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Abstract

Learning accurate and generalizable world models is a central challenge in model-
based reinforcement learning (MBRL), particularly in reward-free settings where
no task-specific supervision is available. In this paper, we investigate how dif-
ferent unsupervised objectives, including reconstruction, inverse dynamics, and
contrastive learning, capture distinct components of the observation space, such as
noise, background, controllable dynamics, and slow-changing factors. Building
on this understanding, we introduce a hybrid representation learning approach
that integrates the strengths of multiple objectives to better capture predictable
and task-relevant structure. We design a controlled shape-based environment with
disentangled latent factors to evaluate the robustness and utility of learned repre-
sentations. Empirical results show that our method yields more informative and
generalizable representations.

1 Introduction

Reinforcement learning (RL) has achieved remarkable success across a wide range of domains, from
game playing to robotics and real-world decision-making tasks [21, 19, 22]. A key driver of this
progress has been the development of powerful representation learning methods and increasingly
sophisticated model-based approaches. Compared to model-free methods, model-based RL leverages
a learned model of the environment to enable planning and sample-efficient learning. As a result,
model-based techniques have attracted growing attention in recent years [14].

Despite these advances, the majority of model-based RL algorithms are inherently task-driven, relying
on reward signals to guide both representation learning and model construction [23, 5, 7, 8]. However,
in many real-world scenarios, reward feedback is sparse, delayed, or entirely unavailable during the
data collection phase. This raises an important open question: how can agents learn a useful and
generalizable world model in a reward-free setting? Addressing this challenge is essential for building
agents that can autonomously explore and develop robust internal models of their environment, even
before being assigned a specific task.

A central component of the world model is the representation of the environment’s dynamics. Learning
robust and compact representations of observations is crucial, as these representations directly affect
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the quality of the learned dynamics model and, consequently, the downstream performance of the
agent. Unsupervised representation learning methods offer a promising avenue for this purpose,
enabling the agent to structure its understanding of the environment without relying on external
rewards [1].

Several unsupervised approaches have been proposed in this context, including reconstruction-
based learning (e.g., autoencoders) [10, 11], inverse dynamics models [16], and contrastive learning
techniques [17]. While each of these methods has demonstrated effectiveness in isolating certain
aspects of the observation space, they inherently emphasize different types of features. For example,
reconstruction tends to capture all information, including irrelevant or unpredictable details; inverse
models often focus on features that are controllable by the agent, and contrastive methods prioritize
temporally stable or discriminative features.

In this work, we analyze these unsupervised learning paradigms from a unified perspective, high-
lighting their respective biases and limitations in terms of the information they preserve. Building on
this analysis, we introduce a novel method that integrates multiple learning objectives to construct
representations that better capture the predictable structure of the environment. Our approach is
designed to balance the strengths of different representation learning strategies while explicitly
avoiding reliance on reward signals.

To evaluate our approach, we design a simple dynamic environment composed of shapes that exhibit
diverse types of features, including noise, random features, and both short-term and long-term
dynamics. This environment allows for precise analysis of what information is retained in the
learned representations. We show that our method produces representations that are more robust,
generalizable, and informative for downstream tasks such as world model learning. These results
highlight the potential of our approach in reward-free settings. For future work, we plan to integrate
our representation learning method into modern world model architectures, such as Dreamer, and
evaluate its effectiveness in more complex and high-dimensional environments.

2 Related work

Model-based reinforcement learning (MBRL) aims to improve sample efficiency and generalization
by explicitly learning a model of environment dynamics for planning and policy optimization. Early
examples include Dyna-style methods [20], which integrate learning and planning, and PILCO [3],
which pioneered probabilistic models for data-efficient control. More recently, latent dynamics
models such as PlaNet [6] and Dreamer [5, 7, 8] have demonstrated impressive performance by
learning compact latent spaces that support long-horizon prediction and imagination-based planning.
However, these approaches typically rely on task-specific reward signals to shape both the learned
model and the underlying state representation. In contrast, our work seeks to decouple model learning
from reward supervision by developing a representation learning framework tailored to constructing
effective world models in reward-free settings.

The challenge of learning meaningful representations without reward signals has been a long-
standing objective in both supervised and reinforcement learning contexts. Reconstruction-based
methods, such as auto-encoders [10, 11], aim to compress high-dimensional observations into lower-
dimensional representations that retain information necessary to reconstruct the input. While effective
for preserving general features, these methods often encode irrelevant or unpredictable aspects of
the input. Inverse dynamics models [16] take a different perspective by predicting the action taken
between consecutive observations, encouraging the model to focus on controllable or agent-relevant
features. Meanwhile, contrastive learning techniques, including Contrastive Predictive Coding (CPC)
[15] and CURL [13], promote representations that capture temporally consistent or discriminative
features by distinguishing true future states from distractors. Although each of these methods
contributes valuable inductive biases, they inherently emphasize different aspects of the observation
space. Our approach builds upon this insight by systematically analyzing the feature preferences
of each method and proposing a unified objective that encourages representations optimized for
predictability and generalization in the context of world model learning.

While much prior work in reward-free learning focuses on intrinsic motivation, such as curiosity
[16, 4], empowerment [12], or novelty-based exploration [2], our aim is not to drive exploration
but to improve the quality of internal representations learned in the absence of external rewards.
In this regard, our work is more closely related to task-agnostic world models [18], which learn
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general-purpose dynamics that support downstream adaptation without reward supervision. Our
contribution is complementary, as we focus specifically on the representation learning module and its
impact on the quality and robustness of the learned world model in fully unsupervised environments.

3 Background

3.1 Learning through interactions

We formulate the problem of learning a world model as a Markov Decision Process (MDP) defined by
the tuple M = (O,S,A,P), where O is the observation space, S is the state space, A is the action
space, P : S × A → S is the state transition function. The agent interacts with the environment
by taking actions at ∈ A and observing the next observation ot+1 ∈ O at each time step t. The
observation ot is a noisy and high-dimensional representation depending on the underlying state
st ∈ S , which is unobservable and may include irrelevant or unpredictable features. The agent’s goal
is to learn a model of the environment dynamics that can be used for planning and decision-making.
The model is learned by interacting with the environment and collecting a dataset of state transitions
D = {(ot, at, ot+1)}Tt=1.

3.2 Reconstruction

Reconstruction-based methods aim to learn compact representations of observations by employing an
encoder–decoder architecture. The encoder maps a high-dimensional observation ot into a lower-
dimensional latent representation zt = f(ot), and the decoder attempts to reconstruct the original
observation from this latent code, producing ôt = g(zt). The learning objective is to minimize the
reconstruction loss, typically defined as:

Lrec = ED
[
||o2 − g(f(o1))||2

]
, (1)

where || · || denotes the Euclidean norm. Reconstruction can be performed in two forms: (i)
single-step reconstruction, where the model attempts to reconstruct the input observation itself (i.e.,
o2 = o1 = ot); or (ii) predictive reconstruction, where the decoder reconstructs the next observation
(i.e., o2 = ot+1, o1 = ot) as a forward dynamics model.

3.3 Inverse dynamics

Inverse dynamics models learn representations by predicting the action that caused a transition
between two observations. Given consecutive observations ot and ot+1, the encoder produces latent
representations zt = f(ot) and zt+1 = f(ot+1). An inverse model h then predicts the action ât from
these latent features. The objective is to minimize the prediction loss

Linv = ED [ℓ(at, h(zt, zt+1))] , (2)

where ℓ denotes a task-appropriate loss function. This encourages the latent space to preserve
information about agent-controllable features.

3.4 Contrastive learning

Contrastive learning aims to learn representations by distinguishing between similar (positive) and
dissimilar (negative) pairs of observations. In our setting, we use temporal proximity to define these
relationships: observations that are temporally close (e.g., ot and ot+1) form positive pairs, while
randomly sampled observations serve as negative pairs.

Let z1 = f(o1) and z2 = f(o2) be latent representations produced by an encoder. A contrastive
discriminator h(z1, z2) estimates the probability that the pair is positive. We employ a binary-NCE
loss, also known as InfoMax loss [9]:

Lcon = −ED [y log h(z1, z2) + (1− y) log(1− h(z1, z2))] , (3)

where y = 1 for positive pairs and y = 0 for negative pairs. This objective encourages the encoder to
preserve temporally predictable features while discarding irrelevant or unpredictable components.
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4 A shape environment

To analyze the representational properties of different unsupervised objectives in a controlled and
interpretable setting, we design a synthetic environment, referred to as the Shape Environment.
This environment features a discrete action space and structured visual observations, facilitating the
disentanglement of different latent factors.

4.1 Environment design

The agent interacts with the environment where the observation is an image with a single geometric
object rendered on a noisy background. The object varies along several axes:

• Shape and Scale: There are four geometric shapes (circle, triangle, square, and pentagon)
arranged in a fixed cycle. Each shape appears in one of three sizes: small, medium, or large.
When the agent applies the forward shape action, the object increases in size; once it reaches
the largest size, it transitions to the next shape in its smallest form. The backward shape
action reverses this progression.

• Color: The object color cycles through red → green → blue → black and vice versa,
controlled by the other two discrete actions (forward color and backward color).

• Position: The spatial location of the object is randomized independently at each time step
and does not respond to agent actions.

• Noise: Gaussian noise is added to the entire observation to introduce stochastic variation

The agent’s action space is thus composed of four discrete actions, corresponding to the forward/back-
ward transitions of shape and color. Figure 1 illustrates all 12 shape-scale combinations under all
colors with four possible actions. Further implementation details are provided in the appendix A.

Figure 1: All shape-scale combinations under all colors.

4.2 Features of the environment

The Shape environment contains diverse observational features that differ in predictability and
semantic relevance. Noise is entirely stochastic and neither predictable nor reconstructable, acting
as irrelevant variation that should ideally be ignored by the representation. Position, though fully
reconstructable from the observation, is unpredictable due to random sampling at each step. It is
often retained by reconstruction-based methods despite being semantically uninformative. Shape
and size form a coupled, action-dependent dynamic; size changes more rapidly and triggers shape
transitions, making both features highly predictable and essential for modeling controllable structure.
However, note that only size information is essential to predict actions between neighbor observations.
In contrast, color evolves independently of shape and size. Its small discrete state space and weak
temporal continuity make it harder to reliably model using temporal objectives such as contrastive
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learning. This decomposition illustrates the challenges in disentangling useful dynamics from
distractors and guides the design of robust representation objectives.

4.3 Forward model fails without robust abstraction

To demonstrate the limitations of using naive forward models in our environment, we train a simple
model that predicts the next observation ôt+1 based on the current observation ot and action at. The
model is trained by minimizing a standard reconstruction loss between ôt+1 and the ground truth
observation ot+1. Implementation details are provided in Appendix B.

Figure 2: Training loss and an example of the forward model’s reconstruction.

As shown in the left panel of Figure 2, the training loss converges rapidly, suggesting that the model
successfully optimizes its objective. However, visual inspection of the reconstructed observations
(right panel) reveals that the model fails to capture the meaningful structure of the environment. This
failure stems from the model’s reliance on raw pixel inputs, which are dominated by unpredictable
and irrelevant variations such as noise and position. These results underscore the necessity of learning
robust, disentangled representations that abstract away nuisance factors and preserve the predictable,
controllable structure essential for world modeling.

5 Learning robust representations

Our model comprises six components, as illustrated in Figure 3. It includes two encoders ϕ and ϕR,
a decoder g, an inverse model h, a forward model f , and a contrastive discriminator d.

The primary encoder ϕ(ot) maps the observation ot into a latent representation zt. In this latent space,
the inverse model h(zt, zt+1) predicts the action ât taken between two consecutive observations,
and the forward model f(zt, at) predicts the next-step latent representation ẑt+1. The contrastive
discriminator d(z, z′) estimates the probability that two latent vectors are temporally adjacent. These
three components operate on the latent space produced by ϕ, and collectively encourage it to encode
predictable and action-relevant features.

A second encoder ϕR is dedicated to reconstruction. It maps the observation ot to a latent represen-
tation zRt , which is then combined with zt by the decoder g to reconstruct the current observation
ôt = g(zt, z

R
t ).

This dual-encoder design aims to disentangle latent factors: the encoder ϕ focuses on capturing
controllable and temporally predictable structure, while the encoder ϕR absorbs residual information
necessary for high-fidelity reconstruction.

The trainable components are listed in the following:

Encoder ϕ: zt = ϕ(ot)
Encoder ϕR: zRt = ϕR(ot)
Decoder: ôt = g(zt, z

R
t )

Inverse model: ât = h(zt, zt+1)
Forward model: ẑt+1 = f(zt, at)
Contrastive discriminator: d(z, z′) = 1 if z and z′ are neighbours

(4)
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Figure 3: The architecture of our representation learning model.

Given a batch of observation-action-next observation triplets D = {(ot, at, ot+1)} and a batch of
random observations D′ = {(ot′)}, the entire model is trained end-to-end using a multi-objective
loss function that combines reconstruction loss Lrec, inverse dynamics loss Linv, forward dynamics
loss Lfwd, and contrastive learning loss Lcon:

L = Lrec + Linv + Lfwd + Lcon, (5)

where each component is defined as follows:

Reconstruction loss: Lrec = ED
[
||ot − g(zt, z

R
t )||2

]
Inverse dynamics loss: Linv = ED [ℓ(at, h(zt, zt+1))]
Forward dynamics loss: Lfwd = ED

[
||zt+1 − f(zt, at)||2

]
Contrastive loss: Lcon = −ED,D′ [log d(zt, zt+1) + log(1− d(zt, z

′))]

(6)

where ℓ denotes a task-appropriate loss function, such as cross-entropy for the discrete action
prediction in the inverse model. The whole process is summarized in Algorithm 1.

6 Experiments

We evaluate our proposed representation learning method in the Shape Environment. Full imple-
mentation details are provided in Appendix D. We compare our method against four baselines: (i) a
reconstruction-based encoder, (ii) an inverse dynamics-based encoder, (iii) a contrastive learning-
based encoder, and (iv) a classifier-based encoder. Each baseline jointly trains an encoder and a
latent forward model in an end-to-end manner. The classifier-based encoder is trained with direct
supervision to predict the object’s color, size, and shape from the observation. While this approach
relies on external knowledge not available to the other approaches, it serves as a useful upper bound
for assessing representation quality. Details of all comparison methods are provided in Appendix C.

To quantitatively evaluate the learned representations, we train classifiers on the frozen latent embed-
dings zt to predict object properties (shape, size, and color). This allows us to assess how well each
method captures semantically meaningful features. In the first subsection, we analyze the structure
and content of the latent space; in the second, we examine representation robustness by using the
learned embeddings for multi-steps prediction via a latent forward model.
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Algorithm 1 Training procedure for the representation learning model.
Initialize: Encoders ϕ, ϕR, decoder g, inverse model h, forward model f , contrastive discriminator
d with random weights, replay buffer R
while not converged do

for Interaction do
Sample an action at ∼ π(at | ot) from the policy π.
Observe the next observation ot+1 from the environment.
Store the transition (ot, at, ot+1) in the replay buffer R.

end for
for Training do

Sample a batch of transitions D = {(ot, at, ot+1)} from the replay buffer R.
Sample a batch of random observations D′ = {(ot′)} from the replay buffer R.
Compute latent representations: zt = ϕ(ot), zRt = ϕR(ot), zt+1 = ϕ(ot+1), z′ = ϕ(o′).
Compute predicted variables: ôt = g(zt, z

R
t ), ât = h(zt, zt+1), ẑt+1 = f(zt, at).

Compute losses for each component according the Equation 6.
Compute the total loss L according to Equation 5.
Backpropagate gradients and update parameters of all components.

end for
end while

Return: Learned representations ϕ, ϕR, decoder g, inverse model h, forward model f , contrastive
discriminator d

6.1 Representation space analysis

We evaluate how well the learned representations capture semantic information by training a classifier
to predict the object’s shape, size, and color from the latent embeddings zt. The classification
accuracies for each property and method are summarized in Table 1 and visualized in Figure 4. Each
entry reports the accuracy achieved by a classifier trained on representations from the corresponding
encoding method. The experiments are repeated for 5 times with random initialization.

Table 1: Classification accuracy of different representation learning methods.

Algorithm Color Size Shape
Reconstruction-based encoder 99.66%±0.38% 74.78%±3.10% 43.46%±4.09%

Inverse dynamics-based encoder 100.00%±0.00% 100.00%±0.00% 87.64%±11.64%

Contrastive learning-based encoder 27.84%±5.77% 46.22%±26.92% 40.24%±29.80%

Classifier-based encoder 100%±0.00% 100%±0.00% 99.92%±0.12%

Our model 99.42%±1.16% 100%±0.00% 97.36%±3.78%

Our method achieves consistently high accuracy across all three properties, closely approaching the
performance of the supervised classifier-based encoder. This suggests that our approach effectively
captures the essential, disentangled features of the environment in an unsupervised manner. The
inverse dynamics-based encoder performs well on color and size but shows a significant drop in
shape prediction accuracy. Since size alone is sufficient to infer the agent’s action, the inverse
model lacks incentive to fully encode shape information, explaining its limited generalization. The
reconstruction-based encoder captures color relatively well but performs poorly on shape and size.
This is likely because reconstruction loss tends to prioritize pixel-level fidelity, and the variability
introduced by noise makes structural features harder to reconstruct. The contrastive learning-based
encoder yields the lowest performance across all properties, likely due to a misalignment between the
contrastive objective and the forward prediction task during end-to-end training. This misalignment
also manifests in higher variance in prediction accuracy, which is partially reflected in our method as
well. Addressing this incompatibility between objectives remains an important direction for future
work.
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Figure 4: Classification accuracy of different representation learning methods.

7 Latent split check: what is in z vs. zR

To directly test whether the two encoders specialize as intended, we evaluate how well common
attributes can be predicted from each latent separately. Concretely, we freeze the learned encoders
and train classifiers or regressors on top of either z = ϕ(o) or zR = ϕR(o) to predict color, shape,
size, as well as positions. For position prediction, we consider it accurate if the mean-squared error
between predicted value and real value is less than 0.0025. Heads are trained on frozen embeddings
with the same train/validation protocol as in the main experiments. No gradients are propagated into
the encoders.

Figure 5: Classification/regression accuracy based on representation z and zR.

Figure 5 summarizes the outcomes. We observe:

1. Position is easy from zR but hard from z. The regressor trained on zR attains low
error, while the same regressor on z performs near chance, indicating that randomized,
non-predictive nuisance factors (position) are largely stored in zR and suppressed in z.

2. Predictable and controllable factors are stronger in z. For color, shape, and size,
classifiers trained on z achieve higher accuracy than those trained on zR, although these
attributes are still decodable from zR to a non-trivial degree. This shows that although zR

retains some parts of residual semantic content that aids reconstruction, z concentrates the
predictable and controllable structure more.
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Overall, these results support our design assumption: the dual-encoder architecture effects a soft split
of information, with z prioritizing temporally predictable, action-coupled structure and zR absorbing
non-predictive variability needed for pixel-space fidelity.

7.1 Representation with forward model

To evaluate the robustness of the learned representations over time, we use a latent forward model
to predict the next latent state ẑt+1 from the current latent state zt and action at. We then use
the predicted latent representation with the trained classifiers to infer the properties of the next
observation, specifically the object’s shape, size, and color. This process is unrolled for up to five
steps to assess how predictive information is preserved across time. The degradation in classification
accuracy over prediction horizons is shown in Figure . Detailed numerical results are presented in
Appendix E, and confusion matrices for each prediction step are included in Appendix F.

Figure 6: Classification accuracy of different representation learning methods with multi-step predic-
tions.

The results show that the representations learned by our method maintain high predictive accuracy
across all three object properties, even at longer prediction horizons. This suggests that our approach
yields robust and temporally stable representations. The inverse dynamics-based encoder also
demonstrates temporal robustness but consistently underperforms our method on shape prediction,
likely due to its limited incentive to model features not directly related to action inference. In contrast,
the reconstruction-based encoder suffers a rapid decline in accuracy—particularly for shape and
size—as it retains non-predictive factors such as position, which introduce noise and degrade long-
term prediction quality. The contrastive learning-based encoder exhibits relatively stable performance
over time but consistently achieves the lowest overall accuracy, particularly for color. This is likely
because color changes rapidly and it is difficult for the model to identify which observations are
temporally related, making it harder to learn consistent color features through contrastive objectives.

8 Conclusion and future work

In this work, we investigated the problem of learning robust and generalizable representations for
world models in the absence of reward signals. We introduced a novel representation learning
approach that combines multiple unsupervised learning signals to capture the predictable and struc-
tured components of the environment. Through a carefully designed synthetic Shape environment,
we demonstrated that our method learns latent representations that are not only informative and
disentangled, but also predictive over long horizons, outperforming several commonly used baselines.

While our results show promise, several important directions remain for future work. First, we plan to
evaluate the scalability and generalization of our method in more complex and diverse environments
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with richer dynamics and visual complexity. Second, we aim to integrate our representation learning
approach into modern model-based reinforcement learning architectures, such as those using recurrent
state-space models (RSSM), to better exploit temporal structure and uncertainty modeling. Finally,
although our current study focuses solely on unsupervised representation learning, we intend to
explore how these representations can be jointly optimized with policy learning. Specifically, we
aim to investigate how active data collection strategies can accelerate world model convergence and
improve sample efficiency.
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A Shape environment details

The observations in the Shape environment are rendered as images with an initial resolution of
144×144 pixels and 4 channels (RGB and alpha). These images are subsequently rescaled to 96×96
and normalized to have pixel values in the range [0, 1].

To simulate realistic sensory noise, Gaussian noise with mean 0 and variance 0.1 is added to the
rendered image. After noise injection, the image is clipped and renormalized to ensure all pixel
values remain within the [0, 1] interval.

The position of the geometric shape in each image is randomized using a uniform distribution,
constrained to ensure that the shape is fully contained within the image boundaries. All shapes—circle,
triangle, square, and pentagon—are defined such that the same size level (small, medium, large)
corresponds to the same radius value. However, due to their differing geometries, the resulting areas
vary across shape types.

The mapping between shape type, size, and the corresponding radius and area is summarized in
Table 2. Here the number is with respect to the original figure (144× 144).

Table 2: Parameters for shapes.

Small Medium Large
Circle r = 15, S = 707 r = 30, S = 2827 r = 45, S = 6362

Triangle r = 15, S = 292 r = 30, S = 1169 r = 45, S = 2630

Square r = 15, S = 450 r = 30, S = 1800 r = 45, S = 4050

Pentagon r = 15, S = 535 r = 30, S = 2140 r = 45, S = 4815

B The simple forward model

We implement a simple autoencoding forward model based on convolutional and transposed convolu-
tional layers.
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B.1 Model architecture

The model consists of two main components:

• Encoder:A convolutional neural network that maps a 4-channel input image of size 96× 96
into a latent representation conditioned on the discrete action taken by the agent. The
encoder outputs a latent tensor of shape (hidden, action), which is projected via a batch
matrix multiplication with a one-hot action vector to produce an action-conditioned latent
representation. The hidden dimension is 128.

• Decoder: A transposed convolutional network that reconstructs the next observation ôt+1

from the latent representation.

The forward pass can be described as:
ôt+1 = Decoder(Encoder(ot) · at) (7)

where at is a one-hot encoding of the discrete action.

B.2 Training procedure

We collect transitions (ot, at, ot+1) into a replay buffer. Once a sufficient number of transitions are
gathered, we begin training the forward model using mean squared error (MSE) loss between the
predicted and true next observations.

The model is optimized with the Adam optimizer and a learning rate of 0.001. Training proceeds for
10,000 steps, and the model is updated every 10 steps.

C Comparison algorithms

We compare our method against four baselines that represent common paradigms in self-supervised
representation learning. Each method consists of an encoder ϕ(ot) that maps the observation ot to a
latent representation zt, and a latent forward model f(zt, at) that predicts ẑt+1 from zt and action at.
All models are trained end-to-end by combining the respective representation learning loss with a
forward prediction loss. The forward loss is defined as:

Lfwd = ED
[
||zt+1 − f(zt, at)||2

]
(8)

C.1 Reconstruction-based encoder

This method learns a representation by reconstructing the original observation. An encoder maps ot
to zt, and a decoder g(zt) reconstructs ôt from zt by optimizing a reconstruction loss:

Lrec = ED
[
||ot − g(zt)||2

]
. (9)

The total loss is the sum of reconstruction and forward losses.

C.2 Inverse dynamics-based encoder

In this setup, the encoder maps both ot and ot+1 to zt and zt+1 respectively. An inverse model
h(zt, zt+1) is trained to predict the action ât that led from zt to zt+1, using a cross-entropy loss:

Linv = ED [CE(h(zt, zt+1), at)] . (10)
A forward model also predicts ẑt+1 from zt and at, and the two losses are summed to form the
training objective.

C.3 Contrastive learning-based encoder

This approach uses contrastive learning to distinguish between neighboring and non-neighboring
observations in latent space. The encoder maps ot to zt, and a contrastive discriminator is trained to
maximize agreement between temporally adjacent representations while minimizing agreement with
negative samples. The contrastive loss is defined as:

Lcon = −ED,D′ [log d(zt, zt+1) + log(1− d(zt, z
′))] . (11)

A forward model is trained concurrently with a forward loss, and the two losses are optimized jointly.
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C.4 Classifier-based encoder

This model incorporates strong supervision by explicitly optimizing for features relevant to the task.
The encoder maps ot to zt, which is then passed to three classifiers predicting the object’s color,
shape, and size. The classification loss is the sum of three cross-entropy losses:

Lclassification = ED [CEColor + CEShape + CESize] . (12)

This loss is combined with the forward prediction loss to train the model. Note that this method uses
the extra information (the ground truth of the object’s color, shape, and size) to train the encoder.

D Implementation details

This section describes the architectural components and training pipeline used across all experiments.

D.1 Model architecture

D.1.1 Encoder ϕ, ϕR

The encoder ϕ processes a 4 × 96 × 96 input image using three convolutional layers with ReLU
activations. The output is flattened and projected into a latent representation via a fully connected
layer. The encoder ϕR (used for reconstruction loss) shares the same architecture.

D.1.2 Decoder g

The decoder g reconstructs the original observation from a concatenated latent vector (zR, z) for
our algorithm, and directly from the latent vector z for the reconstruction-based encoder. It uses a
linear projection followed by three transposed convolution layers to upsample back to the original
resolution.

D.1.3 Inverse model h

The inverse model h predicts the action at given two consecutive latent representations (zt, zt+1). It
consists of three fully connected layers with ReLU activations.

D.1.4 Forward model f

The forward model f predicts zt+1 from zt and action at. The action is one-hot encoded and used to
index the corresponding transformation slice from a reshaped output tensor.

D.1.5 Contrastive discriminator d

The discriminator d in the InfoMax framework takes two latent vectors (zt, z′) and outputs a scalar
score indicating similarity. It is implemented as an MLP with ReLU activations.

D.1.6 Classifier

The classifier is defined as a multi-layer MLP. Object attributes (color, shape, size) are predicted
using separate classifiers.

D.2 Training procedure

We collect transitions (ot, at, ot+1) into a replay buffer. Once a sufficient number of transitions are
gathered, we employ a multi-objective training setup that combines all applicable losses depending
on the encoder type. Total loss is backpropagated and used to update all parameters jointly.

The model is optimized with the Adam optimizer and a learning rate of 0.001. Training proceeds for
1,000,000 steps, and the model is updated every 10 steps. The latent dimensions of z and zR are set
to 128 for all of the algorithms.
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D.3 Evaluation procedure

To assess the quality of the learned representations, we perform downstream classification tasks on
object attributes: color, shape, and size. The evaluation is conducted in two stages:

D.3.1 Latent representation evaluation

We first freeze the encoder trained by either our model or one of the comparison algorithms. Then, we
train three independent classifiers to predict object color, shape, and size from the latent representation
zt. The classifiers are trained for 2,000 epochs on a dataset containing 20,000 labeled examples.
During testing, we randomly sample 1,000 observations, extract their latent representations using the
frozen encoder, and perform attribute prediction using the trained classifiers.

D.3.2 Forward model evaluation

To evaluate the temporal consistency of the learned latent space, we use the forward model trained
end-to-end alongside the encoder. We sample 1,000 initial observations and iteratively apply the
forward model to generate multi-step predictions ẑt+τ . At each prediction step, the pre-trained
classifiers (from the previous evaluation) are used to predict object attributes based on the predicted
latent representations.

E Accuracy table of classification based-on multi-step predictions

Table 3: Classification accuracy of different representation learning methods with one-step prediction.

Algorithm Color Size Shape
Reconstruction-based encoder 99.78%±0.30% 79.06%±0.94% 41.02%±3.45%

Inverse dynamics-based encoder 100.00%±0.00% 100.00%±0.00% 86.90%±11.98%

Contrastive learning-based encoder 25.38%±1.32% 47.52%±26.25% 40.14%±29.96%

Classifier-based encoder 99.40%±0.28% 99.68%±0.10% 99.32%±0.46%

Our model 96.88%±6.19% 99.82%±0.26% 95.24%±6.35%

Table 4: Classification accuracy of different representation learning methods with two-step prediction.

Algorithm Color Size Shape
Reconstruction-based encoder 99.64%±0.37% 47.20%±7.26% 30.00%±3.17%

Inverse dynamics-based encoder 99.70%±0.14% 99.24%±0.16% 85.60%±11.13%

Contrastive learning-based encoder 24.90%±0.81% 46.14%±26.91% 40.40%±29.75%

Classifier-based encoder 97.88%±1.24% 99.14%±0.81% 98.18%±1.31%

Our model 95.10%±9.30% 98.66%±1.94% 92.60%±10.35%

Table 5: Classification accuracy of different representation learning methods with three-step predic-
tion.

Algorithm Color Size Shape
Reconstruction-based encoder 97.48%±2.96% 34.98%±3.99% 24.80%±1.40%

Inverse dynamics-based encoder 99.26%±0.29% 98.12%±0.07% 82.84%±10.55%

Contrastive learning-based encoder 24.40%±0.52% 45.92%±27.01% 39.60%±30.06%

Classifier-based encoder 95.30%±2.90% 98.56%±1.45% 96.98%±2.63%

Our model 93.68%±11.45% 97.84%±3.13% 91.62%±11.97%
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Table 6: Classification accuracy of different representation learning methods with four-step prediction.

Algorithm Color Size Shape
Reconstruction-based encoder 96.36%±4.12% 34.72%±2.28% 24.04%±1.69%

Inverse dynamics-based encoder 98.62%±0.24% 97.28%±0.10% 81.56%±10.15%

Contrastive learning-based encoder 24.68%±1.70% 46.90%±26.85% 40.00%±30.01%

Classifier-based encoder 92.38%±4.93% 97.32%±2.91% 94.48%±3.72%

Our model 91.56%±14.60% 96.70%±5.49% 89.08%±16.24%

Table 7: Classification accuracy of different representation learning methods with five-step prediction.

Algorithm Color Size Shape
Reconstruction-based encoder 95.24%±5.52% 32.94%±2.05% 24.32%±1.39%

Inverse dynamics-based encoder 98.00%±0.26% 96.44%±0.35% 79.86%±9.78%

Contrastive learning-based encoder 25.84%±1.01% 46.32%±26.87% 39.90%±30.06%

Classifier-based encoder 89.46%±6.56% 96.68%±3.31% 93.36%±4.76%

Our model 89.86%±17.08% 95.66%±6.39% 87.78%±17.55%

F Confusion Matrix

Figure 7: Confusion matrix for our model.
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Figure 8: Confusion matrix for reconstruction-based encoder.

Figure 9: Confusion matrix for inverse dynamics-based encoder.
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Figure 10: Confusion matrix for contrastive learning-based encoder.

Figure 11: Confusion matrix for classifier-based encoder.
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