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ABSTRACT

The input convex neural network (ICNN) aims to learn a convex function from
the input to the output by using non-decreasing convex activation functions and
non-negativity constraints on the weight parameters of some layers. However, in
practice, it loses some representation power because of these non-negativity pa-
rameters of the hidden units, even though the design of the “passthrough” layer
can partially address this problem. To solve issues caused by these non-negativity
constraints, we use a duplication input pair trick, i.e., the negation of the original
input as part of the new input in our structure. This new method will preserve the
convexity of the function from the original input to the output and tackle the rep-
resentation problem in training. Additionally, we design a mirror unit to address
this problem further, making the network Mirror ICNN. Moreover, we propose a
recurrent input convex neural network (RICNN) structure to deal with the time-
series problems. The recurrent unit of the structure can be ICNN or any other
convex variant of ICNN. This structure can maintain convexity by constraining
the mapping from the hidden output at time step t to the input of the next time
step t + 1. The experiments can support our design, including the simple nu-
merical curve fitting, power system hosting capacity dataset regression, and the
MNIST dataset classification.

1 INTRODUCTION

Convex optimization’s mathematical foundations have been researched for centuries, yet numerous
recent developments have sparked new interest in this topic Hindi (2004). In machine learning,
convexity and optimization typically refer to the optimization of the parameters or the minimization
of the loss Bengio et al. (2005). However, the input convex neural network (ICNN) in Amos et al.
(2017) provides a different perspective on the convexity of the neural network, which is from the
input to the output.

The input convexity of the ICNN is preserved because of the non-decreasing convex activation
function, such as the rectified linear unit (ReLU) Nair & Hinton (2010); Agarap (2018), and the
non-negativity constraint on some of the hidden layers. These non-negative weights can maintain
the convexity from the input to the output but also brings the problem of the lack of representation
power. Though using the “passthrough” layers can partially provide substantial representation, this
problem is still a challenge during the input convex neural network training.

To tackle the challenge in representation, Chen et al. (2018) concatenates the negation of the original
input with itself, making it the new input of the network. This method can theoretically get more
representation power because of the duplication input pair, but the actual training process does not
work as expected. The reason for the bad convergence is the new non-negativity constraint on the
“passthrough” layers. Therefore, we proposed the modified trick, mirror training, to improve the
convergence of the training. We prove that the non-negativity constraint on the “passthrough” layers
will lead to a poor training result. Moreover, the new designs in our model, the negative pair of
input and the mirror unit, will not break the convexity from the input to the output and improve the
training performance.

Because of the great convexity property of the ICNN, it has been widely used for different tasks.
Chen et al. (2020) introduces the application of voltage regulation through the ICNN. In addition,
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Chen et al. (2018) uses the ICNN for the building control task under both the single and time-
series scenarios. Similarly, Kolter & Manek (2019) also extends the scope of the ICNN for dynamic
models. Dynamic models or sequence models are always topics that require attention. To take
advantage of the convexity of the ICNN and the sequence models, such as the RNN, we construct a
loop using the ICNN as the recurrent unit, which is the recurrent ICNN. The network is convex from
the sequential input to output by adding the non-negativity constraint on the weights of the hidden
output. Our model is more straightforward to modify than the other sequence structure because the
recurrent unit can be any convex variant of the basic ICNN.

The remainder of this paper is organized as follows. Section 2 discusses the related works. Section
3 illustrates the design of the mirror training and the structure of the recurrent input convex neural
network. Section 4 provides the numerical validation using different datasets. Conclusion and
discussions are in Section 5.

2 RELATED WORK

Input convex neural network. The input convex neural network (ICNN) is proposed in Amos
et al. (2017). Given a fully connected neural network, the model can learn a convex function from
the input to the output because of the non-negativity constraint on the weights of some hidden layers.
However, this constraint reduces the representation power of the model even though the use of the
“passthrough” layers can provide some additional representation. The solution provided by Chen
et al. (2018) aims to address this problem by using the duplication input pair, but the new constraint
on the “passthrough” layers will cause a problem in convergence. We provide the mirror training
technique to tackle the problem and prove that the new structure can preserve convexity and have
additional representation power.

Recurrent neural network. The recurrent neural network (RNN) is a class of sequence models
that are widely used for various tasks, including time-series prediction Qin et al. (2017), machine
translation Cho et al. (2014) and speech recognition Shewalkar (2019). The core design of the
basic RNN is the recurrent unit, also known as an RNN “cell,” where the output is connected to
the input, forming a cycle. Many variants of the basic RNN achieve state-of-the-art performance
by modifying the cell structure. For example, the long short-term memory (LSTM) Hochreiter
& Schmidhuber (1997) and the gated recurrent unit (GRU) Chung et al. (2014) use the concept
of “gate” to forget, select, and memorize the information flowing in the model, therefore learning
the time-series relationship. Our design of the recurrent input convex neural network (RICNN)
takes advantage of this recurrent structure. It formulates the cell as a basic ICNN to capture the
convexity for time-series tasks. Chen et al. (2018) also proposed an input convex sequence model.
The differences between this model and our network are that, first, the recurrent unit of our model
can be any form of a convex network, while the cell of the model in Chen et al. (2018) only has
one layer of full connected neural; second, our recurrent network does not need to make all weights
non-negative.

Hosting capacity analysis in the power system. Hosting capacity analysis is a popular topic
in power system research. The analysis determines how many more distributed energy resources
(DERs) the power grid can host without causing technical issues Wu et al. (2022). Traditional
hosting capacity analysis can be treated as an optimization problem Yuan et al. (2022). Nazir &
Almassalkhi (2019) presents the hosting capacity analysis as a convex inner approximation of the
optimal power flow problem. The data-driven hosting capacity analysis method is always formulated
as a time-series problem to observe the hosting capacity value changes over time Rylander et al.
(2018). In this paper, we use the proposed recurrent input convex neural network to consider the
convexity of this analysis, meanwhile capturing the temporal correlation of the hosting capacity
values.

3 METHOD

This section will explain how to obtain a convex mapping from the input to the output through the
input convex neural network (ICNN). Moreover, we design a mirror training technique to increase
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the representation power of the basic ICNN. The new structure is the Mirror ICNN. With the mod-
ified ICNN, we expand the work to a recurrent structure by proving that the new structure is still
convex in terms of the input for the time-series tasks.

3.1 INPUT CONVEX NEURAL NETWORKS

The basic input convex neural network in Amos et al. (2017) is developed from the fully connected
neural network. Given a fully connected k-layer neural network, we can re-construct it as an input
convex neural network shown in Fig. 1a. The mathematical expression of the network is

z1 = σ0(U0x+ b0), (1)
zi+1 = σi(Wizi +Uix+ bi), (2)

where hi denotes the output of the i-th hidden layer in the neural network, W1:k and U0:k are the
parameters of the fully connected layers and the “passthrough” layers, respectively, and gi is the
activation functions.

The convexity from the input x to the output y is achieved following Proposition 1.

Proposition 1 The neural network is convex from the input to the output, given that all weights in
W1:k−1 are non-negative, and all of the activation functions σ(·) are convex and non-decreasing.

The proof of Proposition 1 follows the operations that preserve convexity mentioned in Boyd &
Vandenberghe (2004). First, a non-negative weighted sum of convex functions is convex. Second,
for a function composition, i.e., f(x) = h(g(x)), f is convex if h is convex and non-decreasing,
and g is convex. Therefore, the ICNN f(x) is convex with respect to input x. By splitting the
input features into different parts, i.e., x and o, and only adding the non-negativity constraint on x
related weights, the partially input convex neural network (PICNN), as shown in Fig. 1b, can learn
a function f(x,o) which is convex with respect to x.

(a) The structure of the fully input convex neural network.

(b) The structure of the partially input convex neural network.

Figure 1: The input convex neural network.

The requirement of the non-decreasing convex activation functions is not restricted. We can choose
from some popular activation functions, e.g., rectified linear unit (ReLU) and exponential linear unit
(ELU), which are already proven to be powerful in learning. However, the non-negativity constraint
on W1:k−1 will limit the representation power, leading to inadequate training. The “passthrough”
layers are designed to address this problem, but the linear mapping cannot compensate for all the
lost representation power. In this case, we use mirror training to tackle this drawback fundamentally.
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3.2 MIRROR TRAINING FOR ICNN

Because of the non-negativity constraint on the weights, the ICNN loses much representation power,
even though the linear mapping of the “passthrough” layer is designed to address this issue. To
fundamentally solve this problem, we propose using a mirror training trick for the ICNN, which
contains the duplication input pair and the mirror training unit for hidden layers.

First, we will introduce the duplication input pair. Besides the original input x, we also use the
negation of the input, i.e., −x, as part of the input. The new structure with the duplication input

pair,
[
x
−x

]
, is shown in Fig. 1a. The mathematical equations can be written as

z1 = σ0(U0

[
x
−x

]
+ b0), (3)

zi+1 = σi(Wizi +Ui

[
x
−x

]
+ bi). (4)

Following Proposition 2, the new input pair will not impact the input convexity.

Proposition 2 If f(
[
x
−x

]
) is a convex function, g([x]) = f(

[
x
−x

]
) is also a convex function, i.e.,

the function f is also convex with respect to x.

The proof of Proposition 2 is simple. Boyd & Vandenberghe (2004) shows that the composition with
an affine mapping will preserve the convexity. If f is convex, g(x) = f(Ax + b) is also convex.

Suppose the ICNN learns a convex function g(

[
x
−x

]
) : R2n → R and f(x) : Rn → R. Using

matrix A which maps
[
x
−x

]
to [x], we have Proposition 2.

Chen et al. (2018) also uses a similar negation duplicate pair to retrieve the representation power of
the basic ICNN. Differently, in the “passthrough” layers U0:k−1 of the model in Chen et al. (2018),
the negative weights in U0:k−1 of the basic ICNN structure are set to zero, and their negations are set
as the weights for corresponding −x. This way, the forward calculation in the new structure has the
same result as the calculation in the original ICNN structure. For example, suppose we have an input
pair [x1, x2]

T and the corresponding weights pair is [w1, w2], where w2 < 0. Following the state-
ment, we can get a new weights pair [w1, 0, 0,−w2]

T . With the new input pair [x1, x2,−x1,−x2],
the result is (w1x1 + w2x2), which equals the inner product of [w1, w2] and [x1, x2].

However, in practice, this method proposed in Chen et al. (2018) will not work as expected. First,
the network will reset all weights of −x after each iteration, so these weights U

(−)
0:k−1 are only

considered in the forward calculation, not in the backpropagation. Second, since all the weights of
x, i.e., U (+)

0:k−1, are non-negative after each iteration, the negation of their negative value, which is

the weights in U
(−)
0:k−1 will be small in the new iteration and to the final iteration. Third and most

important, the “passthrough” layers are linear mapping of the input, so we can quickly know that the
U0:k−1 with no constraint are equivalent to any other linear transformation in the network, including
the negation trick of U (+)

0:k−1 and U
(−)
0:k−1.

By proving that we do not need the non-negativity constraint for U0:k−1, Proposition 2 is enough to
preserve the convexity from the input to the output.

Second, for the mirror training unit shown in Fig. 2, denoting x̃ =

[
x
−x

]
, we have the equation as

zi+1 = σi(Wizi +Uix̃+ bi), (5)

z′
i+1 = σi(Mizi −Uix̃+ b′i). (6)

The convexity of the z′i+1 can be achieved following Proposition 3. This structure of zi+1 and z′i+1
will use the output of the “passthrough” layers in a coupled way. Because of the introduced dupli-
cation input pair of x̃ and the mirror training unit, the ICNN can fundamentally gain representation
power. We name the new structure a mirror input convex neural network (Mirror ICNN or MICNN).
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Proposition 3 zi+1 is convex, given that all weights in Mi are non-negative, and all of the activa-
tion functions σ(·) are convex and non-decreasing.

Figure 2: The mirror training unit for the input convex neural network.

3.3 RECURRENT INPUT CONVEX NEURAL NETWORK

By the design of mirror training, the input convex neural network can have a convex mapping from
the input to the output. However, the ICNN is not naturally designed for sequential tasks, but there
are many of them in practice. For example, dynamic hosting capacity analysis is a popular research
topic in the power system area. To capture the convexity of a time-series problem, we extend the
ICNN to a time-series form. In this case, we design a recurrent structure for the ICNN, i.e., the
recurrent input convex neural network (Recurrent ICNN or RICNN).

Like the basic recurrent neural networks (RNNs), we construct our model using the recurrent unit,
the “cell.” Different from the cells in the RNN network, the recurrent unit in our RICNN network
is an ICNN network. Denoting the output of the ICNN at sequence (t) as y(t), we have the RICNN
model shown in Fig. 3. The mathematical definition of the model can be expressed as

z
(t+1)
1 = σ0(U0x̃

(t+1) +H0y
(t) + b0), (7)

z
(t+1)
i+1 = σi(Wizi +Uix̃

(t+1) +Hiy
(t) + bi), (8)

where the hidden state y(t) is part of the input at sequence (t+1) and H0:k−1 are the corresponding
matrix in the “passthrough” layers. The convexity from the input x to the output y of the RICNN
network is maintained following Proposition 4.

Figure 3: The recurrent input convex neural network.

Proposition 4 The proposed recurrent neural network is convex from the input to the output, given
that all weights in W1:k−1 and H0:k−1 are non-negative, and all of the activation functions σ(·) are
convex and non-decreasing.
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The proof of Proposition 4 is similar to Proposition 1. Note that y(t) in this network is a convex
function of x(t). Therefore, the matrix H0:k−1 should be non-negative to maintain the convexity
from x to y. The recurrent unit in the RICNN can be replaced by any other convex neural network,
which will not break the convexity from the input to the output.

4 EXPERIMENTS

This section will provide numerical validation on the design of the mirror training trick and the
recurrent input convex neural network.

4.1 FITTING CONVEX CURVES

The input convex neural network (ICNN) can learn a convex function from the input to the output.
To visualize this basic property, we design a fitting curve experiment to deliver a direct perception
of the ICNN. Given a function f(x), we use basic ICNN and proposed mirror training for ICNN to
this function. The results are shown in Fig. 4. Both the ICNN and the Mirror ICNN can perform
well for easier tasks, such as f(x) = x2 and f(x) = ex

2

. However, the ICNN shows its drawback
when facing a harder task with a relatively large negative bias, i.e., f(x) = ex

2 − 3000, where the
proposed mirror training for ICNN can overcome the challenge.

(a) ICNN: y = x2 (b) Mirror ICNN: y = x2

(c) ICNN: y = ex
2

(d) Mirror ICNN: y = ex
2

(e) ICNN: y = ex
2

− 3000 (f) Mirror ICNN: y = ex
2

− 3000

Figure 4: Training results of the fitting curve task using different models.
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4.2 EXPERIMENTS ON THE HOSTING CAPACITY DATASET

The hosting capacity (HC) value is denoted as the maximum active power that can be injected
by DERs at a bus in an existing distribution grid without causing technical problems or requiring
changes to power system facilities. We use the IEEE 123-bus example feeder model as our physical
model. The input data is the observation of the power system data of each bus, including the real
power, the reactive power, etc. The output data is the hosting capacity value of the corresponding
bus. The training results are shown in Fig. 5, while the mean square errors (MSE) in training are
shown in Table 1.

We use three models to experiment; the first one is the basic ICNN proposed in Amos et al. (2017),
the second one is the modified ICNN proposed in Chen et al. (2018), which introduces the new
non-negativity constraint on the “passthrough” layers, and the third one is the structure proposed in
this paper with the mirror training. The results show that our model can reach the smallest MSE in
a smoother training process.

(a) ICNN (b) ICNN with new constraint (c) Mirror ICNN

Figure 5: Training results of the hosting capacity dataset using different models.

Table 1: Training MSE of the hosting capacity dataset using different models.

Model Training MSE

ICNN 713.26
ICNN with new constraint 9222.87
Mirror ICNN 509.98

4.3 EXPERIMENTS ON MNIST DATASET

MNIST is a dataset of handwritten digits LeCun (1998), which is a classic classification task in
machine learning. We use the 3-layer neural network as our baseline. The used ICNN and Mirror
ICNN have the same quantity of hidden neurals as the baseline.

By observing the result, as shown in Table 2, they all have similar testing accuracy on this dataset.
When zooming into the first 100 iterations of the training, we can see that the Mirror ICNN has both
faster and better performance, as shown in Fig. 6.

Table 2: Testing accuracy of MNIST dataset using different models.

Model Testing accuracy

NN 97.70%± 0.06%
ICNN 97.45%± 0.06%
Mirror ICNN 97.96%± 0.07%
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Figure 6: The first 100 iterations of the training using different models.

4.4 RECURRENT PREDICTION ON THE HOSTING CAPACITY DATASET

To evaluate the performance of the recurrent input convex neural network, we design an experiment
on the hosting capacity dataset. Currently, many researchs show the value of dynamic hosting ca-
pacity analysis, i.e., hosting capacity number change over time. The IEEE 123-bus example feeder
model is our physical model. The input data is the time-series observation of the power system data
of each bus. The output data is the hosting capacity value of the corresponding bus.

We choose the LSTM model as our baseline. As shown in Table 3, the mean square losses on both
models are very close. However, the Recurrent ICNN model has a faster convergence speed, as
shown in Fig. 7.

Table 3: Training results of time-series hosting capacity dataset using different sequence models.

Model Training MSE

LSTM 1358.09
RICNN 1327.65

Figure 7: The first 50000 iterations of the training using different models.
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5 CONCLUSION

The input convex neural network (ICNN) learns a convex function from the input to the output.
However, because of the non-negativity constraint on the hidden layers, it loses some representation
power. This paper proposes a mirror training technique to address this problem for the ICNN. This
mirror training, namely mirror input convex neural network (Mirror ICNN or MICNN), includes the
duplication input pair and the mirror training unit for the ICNN. The results of different datasets
show that this technique will improve training performance. Moreover, to extend the ICNN to time-
series tasks, we design the recurrent input convex neural network (Recurrent ICNN or RICNN). The
recurrent unit, which can be any convex variant of the basic ICNN, takes the output of the last time
as part of the input.

During the training, we found that though the proposed new structure of the mirror unit will have a
better performance, the training cost is relatively high compared to the other model. In our future
work, we plan to find a strategy to reduce the training cost. Additionally, we believe the learned
convex function can be composed with other structures as the physical enhancement of the learning.
Therefore, we plan to explore more application scenarios for the input convex neural network.
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