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Abstract

Recognition of handwritten mathematical expressions allows to transfer scientific1

notes into their digital form. It facilitates the sharing, searching, and preservation of2

scientific information. We introduce MathWriting, the largest online handwritten3

mathematical expression dataset to date. It consists of 230k human-written4

samples and an additional 400k synthetic ones. This dataset can also be used in5

its rendered form for offline HME recognition. One MathWriting sample consists6

of a formula written on a touch screen and a corresponding LATEX expression. We7

also provide a normalized version of LATEX expression to simplify the recognition8

task and enhance the result quality. We provide baseline performance of standard9

models like OCR and CTC Transformer as well as Vision-Language Models like10

PaLI on the dataset. The dataset together with an example colab is accessible on11

Github.12

1 Introduction13

72a078dfeb8e6027 c96d0c67f82ee512 fe938af2c772a57a

14

Three examples of HME from MathWriting. More examples can be found in Appendix K. Each ink15

is accompanied by a unique identifier that matches a corresponding filename in the dataset.16

MathWriting dataset (2.9 GB):17

https://storage.googleapis.com/mathwriting_data/mathwriting-2024.tgz18

Associated code:19

https://github.com/google-research/google-research/tree/master/mathwriting20

Online text recognition models have improved a lot over the past years, because of improvements21

in model structure [1, 2, 3] and also because of an increase in the amount of training data [4, 5, 6].22

Mathematical expression (ME) recognition is a challenging task that has received less attention23

than regular recognition of words and characters [7]. ME recognition is different from regular text24

recognition in a number of interesting ways which can prevent improvements from transferring25

from one to the other. Though MEs share with text most of their symbols, they follow a more rigid26

structure which is also two-dimensional, see Figure 1. Where text can be treated to some extent as a27

one-dimensional problem amenable to sequence modeling, MEs cannot because the relative position28
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of symbols in space is meaningful. It is also different from symbol segmentation or object detection29

because the output of a recognizer has to contain the relationship between symbols, serialized in30

some form (LATEX, a graph, InkML, etc.). Similarly to the case of text, handwritten MEs (HME) are31

more difficult to recognize than printed ones as they are more ambiguous and less training data is32

available.33

Handwritten data is costly to obtain as it must be written by hand, which is compounded in the case34

of online representation (ink) by the necessity to use dedicated hardware (touchscreen, digital pen,35

etc.). By publishing the MathWriting dataset, we hope to alleviate some of the needs for data for36

research purposes. Samples include a large number of human-written inks, as well as synthetic ones.37

MathWriting can readily be used with other online datasets like CROHME [8] or Detexify [9] - we38

publish the data in InkML format to facilitate this. It can also be used for offline ME recognition39

simply by rasterizing the inks, using code provided on the Github page2.40

MathWriting is the largest set of online HME published so far - both human-written and synthetic.41

It significantly expands the set of symbols covered by CROHME [8], enabling more sophisticated42

recognition capabilities. Since inks can be rasterized, MathWriting can also been seen as larger43

than existing offline HME datasets [10, 11, 12]. For these reasons we introduce a new benchmark,44

applicable to both online and offline ME recognition.45

This work’s main contributions are:46

• a large dataset of Handwritten Mathematical Expressions under the Creative Commons47

Attribution-NonCommercial-ShareAlike 4.0 International3.48

• LATEX ground truth expressions in normalized form to simplify training and to make evalua-49

tion more robust.50

• Evaluation of different models like CTC Transformer and PaLI on the dataset to show what51

recognition quality could be achieved with the provided data.52

The paper focuses on the high-level description of the dataset: creation process, postprocessing,53

train/test split, ground truth normalization, statistics, and a general discussion of the dataset content54

to help practitioners understand what can and cannot be achieved with it. All the low-level technical55

information like file formats can be found in the readme.md file present at the root of the dataset56

archive linked above. We also provide code examples on Github2, to show how to read the various57

files, process and rasterize the inks, and tokenize the LATEX ground truth.58

2 Dataset Creation59

MathWriting dataset primarily consists of LATEX expressions from Wikipedia, more details about the60

acquisition of expressions are provided in Appendix B. These expressions were used for both ink61

collection from human contributors Section 2.1 as well as synthetic data generation Section 2.2. We62

did a very limited filtering of very noisy human-written examples (described in Appendix C).63

2.1 Ink Collection64

Inks were obtained from human contributors through an in-house Android app. Participants agreed65

to the standard Google terms of use and privacy policy. The task consisted in copying a rendered66

mathematical expression (prompt) shown on the device’s screen using either a digital pen or a finger67

on a touch screen. Mathematical expressions used as prompt were first obtained in LATEX format, then68

rendered into a bitmap through the LATEX compiler (see Appendix A for the template used). 95% of69

MathWriting expressions were obtained from Wikipedia. The remaining ones were generated to cover70

underrepresented cases in Wikipedia, like isolated letters with nested sub/superscripts or complicated71

fractions (see Section B). Contributors were hired internally at Google. 6 collection campaigns were72

run between 2016 and 2019, each lasting between 2 to 3 weeks. Collected data contains only inks73

and labels, so no personally identifiable information is present in the dataset. Offensive content is74

highly unlikely because LATEX expressions were taken from Wikipedia and we conducted a filtering75

of noisy data (described in Appendix C).76

2https://github.com/google-research/google-research/tree/master/mathwriting
3https://creativecommons.org/licenses/by-nc-sa/4.0/
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2.2 Synthetic Samples and Isolated Symbols77

We created synthetic samples in order to further increase the label diversity for training. This78

also enabled compensating for limitations of the human collection like the maximum length of the79

expressions, which were limited by the size of the screen they were written on. We used LATEX80

expressions from Wikipedia that were not used in the data collection. The resulting synthetic81

data has a 90th percentile of expression length of 68 characters, compared to 51 in train. This is82

especially important as deep neural nets often fail to generalize to inputs longer than their training83

data [13, 14]. Using synthetic long inks together with the original human-written inks can help to84

eliminate that problem as shown in [15, 16]. The synthesis technique is as follows: starting from a85

raw LATEX mathematical expression, we computed a DVI file using the LATEX compiler, from which86

we extracted bounding boxes. We then used those bounding boxes to place handwritten individual87

symbols, resulting in a complete expression. See Figure 1 for an example of extracted bounding88

boxes and the resulting synthetic example.89

Figure 1: An example of a synthetic ink created from bounding boxes with label ((p+q)+(p-q))/2=q

Inks for individual symbols are all from the symbols split. They have been manually extracted90

from inks in train. For each symbol that we wanted to support, we manually selected strokes91

corresponding to it for 20-30 distinct occurrences in train, and used that information to generate a92

set of individual inks. Similar synthesis techniques have been used by [8] with inks, [10] and [12]93

with raster images.94

A significant difference between synthetic and human-written inks is the stroke order. For synthetic95

inks, stroke order follows the order of the bounding boxes in the DVI file, which can be different96

from the usual order of writing for mathematical expressions. However, the writing order within a97

given symbol is consistent with human writing.98

2.3 Dataset Split99

MathWriting is composed of five different sets of samples, which we call ’splits’: train, valid,100

test, symbols, and synthetic. The splits train, valid and test consist only of human-written101

examples. The split symbols is provided for synthetic data generation and is not used in training.102

The split of human-written samples between train, valid and test was partially done based on103

writers, partially based on labels. More details are provided in Appendix D. Experiments have shown104

that a more important factor than the handwriting style was whether the label had already been seen105

during training. This fact is also supported by research in the area of compositional generalization106

[17]. In the published version, valid has a 55% (8.5k samples) intersection with train based on107

unique normalized labels, and test has an 8% intersection (647 samples). We chose to have a low108

intersection between train and test in order to correctly measure generalization of trained models109

to unseen labels.110

2.4 Label Normalization111

All samples in the dataset come with two labels: the LATEX expression that was used during the112

data collection (annotation label in the InkML files), and a normalized version of it meant for113

model training, which is free from a few sources of confusions for an ML model (annotation114

normalizedLabel). An example with original and normalized labels is provided in Figure 2. Label115

normalization covers three main categories (details are provided in Appendix E):116
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Figure 2: An example from the train split, with its labels:
Raw: f(x)=\frac1e\cdot \sum_{n=0}^{\infty}{n^{x}\over n!}
Normalized: f(x)=\frac{1}{e}\cdot\sum_{n=0}^{\infty}\frac{n^{x}}{n!}

• variations used in print that can’t be reproduced in handwriting - e.g. bold, italic - or that117

haven’t been reproduced consistently by contributors.118

• non-uniqueness of the LATEX syntax. e.g. \frac{1}{2} and 1\over 2 are equivalent.119

• visual variations that can reproduced in handwriting but can’t reliably be inferred by a model.120

This includes size modifiers like \left, \right.121

We provide the raw labels to make it possible to experiment with alternative normalization schemes,122

which could lead to better outcomes for different applications.123

2.4.1 Limitations of normalization124

The normalization process is purely syntactic, and can not cover cases where the meaning of the125

expression has to be taken into account. For example, a lot of expressions from Wikipedia use126

cos instead of \cos. It is often clear to a human reader whether the sequence of characters c,o,s127

represents the \cos command or simply three letters. However, this can not be reliably inferred by a128

syntactic parser, for example in tacos vs ta\cos. An alternative would be to update the raw labels,129

which we didn’t do because we wanted to keep the information that was used during the collection as130

untouched as possible. Similarly, cases like 10^{-1} usually mean {10}^{-1}, though they render131

exactly the same. We made the choice to normalize to the former because it’s the only option with132

a purely syntactic normalizer. It’s also better than not removing these extra braces because it gives133

more consistent label structures, which simplifies the model training problem.134

3 Dataset Statistics135

In this section we describe the key characteristics of MathWriting and compare it to CROHME23136

[8]. In Table 1 we provide the information about the volume of the dataset splits both in terms of137

examples (inks) and unique labels.138

Table 1: Statistics on different subsets of MathWriting dataset.

train synthetic valid test

# distinct inks 230k 396k 16k 8k
# distinct labels 53k 396k 8k 4k

3.1 Label Statistics139

MathWriting contains 457k unique labels after normalization (see Section 2.4). From Table 1 we140

see that most unique expressions are covered by the synthetic portion of the dataset. However, the141

absolute number of unique expressions in human-written part is still high – 61k. This underlines142

the importance of synthetic data as it allows models to see a much bigger variety of expressions. It143

is important to note that the synthetic split has essentially no repeated expressions. On the other144

hand, in real data multiple different writings of the same expression are quite common (see Figure 11145

in Appendix F). This fact allows us to separately evaluate model’s quality on expressions that were146
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observed during training and that those that hadn’t. As seen in Table 2 the biggest intersection in147

expressions is between valid and train. The minimal overlap between test and train splits is148

beneficial for assessing a model’s ability to generalize to expressions that were not seen in train.149

Table 2: Counts of unique labels shared between MathWriting splits

train synthetic valid test

train - 0 3.6k 355
synthetic 0 - 0 0
valid 3.6k 0 - 239
test 355 0 239 -

The median length of expressions in characters is 26 which is comparable to one of the most popular150

English recognition datasets IAMonDB [18] which has median of 29 characters. However, it is151

important to note that LATEX expressions have tokens that span multiple characters like \frac. The152

median length of expressions in tokens (provided in Appendix J) is 17, thus making training a model153

on tokens rather then characters easier due to shorter target lengths [19, 20]. We want to emphasize154

that MathWriting can be used with a different tokenization scheme and token vocabulary from what155

we propose in Appendix J. In Figure 3 we show the number of occurrences for the most frequent156

tokens. Tokens { and } are by far the most frequent as they are integral to the LATEX syntax.157

Figure 3: Histogram of the top-100 most frequent tokens in MathWriting.

3.2 Ink Statistics158

Each ink in MathWriting dataset is a sequence of strokes I = [s0, . . . , sn], each stroke si consisting159

of points. A point is represented as a triplet (x, y, t) where x and y are coordinates on the screen and t160

is a timestamp. In Table 3 we provide statistics on number of strokes, points, and duration of writing.161

It’s important to note that as inks were collected on different devices, the absolute coordinate values162

can vary a lot. In human-written data the time information t always starts from 0 but it is not always163

the case in the synthetic split. Different samples often have different sampling rates (number of164

points written in one second) due to the use of different devices (see Figure 4). More details in165

Section 3.3. Consequently, the same ink written on two different devices can result in inks with a166

different number of points. For human-written inks, the sampling rate is consistent between strokes,167

but it is not the case for synthetic ones. In order to accommodate a model and make sequences shorter,168

inks can be resampled in time (see example in Figure 13, Appendix F).169

Table 3: Ink statistics for MathWriting.

10th percentile median 90th percentile

# strokes 5 14 39
# points 131 350 1069
writing time (sec) 1.88 6.03 16.42
aspect ratio 1.32 3.53 9.85

5
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Figure 4: Left: an ink with very low sampling rate (9.4 points per second)
Right: an ink with very high sampling rate (260 points per second)

Table 4: Counts of inks, distinct labels and distinct tokens
used in MathWriting and CROHME23. The single token
present in CROHME23 but not in MathWriting is the literal
dollar sign \$.

MathWriting CROHME23 Common

Inks 650k 164k 0
Labels 457k 102k 47k
Vocab 254 105 104

Table 5: Count of human-written and synthetic
inks for MathWriting and CROHME23. Human-
written inks represent 38% of the total for Math-
Writing, and 10% for CROHME23.

MathWriting CROHME23

human 253k 17k
synthetic 396k 147k

3.3 Devices Used170

Around 150 distinct device types have been used by contributors. In most cases inks were written on171

smartphones using a finger on a touchscreen. However, there are cases where tablets with styluses172

were used. The main device used in this case is Google Pixelbook, which accounted for 51k inks total173

(see Table 7, Appendix F). Out of all device types, 37 contributed more than 1000 inks. Note that174

writing on a touchscreen with a finger or a stylus results in different low-level artifacts. All devices175

were running the same Android application for ink collection, regardless of whether their operating176

system was Android or ChromeOS.177

3.4 Comparison With CROHME23178

In this section we compare main dataset statistics of MathWriting and CROHME23 [8] as it is a179

popular publicly available dataset for HME recognition. In terms of overall size, MathWriting has180

nearly 3.9 times as many samples and 4.5 times as many distinct labels after normalization, see181

Table 4. A significant number of labels can be found in both datasets (47k), but the majority is182

dataset-specific. This suggests that combining both datasets during training could yield improved183

HME recognition quality. MathWriting has more human-written inks than CROHME23 as seen in184

Table 5, and contains a much larger variety of tokens. It has 254 distinct tokens including all Latin185

capital letters and almost the entire Greek alphabet. It also contains matrices, which are not included186

in CROHME23. Therefore, more scientific fields like quantum mechanics, differential calculus, and187

linear algebra can be represented using MathWriting.188

4 Experiments189

4.1 Evaluation setup190

We propose the following evaluation setup based on MathWriting for the quality of handwriting math191

expression recognition.192

• evaluation samples: the test split of MathWriting.193

• metric: character error rate (CER) [21], where a "character" is a LATEX token as defined by194

the code in Appendix I.195
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We provide a reference implementation of the evaluation metric at the Github page 2. We propose the196

use of CER as a metric to make results comparable to other recognition tasks like text recognition [22,197

23], and the use of LATEX tokens instead of ASCII characters so that an error on a single non-latin198

letter (e.g. \alpha recognized as a) counts as one instead of many.199

4.2 Baseline Recognition Models200

In Table 6 we provide results for different models. All models are trained exclusively on the201

MathWriting dataset (train and synthetic), except for the OCR API that was trained on other202

datasets as well. The following models represent different approaches to handwriting recognition –203

offline [23], online [24] and mixed [25].204

OCR This is a publicly available Document AI OCR API [26], which processes bitmap images. It205

has been trained partly on samples from MathWriting. We sent inks rendered with black ink on a206

white background and searched for optimal image size and stroke width to get the best evaluation207

result from the model.208

CTC Transformer This model is a transformer base with a Connectionist Temporal Classification209

loss on top (CTC) [27]. It contains 11 transformer layers with an embedding size of 512. We used210

swish activation function and dropout of 0.15 as those parameters performed best on valid. We211

train with an Adam optimizer, learning rate of 1e-3, batch size 256 for 100k steps. One training run212

took 4 hours on 4 TPU v2. We trained from scratch and exclusively on MathWriting (train and213

synthetic). The model is similar to [24], replacing LSTM layers by Transformer layers and not214

using any external language model on top.215

VLM We fine-tuned a large Vision-Language Model PaLI [28] on MathWriting (train and216

synthetic). We used the representation proposed in [25] where an ink is represented as both a217

sequence of points (similar to CTC Transformer) and its rasterized version (similar to OCR). We train218

three models with different data shuffling for 200k steps with batch size 128, learning rate 0.3 and219

dropout 0.2. One training run took 14 hours on 16 TPU v5p. Models were finetuned exclusively on220

train and synthetic MathWriting data. Overall, it took 2 TPU v2 days and 28 TPU v5p days to221

run the experiments.222

Table 6: Recognition results for different models. The evaluation metric is reported on both the valid and
test splits.

Model Input Parameters CER on valid CER on test

OCR [26] Image - 6.50 7.17
CTC Transformer [25] Ink 35M 4.52 (0.08) 5.49 (0.05)
PaLI [25] Image+Ink 700M 4.47 (0.08) 5.95 (0.06)

Table 6 shows the evaluation comparison between the three models. The OCR model has no223

information about the order of writing and speed (offline recognition), which explains its lower224

performance than methods that take time information into account (online recognition). The two225

other methods – PaLI and CTC Transformer perform significantly better than OCR. These results226

show that our dataset can be used to train classical recognition models like CTC transformer as well227

as more recent architectures like VLM.228

Figure 5 shows examples of model mistakes. Two of the main causes of mistakes are confusing229

similar-looking characters like “z” and “2”, and errors in the structural arrangement of the characters,230

for instance not placing a sub-expression in a subscript or superscript.231

5 Discussion232

5.1 Differences in Writing Style233

The number of contributors was large enough that a variety of writing styles are represented in the234

dataset. An example for different ways of writing letter ‘r’ can be seen in Figure 6. Additional235
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Figure 5: Examples of recognition mistakes from the CTC Transformer model. We observe similar mistakes
from the other models.

d4e9c7b8f1ffb958 0dca307a1895512d 45af9641d8d2ed56

Figure 6: Three ways of writing a lowercase ’r’.

examples are provided in Figure 7. Similar though less obvious differences exist for other letters.236

Style differences also show through writing order (example – Figure 14, Appendix G).237

5.2 Recognition Challenges238

MathWriting presents some inherent recognition challenges, which are typical of handwritten rep-239

resentations. For example, it’s not really possible to distinguish these pairs from the ink alone:240

\frac{\underline{a}}{b} vs \frac{a}{\overline{b}}, and \overline\omega vs \varpi.241

We’d like to point out that these ambiguities are not an issue for humans in practice, because they242

rely on contextual information to disambiguate: a particular writing idiosyncrasy, consistency with243

nearby expressions, knowledge of the scientific domain, etc. See Figures 8 and 9 for more examples.244

5.3 Dataset Applications and Future Work245

Mathwriting can be used to train recognizers for a large variety of scientific fields, and is also large246

enough to enable synthesis of mathematical expressions. Combining it with other large datasets like247

CROHME23 would increase the variety of samples even further, both in terms of writing style and248

number of expressions, likely improving the performance of a model.249

Bounding box information for synthetic samples together with individual symbols are provided to250

enable experimentation with synthetic ink generation. Synthetic samples were generated through the251

straightforward process of pasting inks of individual symbols (symbols) exactly where bounding252

boxes were located. This gives synthetic samples a very regular structure, see Figure 1. It is possible253

a933cd67f7891dc8 ecc157b89c3e344d

Figure 7: Two ways of writing lowercase s.
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Figure 8: Left: character ambiguity. Is it 1 ≤ xn < xn+1 or 1 ≤ nη < nη+1 ? Right: what is the fraction
nesting order?

96bf9fb2da96db9e e50b0275ef2c9549

Figure 9:
Left: \binom or 2-element matrix? Right: pnapn = a or pnapn = a ?

to improve this process by modifying the location, size or orientation of bounding boxes prior to254

generating the synthetic inks. This would soften LATEX’s rigid structure and make synthetic data255

closer to human handwriting. Another application of these bounding boxes would be to bootstrap a256

recognizer that would also return character segmentation information. This kind of output is critical257

for some UI features - for example, editing an handwritten expression.258

MathWriting can also be improved by varying the label normalization. Changing it can have different259

benefits depending on the application, as mentioned above. We provide the source LATEX string260

for that reason. Another possible improvement in recognition can come from additional contextual261

information, for instance the scientific field [29] that can be added post-hoc. Combining recognizers262

with a language model [24] trained on a large set of mathematical expressions would be a step in a263

similar direction.264

6 Limitations265

A single sample in MathWriting dataset has one handwritten LATEX formula, see Figure 2. As a result,266

models that are trained on this dataset would probably perform poorly on complete handwritten267

documents, such as the IAMonDo dataset [30]. Also, as the dataset contains only LATEX expressions,268

it is unlikely that models trained on it will accurately recognize handwritten text in English or other269

languages. As shown in Figure 3, some LATEX tokens are way more frequent than others. Some270

infrequent tokens like \ni could be hard to recognise.271

7 Conclusion272

We introduced MathWriting, the largest dataset of online handwritten mathematical expressions273

to date, together with the experimental results of three different types of models. We hope this274

dataset will help advance research in both online and offline mathematical expression recognition.275

Additionally, we invite data practitioners to build on the dataset. We intentionally chose a file format276

for MathWriting close to the one used by CROHME to facilitate their combined use. We also277

provided original or intermediate representations (raw LATEX strings, bounding boxes) to enable278

experimentation with the data itself, and suggested a few directions (Section 5.3).279
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Checklist364

1. For all authors...365

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s366

contributions and scope? [Yes] We claim to provide a large dataset of HME – see367

Section 1, together with normalized labels – the process is described in Section 2.4 and368

example is provide in Figure 2. Experimental results on this dataset are presented in369

Section 4.2.370

(b) Did you describe the limitations of your work? [Yes] We described general limitations371

of MathWriting dataset in Section 6, limitations of label normalization in Section 2.4.1,372

recognition challenges of mathematical expressions in Section 5.2 and sources of noise373

in the dataset in Section H.374
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(c) Did you discuss any potential negative societal impacts of your work? [N/A] The type375

of the dataset we are publiching is not new, there are similar datasets like CROHME23376

[8]. Given the widespread use of handwriting recognition, we don’t see any potential377

negative impacts of our work.378

(d) Have you read the ethics review guidelines and ensured that your paper conforms to379

them? [Yes] All the participants were payed the minimum hourly rate as discussed in380

Section 2.1. The dataset doesn’t include any personal information about contributors381

apart from their handwriting samples that they agreed to share.382

2. If you are including theoretical results...383

(a) Did you state the full set of assumptions of all theoretical results? [N/A] Our paper384

doesn’t include any theoretical results.385

(b) Did you include complete proofs of all theoretical results? [N/A] Our paper doesn’t386

include any theoretical results.387

3. If you ran experiments (e.g. for benchmarks)...388

(a) Did you include the code, data, and instructions needed to reproduce the main experi-389

mental results (either in the supplemental material or as a URL)? [No] All experiments390

in this paper are conducted using publicly available datasets. We provide code in391

Github for ink rasterisation, CER computation and expression tokenization. The Visual-392

Language Model PaLI used in the experiments is non-open-sourced, so full results393

from Table 6 cannot be reproduced.394

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were395

chosen)? [Yes] We specify the training details like number of parameters, learning rate,396

dropout, training data, etc. for the models – CTC transformer and PaLI in Section 4.2.397

(c) Did you report error bars (e.g., with respect to the random seed after running experi-398

ments multiple times)? [Yes] In Section 4.2 we report average and variance of three399

training runs with different shuffling of training data.400

(d) Did you include the total amount of compute and the type of resources used (e.g., type401

of GPUs, internal cluster, or cloud provider)? [Yes] In Section 4.2 we provide the total402

number of TPU days it took to run our experiments.403

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...404

(a) If your work uses existing assets, did you cite the creators? [Yes] We used pretrained405

PaLI model for finetuning and cited [28].406

(b) Did you mention the license of the assets? [N/A] As the PaLI model is non-open-407

sourced there is no license for it.408

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]409

URLs to the dataset and code are provided in Section 1.410

(d) Did you discuss whether and how consent was obtained from people whose data you’re411

using/curating? [Yes] We discussed the conditions of data collection in Section 2.1.412

(e) Did you discuss whether the data you are using/curating contains personally identifiable413

information or offensive content? [Yes] We mention in Section 2.1 that there is no414

personally identifiable information present in the dataset and offensive content is highly415

unlikely given the nature of the dataset.416

5. If you used crowdsourcing or conducted research with human subjects...417

(a) Did you include the full text of instructions given to participants and screenshots, if418

applicable? [Yes] We describe the instructions of the data campaigns in Section 2.1 as419

they are quite simple – to write a rendered expression provided on the screen.420

(b) Did you describe any potential participant risks, with links to Institutional Review421

Board (IRB) approvals, if applicable? [N/A] The paper does not involve research with422

human subjects.423

(c) Did you include the estimated hourly wage paid to participants and the total amount424

spent on participant compensation? [Yes] We write about the employment of partic-425

ipants in Section 2.1, we don’t disclose the exact amount of compensation as it is426

confidential information.427
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Appendix428

A LATEX template for label rendering429

All the packages and definitions that are required to compile all the normalized and raw labels:430

\usepackage{amsmath}431

\usepackage{amsfonts}432

\usepackage{amssymb}433

\newcommand{\R}{\mathbb{R}}434

\newcommand{\C}{\mathbb{C}}435

\newcommand{\Q}{\mathbb{Q}}436

\newcommand{\Z}{\mathbb{Z}}437

\newcommand{\N}{\mathbb{N}}438

B Acquisition of LATEX Expressions439

The labels we publish mostly come from Wikipedia (95% of all samples have labels from Wikipedia).440

A small part were generated, to cover deeply nested fractions, number-heavy expressions, and isolated441

letters with nested superscripts and subscripts, which are rare in Wikipedia.442

The extraction process from Wikipedia followed these steps:443

• download an XML Wikipedia dump which provides Wikipedia’s raw textual content.444

enwiki-20231101-pages-articles.xml was used for synthetic samples, older dumps445

for human-written ones446

• extract all LATEX expressions from that file. This gives the list of all mathematical expressions447

in LATEX notation from Wikipedia448

• keep those which could be compiled using the packages listed in Appendix A. Wikipedia449

contains a significant number of expressions that are not accepted by the LATEX compiler,450

because of syntax errors or other reasons451

• keep only those which can be processed by our normalizer which only supports a subset of452

all LATEX commands and structures453

For expressions used for synthesis, the following extra steps were performed:454

• keep only the expressions whose normalized form contains more than a single LATEX token.455

Example: \alpha is rejected but \alpha^{2} is kept. This step is useful to eliminate trivial456

expressions that wouldn’t add any useful information457

• de-duplicate expressions based on their normalized form. e.g. \frac12 and \frac{1}{2}458

normalize to the same thing, we kept only one of them in raw form459

• restrict the list of expressions to the same set of tokens used in the train split: if the460

normalized form of an expression contained at least one token that was not also present461

somewhere in train, it was discarded.462

C Postprocessing of MathWriting dataset463

We applied no postprocessing to the collected inks other than dropping entirely those that were464

completely unreadable or had stray marks. Inks are provided in their original form, as they were465

recorded with the collection app. What we did not do was to discard samples that were very hard to466

read or ambiguous, because we believe this type of sample to be essential in training a high-quality467

model.468

Some cleanup was performed on the labels (ground truths). The goal was to make the dataset better469

suited to training an ML model, and eliminate unavoidable issues that occurred during the collection.470

After training some initial models, we manually reviewed samples for which they performed poorly.471

This helped identify a lot of unusable inks (near-blank, lots of stray strokes, scribbles, etc.), and472
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a lot of ink/label discrepancies. A fairly common occurrence was a contributor forgetting to copy473

part of the prompted expression. We adjusted the label to what was actually written unless the ink474

contained a partially-drawn symbol, in which case we discarded the sample entirely. In this process475

we eliminated or fixed around 20k samples.476

The most important postprocessing step was to normalize the labels: there are many different ways477

to write a mathematical expression in LATEX format that will render to images that are equivalent in478

handwritten form. We applied a series of transformations to eliminate as many variations as possible479

while retaining the same semantic. This greatly improved the performance of models and made their480

evaluation more precise. We publish both the normalized and raw (unnormalized) labels, to enable481

people to experiment with other normalization procedures.482

This normalization is similar to what [10] did, but pushed further because of the specifics of hand-483

written MEs. See Section 2.4 for more detail.484

D Dataset split485

The valid and test splits are the result of multiple operations performed between 2016 and 2019.486

The first split operation, performed on the data available in 2016, was based on the contributor id: any487

given contributor’s samples would not appear in more than one split (either train, valid, test).488

This is common practice for handwriting recognition systems, to test how the recognizer performs on489

unseen handwriting styles.490

Experiments then showed that a more important factor than the handwriting style was whether the491

label had already been seen during training. Subsequent data collection campaigns focused on492

increasing label variety, and new samples were added to valid and test, this time split by label: a493

given normalized mathematical expression would not appear in more than one split.494

E Label Normalization495

E.1 Syntactic Variations496

There are several ways to change a LATEX string without changing the rendered output significantly.497

The normalization we implemented does the following:498

• all unnecessary space is dropped499

• all command arguments are consistently put in curly braces500

• superscripts and subscripts are put in curly braces and their order is normalized. e.g. a^2_1501

becomes a_{1}^{2}.502

• redundant braces are dropped503

• infix commands are replaced by their prefix versions. e.g. \over is replaced by \frac504

• a lot of synonyms are collapsed. e.g. \le and \leq, \longrightarrow and \rightarrow,505

etc. Some of the synonyms are only synonyms in handwriting. For example \star (?) and506

∗ are different in print (5-prong and 6-prong stars), but the difference was not expressed in507

handwriting by our contributors.508

• functions commands like \sin are replaced by the sequence of letters of the function name509

(e.g. \sin is replaced by sin). This reduces the output vocabulary, and eliminates a source510

of confusion because we found that LATEX expressions from Wikipedia come with a mix of511

function commands and sequences of letters.512

• expansion of abbreviations. e.g. \cdots, \ldots, etc. have been replaced by the corre-513

sponding sequence of characters.514

• matrix environments are normalized to use only the ’matrix’ environment surrounded by the515

proper delimiters like brackets or parentheses.516

• \binom is turned into a 2-element column matrix. Expressions from Wikipedia did not use517

those consistently, so we made the choice to normalize \binom away.518
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Sub/superscript are put in braces, \over is replaced by \frac
Raw: \overline{hu^2}+{1 \over 2}{k_{ap}g_zh^2}
Normalized: \overline{hu^{2}}+\frac{1}{2}k_{ap}g_{z}h^{2}

Subscripts are put before superscripts, extra space is dropped
Raw: \int^a_{-a}f(x) dx=0
Normalized: \int_{-a}^{a}f(x)dx=0

Single quotes are replaced by a superscript
Raw: f’(\overline x)
Normalized: f^{\prime}(\overline{x})

Text formatting commands like \rm are dropped
Raw: ~A_{0}=\frac{ND}{\sigma_{\rm as}+\sigma_{\rm es}}~
Normalized: A_{0}=\frac{ND}{\sigma_{as}+\sigma_{es}}

Matrix environments with delimiters like bmatrix are replaced by matrix surrounded by delimiters
Commands like \cos are replaced by the series of letters

Raw: \begin{bmatrix} -\sin t \\ \cos t \end{bmatrix}
Normalized: [\begin{matrix}-sint\\ cost\end{matrix}]

Delimiter size modifiers like \big are dropped
Raw: \big(\tfrac{a}{N}\big)
Normalized: (\frac{a}{N})

Figure 10: Examples of expression normalization. See Section 2.4 for details.

E.2 Differences Between Print And Handwriting519

The following characteristics can not be represented in handwriting and have been normalized away:520

• color521

• accurate spacing: e.g. ~, \quad.522

• font style and size: e.g. \mathrm, \mathit, \mathbf, \scriptstyle.523

There are others that can be represented in handwriting, but that are not consistent enough in524

MathWriting to be preserved:525

• font families: Fraktur, Calligraphic. In practice, only Blackboard (\mathbb) has been526

written consistently enough by contributors that we were able to keep it: \mathcal and527

\mathfrak are dropped.528

• some variations like \rightarrow→ and \longrightarrow −→.529

• some character variations. e.g. \varrho, \varepsilon530

• size modifiers like \left, \right, \big. Similarly, variable-width diacritics like531

\widehat.532

F Additional dataset statistics533

In this section we show additional graphs that illustrate dataset statistics that are described in Section 3.534

The frequencies of normalized LATEX expressions are presented in Figure 11. Figure 12 illustrates the535
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Figure 11: Counts of inks corresponding to the same normalized expression, ordered by increasing count. Each
position on the horizontal corresponds to a unique normalized expression. Almost 5k unique expressions have
been written 10 times or more by contributors.

distribution of sampling rates within human-written data. Results of resampling points in time are536

presented in Figure 13.537

with time resampling are given on Figure 13.538

Figure 12: Histogram of sampling rates in human-written data of MathWriting dataset.

Figure 13: Examples of time resampling with different time periods. Larger periods result in shorter sequences
of points.

G Variety of Writing Styles539

In this section we provide additional examples of differences in the writing order of fractions –540

Figure 14. These examples show that MathWriting dataset contains a variety of writing styles.541
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Device type Ink

Google PixelBook 51k
Google Nexus 5X 28k
Coolpad Mega 2.5D 14k
OnePlus One 13k
Google Nexus 5 11k
Google Nexus 6 11k
Google Nexus 6P 11k
Coolpad Mega 3 8k
LG Optimus L9 8k
Galaxy Grand Duos 7k
Google Pixel XL 6k
Samsung Galaxy S7 5k

Table 7: Top-12 devices used, with the number of samples obtained from each device. The bias towards Google
devices simply reflects the conditions in which inks were collected.

a751880b939d5a9a 8c95114b04a97aa2

0348238e894e8d62 ee557c63b5755a6f

Figure 14: Examples of various writing orders found in the training set. Red arrows show the movement of the
pen between strokes. Top left: most common writing order (top-down, fraction bar drawn left-to-right), top right:
fraction bar written first, bottom left: fraction bar drawn right-to-left, bottom right: fraction written bottom-up.

H Sources of Noise542

The result of any task performed by humans will contain mistakes, and MathWriting is no exception.543

We’ve done our best to remove most of the mistakes, but we know that some remain.544

Stray strokes These do not carry any meaning and should be ignored by any recognizer. Since545

they also appear in real applications, there could be some benefit in having some in the dataset to546

teach the model about them. That said, it being usually easier to add noise rather than to remove it,547

we made the choice of discarding as many inks containing stray strokes as possible. Not all inks with548

stray strokes have been found and removed though (e.g. train/9e64be65cb874902.inkml that549

was discovered post-publication). The fraction of inks containing stray strokes is significantly lower550

than 1%, and should not be an issue for training a model.551

Incorrect ground truth Contributors did not always copy the prompt perfectly, leading to a variety552

of differences. In most of the cases we spotted, we were able to fix the label to match what had553

actually been written. A short manual review once the dataset was in its final state showed the rate554

of incorrect ground truth to be between 1% and 2%. Most of the mistakes are very minor, usually555

a single token added, missing or incorrect. Errors here also come from ambiguities or misuse of556
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the LATEX notation: expressions coming from Wikipedia contain some misuse like using \Sigma557

where \sum was more appropriate, \triangle instead of \Delta, \triangledown instead of558

\nabla, \begin{matrix}\end{matrix} instead of \binom, and also some handwriting-specific559

ambiguities like \dagger vs \top vs T. There are also some instances where reference numbers or560

extra punctuation are included.561

Aggressive normalization While the above sources of noise are unavoidable, normalization is a562

postprocessing operation that can in theory be tweaked to perfection. In practice, it’s a compromise563

between reducing accidental ambiguities (i.e. removing synonyms), and removing information.564

Examples: we made the choice of treating \binom as a synonym for a 2-element matrix. While565

it does improve recognition accuracy by making the problem easier, it also moves the burden of566

distinguishing between the two cases to downstream steps in the recognition pipeline. Similar things567

can be said about removing all commands that indicate that their content is text instead of math568

(e.g. \mbox), dropping size modifiers, rewriting function commands (e.g. \sin, \cos), etc. Using569

a different normalization could prove beneficial depending on the context the recognizer is used in570

practice. However, for the purpose of a benchmark any reasonable compromise is adequate.571

I Tokenization Code572

Python code used in this work to tokenize LATEX mathematical expressions.573

import re574

575

_COMMAND_RE = re.compile(576

r’\\(mathbb{[a-zA-Z]}|begin{[a-z]+}|end{[a-z]+}|operatorname\*|[a-zA-Z]+|.)’)577

578

def tokenize_expression(s: str) -> list[str]:579

tokens = []580

while s:581

if s[0] == ’\\’:582

tokens.append(_COMMAND_RE.match(s).group(0))583

else:584

tokens.append(s[0])585

586

s = s[len(tokens[-1]):]587

588

return tokens589

J Tokens590

Using the above code to compute tokens, the set of all samples in the dataset (human-written,591

synthetic, from all splits) contain the following after normalization:592

• Syntactic tokens: _ ^{ } & \\ space593

• Latin letters and numbers: a-z A-Z 0-9594

• Blackboard capital letters \mathbb{A}-\mathbb{Z} \mathbb595

• Latin punctuation and symbols: , ; : ! ? . ( ) [ ] \{ \} * / + - \_ \& \# \% | \backslash596

• Greek letters: \alpha \beta \delta \Delta \epsilon \eta \chi \gamma \Gamma597

\iota \kappa \lambda \Lambda \nu \mu \omega \Omega \phi \Phi \pi \Pi \psi598

\Psi \rho \sigma \Sigma \tau \theta \Theta \upsilon \Upsilon \varphi \varpi599

\varsigma \vartheta \xi \Xi \zeta600

• Mathematical constructs: \frac \sqrt \prod \sum \iint \int \oint601

• Diacritics and modifiers - Note the absence of the single-quote character, which is normalized602

to ^{\prime}:603

\hat \tilde \vec \overline \underline \prime \dot \not604

• Matrix environment: \begin{matrix} \end{matrix}605
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• Delimiters: \langle \rangle \lceil \rceil \lfloor \rfloor \|606

• Comparisons: \ge \gg \le \ll <>607

• Equality, approximations: = \approx \cong \equiv \ne \propto \sim \simeq608

• Set theory: \in \ni \notin \sqsubseteq \subset \subseteq \subsetneq \supset609

\supseteq \emptyset610

• Operators: \times \bigcap \bigcirc \bigcup \bigoplus \bigvee \bigwedge \cap611

\cup \div \mp \odot \ominus \oplus \otimes \pm \vee \wedge612

• Arrows: \hookrightarrow \leftarrow \leftrightarrow \Leftrightarrow613

\longrightarrow \mapsto \rightarrow \Rightarrow \rightleftharpoons \iff614

• Dots: \bullet \cdot \circ615

• Other symbols: \aleph \angle \dagger \exists \forall \hbar \infty \models616

\nabla \neg \partial \perp \top \triangle \triangleleft \triangleq \vdash617

\Vdash \vdots618

K Examples of inks619

This section shows a few examples of rendered inks, so that the reader can get a feel for the kind of620

data that is in MathWriting. All samples are from the training set. They have been manually picked621

to show a variety of sizes, characters and structures.622

K.1 Human-Written Samples623

cf786356546d722c 658e3c257badd8cc 40b3844b5aeaec00

624

c28701c7369c22ba 97e829ac79e851fe fd676faba32f1cbb

625

5e0c81acf5ccdfd3 b3ed172628caafe9 6150c57b1a98b5ec

626

bca00e3111b70212 e829d5eb7e7b3b68 44bfa5fc08eb5da5

627

d233aaf208bd7568 ee6f0bfd294aa209 6579f917f0ba236b

628
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cea67d239b9f8884 bb4bca53d0e6336d b14bca3fc2d2819a

629

2409d2feaa79b9d7 51486ff88b789d6d 02229a0c174d8dbe

630

478e10a15203fa3a ccb15825579a096b 7a4b95285de0caf0

631

ac25b4d053596ded 7d597c52bf8bdd1e acc5f6620fad1ce8

632

88c3551d373c72e5 5009d32d32f80324 068de3aad90c403c

633

a3cf115524f0c55b 355f5df56a16913a d9b2ce7aa3495888

634

adceb80fdadf9f6e 25892f7caeac8c36 41e1261a951c6f33

635

02a7f7f172671fb4 0d848d4b170d36b9 2adc4f10d42b641c

636

408f904038dcbba0

637
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K.2 Synthetic Samples: Expressions from Wikipedia638

133829b5a10b783f 11623165e9bab0e4 5ca38d17bf2bea0a

639

089650cc894c024b 8e88b75cb5f03bf4 5c1573b41e762307

640

68e9560a27a093c8 daab3bae071f8bc0 77602abaea39b774

641

eb817bcbfd11df18 3bd062b33ea5db6f 51ef5122de326151

642

f2a613fc323df342 cbd19abc03ba4098 1879aa5c882b445d

643

094c7e52a3f0934d

644

1cd654228d7ca6bb

645

fc00050933165b70

646
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60553a301aaf84a3

647

b2aeaf7a0fd30ed6

648

254dbc2b3843dcf8

649

0772aeaac09d3415

650

20b4ebf292cfa8d1

651

96613ae167f35f8a

652

4b1f5165e3698343

653

6f86778996d5f514

654
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685bd5676bda74ce

655

b79dfccd7f5b5cb4

656

K.2.1 Synthetic Samples: Generated Fractions657

4677b76acec23465 eef0cd70f8872a9c d9df5fffcfe81d07

658

244ad5e60c9fea92 88d5f862ad46cb47 9067ae238a278b32

659

ce12f955b6ba76a4 7fa1aa18a332b211 1c21c51bc1319124

660

afd5254b25be1256 409a91ba03e3cc7e 486a38bd87b8ed97

661

05efec2565d6726e 3fdc553e580f2a78 b17c3206c2d610b9

662

9df33845897752ea

663
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