 50-shot and for 100-shot results.



Model ROUGE-1 ROUGE-2 ROUGE-L BLEU-4 METEOR BERTScore
P R F1 P R F1 P R F1

Fi
ne

tu
ne

T5BASE 23.65 43.60 28.99 11.38 20.70 13.90 20.45 37.91 25.15 4.57 28.86 85.13
T5LARGE 23.37 44.81 28.99 10.98 21.11 13.66 20.07 38.46 24.97 4.43 29.33 85.09
BARTBASE 33.41 41.64 34.11 17.57 21.05 17.55 29.70 36.61 30.25 6.69 29.57 86.32
BARTLARGE 35.83 42.88 36.12 19.25 21.73 18.97 31.64 37.65 31.93 7.71 31.07 86.92
FLAN-T5BASE 22.50 47.38 28.79 10.65 22.28 13.61 19.15 40.14 24.50 4.44 29.07 84.66
FLAN-T5LARGE 28.70 45.98 31.35 15.32 22.63 16.24 25.46 39.89 27.63 6.62 29.36 84.65

In
-c

on
te

xt DIRECT 32.19 46.43 35.52 14.19 20.60 15.65 27.32 39.75 30.31 6.52 33.25 88.87
Q-GUIDED 33.48 44.50 35.40 15.34 20.42 16.15 29.10 38.88 30.90 6.56 32.13 88.81
ZS-CoT 27.77 48.39 32.42 13.18 22.33 15.16 23.84 41.51 27.79 6.37 32.93 88.44
CACN (ours) 37.54 46.10 38.64 18.85 23.08 19.32 33.14 40.92 34.30 9.66 35.10 89.00

∆CACN−BEST (%) ↑ 4.77 ↓ 4.73 ↑ 6.98 ↓ 2.08 ↑ 1.99 ↑ 1.85 ↑ 4.74 ↓ 1.42 ↑ 7.42 ↑ 25.29 ↑ 5.56 ↑ 1.15

Table 3: Experimental results of CACN and baseline systems on CLAN. We report ROUGE (1, 2, L), BLEU-4,
METEOR, and BERTScore. The best scores are shown in bold, while the second-best scores are underlined, across
each metric. The last row gives the percentage increase in performance between CACN and the best baseline.

N-shot Model ROUGE-1 ROUGE-2 ROUGE-L BLEU-4 METEOR BERTScore
P R F1 P R F1 P R F1

0

T5BASE 23.38 42.25 27.79 11.16 19.54 13.14 20.29 36.52 24.10 4.30 28.45 85.36
T5LARGE 24.80 43.71 29.08 12.44 20.93 14.31 21.58 37.82 25.30 5.01 29.36 85.65
BARTBASE 22.57 47.76 27.96 11.24 22.60 13.60 19.58 40.91 24.14 4.64 30.44 85.11
BARTLARGE 20.80 39.68 24.41 9.86 17.20 11.16 18.23 33.85 21.20 3.92 24.67 84.78
FLAN-T5BASE 30.78 32.33 28.73 15.03 15.17 13.78 28.08 28.99 26.02 4.76 23.27 83.80
FLAN-T5LARGE 31.20 34.06 30.22 15.67 16.83 15.07 28.41 30.57 27.40 5.76 25.82 84.89
PEGASUS 23.96 36.07 26.16 11.69 16.76 12.48 21.14 31.50 22.99 4.87 24.87 83.07

10

T5BASE 21.55 44.22 27.44 9.87 20.36 12.57 18.31 37.77 23.40 4.04 28.64 84.97
T5LARGE 21.92 45.73 28.04 10.17 21.04 12.98 18.64 38.81 23.85 4.19 29.52 85.11
BARTBASE 20.09 53.08 25.65 10.14 24.94 12.60 17.34 44.77 22.00 4.11 29.67 84.72
BARTLARGE 19.71 53.22 25.30 9.83 24.87 12.27 17.01 45.22 21.70 4.00 29.51 84.65
FLAN-T5BASE 23.05 42.60 27.97 10.58 19.48 12.84 19.83 36.58 24.14 4.39 28.04 85.34
FLAN-T5LARGE 22.41 29.66 19.99 10.68 13.18 9.49 20.50 25.91 17.84 3.04 18.87 78.04
PEGASUS 15.26 40.32 20.86 7.15 18.29 9.58 13.39 35.87 18.35 3.44 24.73 80.02

20

T5BASE 21.56 44.22 27.46 9.89 20.36 12.59 18.33 37.78 23.42 4.05 28.64 84.97
T5LARGE 21.97 45.80 28.07 10.24 21.11 13.03 18.69 38.77 23.86 4.21 29.46 85.12
BARTBASE 20.08 53.16 25.63 10.14 25.03 12.60 17.34 44.89 21.99 4.11 29.63 84.72
BARTLARGE 19.66 53.11 25.25 9.80 24.84 12.24 16.96 45.08 21.64 3.97 29.46 82.69
FLAN-T5BASE 23.15 42.80 28.11 10.63 19.58 12.91 19.93 36.76 24.27 4.44 28.20 85.34
FLAN-T5LARGE 22.38 29.79 20.00 10.69 13.25 9.51 20.48 26.00 17.85 3.04 18.96 78.01
PEGASUS 15.25 40.30 20.84 7.15 18.29 9.58 13.38 35.87 18.35 3.44 24.72 80.01

Table 4: Zero-shot and few-shot performance on our dataset CLAN. We report ROUGE (1, 2, L), BLEU-4, METEOR,
and BERTScore.

Naturally, the predictions in the fine-grained
analysis are much more intricate than in the coarse-
grained quantitative setup. During our manual
qualitative analysis, we unveiled several interest-
ing patterns and errors in the generated responses.
For example, although BARTLARGE generated re-
sponses with a high BERTScore in example 1, we
noticed that the factual alignment is incorrect, mak-
ing this model untrustworthy for downstream tasks
such as claim check-worthiness and claim verifi-
cation. In contrast, our proposed model produced
a response that is both correct and precise. The
response generated by DIRECT is also accurate,
but it is excessively long, which contradicts the
objective of the normalized claims being concise
and straightforward.

This problem is also evident in example 3, where
DIRECT produces a factually correct claim but is
overly long.

In example 2, we observe that the BARTLARGE

model demonstrates the lowest number of hallu-
cinations and adheres closely to the input social
media post. In contrast, our model’s BERTScore
performed the worst for this example. However,
upon closer inspection, we noticed that the normal-
ized claim that our model generated was indeed
correct and most relevant for fact-checking. These
findings highlight the complexity and the trade-offs
involved in generating normalized claims. While
certain models may excel in certain cases, there
is often a compromise in other aspects, such as
factual accuracy and conciseness.



Social Media Post Normalized Claim BS
Sa

m
pl

e
1

They gave you a MASK to cover your face AND then gave you
George Floyd’s signature phrase ‘I can’t breath’ . . . . Yet 2.5
years later, most still struggle with the realization that
EVERYTHING on TV is fake. Floyd and ConVid never existed

GOLD: George Floyd and COVID-19 ‘never existed’. –

BART: George Floyd died of COVID-19 90.33

DIRECT: George Floyd’s death highlighted the lack of understanding of
the reality of events portrayed on television.

86.84

CACN: George Floyd and Covid never existed. 90.98

Sa
m

pl
e

2

Good News. Finally, CAJY VAZ, an Indian EX Student from St.
Xavier’s High School from Mumbai, presently based in Goa,
found a home remedy for *Covid 19*, which was approved by the
WOH for the first time. He proved that *one teaspoon of pepper
powder, two teaspoons of honey, a little ginger juice taken for 5
consecutive days can eliminate the effect of corona up to 100%*.
The whole world is starting to take this precautionary treatment,
finally a happy experience of 2021.

GOLD: Honey, Ginger, Black Pepper can cure Coronavirus. –

BART: One teaspoon of pepper powder, two teaspoons of honey, a little
ginger juice taken for 5 consecutive days can eliminate the effect of Covid
up to 100%.

84.89

DIRECT: Indian ex-student Cajy Vaz found a home remedy of pepper
powder, honey and ginger juice that can reduce the effects of Covid-19 up to
100%.

84.65

CACN: A home remedy of pepper powder, honey, and ginger juice can elimi-
nate the effect of COVID-19 up to 100%.

78.47

Sa
m

pl
e

3

Zelensky sold 17 million hectares of agricultural land to
Monsanto, Dupont, and Cargill. Yes, you read it well, 17
million hectares to GM0/chemical companies. This is very bad
for the entire world since Ukraine is the largest exporter of
wheat and other grains. Zelensky sold 28% of the entire
Ukrainian arable land. Australian National Review reports
three major US cross-border consortiums have bought 17
million hectares of Ukrainian farmland. To compare: In all of
Italy, there are 16.7 million hectares of agricultural land. It
turns out that three American companies in Ukraine bought
more valuable agricultural land than in all of Italy. The entire
area of Ukraine - 600,000 sqm, 170,000 sqm built.

GOLD: Ukraine President Volodymyr Zelenskyy sold 17 million hectares
of farmland to US corporations.

–

BART: Three American companies have bought 17 million hectares of
farmland in Ukraine.

88.03

DIRECT: Three major US companies have bought 17 million hectares
of Ukrainian agricultural land, which is more than in all of Italy. These
companies are Cargill, Dupont and Monsanto, with their main shareholders
being American venture capitalists Blackrock, Vanguard and Blackstone.

83.57

CACN: Ukrainian President Zelensky sold 17 million hectares of agricultural
land to Monsanto, Dupont, and Cargill.

90.48

Table 5: Examples of generated normalized claims along with the gold reference. BART refers to BARTLARGE .

Model Fluency Coherence Relevance Consistency SC

BART 3.44 3.74 3.66 3.82 3.77
DIRECT 4.48 4.58 4.03 4.26 4.38

CACN 4.59 4.63 4.17 4.34 4.39

Table 6: Human evaluation on the generated normalized
claims. SC denotes Self-Contextualized, while BART
refers to BARTLARGE .

Human Evaluation. We conducted an extensive
human evaluation to assess the linguistic profi-
ciency of the generated normalized claims. Build-
ing upon the measures proposed by van der Lee
et al. (2021), we evaluated the generated claims
based on four aspects: fluency, coherence, rele-
vance, and factual consistency.8 We further intro-
duced the parameter of self-contextualization to
measure the extent to which the normalized claims
included the necessary context for fact-checking
within themselves. Each of these measures played
a unique and vital role in evaluating the quality of
the generated claims. To conduct the evaluation,
we randomly selected 50 instances from our test set
and assigned five human evaluators to rate every
normalized claim on a scale of 1 to 5 for each of
these five aspects. All evaluators were fluent En-
glish speakers with a Bachelor’s or Master’s degree.
To ensure reliability, each example was evaluated
by all five evaluators independently, and then we
averaged their scores.

8See Appendix A.6 for more detail.

The average scores are presented in Table 6.
For comparison, we also included the results
from the best-performing baseline systems, namely
BARTLARGE and DIRECT. Our analysis reveals
that the outputs generated by CACN exhibit qualita-
tive superiority compared to the baseline systems
across all dimensions.

8 Conclusion and Future Work

We introduced the novel task of claim normaliza-
tion, which holds substantial value on multiple
fronts. For human fact-checkers, claim normal-
ization is a useful tool that can assist them in effec-
tively removing superfluous texts from subsequent
processing. This also benefits downstream tasks
such as identifying previously fact-checked claims,
estimating claim check-worthiness, etc. We further
compiled a dataset of social media posts compris-
ing over 6k posts and their normalized claims. We
further benchmarked this dataset with a novel ap-
proach, CACN, and showed its superior performance
compared to different state-of-the-art generative
models across multiple assessment measures. We
also documented our data collection process, pro-
viding valuable insights for future research in this
domain. In future work, we plan to extend the
dataset, including with new languages. We also
plan to use more powerful LLMs.



Limitations

While our study has made major contributions to
claim normalization, it is critical to recognize and
to address its potential limitations. During our data
collection process, we excluded claims about im-
ages and videos. Yet, we believe that including
multimodal information may help improve claim
normalization. Another key problem is that each
fact-checking organization adheres to its own set
of editorial norms, procedures, and subjective in-
terpretations of claims. These variations in writing
style and judgments make it challenging to estab-
lish a standardized claim normalization. Address-
ing this issue will necessitate attempts to develop
consensus or guidelines among fact-checking or-
ganizations in order to ensure greater consistency
and coherence in claim normalization. By acknowl-
edging and addressing these limitations, we may
endeavor to improve the reliability and soundness
of claim normalization systems in the future.

Ethics and Broader Impact

Data Bias. It is important to acknowledge the
possibility of biases within our dataset. Our data
collection process involves gathering normalized
claims from multiple fact-checking sites, each with
its own set of editorial norms, procedures, and sub-
jective interpretations. These elements can intro-
duce systemic biases that impact the overall assess-
ment of normalized claims. However, it is impor-
tant to acknowledge that these biases are beyond
our control.

Environmental Footprint. Large language mod-
els (LLMs) require a substantial amount of energy
for training, which can contribute to global warm-
ing (Strubell et al., 2019). Our proposed approach,
on the other hand, leverages few-shot in-context
learning rather than training models from scratch,
leading to a lower carbon footprint. It is worth
mentioning that using LLMs for inference still con-
sumes a considerable amount of energy, and we
are actively seeking to reduce it by using more
energy-efficient techniques.

Broader Impact and Potential Use. Our model
can interest the general public and save time for
human fact-checkers. Its applications extend be-
yond fact-checking to other downstream tasks
such as detecting previously fact-checked claims,
claim matching, and even estimating claim check-
worthiness of new claims.
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A Appendix

A.1 Task Motivation
Claim normalization holds significant promise for
combating the spread of misinformation by stream-
lining fact-checking processes and enhancing the
reliability of retrieved evidence. To substantiate
our hypothesis regarding the effectiveness of claim
normalization, we conducted a well-structured re-
trieval experiment using the Google API. The ob-
jective was to demonstrate the practical benefits of
claim normalization in assisting fact-checkers. We
randomly selected a sample of 35 instances from
our dataset, encompassing social media posts and
their normalized claims. Leveraging the capabili-
ties of the Google API, we sought the top-5 most
relevant articles for each post and its normalized
claim. In a meticulous evaluation process, three
annotators individually assessed the relevance (0
or 1) of each retrieved article to the input (post or
normalized claim). We then used majority voting
to determine the final relevance score for each re-
trieved article. As depicted in Table 7, the results of
our experiment consistently demonstrated the ad-
vantage of normalized claims in evidence retrieval.
In top-k precision evaluations for various values of
k (1, 3, and 5), normalized claims consistently out-
performed their corresponding source posts. This
observation indicates that claim normalization is
not merely a theoretical concept, but significantly
enhances the efficiency of evidence retrieval, result-
ing in more concise and effective tools for aiding
the fact-checking process.

P@1 P@3 P@5

Post 0.82 0.64 0.58
Normalized Claim 0.88 0.73 0.69

Table 7: Comparative top-k precision evaluations of
normalized claim vs. original posts in evidence retrieval.

A.2 Prompt-Tuning
Raffel et al. (2020) demonstrated that prompt-
tuning could enable controllable text generation
in T5-based models. We also investigate the im-
pact of affixing different prompts to the given in-
put on the performance of T5-based models for
normalized claim generation, along with GPT-3
(text-davinci-003) (Brown et al., 2020). We ex-
perimented with various prompts suffixed to the
input text before inference, in a zero-shot setting.
We discuss our different prompts Pi below.

Figure 4: Box-plot for the number of tokens in normal-
ized claims in CLAN.

Uncontrolled. We investigated the use of the
traditional prompt ‘summarize’ for uncontrollable
models. This prompt lacks specific control sig-
nals, making it uncontrolled as it does not provide
explicit guidance with specific attributes.

Token Limit. We found that normalized
claims written by fact-checkers typically adhered
to around ten words, as shown in Figure 4. Thus, in
order to control the length of the normalized claims,
we used the following prompt: “summarize within
the length of 10 tokens”.

Abstractness. Abstractness quantifies how
much the generated text’s words and phrases differ
from those extracted directly from it: a fully ab-
stractive summary expresses the central points of
the input in very different words and sequences of
words compared to the original input. Precisely, the
more n-grams overlap between a summary and its
original document, the less abstractive a summary
is. Thus, in order to control the abstractness of the
generated normalized claims, we use the prompt
“summarize with abstractness of a”, where a repre-
sents a value within the range [0;1], denoting the
desired level of abstractness. Inspired by Dreyer
et al. (2023), we compute the abstractness score ai
for each pair of a post pi and a normalized claim si,
and then we take an average across all examples:

ai = (1−X(pi, si)) (1)

where X is the harmonic mean of unigram overlaps
precision, bi-gram overlap precision, and longest
sub-sequence overlap precision. We found the av-
erage abstractness (a) to be around 0.8.

Single Sentence. The normalized claim written
by fact-checkers often consists of a concise single-
sentence summary of the post. We use the prompt
“summarise in one sentence” in order to limit the
normalized claims to a single-sentence summary,
ensuring brevity and conciseness in delivering the
pivotal assertion.



Model
ROUGE-1 ROUGE-2 ROUGE-L

BLEU-4 METEOR BERTScore
P R F1 P R F1 P R F1

T
5 B

A
S
E

UNCONTROLLED 23.38 42.25 27.79 11.16 19.54 13.14 20.29 36.52 24.10 4.30 28.45 85.36
TOKEN-LIMIT 22.87 42.71 27.59 11.42 20.61 13.60 20.21 37.47 24.34 4.60 28.67 85.31
ABSTRACTNESS 23.02 42.21 27.58 11.40 20.20 13.47 20.17 36.79 24.16 4.53 28.46 85.41
SINGLE SENTENCE 21.06 31.19 23.07 9.61 14.02 10.46 18.30 26.75 19.96 3.57 21.77 84.41
CLAIM-CENTRIC 19.76 38.89 24.20 8.90 17.94 10.96 17.37 34.33 21.38 3.51 25.77 84.58
ENTITY-CENTRIC 19.08 32.88 22.63 8.37 14.29 9.91 16.66 28.70 19.81 3.26 20.11 83.20

T
5 L

A
R
G
E

UNCONTROLLED 24.80 43.71 29.08 12.44 20.93 14.31 21.58 37.82 25.30 5.01 29.36 85.65
TOKEN-LIMIT 14.51 36.24 19.53 6.24 16.01 8.45 12.79 32.47 17.33 2.56 22.13 82.08
ABSTRACTNESS 23.53 44.44 28.62 11.69 20.98 13.96 20.66 38.64 25.10 5.02 29.74 85.58
SINGLE SENTENCE 23.92 44.73 28.92 11.81 21.04 14.04 20.82 38.60 25.16 4.90 29.94 85.65
CLAIM-CENTRIC 11.61 33.36 16.44 4.95 14.77 7.08 10.50 30.70 14.97 2.38 19.64 80.99
ENTITY-CENTRIC 12.35 30.61 16.55 5.13 13.42 7.01 10.91 27.22 14.65 2.20 18.07 82.11

G
PT

-3

UNCONTROLLED 19.17 48.22 24.77 7.17 19.69 9.51 16.09 40.49 20.76 3.09 27.60 86.77
TOKEN-LIMIT 26.29 40.66 28.92 9.75 15.03 10.59 22.24 34.07 24.34 3.75 26.25 87.11
ABSTRACTNESS 15.74 54.44 23.27 6.14 22.29 9.17 12.52 44.37 18.63 2.84 29.50 86.91
SINGLE SENTENCE 22.81 44.71 28.46 8.78 17.72 11.07 18.60 37.37 23.43 4.27 29.02 87.85
CLAIM-CENTRIC 14.03 56.41 21.72 5.53 23.93 8.68 11.11 46.18 17.33 2.59 25.88 86.50
ENTITY-CENTRIC 18.92 53.52 26.34 7.74 22.41 10.82 15.26 43.90 21.34 3.67 30.98 87.16

Table 8: Zero-shot prompt-tuning results for T5 and GPT-3 on our datatset CLAN.

Claim-Centricity. The task at hand is more than
just text summarization; it transcends conventional
text summarization by seeking not only to condense
the input social media post, but also to discern and
to encapsulate the central claim within that input
post concisely. Thus, we use the prompt “summa-
rize the text identifying the central assertion” to
helm the model to focus on the main assertion in
the input text.

Entity-Centricity. Similarly to the claim-centric
prompt, we investigated the technique of creat-
ing entity-centered summaries using the prompt,
“summarize the text focusing on the given keywords
(kw1, kw2, kw3, ...kwn)”. For this approach, we
use Open Information Extraction (Angeli et al.,
2015) in order to extract subject–verb–object triples
from the input texts.9 Subsequently, we compile
a keyword list encompassing all subjects and all
objects within the text. The objective is to direct
the model to produce summaries that align well
with the subjects and the objects mentioned in the
input text.

Results. We report the results for our zero-
shot prompt-tuning experiments in Table 8. We
can see that for the T5-based models, prompt-
tuning did not yield any major improvements;
rather, it decreased the performance as compared
to the uncontrolled prompt. However, GPT-3
(text-davinci-003) showed some improvements
when using these prompts.

9https://github.com/philipperemy/
Stanford-OpenIE-Python

A.3 In-Context Learning Templates

In Figure 5, we show the templates used for the
three in-context learning methods used for GPT-3
(text-davinci-003) as mentioned in Section 5.

A.4 Few-Shot Additional Results

We report 50-shot and 100-shot experimental re-
sults in Table 9. Interestingly, we observe that
introducing more examples to the model did not
help it much.

A.5 Implementation Details

We performed basic data cleaning, e.g., removing
non-alphanumeric characters, removing links and
hashtags, etc. on our dataset CLAN, using nltk. For
a standardized evaluation, we relied on widely rec-
ognized evaluation libraries such as py-rouge,10

nltk-bleu,11 nltk-meteor,12 and hugging-face bert-
score.13 We trained all models for 50 epochs, with
early stopping based on validation loss. We set the
patience value at 5, and we optimized the models
using the Adam optimizer. We set the weight decay
to 0.01. For our proposed approach CACN, we used
GPT-3 (text-davinci-0003) as base model. Fi-
nally, we set the maximum length of the generated
response to 120 with a temperature of 0.6.

10https://pypi.org/project/py-rouge/
11https://www.nltk.org/_modules/nltk/translate/

bleu_score.html
12https://www.nltk.org/api/nltk.translate.

meteor_score.html
13https://huggingface.co/spaces/

evaluate-metric/bertscore

https://github.com/philipperemy/Stanford-OpenIE-Python
https://github.com/philipperemy/Stanford-OpenIE-Python
https://pypi.org/project/py-rouge/
https://www.nltk.org/_modules/nltk/translate/bleu_score.html
https://www.nltk.org/_modules/nltk/translate/bleu_score.html
https://www.nltk.org/api/nltk.translate.meteor_score.html
https://www.nltk.org/api/nltk.translate.meteor_score.html
https://huggingface.co/spaces/evaluate-metric/bertscore
https://huggingface.co/spaces/evaluate-metric/bertscore


Training
Samples Model ROUGE-1 ROUGE-2 ROUGE-L BLEU-4 METEOR BERTScore

P R F1 P R F1 P R F1

50

T5BASE 21.57 44.24 27.46 9.88 20.36 12.58 18.32 37.78 23.41 4.05 28.64 84.97
T5LARGE 22.00 45.86 28.11 10.24 21.11 13.03 18.71 38.83 23.90 4.22 29.49 85.11
BARTBASE 20.10 53.16 25.65 10.15 25.02 12.61 17.35 44.93 22.00 4.11 29.66 84.71
BARTLARGE 19.63 52.96 25.20 9.78 24.73 12.21 16.94 44.88 21.61 3.97 29.46 84.65
FLAN-T5BASE 23.16 42.87 28.14 10.62 19.60 12.91 19.92 36.79 24.26 4.43 28.30 85.35
FLAN-T5LARGE 22.38 29.63 19.97 10.69 13.25 9.51 20.49 25.92 17.84 3.03 18.92 77.84
PEGASUS 15.24 40.28 20.83 7.15 18.29 9.58 13.38 35.84 18.34 3.44 24.71 80.02

100

T5BASE 21.55 44.24 27.45 9.87 20.36 12.57 18.31 37.78 23.40 4.04 28.65 84.97
T5LARGE 21.97 45.72 28.06 10.24 21.06 13.02 18.69 38.78 23.86 4.22 29.47 85.11
BARTBASE 20.09 53.28 25.65 10.15 24.97 12.60 17.35 44.91 22.00 4.11 29.61 84.72
BARTLARGE 19.68 53.00 25.26 9.80 24.72 12.22 16.99 44.94 21.67 3.97 29.43 84.66
FLAN-T5BASE 23.19 42.91 28.18 10.65 19.63 12.94 19.96 36.85 24.32 4.43 28.29 85.36
FLAN-T5LARGE 22.38 29.63 19.97 10.69 13.25 9.51 20.49 25.92 17.84 3.03 18.92 77.85
PEGASUS 15.30 40.30 20.88 7.16 18.27 9.58 13.41 35.89 18.37 3.43 24.74 80.02

Table 9: Few-shot results on our dataset CLAN.

A.6 Human Evaluation Criteria
Following van der Lee et al. (2021), we define the
four human evaluation measures as follows:

1. Fluency: measures the linguistic proficiency
exhibited by the generated responses;

2. Coherence: evaluates the intrinsic structure
and the organization of the generated normal-
ized claims;

3. Relevance: appraises the discerning selection
of contextually appropriate content within the
generated response;

4. Factual consistency: examines the intricate
alignment between the factual accuracy of the
generated response and the source text.



Figure 5: Our templates for in-context learning prompts used for GPT-3 (text-davinci-003).


