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Abstract

Sharpness-Aware Minimization (SAM) is an
effective method for improving generalization
ability by regularizing loss sharpness. In this
paper, we explore SAM in the context of adver-
sarial robustness. We find that using only SAM
can achieve superior adversarial robustness
without sacrificing clean accuracy compared
to standard training, which is an unexpected
benefit. We also discuss the relation between
SAM and adversarial training (AT), a popular
method for improving the adversarial robustness
of DNNs. In particular, we show that SAM
and AT differ in terms of perturbation strength,
leading to different accuracy and robustness
trade-offs. We provide theoretical evidence for
these claims in a simplified model. Finally, while
AT suffers from decreased clean accuracy and
computational overhead, we suggest that SAM
can be regarded as a lightweight substitute for AT
under certain requirements. Code is available at
https://github.com/weizeming/SAM_AT.

1. Introduction

Sharpness-Aware Minimization (SAM) (Foret et al., 2020)
is a novel training framework that improves model gener-
alization by simultaneously minimizing loss value and loss
sharpness. The objective of SAM is to minimize the sharp-

ness around the parameters, which can be formulated as

max
‖ε‖≤ρ

L(w + ε) + λ‖w‖22, (1)

where L is the loss function, w is the parameters of the
model, ‖w‖22 is the regularization term and ρ controls the
magnitude of weight perturbation. Intuitively, a larger ρ
leads to stronger weight perturbation and pushes the model
to find a flatter loss landscape. So far, SAM has become
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a powerful tool for enhancing the natural accuracy perfor-
mance of machine learning models.

In this paper, we aim to explore SAM through the lens of ad-
versarial robustness. Specifically, we study the robustness
of SAM to defend against adversarial examples, which are
natural examples with small perturbations that mislead the
model into producing incorrect predictions (Szegedy et al.,
2013; Goodfellow et al., 2014). The discovery of ad-
versarial examples has raised serious concerns about the
safety of critical domain applications (Ma et al., 2020),
and has attracted a lot of research attention in terms of
defending against them. Currently, Adversarial Training
(AT) (Madry et al., 2017) has been demonstrated to be the
most effective approach (Athalye et al., 2018) in improv-
ing the adversarial robustness of Deep Neural Networks
(DNNs) among the various methods of defense. However,
despite the success in improving adversarial robustness,
there are still several defects remaining in adversarial train-
ing, such as decrease in natural accuracy (Tsipras et al.,
2018), computational overhead (Shafahi et al., 2019) ,
class-wise fairness (Xu et al., 2021; Wei et al., 2023a)
and the absence of formal guarantees (Wang et al., 2021;
Zhang et al., 2023).

Surprisingly, we find that models trained with SAM ex-
hibit significantly higher adversarial robustness than those
trained using standard methods, which is an unexpected
benefit. Also, when comparing SAM to AT, SAM has the
advantage of lower computational cost and no decrease in
natural accuracy. Based on the discussion above, we raise
two research questions (RQs) in this paper:

• RQ1: Why does SAM improve adversarial robustness
compared to standard training?

• RQ2: Can SAM be used as a lightweight substitution
for adversarial training?

To answer the two questions above, we first provide a
comprehensive understanding of SAM in terms of adver-
sarial robustness. Specifically, we present the intrinsic
relation between SAM and AT that they both apply ad-
versarial data augmentations to eliminate non-robust fea-
tures (Tsipras et al., 2018)) from natural examples during
the training phase. As a result, both SAM and AT can
effectively enhance the robustness of trained models, re-
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sulting in improved robust generalization ability. However,
we also note that there are still several differences between
SAM and AT. For instance, SAM adds adversarial pertur-
bations implicitly, while AT applies perturbations explicitly.
Additionally, the perturbation (attack) strength during train-
ing of SAM and AT differs, leading to different results in
terms of natural and robust accuracy trade-offs.

Further, we verify the proposed empirical understanding
with theoretical evidence in a simplified data model. Fol-
lowing the data distribution based on robust and non-robust
features decomposition (Tsipras et al., 2018), we show that
both SAM and AT can improve the robustness of the trained
models by biasing more weight on robust features. In addi-
tion, we also show that SAM requires a larger perturbation
budget to achieve comparable robustness to AT, which ver-
ifies our hypothesis that the perturbation strength of SAM
is lower than AT.

Finally, we conduct experiments on benchmark datasets to
verify our understanding. We find that models trained with
SAM indeed outperform standard-trained models signifi-
cantly in terms of adversarial robustness and also exhibit
better natural accuracy. To sum up, our empirical and theo-
retical understanding can answer RQ1.

It is worth noting that, there still remains a large gap of ro-
bustness between SAM and AT. However, the natural accu-
racy of AT is consistently lower than standard training, not
to mention SAM. Meanwhile, SAM also outperforms AT in
terms of computational cost. Therefore, we finally answer
RQ2 with the conclusion that SAM can be considered a
lightweight substitute for AT in improving adversarial ro-
bustness, under the following requirements: (1) no loss of
natural accuracy and (2) no significant increase in compu-
tational cost.

To summarize, our main contributions in this paper are:

1. We point out that using SAM alone can notably en-
hance adversarial robustness without sacrificing clean
accuracy compared to standard training, which is an
unexpected benefit.

2. We provide both empirical and theoretical explana-
tions to clarify how SAM can enhance adversarial
robustness. In particular, we discuss the relation
between SAM and AT and demonstrate that they
improve adversarial robustness by eliminating non-
robust features. However, they differ in perturbation
strengths, which leads to different trade-offs between
natural and robust accuracy.

3. We conducted experiments on benchmark datasets to
verify our proposed insight. We also suggest that
SAM can be considered a lightweight substitute for
AT under certain requirements.

2. Background and related work

2.1. Sharpness awareness minimization (SAM)

In order to deal with the bad generalization prob-
lem in traditional machine learning algorithms,
(Hochreiter & Schmidhuber, 1994; 1997) respectively
attempt to search for flat minima and penalize sharpness
in the loss landscape, which obtains good results in
generalization (Keskar et al., 2016; Neyshabur et al., 2017;
Dziugaite & Roy, 2017). Inspired by this, a series of works
focus on using the concept of flatness or sharpness in loss
landscape to ensure better generalization, e.g. Entropy-
SGD (Chaudhari et al., 2019) and Stochastic Weight
Averaging (SWA) (Izmailov et al., 2018). Sharpness-
Aware minimization (SAM) (Foret et al., 2020) also falls
into this category, which simultaneously minimizes loss
value and loss sharpness as described in (1).

Theoretically, the good generalization ability of SAM is
guaranteed by the fact that of the high probability, the fol-
lowing inequality holds:

LD(w) ≤ max
‖ε‖2≤ρ

LS(w + ε) + h
(

‖w‖22/ρ2
)

, (2)

where set S is generated from distribution D , h : R+ →
R+ is a strictly increasing function.

There are also many applications of SAM in other fields
of research like language models (Bahri et al., 2021) and
fluid dynamics (Jetly et al., 2022), showing the scalability
of SAM to various domains. In addition, many improve-
ments of the algorithm SAM spring up, like Adaptive SAM
(ASAM) (Kwon et al., 2021), Efficient SAM (ESAM)
(Du et al., 2021), LookSAM (Liu et al., 2022), Sparse
SAM (SSAM) (Mi et al., 2022), Fisher SAM (Kim et al.,
2022) and FSAM (Zhong et al., 2022), which add some
modifications on SAM and further improve the generaliza-
tion ability of the model.

2.2. Adversarial robustness

The adversarial robustness and adversarial training has be-
come popular research topic since the discovery of ad-
versarial examples (Szegedy et al., 2013; Goodfellow et al.,
2014), which uncovers that DNNs can be easily fooled
to make wrong decisions by adversarial examples that are
crafted by adding small perturbations to normal exam-
ples. The malicious adversaries can conduct adversarial
attacks (Chen et al., 2023b; Wei et al., 2023b) by crafting
adversarial examples, which cause serious safety concerns
regarding the deployment of DNNs. So far, numerous
defense approaches have been proposed (Papernot et al.,
2016; Xie et al., 2019; Bai et al., 2019; Mo et al., 2022;
Chen et al., 2023a), among which adversarial training
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(AT) (Madry et al., 2017; Wang et al., 2019) has been con-
sidered as the most promising defending method against
adversarial attacks, which can be formulated as

min
w

E(x,y)∼D max
‖δ‖≤ε

L(w;x+ δ, y), (3)

where D is the data distribution, ε is the margin of pertur-
bation, w is the parameters of the model and L is the loss
function (e.g. the cross-entropy loss). For the inner maxi-
mization process, Projected Gradient Descent (PGD) attack
is commonly used to generate the adversarial example:

xt+1 = ΠB(x,ε)(x
t + α · sign(∇x&(θ;x

t, y))), (4)

where Π projects the adversarial example onto the perturba-
tion bound B(x, ε) = {x′ : ‖x′−x‖p ≤ ε} and α represents
the step size of gradient ascent.

Though improves adversarial robustness effectively, adver-
sarial training has exposed several defects such as com-
putational overhead (Shafahi et al., 2019), class-wise fair-
ness (Xu et al., 2021; Wei et al., 2023a), among which
the decreased natural accuracy (Tsipras et al., 2018;
Wang & Wang, 2023) has become the major concern. It
is proved that there exists an intrinsic trade-off between ro-
bustness and natural accuracy (Tsipras et al., 2018), which
can explain why AT reduces standard accuracy signifi-
cantly.

In the context of adversarial robustness, there are also sev-
eral works that attempt to introduce a flat loss landscape
in adversarial training (Wu et al., 2020; Yu et al., 2022a;b).
The most representative one is Adversarial Weight Per-
turbation (AWP) (Wu et al., 2020), which simultaneously
adds perturbation on examples and feature space to ap-
ply sharpness-aware minimization on adversarial training.
However, AWP also suffers from a decrease in natural ac-
curacy. Also, the reason why a flat loss landscape can lead
to better robustness has not been well explained.

To the best of our knowledge, we are the first to uncover
the intrinsic relation between SAM and AT, and we reveal
that SAM can improve adversarial robustness by implicitly
biasing more weight on robust features.

3. Empirical understanding

In this section, we introduce our proposed empirical under-
standing on the relation between SAM and AT, which can
explain how SAM improves adversarial robustness.

Recall that the goal of SAM is to minimize the generaliza-
tion error and loss sharpness simultaneously. The sharp-
ness term can be described as max

||ε||<ρ
[LS(w+ε)−LS(w)],

and the loss term is LS(w). By combining the two terms,

we get the objective of SAM is

min
w

E(x,y)∼D max
||ε||<ρ

LS(w + ε;x, y). (5)

Also, recall that the objective of AT is

min
w

E(x,y)∼D max
‖δ‖≤ε

Ls(w;x+ δ, y). (6)

To illustrate their relation, we first emphasize that both tech-
niques involve adding perturbation as a form of data aug-
mentation for eliminating non-robust features (Ilyas et al.,
2019). However, AT explicitly adds these perturbations
to input examples, while SAM focuses on perturbing the
parameters, which can be considered an implicit kind of
data augmentation on the feature space. Therefore, both
techniques involve perturbation on features, but in different
spaces.

To be more specific and formal, we can derive our un-
derstanding with a middle linear layer in a model, which
extracts feature z from input x: z = Wx. In AT, we
add perturbations directly to the input space, resulting in
x ← x + δ. However, in SAM, the perturbation is not di-
rectly applied to the input space, but to the parameter space
as W ← W + δ. This leads to Wx + W δ for input per-
turbation and Wx + δx for parameter perturbation. Both
perturbations can be seen as a form of data augmentation,
with the former being more explicit and the latter being
more implicit.

In addition, we discuss the attack (perturbation) strength of
AT and SAM. For SAM, the perturbation is relatively more
moderate, as its perturbations are injected in the feature
space. However, this small perturbation is still helpful in
improving robustness, since it can eliminate the non-robust
features implicitly. On the other hand, in order to achieve
the best robustness by destroying the non-robust features,
AT applies larger and more straightforward perturbations
to the input space, leading to better robustness but a loss in
natural accuracy.

Therefore, the difference and relation between SAM and
AT can be considered as a trade-off between robustness and
accuracy (Zhang et al., 2019). In summary, SAM applies
small perturbations implicitly to the feature space to main-
tain good natural accuracy performance, while AT utilizes
direct data augmentation magnitudes, which may result in
a severe loss in natural accuracy. We provide more theoret-
ical evidence for these claims in the next section.

4. Theoretical analysis

In this section, we provide a theoretical analysis of
SAM and the relation between SAM and AT. Following
the robust/non-robust feature decomposition (Tsipras et al.,
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2018), we introduce a simple binary classification model,
in which we show the implicit essential similarity and dif-
ference of SAM and AT. We first present the data distribu-
tion and hypothesis space, then present how SAM and AT
work in this model respectively, and finally discuss their
relations.

4.1. A binary classification model

Consider a binary classification task that the input-label
pair (x, y) is sampled from x ∈ {−1,+1} × Rd and
y ∈ {−1,+1}, and the distribution D is defined as follows.

y
u.a.r∼ {−1,+1}, x1 = { +y, w.p. p,

−y, w.p. 1− p,

x2, . . . , xd+1
i.i.d∼ N (ηy, 1),

(7)

where p ∈ (0.5, 1) is the accuracy of feature x1, constant
η > 0 is a small positive number. In this model, x1 is called
the robust feature, since any small perturbation can not
change its sign. However, the robust feature is not perfect
since p < 1. Correspondingly, the features x2, · · · , xd+1

are useful for identifying y due to the consistency of sign,
hence they can help classification in terms of natural accu-
racy. However, they can be easily perturbed to the contrary
side (change their sign) since η is a small positive, which
makes them called non-robust features (Ilyas et al., 2019).

Now consider a linear classifier model which predicts the
label of a data point by computing fw(x) = sgn(w · x),
and optimize the parameters w1, w2, · · · , wn to maximize
Ex.y∼D1(fw(x) = y). In this model, given the equivalency
of xi(i = 2, · · · , n), we can set w2 = · · · = wn = 1 by
normalization without loss of generality. Therefore, the nu-
merical value w1 has a strong correlation with the robust-
ness of the model. Specifically, larger w1 indicates that the
model bias more weight on the robust feature x1 and less
weight on the non-robust features x2, · · · , xd+1, leading to
better robustness.

In the following, we discuss the trained model under stan-
dard training (ST), AT, and SAM respectively. To make our
description clear, we denote the loss function L(x, y, w) as
1 − Pr(fw(x) = y) and for a given ε > 0, we define the
loss function of SAM LSAM as max|δ|≤ε L(x, y, w + δ).

4.2. Standard training (ST)

We first show that there exists an optimal parameter w∗
1 un-

der standard training in this model by the following theo-
rem:

Theorem 4.1 (Standard training). In the model above, un-

der standard training, the optimal parameter value is

w∗
1 =

ln p− ln(1− p)

2η
. (8)

Therefore, w∗
1 can be regarded as the parameter w1 returned

by standard training with this model.

4.3. Adversarial training (AT)

Now let’s consider when AT is applied. In this case, the
loss function is no longer the standard one but the expected
adversarial loss

E
(x,y)∼D

[

max
||δ||∞≤ε

L(x+ δ, y;w)

]

. (9)

Similar to standard training, there also exists an optimal
parameter wAT

1 returned by adversarial training, which can
be stated in the following theorem:

Theorem 4.2 (Adversarial training). In the classification

problem above, under adversarial training with perturba-

tion bound ε < η, the adversarial optimal parameter value

wAT
1 =

ln p− ln(1− p)

2(η − ε)
. (10)

We can see that w1 has been multiplied by η
η−ε , which

has increased the dependence on the robust feature x1 of
the classifier. This shows the adversarially trained model
pays more attention to robustness compared to the standard-
trained one, which improves adversarial robustness.

4.4. Sharpness-Aware Minimization (SAM)

Now we consider the situation of SAM. Recall that the op-
timizing objective of SAM is

E
(x,y)∼D

[

max
|δ|≤ε

L(x, y;w + δ)

]

. (11)

We first explain why SAM could improve the adversarial
robustness by proving that the parameter w1 trained with
SAM is also larger than w∗

1 , which is stated as follows:

Theorem 4.3 (Sharpness-aware minimization). In the clas-

sification problem above, the best parameter for SAM train-

ing wSAM
1 satisfies that

wSAM
1 > w∗

1 . (12)

From theorem 4.2 and 4.3 we can see that both wAT
1 and

wSAM
1 are greater than w∗

1 , which indicates both SAM and
AT improve robustness of the trained model. However, the
qualitative relation is not sufficient to quantify how much
robustness SAM achieves compared to adversarial training,
and we attempt to step further by quantitatively estimating
the wSAM

1 in the following theorem:

Theorem 4.4. In the classification problem above, denote

the best parameter for SAM training wSAM
1 . Suppose that

ε is small, we have wSAM
1 ≈ w∗

1 +
2
3w

∗
1ε

2.
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Table 1. Natural and Robust Accuracy evaluation on CIFAR-100 dataset.

Method Natural Accuracy
&∞-Robust Accuracy &2-Robust Accuracy

ε = 1/255 ε = 2/255 ε = 16/255 ε = 32/255

ST 76.9 13.6 1.7 44.5 21.2
SAM (ρ = 0.1) 78.0 19.6 3.0 51.5 27.2
SAM (ρ = 0.2) 78.5 23.1 4.2 54.2 31.3
SAM (ρ = 0.4) 78.7 28.3 6.5 57.0 36.2

AT (&∞-ε = 1/255) 73.1 60.4 46.6 67.4 61.5
AT (&∞-ε = 2/255) 70.1 60.3 50.6 65.7 60.6
AT (&∞-ε = 4/255) 66.2 59.3 52.0 62.8 58.9
AT (&∞-ε = 8/255) 60.4 55.1 50.4 57.0 54.3

AT (&2-ε = 16/255) 74.8 52.8 31.4 66.3 57.7
AT (&2-ε = 32/255) 73.2 57.4 40.6 67.1 61.0
AT (&2-ε = 64/255) 70.7 58.1 45.9 66.1 60.7

AT (&2-ε = 128/255) 67.4 58.2 48.7 63.9 60.4

4.5. Relation between SAM and AT

We further discuss the distinct attack (perturbation)
strength between AT and SAM. Recall that in our empir-
ical understanding in Section 3, the perturbation of SAM is
more moderate than AT, which can be interpreted as SAM
focusing on natural accuracy more and robustness less in
the robustness-accuracy trade-off. Therefore, to reach the
same robustness level (which is measured by the depen-
dence on feature x1, i.e. the magnitude of w1), SAM re-
quires a much larger perturbation range, while for AT, less
perturbation over x is enough. Theoretically, the following
theorem verifies our statement:

Theorem 4.5. Denote the perturbation range ε of AT and

SAM as εAT and εSAM , respectively. Then, when both

methods return the same parameter w1, we have the fol-

lowing relation between εAT and εSAM :

2 +
3

ε2SAM

≈ 2η

εAT
(13)

From theorem 4.5, we can identify the different perturba-
tion strengths of AT and SAM. It can be easily derive from
Theorem 4.5 that εSAM is larger than εAT when (13) holds,
since we assume η is a small positive, ε is small in the-
orem 4.4 and εAT < η in theorem 4.2. Therefore, to gain
the same weight w1 on robust features x1, εAT only need to
be chosen much smaller than εSAM . On the other hand, un-
der the same perturbation bound εAT = εSAM , the model
trained under AT has larger parameter w1 than SAM, hence
it focuses on more robustness yet decreases more natural
accuracy.

All proofs can be found in Appendix A. To sum up, we can
conclude that AT utilizes explicit and strong perturbations
for denoising non-robust features, while SAM leverages im-

plicit and moderate perturbations. This is consistent with
our empirical understanding in Section 3 and we also ver-
ify these claims with experiments in the following section.

5. Experiment

In this section, we present our experimental results to verify
our proposed understanding.

5.1. Experiment set-up

To demonstrate the effectiveness of SAM in improving ad-
versarial robustness, we compare models trained with the
standard SGD optimizer to those trained with SAM. We
also discuss adversarial training. However, we consider the
robustness obtained by AT as an upper bound rather than a
baseline for SAM.

In our experiment, we train the PreActResNet-18 (PRN-
18) (He et al., 2016) model on the CIFAR-10 and CIAR-
100 datasets (Krizhevsky et al., 2009) with Cross-Entropy
loss for 100 epochs. The learning rate is initialized as 0.1
and is divided by 10 at the 75th and 90th epochs, respec-
tively. For the optimizer, the weight decay is set to 5e-4,
and the momentum is set to 0.9.

For SAM, we select the perturbation hyper-parameter ρ
from the range {0.1, 0.2, 0.4}. And for AT, we consider
both &2 and &∞ robustness and train 4 models with differ-
ent perturbation bounds for the two kinds of norms, respec-
tively.

As for robustness evaluation, we consider robustness un-
der &∞-norm perturbation bounds ε ∈ {1/255, 2/255} and
&2-norm perturbation bounds ε ∈ {16/255, 32/255}. The
robustness is evaluated under a 10-step PGD attack.
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Table 2. Natural and Robust Accuracy evaluation on CIFAR-10 dataset.

Method Natural Accuracy
&∞-Robust Accuracy &2-Robust Accuracy

ε = 1/255 ε = 2/255 ε = 16/255 ε = 32/255

ST 94.6 39.6 8.9 76.1 51.7
SAM (ρ = 0.1) 95.6 45.1 9.4 81.0 56.3
SAM (ρ = 0.2) 95.5 48.9 10.2 82.9 58.8
SAM (ρ = 0.4) 94.7 56.1 15.6 84.0 64.4

AT (&∞-ε = 1/255) 93.7 86.4 75.5 90.5 86.4
AT (&∞-ε = 2/255) 92.8 87.4 79.6 90.3 86.9
AT (&∞-ε = 4/255) 90.9 86.4 81.3 88.3 85.7
AT (&∞-ε = 8/255) 84.2 81.5 78.4 82.5 80.8

AT (&2-ε = 16/255) 94.5 82.2 61.7 90.3 84.5
AT (&2-ε = 32/255) 93.7 84.9 70.9 91.0 86.7
AT (&2-ε = 64/255) 92.7 85.6 75.2 90.7 87.5

AT (&2-ε = 128/255) 90.2 85.7 78.4 89.6 87.1

For all models, we run the experiment three times indepen-
dently and report the average result. We omit the standard
deviations since they are small (less than 0.5%) and do not
affect our claims.

5.2. Accuracy and robustness evaluation

The results of the experiments conducted on the CIFAR-
100 and CIFAR-10 datasets are presented in Table 1 and
Table 2, respectively.

We first discuss the natural and robust accuracy perfor-
mance of SAM. From the tables, we can see that all the
models trained with SAM exhibit significantly better natu-
ral accuracy and robustness compared to those trained with
standard training (ST). In particular, higher robustness is
achieved by using larger values of ρ with SAM. For the
CIFAR-100 dataset, the model trained with ρ = 0.4 demon-
strates even multiple robust accuracy than ST, and its nat-
ural accuracy is still higher than that of ST. Compared to
the improvement in natural accuracy (approximately 2%),
the increase of robustness is more significant (more than
10% in average). Similarly, for the CIFAR-10 dataset, the
model trained with SAM also outperforms ST in terms of
clean accuracy and exhibits significant higher robustness
than ST. Therefore, we can conclude that SAM with a
relatively larger weight perturbation bound ρ is a promis-
ing technique for enhancing the performance of models in
terms of adversarial robust accuracy without sacrificing nat-
ural accuracy.

Regarding adversarially trained models, although there re-
mains a large gap between the robustness obtained by SAM
and AT, all adversarially trained models exhibit lower nat-
ural accuracy than standard training, not to mention SAM.
Particularly, for &∞-adversarial training, even training with
perturbation bound ε = 1/255 decreases natural accuracy

at 3.8% for CIFAR-100 and 0.9% for CIFAR-10 datasets,
respectively. And also note that the larger perturbation
bound ε used in AT, the worse natural accuracy is obtained
by the corresponding model. Therefore, a key benefit of
using SAM instead of AT is that there is no decrease in
clean accuracy. Additionally, note that solving the PGD
process in AT results in significant computational overhead.
Specifically, since we use 10-step PGD, all AT experiments
require 10 times more computational cost compared to ST,
while SAM only requires 1 time more.

Based on the discussion above, we reach the conclusion
that SAM-trained models perform significantly better ro-
bustness without decreasing any natural accuracy com-
pared to standard training methods. Furthermore, another
benefit of SAM is that it does not require significant compu-
tational resources. Therefore, we point out that SAM can
serve as a lightweight alternative to AT, which can improve
robustness without a decrease in natural accuracy and sig-
nificant training overhead.

6. Conclusion

In this paper, we show that using Sharpness-Aware Min-
imization (SAM) alone can improve adversarial robust-
ness, and reveal the fundamental relation between SAM
and Adversarial Training (AT). We empirically and theo-
retically demonstrate that both SAM and AT add pertur-
bations to features to achieve better robust generalization
ability. However, SAM adds moderate perturbations im-
plicitly, while AT adds strong perturbations explicitly. Con-
sequently, they lead to different accuracy and robustness
trade-offs. We further conduct experiments on benchmark
datasets to verify the validity of our proposed insight. Fi-
nally, we suggest that SAM can serve as a lightweight sub-
stitute for AT under certain requirements.



Sharpness-Aware Minimization Alone can Improve Adversarial Robustness

References

Athalye, A., Carlini, N., and Wagner, D. Obfuscated gra-
dients give a false sense of security: Circumventing de-
fenses to adversarial examples. In International confer-

ence on machine learning, pp. 274–283. PMLR, 2018.

Bahri, D., Mobahi, H., and Tay, Y. Sharpness-aware mini-
mization improves language model generalization. arXiv

preprint arXiv:2110.08529, 2021.

Bai, Y., Feng, Y., Wang, Y., Dai, T., Xia, S.-T., and Jiang,
Y. Hilbert-based generative defense for adversarial ex-
amples. In ICCV, 2019.

Chaudhari, P., Choromanska, A., Soatto, S., LeCun, Y., Bal-
dassi, C., Borgs, C., Chayes, J., Sagun, L., and Zecchina,
R. Entropy-sgd: Biasing gradient descent into wide val-
leys. Journal of Statistical Mechanics: Theory and Ex-

periment, 2019(12):124018, 2019.

Chen, H., Dong, Y., Wang, Z., Yang, X., Duan, C., Su, H.,
and Zhu, J. Robust classification via a single diffusion
model, 2023a.

Chen, H., Zhang, Y., Dong, Y., and Zhu, J. Rethink-
ing model ensemble in transfer-based adversarial attacks,
2023b.

Du, J., Yan, H., Feng, J., Zhou, J. T., Zhen, L., Goh, R.
S. M., and Tan, V. Y. Efficient sharpness-aware mini-
mization for improved training of neural networks. arXiv

preprint arXiv:2110.03141, 2021.

Dziugaite, G. K. and Roy, D. M. Computing nonvacu-
ous generalization bounds for deep (stochastic) neural
networks with many more parameters than training data.
arXiv preprint arXiv:1703.11008, 2017.

Foret, P., Kleiner, A., Mobahi, H., and Neyshabur, B.
Sharpness-aware minimization for efficiently improving
generalization. arXiv preprint arXiv:2010.01412, 2020.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explain-
ing and harnessing adversarial examples. arXiv preprint

arXiv:1412.6572, 2014.

He, K., Zhang, X., Ren, S., and Sun, J. Identity mappings
in deep residual networks. In European conference on

computer vision, pp. 630–645. Springer, 2016.

Hochreiter, S. and Schmidhuber, J. Simplifying neural nets
by discovering flat minima. Advances in neural informa-

tion processing systems, 7, 1994.

Hochreiter, S. and Schmidhuber, J. Flat minima. Neural

computation, 9(1):1–42, 1997.

Ilyas, A., Santurkar, S., Tsipras, D., Engstrom, L., Tran, B.,
and Madry, A. Adversarial examples are not bugs, they
are features. In Neural Information Processing Systems,
2019.

Izmailov, P., Podoprikhin, D., Garipov, T., Vetrov, D.,
and Wilson, A. G. Averaging weights leads to
wider optima and better generalization. arXiv preprint

arXiv:1803.05407, 2018.

Jetly, V., Ibayashi, H., and Nakano, A. Splash in a flash:
Sharpness-aware minimization for efficient liquid splash
simulation. 2022.

Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy,
M., and Tang, P. T. P. On large-batch training for deep
learning: Generalization gap and sharp minima. arXiv

preprint arXiv:1609.04836, 2016.

Kim, M., Li, D., Hu, S. X., and Hospedales, T. Fisher
sam: Information geometry and sharpness aware minimi-
sation. In International Conference on Machine Learn-

ing, pp. 11148–11161. PMLR, 2022.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Kwon, J., Kim, J., Park, H., and Choi, I. K. Asam: Adap-
tive sharpness-aware minimization for scale-invariant
learning of deep neural networks. In International Con-

ference on Machine Learning, pp. 5905–5914. PMLR,
2021.

Liu, Y., Mai, S., Chen, X., Hsieh, C.-J., and You, Y. To-
wards efficient and scalable sharpness-aware minimiza-
tion. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pp. 12360–
12370, 2022.

Ma, X., Niu, Y., Gu, L., Wang, Y., Zhao, Y., Bailey, J.,
and Lu, F. Understanding adversarial attacks on deep
learning based medical image analysis systems. Pattern

Recognition, 2020.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. Towards deep learning models resistant to
adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

Mi, P., Shen, L., Ren, T., Zhou, Y., Sun, X., Ji, R., and
Tao, D. Make sharpness-aware minimization stronger:
A sparsified perturbation approach. arXiv preprint

arXiv:2210.05177, 2022.

Mo, Y., Wu, D., Wang, Y., Guo, Y., and Wang, Y. When
adversarial training meets vision transformers: Recipes
from training to architecture. In NeurIPS, 2022.



Sharpness-Aware Minimization Alone can Improve Adversarial Robustness

Neyshabur, B., Bhojanapalli, S., McAllester, D., and Sre-
bro, N. Exploring generalization in deep learning. Ad-

vances in neural information processing systems, 30,
2017.

Papernot, N., McDaniel, P., Wu, X., Jha, S., and Swami,
A. Distillation as a defense to adversarial perturbations
against deep neural networks. In SP, 2016.

Shafahi, A., Najibi, M., Ghiasi, M. A., Xu, Z., Dickerson,
J., Studer, C., Davis, L. S., Taylor, G., and Goldstein,
T. Adversarial training for free! Advances in Neural

Information Processing Systems, 32, 2019.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan,
D., Goodfellow, I., and Fergus, R. Intriguing proper-
ties of neural networks. arXiv preprint arXiv:1312.6199,
2013.

Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., and
Madry, A. Robustness may be at odds with accuracy.
arXiv preprint arXiv:1805.12152, 2018.

Wang, H. and Wang, Y. Generalist: Decoupling natural and
robust generalization. In CVPR, 2023.

Wang, S., Zhang, H., Xu, K., Lin, X., Jana, S., Hsieh, C.-J.,
and Kolter, J. Z. Beta-crown: Efficient bound propaga-
tion with per-neuron split constraints for complete and
incomplete neural network robustness verification, 2021.

Wang, Y., Ma, X., Bailey, J., Yi, J., Zhou, B., and Gu, Q.
On the convergence and robustness of adversarial train-
ing. In ICML, 2019.

Wei, Z., Wang, Y., Guo, Y., and Wang, Y. Cfa: Class-wise
calibrated fair adversarial training. In CVPR, 2023a.

Wei, Z., Zhang, X., Zhang, Y., and Sun, M. Weighted au-
tomata extraction and explanation of recurrent neural net-
works for natural language tasks, 2023b.

Wu, D., Xia, S.-T., and Wang, Y. Adversarial weight per-
turbation helps robust generalization. In NeurIPS, 2020.

Xie, C., Wu, Y., Maaten, L. v. d., Yuille, A. L., and He, K.
Feature denoising for improving adversarial robustness.
In CVPR, 2019.

Xu, H., Liu, X., Li, Y., Jain, A., and Tang, J. To be robust
or to be fair: Towards fairness in adversarial training. In
ICML, 2021.

Yu, C., Han, B., Gong, M., Shen, L., Ge, S., Du, B., and
Liu, T. Robust weight perturbation for adversarial train-
ing. arXiv preprint arXiv:2205.14826, 2022a.

Yu, C., Han, B., Gong, M., Shen, L., Ge, S., Du, B., and
Liu, T. Robust weight perturbation for adversarial train-
ing. arXiv preprint arXiv:2205.14826, 2022b.

Zhang, H., Yu, Y., Jiao, J., Xing, E., El Ghaoui, L., and
Jordan, M. Theoretically principled trade-off between
robustness and accuracy. In International conference on

machine learning, pp. 7472–7482. PMLR, 2019.

Zhang, Y., Wei, Z., Zhang, X., and Sun, M. Using z3 for for-
mal modeling and verification of fnn global robustness,
2023.

Zhong, Q., Ding, L., Shen, L., Mi, P., Liu, J., Du, B., and
Tao, D. Improving sharpness-aware minimization with
fisher mask for better generalization on language models.
arXiv preprint arXiv:2210.05497, 2022.


