
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Diffusion on the Probability Simplex

Anonymous Authors1

Abstract
Diffusion models learn to reverse the progressive
noising of a data distribution to create a generative
model. However, the desired continuous nature of
the noising process can be at odds with discrete
data. To deal with this tension between continu-
ous and discrete objects, we propose a method of
performing diffusion on the probability simplex.
Using the probability simplex naturally creates
an interpretation where points correspond to cat-
egorical probability distributions. Our method
uses the softmax function applied to an Ornstein-
Unlenbeck Process, a well-known stochastic dif-
ferential equation. We find that our methodology
also naturally extends to include diffusion on the
unit cube which has applications for bounded im-
age generation.

1. Introduction
Diffusion models (Sohl-Dickstein et al., 2015) (Ho et al.,
2020) (Song & Ermon, 2019) have emerged as a well-
established class of generative models, finding applications
in image (Dhariwal & Nichol, 2021), speech (Jeong et al.,
2021), and video (Singer et al., 2022) domains. Diffusion
processes work by progressively adding noise to data, which
transforms a complex data distribution into a simpler, easy-
to-sample distribution. Diffusion models are used to reverse
the noising process by learning a stochastic differential equa-
tion (SDE) parameterized by a neural network that generates
the data distribution (Song et al., 2021b).

In comparison to other popular methods, such as Generative
Adversarial Networks (Goodfellow et al., 2014), diffusion
models present a compelling advantage as they have an
exact likelihood interpretation and do not require adversarial
training that other state-of-the-art generative models require.
That is, diffusion models enjoy the benefit of having a more
stable training process that avoid non-overlapping data and

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

generated distributions (Yang et al., 2023). Furthermore,
diffusion models are also advantageous over discretized
normalizing flows, which face practical restrictions when
computing the determinant of the Jacobian from the change
of variables formula (Chen et al., 2018).

Most work with diffusion models assume a continuous data
distribution in Rn and noising is performed with Gaussian
distributions. This presents a problem for discrete sampling:
how would one add continuous Gaussian noise if the un-
derlying categories are discrete? We propose the simple
solution to perform diffusion by sampling from k categories
on the probability simplex Sk := {x ∈ Rk : 0 ≤ xi ≤
1,
∑k

i=1 xi = 1}. The result of the diffusion is interpreted
as the probability that a given category is chosen. By shift-
ing from categories themselves, to the space of probabilities
over categories, we effectively turn a discrete problem into
a continuous one.

2. Background
2.1. Diffusion with Score-Matching

Score matching as formulated by (Song et al., 2021b) con-
siders a continuous time diffusion process. Typically, the
forward process does not have parameters and is indepen-
dent of the data distribution. In particular, the forward
process is described by an SDE

dxt = f(xt, t)dt+G(xt, t)dwt (1)

where w is the standard Wiener process (also know as
Brownian motion), f(·, t) : Rd → Rd is the drift term
and G(·, t) : Rd → Rd×d is the diffusion coefficient. The
process maps a data distribution, pt=0(xt) ∈ Rd into some
limiting distribution pt=1(xt). The limiting distribution is
chosen to be easy to sample from, and independent from the
data distribution. Classical results in the theory of stochastic
processes then tell us that the time reverse of this process is
itself an SDE and obeys

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Lifting Discrete Diffusion to the Probability Simplex

dxt = f(xt, t)dt−
1

2
∇ · [G(xt, t)G(xt, t)

⊤]dt

− 1

2
G(xt, t)G(xt, t)

⊤∇xlog pt(xt)dt+G(xt, t)dw̄

(2)

where time now flows backwards from t = 1 to t = 0
and ∇ · F(x) := [∇ · f1(x), · · · ,∇ · fd(x)]⊤ for a matrix-
valued function F(x) = [f1(x), · · · , fd(x)]⊤. The goal of
diffusion models is to approximate the score ∇xlog pt(xt)
and use the reverse SDE to sample from the generative
model. The score can be approximated by sθ(xt, t) which
provides the following objective

θ∗ = argminθEt∼U [0,1]Ex0∼p0(x)Ext∼p0t(xt|x0)

λ(t)
[
∥sθ(xt, t)−∇xt

log p0t(xt|x0)∥22
] (3)

where λ(t) is a weighting function and pst(xt|xs) is the
transition kernel from x(s) to x(t). We note that a number
of other objectives can be used to learn the score function
(Song et al., 2021b). A common practice when using dif-
fusion models is to discretize time into uniform steps (Ho
et al., 2020).

3. Method
3.1. The Logistic-Normal Distribution on the

Probability Simplex

Recall the definition of the probability simplex Sk. We
interpret points in the probability simplex as probability
distributions over k categories.

The logistic-normal distribution is an example of a proba-
bility distribution over the probability simplex. It is defined
as the probability distribution of a random variable whose
multinomial logit is a normal distribution, (or equivalently
it is the distribution of the softmax function applied to a
Gaussian, see (5)). The probability density function of the
logistic normal is

p(x;µ,Σ) =
1

|(2π)d−1Σ|
1∏d

i=1 xi

exp

(
−1

2

[
log

(
x̄d

xd

)
− µ

]⊤
Σ−1

[
log

(
x̄d

xd

)
− µ

])
(4)

where x ∈ Sd and x̄d = [x1, . . . , xd−1]
⊤. In the d = 2

dimensional case, the distribution can be understood as map-
ping a Gaussian distribution on R to [0, 1] via the sigmoid
function.

Figure 1: Examples of the Logistic-Normal distribution
(PDF values) on S3 with parameters µ = [0, 0], [0.2, 0.35]
and σ = [0.5, 0, 5], [0.6, 0.8] respectively.

To constructively sample from this distrubution, we map a
point y ∈ Rd−1 to a point in the probability simplex x ∈ Sd

using the additive logistic transformation σ : Rd−1 → Sd

defined by

xi = σi(y) :=


eyi

1 +
∑d−1

k=1 e
yk

, if i ∈ {1, . . . , d− 1}

1

1 +
∑d−1

k=1 e
yk

, if i = d

(5)

Where we note that 1 −∑d−1
i=1 xi = (1 +

∑d−1
k=1 e

yk)−1.
Conversely, the unique inverse map from Sd to Rd−1 is

yi = log
[
xi

xd

]
, i ∈ {1, . . . , d− 1}.

3.2. The Ornstein-Unlenbeck Process

The Ornstein-Unlenbeck (OU) process is a real-valued
stochastic process used in financial mathematics and phys-
ical sciences. Originally, it was developed to model the
velocity of a Brownian particle under the force of friction.
The process can be described by the following stochastic
differential equation:

dYt = −θYtdt+ σdWt

where θ > 0 and σ > 0 are parameters and Wt is the
WWiener process. The distribution at time t of the process
is given by a normal distribution

Yt
d
= N

(
Y0e

−θt,
1

2θ

(
1− e−2θt

)
I

)
.

In the limit as t → ∞ the process has a distribution of
N
(
0, 1

2θ

)
, meaning that θ uniquely determines the limiting

distribution.

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Lifting Discrete Diffusion to the Probability Simplex

3.3. Diffusion on the Probability Simplex

Our main contribution is a novel diffusion process that oper-
ates on the probability simplex. Our method works by first
defining the forward process by using the additive logistic
transformation from equation 5 to map an OU process from
Rd to Sd.

Xt = σ(Yt)

In our case we are able to get an exact solution for St

by pushing forward the solution of the OU process, mean-
ing that Xt ∼ σ

(
N
(
Y0e

−θt, 1
2θ

(
1− e−2θt

)))
. In other

words, at each point t we have a closed form representa-
tion of the transition kernel pt0(xt|x0) which is a logistic
Gaussian distribution that we can efficiently sample from.
Moreover, one can obtain the SDE for Xt by applying Ito’s
lemma to the SDE for Yt. Carrying this out (see appendix
A.2) gives

dXt = f(Xt, t)dt+G(Xt, t)dWt (6)

where the diffusion coefficient matrix G can be written as:

Gij(x, t) =

{
xi(1− xi), i = j

−xixj , i ̸= j

and the drift term f can be written as:

fi(x, t) = −θxi

(1− xi)ai +
∑
j ̸=i

xjaj


where aj = xj +

1
2 (1− 2xj).

In order to train the score-matching model, we must also
have a closed form solution of ∇xlog p(x)i, which we show
in Appendix A.1. The results of the derivation is that the
score of the logistic-normal distribution is

∇xlog p(x)i = −1

v

(
1

xd

d−1∑
k=1

σµ
k (x) +

1

xd
σµ
i (x)

)

+
xi − xd

xixd

(7)

where we write σµ
k (x) = log

[
xi

xd

]
− µ. Finally, the calcu-

lation for deriving ∇ · [G(xt, t)G(xt, t)
⊤] is performed in

Appendix A.3.

3.4. Implementation Considerations

An example application of this model is for modelling dis-
crete data. A dataset with k different categories, can natu-
rally be modelled with the simplex in Sk. The data distri-
bution could then be represented as a linear combination

of Dirac delta functions centered at the corners of the sim-
plex at t = 0. In other words, each data sample would
correspond to a one-hot vector. In practice we relax this
condition such that at the beginning of the forward process,
data samples are mapped to vectors x = [α, β, · · · , β]⊤,
where β = 1−α

d−2 . For example, a reasonable choice of α
would be 0.9 if k = 6.

During the optimization process, the score suffers from
numerical instability in perimeter regions on the simplex.
Furthermore, the region around the perimeter increases
as the dimension of the simplex d grows. To deal with
this problem, we notice that we directly predict the term
− 1

2G(x, t)G(x, t)⊤∇xlog pt(x) from the reverse diffu-
sion SDE.

0.0 0.2 0.4 0.6 0.8 1.0
x

−2

0

2

4

6

8

10
p(x)

∇ log p(x)

g2(x)∇ log p(x)

Figure 2: A comparison between the regular
score, ∇xlog pt(x), and the reverse SDE term,
g2(x, t)∇xlog pt(x), in the one-dimensional case. The
reverse SDE term is bounded at the border of the interval
[0, 1], unlike the score. The PDF of the logistic-normal
distribution is plotted for clarity, along with a dotted line
around the score for visual clarity.

4. Results
We present initial results of the Simplex Diffusion model
using the MNIST dataset. We create a discrete version of
the dataset which maps the pixel values that are typically in
[0, 1, · · · , 255] to [0, 1, 2] for a total of k = 3 unique cate-
gories. In our experiments we use the following parameters:
θ = 20, α = 0.9 and t ∈ [0.01, 0.25]. We parameterize the
score function by a U-Net (Ronneberger et al., 2015) model
with 35 million parameters.

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Lifting Discrete Diffusion to the Probability Simplex

When samples are generated, they must be converted from
vectors on the probability simplex, to one of k discrete
categories. We choose to take the argmax of the sampled
vectors to convert from points on the simplex to discrete
categories. Qualitative results from this initial experiment
can be found in Figure 3.

Figure 3: Random samples from a Simplex Diffusion model.
Samples are taken at the beginning, middle and end of the
reverse process and correspond to the top middle and bot-
tom row respectively. Sampling is done with T = 1000
denoising steps

5. Discussion
Our methodology is related to recent works extending dif-
fusion to the bounded domains of the probability simplex
and the unit cube. In this section we compare these method-
ologies with our proposed model to highlight important
differences.

5.1. Simplex Diffusion

Categorical SDEs (Richemond et al., 2022) use a diffu-
sion process of Gamma random variables to sample from a
Dirichlet distribution over the simplex. The Dirichlet dis-
tribution is an appealing choice as it is the conjugate prior
of the categorical distribution . The stochastic process used
is the Cox-Ingersoll-Ross process, which is defined by the
SDE dθ = b(a − θ)dt + σ

√
2bθdw, where θ(t = 0) ≥ 0

and a, b, σ > 0. A drawback of this approach is that while
the process has a limiting distribution that is Dirichlet, this
is not the case during the transient regime of the process dy-
namics. Furthermore, to the best of the authors knowledge,
there does not exist a closed-form solution for the transi-
tion density. In practice, this prevents using the standard
score-matching or diffusion training paradigm. Fortunately,
the authors are able to use a different maximum likelihood
training introduced in (Song et al., 2021a).

Our proposed diffusion with the OU process and the Logit-

Normal distribution doesn’t suffer from these shortcomings
due to the correspondence between diffusion spaces in Rd

and Sd via Ito’s lemma. Throughout the diffusion dynamics,
distributions remain Logistic-Normal, and can be efficiently
sampled from. This property allows our methodology to fit
into the typical diffusion training practices. Additionally, it
would be possible to train a classical diffusion model in Rd

which has a corresponding interpretation on the simplex.

5.2. Unit-Cube Diffusion

Reflected Diffusion (Lou & Ermon, 2023) is a method of
performing diffusion on the unit cube [0, 1]d that is moti-
vated by applications to pixel-based diffusion models. When
image based diffusion models are used with Gaussian noise,
sampling errors often compound and result in pixel values
that are outside the valid data range of the unit cube. To
mitigate this problem, thresholding is often performed to
keep generated images to reasonable values via knowledge
of the data distribution constraints (Ho et al., 2020) (Dhari-
wal & Nichol, 2021). While thresholding is popular in many
image based diffusion models, it is theoretically unsound
as there is a disconnect between the training and generative
processes. The authors address this problem by using a
reflected diffusion process that reflects particle trajectories
into the interior of a data domain Ω that would normally
extend outside the domain.

An interesting property of our Simplex Diffusion Model is
that it can be naturally extended to higher dimensions by
performing diffusion on the unit cube. By taking the product
of d one-dimensional processes that we have developed,
we create a diffusion process that is contained to the unit
cube. A drawback of the Reflected Diffusion approach is
that the resulting score from the forward process cannot be
written in closed form. The authors use a combination of
two approximations to apply their model in practice. On
the other hand, our method maintains an closed form score
function that is easy to implement.

6. Conclusion
We introduce a novel method to perform diffusion on the
probability simplex and the unit cube. In both cases our
method allows for an exact solution for the SDE dynamics,
and fits into the common diffusion training paradigm.

Future work involves testing the method on more complex
datasets and evaluating the properties on the categorical
distribution. For example, if the entropy can be utilized as
a natural notation of aleatoric uncertainty over generated
values.

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Lifting Discrete Diffusion to the Probability Simplex

References
Chen, R. T. Q., Rubanova, Y., Bettencourt, J., and Duvenaud,

D. K. Neural ordinary differential equations. In Advances
in Neural Information Processing Systems, 2018.

Dhariwal, P. and Nichol, A. Diffusion models beat gans on
image synthesis, 2021.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio,
Y. Generative adversarial nets. In Advances in Neural
Information Processing Systems, 2014.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. In Larochelle, H., Ranzato, M., Hadsell,
R., Balcan, M., and Lin, H. (eds.), Advances in Neural
Information Processing Systems, 2020.

Jeong, M., Kim, H., Cheon, S. J., Choi, B. J., and Kim, N. S.
Diff-tts: A denoising diffusion model for text-to-speech,
2021.

Lou, A. and Ermon, S. Reflected diffusion models, 2023.

Richemond, P. H., Dieleman, S., and Doucet, A. Categorical
sdes with simplex diffusion, 2022.

Ronneberger, O., Fischer, P., and Brox, T. U-net: Con-
volutional networks for biomedical image segmentation.
abs/1505.04597, 2015.

Singer, U., Polyak, A., Hayes, T., Yin, X., An, J., Zhang,
S., Hu, Q., Yang, H., Ashual, O., Gafni, O., Parikh, D.,
Gupta, S., and Taigman, Y. Make-a-video: Text-to-video
generation without text-video data, 2022.

Sohl-Dickstein, J., Weiss, E. A., Maheswaranathan, N., and
Ganguli, S. Deep unsupervised learning using nonequi-
librium thermodynamics, 2015.

Song, Y. and Ermon, S. Generative modeling by estimating
gradients of the data distribution. Advances in neural
information processing systems, 2019.

Song, Y., Durkan, C., Murray, I., and Ermon, S. Maxi-
mum likelihood training of score-based diffusion models.
In Advances in Neural Information Processing Systems,
2021a.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Er-
mon, S., and Poole, B. Score-based generative modeling
through stochastic differential equations, 2021b.

Yang, L., Zhang, Z., Song, Y., Hong, S., Xu, R., Zhao, Y.,
Zhang, W., Cui, B., and Yang, M.-H. Diffusion models:
A comprehensive survey of methods and applications,
2023.

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Lifting Discrete Diffusion to the Probability Simplex

A. Mathematical calculations
A.1. Score Derivation

We want to calculate ∇xlog p(x) where

log p(x) = −log [Z]− log

[
d∏

i−1

xi

]
− 1

2v

∥∥∥∥log
[
x̄d

xd

]
− µ

∥∥∥∥2
2

We first find the gradient of second term, given that the log normalizing constant doesn’t have a gradient.

α := −∇xlog

[
d∏

i=1

xi

]

αi = − ∂

∂xi

(
d−1∑
i=1

log [xi] + log

[
a−

d−1∑
k=1

xk

])

= − 1

xi
+

1

a−∑d−1
k=1 xk

=
1

xd
− 1

xi

=
xi − xd

xixd

Next, we deal with the exponential term:

β := − 1

2v
∇x

∥∥∥∥log
[
x̄d

xd

]
− µ

∥∥∥∥2
2

βi = − 1

2v

∂

∂xi

(
d−1∑
k=1

(
log

[
xk

xd

]
− µ

)2
)

= − 1

2v

d−1∑
k=1

(
∂

∂u
u2 ∂

∂xi
u

)
, u = log

[
xk

xd

]
− µ

Working with κ := ∂
∂uu

2 ∂
∂xi

u we get

κ :=
∂

∂u
u2 ∂

∂xi
u

= 2u

(
∂

∂xi
log [xk]−

∂

∂xi
log

[
a−

d−1∑
k=1

xk

])

= 2u

(
δik

1

xi
+

1

xd

)

Combining terms again we get:

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Lifting Discrete Diffusion to the Probability Simplex

βi = −1

v

d−1∑
k=1

(
δik

1

xi
+

1

xd

)(
log

[
x̄d

xd

]
− µ

)

= − 1

vxd

d−1∑
k=1

(
log
[
xk

xd

]
− µ

)
− 1

vxi

(
log
[
xi

xd

]
− µ

)

= − 1

vxd

d−1∑
k=1

γk
µ(x)−

1

vxi
γi
µ(x)

where we write γi
µ(x) = log

[
xi

xd

]
− µ

For the final results, we must combine the α and β terms together to get:

∇xlog pa(x)i = − 1

vxd

d−1∑
k=1

γk
µ(x)−

1

vxi
γi
µ(x) +

xi − xd

xixd

A.2. Sampling and Ito’s Lemma

We are working with an OU process of the following form:

dYt = −θYtdt+ dBt

with a corresponding process on the simplex:

Xt = σ(Yt)

To keep this section self-contained the definition of σ is:

σi(y) =
eyi

1 +
∑d−1

k=1 e
yk

, i ∈ {1, . . . , d− 1}

We must write Xt in a form where Xt = f(X, t)dt+G(X, t)dBt. This can be done via Ito’s Lemma:

dXi = −θ(∇Xσi(X))⊤Xdt+
1

2
Tr[HXσi(X)]dt+∇Xσi(X)⊤dB

Where HX is the Hessian matrix and we drop the time dependence of St and Xt for notational simplicity. First we deal
with the gradient term of the equation. We will use γ(X) = 1 +

∑d−1
k=1 e

Xk to keep notation smaller.

∇Xσi(X) = G = ∇X
eXi

γ(X)

gj =
∂

∂Xj

eXi

γ(X)

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Lifting Discrete Diffusion to the Probability Simplex

We deal with the case when when j = i below

Gi =
∂

∂Xi

eXi

γ(X)

= γ(X)−2

[
γ(X)

∂

∂Xi
eXi − eXi

∂

∂Xi
γ(X)

]
= γ(X)−2

[
eXiγ(X)− e2Xi

]
= σi(X)γ(X)−1[γ(X)− eXi]

= σi(X)(1− σi(X))

and the case when j ̸= i:

Gj =
∂

∂Xj

aeXi

γ(X)

= −eXieXj

γ(X)2

= −σi(X)σj(X)

Next we deal with the trace Hessian term:

Tr[HXσa
i (X)] =

d−1∑
j=1

∂2

∂X2
j

σa
i (X)

which again can be split into two cases. First we deal with the case when j = i

∂2

∂X2
i

σa
i (X) = a

∂

∂Xi
σi(X)(1− σi(X))

= aσi(X)(1− σi(X))(1− 2σi(X))

Then the case where j ̸= i

∂2

∂X2
j

σa
i (X) = − ∂

∂Xj
σi(X)σj(X)

= −σi(X)σj(X)(1− 2σj(X))

In summary the diffusion and drift terms are:

Gij(x, t) =

{
xi(1− xi), i = j

−xixj , i ̸= j

fi(x, t) = −θxi

(1− xi)ai +
∑
j ̸=i

xjaj


where aj = xj + 1

2 (1− 2xj)

A.3. Diffusion Matrix Divergence

Suppose we have x, which is some position on the probability simplex, and G from above in A.2. We want ∇·G(x)G(x)⊤

where the definition of the matrix divergence over matrix valued function F is (defined similarly as Appendix A. in Song
et al. (2021b)):

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Lifting Discrete Diffusion to the Probability Simplex

∇ · F(x) := [∇ · f1(x),∇ · f2(x), ...]⊤

where F(x) = [f1(x), f2(x), ...]
⊤. To further clarify some terms, we start with G(x) = G(x)⊤, which gives us the Hessian

as H = G(x)G(x)⊤. Equivalently, the Hessian in coordinate-wise notation is:

Hij =
∑
k

Gik(x)Gkj(x)

We will then being our derivation by analyzing G(.), which decomposes into two cases:

Gij(x) =

{
xi(1− xi), when i = j

−xixj , when i ̸= j

Starting with case 1, i = j:
Hii =

∑
k

Gik(x)Gki(x)

= x2
i (1− xi)

2 + x2
i

∑
k ̸=i

x2
k

= x2
i

(1− xi)
2 +

∑
k ̸=i

x2
k


Then for case 2, i ̸= j:

Hij =
∑
k

Gik(x)Gkj(x)

= −xi(1− xi)xixj − xj(1− xj)xjxi + xixj

∑
k ̸=i,j

x2
k

= −x2
ixj(1− xi)− x2

jxi(1− xj) + xixj

∑
k ̸=i,j

x2
k

= −xixj

xi(1− xi) + xj(1− xj)−
∑
k ̸=i,j

x2
k


Now, let d be the divergence of H as defined at the start of this derivation:

d := ∇ ·H = [∇ · h1(x),∇ · h2(x), ...]
⊤

where hi is a row vector. Then continuing, we have that di is given as the following summation:

di = ∇ · hi

=
∑
k

∂

∂xk
hik

From the summation, we again have two cases, first when k = i and second when k ̸= i. Starting with case 1, i.e., when
k = i, we first construct a ”helper” function a(xi) such that:{

a(xi) = (1− xi)
2 +

∑
k ̸=i x

2
k

∂
∂xi

a(xi) = −2(1− xi)

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Lifting Discrete Diffusion to the Probability Simplex

Then using a(xi) we can express ∂
∂xi

hii as:

∂

∂xi
hii =

∂

∂xi
x2
i a(xi)

= 2xi

(1− xi)
2 +

∑
k ̸=i

x2
k

− 2(1− xi)x
2
i

Now, examining case 2, i.e., when k ̸= i, we can again define another ”helper” function b(xi) such that:

{
b(xi) = xi(1− xi) + xj(1− xj)−

∑
k ̸=i,j x

2
k

∂
∂xi

b(xi) = (1− xi)− xi = 1− 2xi

Using b(xi) leads us to the following for ∂
∂xi

hij :

∂

∂xi
hij = − ∂

∂xi
xixjb(xi)

= −xj

xi(1− xi) + xj(1− xj)−
∑
k ̸=i,j

x2
k

− xixj(1− 2xi)

Finally, we are left to combine the previous results in order to derive di:

di = ∇ · hi

=
∑
j

∂

∂xj
hij

=
∂

∂xi
hii +

∑
j ̸=i

∂

∂xj
hij

Also note that we can further expand the above expression to obtain the following:

di = 2xi

(1− xi)
2 +

∑
k ̸=i

x2
k

− 2(1− xi)x
2
i −

∑
j ̸=i

xj

xi(1− xi) + xj(1− xj)−
∑
k ̸=i,j

x2
k

+ xixj(1− 2xi)



