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Abstract—We develop a new continuous wavelet-like transform
for localized ridgelets. Contrary to the classical ridgelets (which
are not local), this new dictionary exhibits desirable decay so that
all the atoms lie in L2(Rd). Furthermore, each localized ridgelet
atom is itself a superposition of continuously many classical
ridgelets. Our construction hinges on a careful wavelet analysis
in the Radon domain, different than the usual Radon-domain
wavelet analysis found in the study of classical ridgelets. This is
crucial in ensuring the locality of our new, localized ridgelet atoms.
We prove a continuous transform and inversion formula for this
new dictionary. Finally, due to the locality of these atoms, we
conjecture that this new dictionary is better conditioned than the
system of non-local ridge functions used ubiquitously in modern
neural networks.

Index Terms—Localization, Radon transform, ridgelets,
wavelets.

I. INTRODUCTION

A ridge function is a function which maps Rd → R that can
be written in the form

x 7→ r(αTx), (1)

where r : R → R is referred to as the ridge profile and
α ∈ Rd \ {0} is referred to as the ridge direction. A ridge
function is, in essence, a univariate function which is extended
outward in d dimensions. This is due to the fact that such a
function is constant along the hyperplanes αTx = c, where
c ∈ R [21]. Ridge functions are pervasive in mathematics,
science, and engineering. For example,

• plane waves are ridge functions with time-varying pro-
files and often arise as solutions to partial differential
equations [9];

• the Fourier inversion formula provides a method to repre-
sent functions as a superposition of the ridge functions
x 7→ e jω

Tx, ω ∈ Rd (complex exponentials);
• a neural network neuron with weights w ∈ Rd and bias
b ∈ R takes the form x 7→ σ(wTx−b), where σ : R → R
is the activation function.

Ridge functions are intimately tied to the Radon transform.
This observation goes back to classical work regarding the
representation of solutions to PDEs as superpositions of plane
waves, in which the PDEs are analyzed in the Radon domain [9],
[6]. The term “ridge function” was coined in [11] in the
context of computerized tomography (CT), in which images are
reconstructed from their Radon transform via ridge functions.

Recently, the study of shallow neural networks has led
to researchers being interested in constructive approaches to
representing multivariate functions with continuously many
ridge functions (neurons). Early approaches are based on the
continuous ridgelet transform, which corresponds to a univariate
continuous wavelet transform in the Radon domain [2], [3],
[13], [10], [22], [23]. Modern approaches are based on sparsity
in the Radon domain [15], [17], [18], [19], [20].

Although ubiquitous, especially in modern neural networks,
continuously indexed dictionaries of ridge functions are poorly
conditioned due to the non-locality of ridge functions. In
fact, ridge functions do not decay and therefore cannot lie
in Lp(Rd) for any 1 ≤ p < ∞. Classical ridgelets are ridge
functions with univariate wavelet profiles. In this paper, we
revisit the continuous ridgelet transform from first principles.
Our main contribution is the construction of a new dictionary of
localized ridgelets (see (21)) with an accompanying continuous
transform and inversion formula (Theorem 2) which proves
that any function in L2(Rd) can be represented as a continuous
superposition of our localized ridgelets.

Contrary to classical ridgelet atoms our localized ridgelet
atoms exhibit desirable decay and all lie in L2(Rd). Re-
markably, our localized ridgelets are themselves a continuous
superposition of classical ridgelets (cf. (21)). The key idea
behind our construction is a careful wavelet analysis in the
(half-filtered) Radon domain inspired by Donoho’s construction
of a bivariate orthonormal basis via a wavelet analysis in the
Radon domain [5]. Moreover, due to the Radon transform
in the construction of the localized ridgelets, this dictionary
can efficiently represent functions with singularities along
hyperplanes, which is not possible with standard multivariate
wavelets. We also note that a discretely indexed version of our
localized ridgelets was recently explored in [16, Chapter 5].
Here, the authors use a similar wavelet analysis in the Radon
domain to construct a tight frame of localized ridgelets for
L2(Rd). A comparison of a classical ridgelet with one of our
localized ridgelets appears in Fig. 1. We also visualize how
each parameter in our localized ridgelets effects the orientation
of these atoms in Fig. 2.



(a) Classical ridgelet

(b) Our new, localized ridgelet

Fig. 1: Classical ridgelets based on a 2nd order B-spline wavelet
vs. our new, localized ridgelet based on 2nd order B-spline
wavelet and the Haar wavelet on the sphere. The left plots are
surface plots of the functions and the right plots are heatmaps.

II. MATHEMATICAL PRELIMINARIES

The Fourier transform of f ∈ L1(R) is given by

f̂(ω) = F{f}(ω) =
∫
R
f(t)e− jωt dt, ω ∈ R, (2)

where j2 = −1. The Fourier transform is extended to functions
in L2(R) in the usual way. Let ψ ∈ L2(R) be a real-valued
admissible wavelet, i.e.,

Cψ :=

∫ ∞

0

|ψ̂(ω)|2

|ω|
dω =

∫ 0

−∞

|ψ̂(ω)|2

|ω|
dω <∞. (3)

We generate a continuously indexed wavelet dictionary by
dilating and translating ψ:

ψa,b(t) = a−1/2ψ

(
t− b

a

)
, a > 0, b ∈ R. (4)

The variable a plays the role of the scale of the wavelet and
the variable b plays the role of the location of the wavelet.
The continuous wavelet transform (CWT) on R is an operator
that maps L2(R) → L2(R>0 × R) given by f 7→ ((a, b) 7→
⟨f, ψa,b⟩). This transform is invertible via the reconstruction
formula

f =

∫ ∞

0

∫ ∞

−∞
⟨f, ψa,b⟩ψa,b(·) db v(a) da, (5)

where v(a) = C−1
ψ a−2 and where the equality is understood

in the weak sense, i.e., taking the inner product of both sides

in the above display with any g ∈ L2(R). We refer the reader
to [4, Chapter 2] for more details about the continuous wavelet
transform. Here and in the remainder of the paper, · will be
used as a placeholder for dummy variables taking values in R
(or Rd).

There have been many works developing a spherical version
of the continuous wavelet transform dating back to the
1990s [1], [7]. The primary difficulties that arise when working
on the sphere in Rd, denoted by

Sd−1 = {x ∈ Rd : ∥x∥2 = 1}, (6)

is that there is no dilation operator on Sd−1 and that the rotation
group on Sd−1, denoted by SO(d), is much more complicated
than the translation group on Euclidean space [14, p. 531].
Nevertheless, there exist continuously indexed dictionaries of
real-valued spherical wavelets φs,R ∈ L2(Sd−1). Morally, s >
0 plays the role of the scale of the wavelet and R ∈ SO(d)
plays the role of the location of the wavelet. Under some
admissibility assumptions [8], these spherical wavelets admit a
CWT that maps L2(Sd−1) → L2(R>0×SO(d)) given by g 7→
((s,R) 7→ ⟨g, φs,R⟩) which is invertible via the reconstruction
formula

g =

∫ ∞

0

∫
SO(d)

⟨f, φs,R⟩φs,R(⋆) dσ(R)w(s) ds, (7)

which holds in the weak sense, where σ is the Haar measure
on SO(d). Here, w is a positive weight function which plays
the same role as v in (5). Here and in the remainder of the
paper, ⋆ will be used as a placeholder for dummy variables
taking values in Sd−1.

The Radon transform is well-defined for any f ∈ L1(Rd)
and is given by the integral

R{f}(α, t) =
∫
α⊥

f(x+αt) dx, (α, t) ∈ Sd−1 × R, (8)

where α⊥ := {x ∈ Rd : αTx = 0}. The dual transform (the
“backprojection” operator) of F ∈ L∞(Sd−1 × R) is given by

R∗{F}(x) =
∫
Sd−1

F (α,αTx) dα, x ∈ Rd, (9)

where dα denotes integration against the Haar measure on
Sd−1. For sufficiently nice functions f : Rd → R (e.g.,
Schwartz), the Radon transform is inverible by the filtered
backprojection operator. That is to say, R∗ KR f = f , where
K is a univariate filtering operator (in the t variable) defined
in the Fourier domain by K̂h(ω) = cd|ω|d−1ĥ(ω). Here,
cd = 1/(2(2π)d−1) is a constant that often arises when working
with the Radon transform. A key property of the Radon
transform and related operators is a bijective L2-isometry
from L2(Rd) to L2

even(Sd−1 × R), the subspace of even L2-
functions on Sd−1 × R [12]. The even subspace arises since
the Radon transform is always even. This bijective isometry is
given by

K
1
2 R : L2(Rd) → L2

even(Sd−1 × R) (10)



with inverse

R∗ K
1
2 : L2

even(Sd−1 × R) → L2(Rd). (11)

Here, K
1
2 is defined in the Fourier domain by K̂

1
2 g(ω) =√

cd|ω|
d−1
2 ĝ(ω). In other words, there is an L2-isometry

between the spatial domain and the half-filtered Radon domain.

III. A NEW CONTINUOUS TRANSFORM

In this section we construct a new continuously indexed
dictionary where the atoms take the form of localized ridgelets.
Unlike the classical ridgelet atoms, these new, localized, ridgelet
atoms are in L2(Rd). Furthermore, this localized ridgelet
dictionary admits a continuous transform and reconstruction
formula akin to (5) and (7).

The key idea will be to construct tensor product wavelet
dictionary on Sd−1 × R and pull the tensor product dictionary
through the L2-isometry R∗ K

1
2 which maps L2

even(Sd−1 × R)
to L2(Rd) inspired by [5].

To begin, define the tensor product function

Wa,b,s,R := Peven{φs,R ⊗ ψa,b}, (12)

where Peven is the even projector. Written explicitly, we have
that

Wa,b,s,R(α, t) =
φs,R(α)ψa,b(t) + φs,R(−α)ψa,b(−t)

2
(13)

To simplify notation, let λ = (a, b, s,R) denote the parameters
of of the tensor-product wavelet (12) and let Λ = R>0 × R×
R>0 × SO(d) denote the parameter space.

Lemma 1. Every F ∈ L2
even(Sd−1 × R) admits decomposition

F (⋆, ·) =
∫
Λ

⟨F,Wλ⟩Wλ(⋆, ·) dµ(λ), (14)

where dµ(λ) = db v(a) dadσ(R)w(s) ds and the equality
holds in the weak sense.

Proof. First, define the system Vλ := φs,R⊗ψa,b, λ ∈ Λ. Next,
define dζ(a, b) := db v(a) da and dγ(R, s) := dσ(R)w(s) ds.

Given H ∈ L2(Sd−1 × R), we that∫
Λ

⟨H,Vλ⟩Vλ(⋆, ·) dµ(λ)

=

∫
Λ

⟨H,φs,R ⊗ ψa,b⟩φs,R(⋆)ψa,b(·) dµ(λ)

=

∫
Λ

⟨⟨H(⋆, ·), ψa,b⟩, φs,R⟩φs,R(⋆)ψa,b(·) dµ(λ)

=

∫ 〈∫
⟨H(⋆, ·), ψa,b⟩ψa,b dζ(a, b), φs,R

〉
φs,R(⋆) dγ(s,R),

(15)

where we note that interchanging integrals is allowed by
Fubini’s theorem since all functions are L2-functions. If
we take the inner product of the above display with any
G ∈ L2(Sd−1 × R) and interchange integrals accordingly, we
find that

H(⋆, ·) =
∫
Λ

⟨H,Vλ⟩Vλ(⋆, ·) dµ(λ) (16)

in the weak sense. Since L2
even(Sd−1 × R) ⊂ L2(Sd−1 × R),

for any F,G ∈ L2
even(Sd−1 × R) we have

⟨F,G⟩ =
〈∫

Λ

⟨F, Vλ⟩Vλ(⋆, ·) dµ(λ), G
〉

=

〈∫
Λ

⟨Peven F, Vλ⟩Vλ(⋆, ·) dµ(λ), G
〉

=

〈∫
Λ

⟨F,Peven Vλ⟩Vλ(⋆, ·) dµ(λ), G
〉

=

〈∫
Λ

⟨F,Wλ⟩Vλ(⋆, ·) dµ(λ), G
〉

=

〈∫
Λ

⟨F,Wλ⟩Vλ(⋆, ·) dµ(λ),PevenG

〉
=

〈
Peven

{∫
Λ

⟨F,Wλ⟩Vλ(⋆, ·) dµ(λ)
}
, G

〉
=

〈∫
Λ

⟨F,Wλ⟩Peven{Vλ}(⋆, ·) dµ(λ), G
〉

=

〈∫
Λ

⟨F,Wλ⟩Wλ(⋆, ·) dµ(λ), G
〉
, (17)

where we took advantage of the fact that Peven is an orthopro-
jector and therefore self-adjoint.

In the remainder of this section, suppose that ψ satisfies the
stronger admissibility condition∫ ∞

0

|ψ̂(ω)|2

|ω|d
dω =

∫ 0

−∞

|ψ̂(ω)|2

|ω|d
dω <∞. (18)

This stronger condition ensures that ψ has ⌈d−1
2 ⌉+1 vanishing

moments. Using the L2-isometry R∗ K
1
2 , we can define the

following continuously indexed dictionary on Rd.

ρλ := R∗ K
1
2 Wλ, λ ∈ Λ. (19)

Since Wλ ∈ L2
even(Sd−1 × R), we have that ρλ ∈ L2(Rd).

The stronger admissibility condition on ψ ensures K
1
2 Wλ is a

bounded function so that the application of R∗ is well-defined.
If we define Ψa,b := K

1
2 ψa,b, we have

(K
1
2 Wλ)(α, t) =

φs,R(α)Ψa,b(t) + φs,R(α)Ψa,b(−t)
2

,

(20)
where we used the fact that K

1
2 commutes with reflections.

Since ψ satisfies the stronger admissibility condition, Ψa,b is
itself a univariate wavelet dictionary. Thus,

ρλ(x) = (R∗ K
1
2 Wλ)(x)

=
1

2

∫
Sd−1

φs,R(α)Ψa,b(α
Tx)

+ φs,R(−α)Ψa,b(−αTx) dα

=

∫
Sd−1

Ψa,b(α
Tx)φs,R(α) dα. (21)

We refer to these atoms as localized ridgelets since each
ρλ is constructed via a “classical” ridgelet x 7→ Ψa,b(α

Tx)
combined with a localization procedure via integrating the
classical ridgelet against a spherical wavelet with a particular



(a) R = −π (b) R = −π/2 (c) R = 0 (d) R = π/2 (e) R = π

(f) b = −2 (g) b = −1 (h) b = 0 (i) b = 1 (j) b = 2

(k) a = 1/4 (l) a = 1/2 (m) a = 1 (n) a = 2 (o) a = 4

(p) s = 1/4 (q) s = 1/2 (r) s = 1 (s) s = 2 (t) s = 4

Fig. 2: Here we demonstrate how each parameter effects the orients and scales the atoms in our newly proposed dictionary.
The top row corresponds to angular rotations. In the second row we vary the translation parameter for the wavelet on R. In
the third row we show the effects of different scaling on the wavelet on R. Finally, in the fourth row we vary the scaling
for the wavelet on the sphere. For each row we vary only one parameter while fixing the others to their canonical values
(a = 1, b = 0, s = 1, R = 0). The localized ridgelet uses the 2nd order B-spline wavelet on R2 and a periodic Haar wavelet on
the sphere.

location and scale. This localization procedure ensures that the
localized ridgelet atoms decay quickly and all lie in L2(Rd).

For any f ∈ L2(Rd) we can now define its continuous
localized ridgelet transform (CLRT) as the function λ 7→
⟨f, ρλ⟩. The CLRT is an operator that maps L2(Rd) → L2(Λ).
Furthermore, this operator is invertible by the reconstruction
formula given in Theorem 2.

Theorem 2. Every f ∈ L2(Rd) admits the decomposition,

f =

∫
Λ

⟨f, ρλ⟩ρλ(·) dµ(λ) (22)

where the equality holds in the weak sense.

Proof. Given f ∈ L2(Rd), K
1
2 R f ∈ L2

even(Sd−1 × R). By
Lemma 1 we have the decomposition

K
1
2 R f =

∫
Λ

⟨K
1
2 R f,Wλ⟩Wλ(⋆, ·) dµ(λ)

=

∫
Λ

⟨f,R∗ K
1
2 Wλ⟩Wλ(⋆, ·) dµ(λ)

=

∫
Λ

⟨f, ρλ⟩Wλ(⋆, ·) dµ(λ) (23)

in the weak sense. The application of R∗ K
1
2 yields

f =

∫
Λ

⟨f, ρλ⟩ρλ(·) dµ(λ) (24)



in the weak sense.

IV. VISUALIZATION OF THE LOCALIZED RIDGELETS

In this section we visally investigate our new system of atoms.
In Fig. 2 we isolate each parameter of the localized ridgelet
atoms and show how they influence their orientation and shape.
We see that the parameters associated with the wavelet on
R behave predictably. These parameters essentially apply a
scaling or translation to the localized ridgelet. In contrast,
the parameters of the spherical wavelet apply nontrivial
transformations to the atoms.

V. CONCLUSION AND FUTURE WORK

In this work, we developed a new continuous wavelet-like
transform. The atoms of this new dictionary take the form of
localized ridgelets. This system is the continuously indexed
version of the recently developed discretely indexed tight frame
of localized ridgelets for L2(Rd) [16, Chapter 5]. Future work
will be devoted to investigating the use of these localized
ridgelets as a replacement for the standard neurons in neural
networks. We conjecture that the superior conditioning of the
localized dictionary will lead to fast convergence of gradient-
based methods for data-fitting problems.

ACKNOWLEDGMENT

This work was supported by the ONR MURI grant N00014-
20-1-2787, the NSF grants DMS-2134140 and DMS-2023239,
the AFOSR/AFRL grant FA9550-18-1-0166.

REFERENCES

[1] J.-P. Antoine and P. Vandergheynst, “Wavelets on the 2-sphere: A group-
theoretical approach,” Applied and Computational Harmonic Analysis,
vol. 7, no. 3, pp. 262–291, 1999.

[2] E. J. Candès, “Ridgelets: theory and applications,” Ph.D. dissertation,
Stanford University Stanford, 1998.

[3] E. J. Candès, “Harmonic analysis of neural networks,” Applied and
Computational Harmonic Analysis, vol. 6, no. 2, pp. 197–218, 1999.

[4] I. Daubechies, Ten lectures on wavelets. SIAM, 1992.
[5] D. L. Donoho, “Orthonormal ridgelets and linear singularities,” SIAM

Journal on Mathematical Analysis, vol. 31, no. 5, pp. 1062–1099, 2000.
[6] L. C. Evans, Partial Differential Equations, ser. Graduate studies in

mathematics. American Mathematical Society, 2010.
[7] M. Holschneider, “Continuous wavelet transforms on the sphere,” Journal

of Mathematical Physics, vol. 37, no. 8, pp. 4156–4165, 1996.
[8] I. Iglewska-Nowak, “Continuous wavelet transforms on n-dimensional

spheres,” Applied and Computational Harmonic Analysis, vol. 39, no. 2,
pp. 248–276, 2015.

[9] F. John, Plane Waves and Spherical Means Applied to Partial Differential
Equations, ser. Interscience tracts in pure and applied mathematics.
Interscience publishers, 1981.
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