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Abstract

Diffusion models learn to reverse the progressive
noising of a data distribution to create a generative
model. However, the desired continuous nature of
the noising process can be at odds with discrete
data. To deal with this tension between continu-
ous and discrete objects, we propose a method of
performing diffusion on the probability simplex.
Using the probability simplex naturally creates
an interpretation where points correspond to cat-
egorical probability distributions. Our method
uses the softmax function applied to an Ornstein-
Unlenbeck Process, a well-known stochastic dif-
ferential equation. We find that our methodology
also naturally extends to include diffusion on the
unit cube which has applications for bounded im-
age generation.

1. Introduction

Diffusion models (Sohl-Dickstein et al., 2015) (Ho et al.,
2020) (Song & Ermon, 2019) have emerged as a well-
established class of generative models, finding applications
in image (Dhariwal & Nichol, 2021), speech (Jeong et al.,
2021), and video (Singer et al., 2022) domains. Diffusion
processes work by progressively adding noise to data, which
transforms a complex data distribution into a simpler, easy-
to-sample distribution. Diffusion models are used to reverse
the noising process by learning a stochastic differential equa-
tion (SDE) parameterized by a neural network that generates
the data distribution (Song et al., 2021b).

In comparison to other popular methods, such as Generative
Adversarial Networks (Goodfellow et al., 2014), diffusion
models present a compelling advantage as they have an
exact likelihood interpretation and do not require adversarial
training that other state-of-the-art generative models require.
That is, diffusion models enjoy the benefit of having a more
stable training process that avoid non-overlapping data and
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generated distributions (Yang et al., 2023). Furthermore,
diffusion models are also advantageous over discretized
normalizing flows, which face practical restrictions when
computing the determinant of the Jacobian from the change
of variables formula (Chen et al., 2018).

Most work with diffusion models assume a continuous data
distribution in R™ and noising is performed with Gaussian
distributions. This presents a problem for discrete sampling:
how would one add continuous Gaussian noise if the un-
derlying categories are discrete? We propose the simple
solution to perform diffusion by sampling from k categories
on the probability simplex S* = {x € R* : 0 < 2; <
1, Zle x; = 1}. The result of the diffusion is interpreted
as the probability that a given category is chosen. By shift-
ing from categories themselves, to the space of probabilities
over categories, we effectively turn a discrete problem into
a continuous one.

2. Background
2.1. Diffusion with Score-Matching

Score matching as formulated by (Song et al., 2021b) con-
siders a continuous time diffusion process. Typically, the
forward process does not have parameters and is indepen-
dent of the data distribution. In particular, the forward
process is described by an SDE

dXt = f(Xt7 t)dt + G(Xt7 t)th (1)

where w is the standard Wiener process (also know as
Brownian motion), f(-,¢) : R? — R? is the drift term
and G(-,t) : R? — R?¥4 is the diffusion coefficient. The
process maps a data distribution, p;—o(x¢) € R< into some
limiting distribution p;—1 (x¢). The limiting distribution is
chosen to be easy to sample from, and independent from the
data distribution. Classical results in the theory of stochastic
processes then tell us that the time reverse of this process is
itself an SDE and obeys
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1
dx; = f(x,t)dt = 5V - [G(x, )G (xy,t) "]dt

1
- §G(Xt, t)G(x¢, 1) " Vlog py(x¢)dt + G(x¢,t)dW
2

where time now flows backwards from¢ = 1to¢t = 0
and V- F(x) := [V - f1(x),- -+, V - £4(x)] " for a matrix-
valued function F(x) = [fy(x),--- ,fs(x)]T. The goal of
diffusion models is to approximate the score V log p;(x;)
and use the reverse SDE to sample from the generative
model. The score can be approximated by sg(x;, ) which
provides the following objective

0" = argminﬂEtNU[Oyl] EXO ~po(x) ]Ext ~pot(x¢|x0)

5 3)

A(t) [llso(xt:t) — Vi, log pos (xe[x0) [13]
where A(t) is a weighting function and pg;(x¢|Xs) is the
transition kernel from z(s) to z(¢). We note that a number
of other objectives can be used to learn the score function
(Song et al., 2021b). A common practice when using dif-
fusion models is to discretize time into uniform steps (Ho
et al., 2020).

3. Method

3.1. The Logistic-Normal Distribution on the
Probability Simplex

Recall the definition of the probability simplex S*. We
interpret points in the probability simplex as probability
distributions over k categories.

The logistic-normal distribution is an example of a proba-
bility distribution over the probability simplex. It is defined
as the probability distribution of a random variable whose
multinomial logit is a normal distribution, (or equivalently
it is the distribution of the softmax function applied to a
Gaussian, see (5)). The probability density function of the
logistic normal is

“

where x € S and X4 = [71,...,24-1]". Inthe d = 2
dimensional case, the distribution can be understood as map-
ping a Gaussian distribution on R to [0, 1] via the sigmoid
function.

A A

Figure 1: Examples of the Logistic-Normal distribution
(PDF values) on 8 with parameters z = [0, 0], [0.2,0.35]
and o = [0.5,0, 5], [0.6, 0.8] respectively.

To constructively sample from this distrubution, we map a
point y € R4~ to a point in the probability simplex x € S¢

using the additive logistic transformation o : R4~! — S9
defined by
eYi
——g > ifie{l,...,d—-1}
L+ Yo e
xi = o4(y) = :
14 evr
&)

Where we note that 1 — Zf;ll x; = (1+ Zk 1 eYk)
Conversely, the unique inverse map from S? to R4~! i

— log [X] e {l,....d—1}
X4

3.2. The Ornstein-Unlenbeck Process

The Ornstein-Unlenbeck (OU) process is a real-valued
stochastic process used in financial mathematics and phys-
ical sciences. Originally, it was developed to model the
velocity of a Brownian particle under the force of friction.
The process can be described by the following stochastic
differential equation:

dYt = —eYtdt + O'th

where § > 0 and ¢ > 0 are parameters and W, is the
WWiener process. The distribution at time ¢ of the process
is given by a normal distribution

1
Y, LN (Yoe_gt, % (1—e 2% I) .

In the limit as ¢ — oo the process has a distribution of
N (0, 55 ), meaning that 6 uniquely determines the limiting
distribution.
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3.3. Diffusion on the Probability Simplex

Our main contribution is a novel diffusion process that oper-
ates on the probability simplex. Our method works by first
defining the forward process by using the additive logistic
transformation from equation 5 to map an OU process from
R? to S9.

Xt = O'(Yt)

In our case we are able to get an exact solution for S;
by pushing forward the solution of the OU process, mean-
ing that X; ~ o (N (Yoe ™, 55 (1 — e72%%))). In other
words, at each point ¢ we have a closed form representa-
tion of the transition kernel p;o(x¢|xo) which is a logistic
Gaussian distribution that we can efficiently sample from.
Moreover, one can obtain the SDE for X, by applying Ito’s
lemma to the SDE for Y. Carrying this out (see appendix
A.2) gives

where the diffusion coefficient matrix G can be written as:
X; 1-— X ), =7
Gij(X,t)Z{ ( ) ) ]
—XiXj, i F

and the drift term f can be written as:

fi(X, t) = —QXZ' (1 — xi)ai + ijaj
J#i

where a; = x; + 3(1 — 2x;).

In order to train the score-matching model, we must also
have a closed form solution of Vlog p(x);, which we show
in Appendix A.1. The results of the derivation is that the
score of the logistic-normal distribution is

1(1 1

Vlog p(x); = - (md ZUZ(X) + xd”f@))

k=1 (7N
X; — X(q

TiTq

where we write o) (x) = log {x—;} — p. Finally, the calcu-

lation for deriving V - [G(xy,t)G(x¢,t) '] is performed in

Appendix A.3.

3.4. Implementation Considerations

An example application of this model is for modelling dis-
crete data. A dataset with k different categories, can natu-
rally be modelled with the simplex in S*. The data distri-
bution could then be represented as a linear combination

of Dirac delta functions centered at the corners of the sim-
plex at t = 0. In other words, each data sample would
correspond to a one-hot vector. In practice we relax this
condition such that at the beginning of the forward process,
data samples are mapped to vectors x = [a, 3,---, ] T,
where 3 = }l’fg For example, a reasonable choice of «
would be 0.9 if k£ = 6.

During the optimization process, the score suffers from
numerical instability in perimeter regions on the simplex.
Furthermore, the region around the perimeter increases
as the dimension of the simplex d grows. To deal with
this problem, we notice that we directly predict the term
—3G(x,t)G(x,t) "V log p;(x) from the reverse diffu-
sion SDE.

10
p(x)
Vlogp(x)

8 g* () Vlog p(z)

0.0 0.2 0.4 0.6 0.8 1.0

Figure 2: A comparison between the regular
score, Vlogp;(x), and the reverse SDE term,
g*(z,t)Vlog pi(z), in the one-dimensional case. The
reverse SDE term is bounded at the border of the interval
[0, 1], unlike the score. The PDF of the logistic-normal
distribution is plotted for clarity, along with a dotted line
around the score for visual clarity.

4. Results

We present initial results of the Simplex Diffusion model
using the MNIST dataset. We create a discrete version of
the dataset which maps the pixel values that are typically in
[0,1,---,255] to [0, 1, 2] for a total of k& = 3 unique cate-
gories. In our experiments we use the following parameters:
0 =20, =0.9and ¢ € [0.01,0.25]. We parameterize the
score function by a U-Net (Ronneberger et al., 2015) model
with 35 million parameters.
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When samples are generated, they must be converted from
vectors on the probability simplex, to one of k discrete
categories. We choose to take the argmax of the sampled
vectors to convert from points on the simplex to discrete
categories. Qualitative results from this initial experiment
can be found in Figure 3.

Figure 3: Random samples from a Simplex Diffusion model.
Samples are taken at the beginning, middle and end of the
reverse process and correspond to the top middle and bot-
tom row respectively. Sampling is done with 7" = 1000
denoising steps

5. Discussion

Our methodology is related to recent works extending dif-
fusion to the bounded domains of the probability simplex
and the unit cube. In this section we compare these method-
ologies with our proposed model to highlight important
differences.

5.1. Simplex Diffusion

Categorical SDEs (Richemond et al., 2022) use a diffu-
sion process of Gamma random variables to sample from a
Dirichlet distribution over the simplex. The Dirichlet dis-
tribution is an appealing choice as it is the conjugate prior
of the categorical distribution . The stochastic process used
is the Cox-Ingersoll-Ross process, which is defined by the
SDE df = b(a — 0)dt + ov/2b0dw, where 6(t = 0) > 0
and a, b, o > 0. A drawback of this approach is that while
the process has a limiting distribution that is Dirichlet, this
is not the case during the transient regime of the process dy-
namics. Furthermore, to the best of the authors knowledge,
there does not exist a closed-form solution for the transi-
tion density. In practice, this prevents using the standard
score-matching or diffusion training paradigm. Fortunately,
the authors are able to use a different maximum likelihood
training introduced in (Song et al., 2021a).

Our proposed diffusion with the OU process and the Logit-

Normal distribution doesn’t suffer from these shortcomings
due to the correspondence between diffusion spaces in R¢
and S¢ via Ito’s lemma. Throughout the diffusion dynamics,
distributions remain Logistic-Normal, and can be efficiently
sampled from. This property allows our methodology to fit
into the typical diffusion training practices. Additionally, it
would be possible to train a classical diffusion model in R?
which has a corresponding interpretation on the simplex.

5.2. Unit-Cube Diffusion

Reflected Diffusion (Lou & Ermon, 2023) is a method of
performing diffusion on the unit cube [0, 1] that is moti-
vated by applications to pixel-based diffusion models. When
image based diffusion models are used with Gaussian noise,
sampling errors often compound and result in pixel values
that are outside the valid data range of the unit cube. To
mitigate this problem, thresholding is often performed to
keep generated images to reasonable values via knowledge
of the data distribution constraints (Ho et al., 2020) (Dhari-
wal & Nichol, 2021). While thresholding is popular in many
image based diffusion models, it is theoretically unsound
as there is a disconnect between the training and generative
processes. The authors address this problem by using a
reflected diffusion process that reflects particle trajectories
into the interior of a data domain {2 that would normally
extend outside the domain.

An interesting property of our Simplex Diffusion Model is
that it can be naturally extended to higher dimensions by
performing diffusion on the unit cube. By taking the product
of d one-dimensional processes that we have developed,
we create a diffusion process that is contained to the unit
cube. A drawback of the Reflected Diffusion approach is
that the resulting score from the forward process cannot be
written in closed form. The authors use a combination of
two approximations to apply their model in practice. On
the other hand, our method maintains an closed form score
function that is easy to implement.

6. Conclusion

We introduce a novel method to perform diffusion on the
probability simplex and the unit cube. In both cases our
method allows for an exact solution for the SDE dynamics,
and fits into the common diffusion training paradigm.

Future work involves testing the method on more complex
datasets and evaluating the properties on the categorical
distribution. For example, if the entropy can be utilized as
a natural notation of aleatoric uncertainty over generated
values.
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A. Mathematical calculations

A.1. Score Derivation

We want to calculate Vxlog p(x) where

BRI
log | —|—p
Xd 2

d
log p(x) = —log [Z] — log [H x] - %

We first find the gradient of second term, given that the log normalizing constant doesn’t have a gradient.

d
a = —Vlog [H Xi}
i=1

P d—1 d—1
a; = ~x ( log [x;] +log |a — Zxk]>
1=1 k=1
1 n 1
Xi a-— Z;i X
11
o Xd X;
- X; — X(d
o XiXd

Working with r := 22 %u we get

Combining terms again we get:
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= —@ Z% j%(x)

where we write 7/, (x) = log {:ﬁ} K

For the final results, we must combine the o and /3 terms together to get:

: X; — X(d
Vil =—— :
0g Pa(X)i vXy Z 7# (x) + -

A.2. Sampling and Ito’s Lemma
We are working with an OU process of the following form:

dY,; = —-0Y.dt + dB;
with a corresponding process on the simplex:

Xt = O'(Yt)
To keep this section self-contained the definition of o is:
(y) = —2 (o d—1}
oily 71'6 1,...,d—1
14+ 35 ev

We must write X, in a form where X; = (X, t)dt + G(X, t)dB;. This can be done via Ito’s Lemma:

1
dX; = —0(Vxo;(X)) " Xdt + 5Tr[Hm(X)]dt + Vxoi(X) dB

Where Hx is the Hessian matrix and we drop the time dependence of S and X, for notational simplicity. First we deal
with the gradient term of the equation. We will use v(X) = 1 + Z el ! eXx 10 keep notation smaller.

X

v(X)
o eXi
X, 7(X)

dei(X) =G= VX

g9; =
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We deal with the case when when j = ¢ below

q - 2
X, v(X)
=) () e = K (X)
X, 0X;

(X)72 [e™y(X) — 2]

gl
i (X)y(X) T (X)) = eX]
0i(X)(1 = 04(X))

2

and the case when j # i:

Next we deal with the trace Hessian term:

-1 g2
Tr[Hx o (X)] =
2 5%

> a5zt (X)

Jj=1

which again can be split into two cases. First we deal with the case when j = ¢

82
X2

72(X) = az o (X)(1 - 0i(X)

= a0;(X)(1 — 04(X))(1 — 204(X))

Then the case where j # i

3 a —

In summary the diffusion and drift terms are:
X; 1-— X ), t=7
Gi(xt) = { ( ) J

—X;Xj, i F ]

fi(x, t) = —0x; (1 - xi)ai + ijaj
J#i

where a; = x; + 3(1 — 2x;)

A.3. Diffusion Matrix Divergence
Suppose we have x, which is some position on the probability simplex, and G from above in A.2. We want V - G(x)G(x) "
where the definition of the matrix divergence over matrix valued function F is (defined similarly as Appendix A. in Song

et al. (2021b)):
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V- F(x):=[V-f(x),V-f2(x),.]"

where F(x) = [f1(x), fa(x), ...] T. To further clarify some terms, we start with G (x) = G(x) ", which gives us the Hessian
as H = G(x)G(x) ". Equivalently, the Hessian in coordinate-wise notation is:

zg - Zsz Gk] )

We will then being our derivation by analyzing G(.), which decomposes into two cases:
Gij(X) _ Xz(l — Xi)> whenz: = ]
—X;X;, when ¢ # j

Starting with case 1, i = j:

Zsz sz )
X1 —x;)2 +x? Zxk

k#i

=x? (1—Xi)2+2xi
ket

Then for case 2, ¢ # j:

H;; :ZGM x) G (x)

= —xi(1 = x)xi%; — %5 (1 = x;)%,%; + XiX; Y X

k#i,j
= —xix;(1 —x;) — x3 xz( )+ xix; Z X3
k#1i,j
=—x;%; | x(1 —x;) +x;(1 Z X7

k#i,j

Now, let d be the divergence of H as defined at the start of this derivation:

d:=V -H=[V-hi(x),V-hy(x),..]"

where h; is a row vector. Then continuing, we have that d; is given as the following summation:

AV
8
;T

From the summation, we again have two cases, first when k& = i and second when k # i. Starting with case 1, i.e., when
k = i, we first construct a "helper” function a(x;) such that:

{agxi> = (1= %)+ Ty X7
aixia(xi) =—-2(1 —x;)
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. d .
Then using a(x;) we can express Tmh“ as:

h“‘ = 7X?G(Xi)

aixi 8Xi

=2x; [ (1 —x%y) —i—Zxk 2(1 — x;)x7
k#i

Now, examining case 2, i.e., when k # 4, we can again define another "helper” function b(x;) such that:

{b x;) =%x;(1 = %) +x5(1 —%x5) — 32545 xj,

8?(1' (Xz> = (1 _Xi) — X; = 1 _2Xi

Using b(x;) leads us to the following for aixihij:

0 0
aixihij = —TXZ_XZ‘X]‘I)(XZ')

=—x; [ % (1 —x;) +x;(1 — x;) Z x7 | —xx;(1 — 2%;)
k#i,j

Finally, we are left to combine the previous results in order to derive d;:

V-
5
Z o
J
0
hii ——h;
* ; ox;

Also note that we can further expand the above expression to obtain the following:

d; =2%x; | (1—x;) +Zxk 1—x1)x2—z x| x(1—x) +x;(1 —%x5) — Zxk +x;x; (1 — 2x;)
ki JFi k#i,j



