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Abstract

We propose a method for estimating the expected value of a given function h(x), under an
intractable distribution p(x) whose score function ∇ log p(x) is however available, without
sampling from it. Monte Carlo based sampling methods, in particular Markov Chain
Monte Carlo (MCMC) methods when an exact sampler is not available, are a popular tool
for this task. However, they may be difficult to diagnose and suffer from noisy estimates,
while potentially being very expensive and biased, in the MCMC case. Our proposed
method, Neural Stein Estimation (NSE), avoids these issues and instead frames calculating
the expectation as solving a differential equation inspired by Stein’s method and control
variates. The algorithm consists of solving this differential equation through optimization,
using a neural network. This means the method is deterministic and converges in a stable
way, transforming the issue of sampling at run-time to the issue of sampling at training-time
and the amortized cost of training this neural network. This work presents the theoretical
foundations of NSE, and evaluates the method’s viability over control variate baselines on
simple distributions.

1. Introduction

In the fields of statistical inference and probabilistic modeling, the accurate estimation of
expectations plays a crucial role, especially in areas like machine learning, physics, and
computational biology. The expectation of the function h under the distribution p is:

Ep[h(X)] =

∫
h(x)p(x) dx

Computing this integral can be challenging, especially in scenarios involving high-dimensional
spaces or complex distributions. Traditional methods, such as Monte Carlo (MC) techniques
(Robert and Casella, 2010), tackle this by using sampling. These methods are useful but
often require significant computational resources and can be inefficient, particularly with
complex, high-dimensional distributions. A particular problem is that these are stochastic,
which makes them difficult to diagnose and evaluate. This motivates us to explore new
approaches for estimating expectations with the key goal that they have less variance and
are more accurate.
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A natural starting point towards this goal are control variate (CV) methods, which typ-
ically involve training an additional function sθ(x) (the “control variate”), with parameters
θ, such that the alternative integrand h(x) + sθ(x) is an unbiased estimator for E[h(X)]
with less variance (Assaraf and Caffarel, 1999; Oates et al., 2017). This is typically done as
a post-processing step once we have already obtained samples from p, in order to improve
MC estimates.

An expressive class for sθ are the “zero variance CVs”, inspired by Stein’s method,
and requiring the computation of the score function ∇ log p(x) (Assaraf and Caffarel, 1999;
Gorham and Mackey, 2015). If these CVs are parameterized flexibly enough (such as with a
neural network) to reduce the variance completely, we can consider other loss functions with
the same minima. This results in a different approach for expectation estimation which we
call Neural Stein Estimation (NSE).

In contrast to MC methods, the key advantage of the method is that it doesn’t require
sampling, which means the approach produces stable estimates, and is easier to diagnose
(using a loss function). These properties can be helpful when dealing with complex, high-
dimensional distributions, where direct sampling can be challenging. The trade-off is the
added cost of training the network, and that the method will estimate the expectation
of a particular function h(x) (and not a means of estimating multiple expectations, as in
sampling).

We review the relevant background concerning CVs in section 2, followed by a description
of our method in section 3. In section 4, we present some simple experimental results
comparing the method to other CV methods, and in particular demonstrate that when
the CV training data is not sampled from the target distribution, our method outperforms
them. We conclude with a discussion of our findings and future research directions.

2. Background and Related Works

We denote the target distribution p(x) = p̃(x)/Z, with x ∈ Rd. We assume we only have
access to p̃, since the normalizing constant Z may be intractable. For a given function
h : Rd → R, we wish to calculate the expectation under p, ie. Ep[h(X)].

In this work we make use of the Stein Operator (Gorham and Mackey, 2015), which
for some function g(x) : Rd → Rd is defined as 1

p∇ · (p(x)g(x)). This can be rewritten in
the more useful form:

Tpg(x) = g(x)⊤∇x log p(x) +∇ · g(x) (1)

Notice that this depends only on the score function ∇x log p(x), which is independent of the
normalizing constant Z. An important property of the Stein operator is that Ep[Tpg(X)] =
0, so long as p(x)g(x) → 0 on the boundary ∂V , where V is the support of p(x) (This
follows by applying the divergence theorem to evaluate the integral).

The Stein operator can be thought of as a device mapping a function g(x) into one that
has zero mean under p (under mild conditions on g). There are several works which make
use of the Stein operator and its properties (Gorham and Mackey, 2015; Ranganath et al.,
2016; Grathwohl et al., 2020).
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2.1. Control Variates

A control variate (CV) in our setting is a function sθ : Rd → R, with parameters θ, which
satisfies the zero-mean property: Ep[sθ(x)] = 0.

This allows us to construct a new estimator for the expectation as: Ep[h(X)+ sθ(X)] =
Ep[h(X)]. Since the CV has learnable parameters, they may be tuned to produce an estima-
tor with smaller variance. In particular, the training objective for the CV can be formulated
as:

LVar =
∑
i

(h(xi) + sθ(xi)−mean(h(xi) + sθ))
2 (2)

The mean term is commonly replaced with a learnable constant c, so that the objective
coincides with regressing the parametric function −sθ(x) + c to the target h(x) on samples
xi ∼ p (Oates et al., 2017; Wan et al., 2019; Sun et al., 2023). We refer to this as the
“regression objective” for CV methods.

2.2. Zero-Variance CVs

Zero-Variance CVs use the earlier property of the Stein operator to construct flexible CVs
(Assaraf and Caffarel, 1999). In particular, they define the CV as: sθ(x) := −Tpgθ(x). The
benefit of this approach is that there are very few restrictions on g, and the corresponding
space of CVs can be very flexible.

In particular, for a flexible parametric class g, they can minimize the variance to 0, which
corresponds to the random variable h(X)− Tpgθ(X) = Ep[h(X)], a constant. Rearranging
this, it means that to obtain the optimal CV, we want it to solve the following differential
equation for g(x), known as Stein’s equation, or sometimes, the the fundamental equation
(Assaraf and Caffarel, 1999):

h(x)− Ep[h(X)] = Tpg(x) (3)

Under mild conditions, this equation has a solution (though not necessarily unique) (Oates
et al., 2017).

Existing works explore parameterizing g in different ways, eg. with polynomials (As-
saraf and Caffarel, 1999), in an RKHS (Oates et al., 2017), or with neural networks (Wan
et al., 2019; Sun et al., 2023). These methods largely use the same variance minimization
perspective (2) (in particular its regression variant). The key issue is that this objective
requires samples from p(x), which are often difficult to obtain. In theory the method should
still be valid if the samples xi are not from the target p, since it is attempting to solve Eq.
(3) using regression. However, the objective performs poorly in that case (this is also con-
firmed in our experimental section). This phenomenon can be better understood through
the following thought experiment. If we fix gθ and train the c parameter to optimality on
xi ∼ r(x), it will converge to c0 = Er[h(X) − Tpgθ(X)]. If we then train with a flexible
function g with this obtained c0, the function will attempt to converge to a solution such
that h(x) − Tpgθ(x) = c0,∀x. In other words, the regression objective often produces an
estimate that depends on r, which is not desirable.

The neural network methods are especially sensitive to this and produce bad results
when the number of samples from p is small. Previous works attribute this to “overfitting”
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(Wan et al., 2019; Sun et al., 2023). They propose remedies such as regularization terms
(Wan et al., 2019) or meta-learning across multiple estimation tasks (Sun et al., 2023) to
make better use of samples.

3. Method

Instead of taking the variance minimization perspective with the Stein equation (3), we can
formulate other objectives to solve for g, not requiring samples from p. Once this is done,
we can estimate Ep[h(X)] = h(x)−Tpg(x) where the right hand side should be constant over
x at the solution. The key issue is that equation (3) already requires us to know Ep[h(X)],
so we can’t directly solve it.

There are two methods for proceeding, making use of the fact that the right-hand side
and left-hand side differ only by a constant.

• We can take the gradient of both sides to obtain yet another differential equation:

∇xh(x) = ∇xTpg(x) (4)

Minimizing the norm of the gradient difference on a set of points (a mesh) M{xi}
yields the “Grad Loss” objective:

Lgrad(θ) =

n∑
i=1

||∇xh(xi)−∇xTpgθ(xi)||22 (5)

• We can alternatively take the difference of equation (3) on points x, x′, and rearrange
to cancel out the constant:

h(x)− Tpg(x) = h(x′)− Tpg(x′) (6)

If we consider minimizing this over a set of points M, and a set of perturbed points
M̄ = {xi + ϵi}, we get the “Diff Loss” objective:

Ldiff =

n∑
i=1

||
(
h(xi + ϵi)− Tpg(xi + ϵi)

)
−

(
h(xi)− Tpg(xi)

)
||2 (7)

If the perturbations are from a Gaussian ϵi ∼ N (0, σ2), then (7) can be seen as a
zero-order approximation for the gradients in (5) (Liu et al., 2020) (though it is a
valid loss function for any perturbations).

The above methods technically introduce more solutions, for which h(x)−Tpg(x) differs
by a constant. In other words g may solve (4), but not (3). Such solutions would give us
incorrect expectations. These extraneous solutions are eliminated by the boundary condi-
tion p(x)g(x) = 0 on ∂V . In other words, so long as g is a solution to (4), and satisfies the
boundary conditions, it will give us the correct expectations.

The “Grad Loss” objective (5) is expected to be better since the gradient naturally
picks out the direction of maximal disagreement for the objective, while this needs to be
randomly estimated in (7). However, it requires back-propagating through ∇Tpgθ(x), a
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Rd → Rd function. This will quickly become very expensive in higher dimensions, so (7)
should be thought of a a cheaper alternative.

Our proposed method is essentially to use a neural network gθ(x) to approximately solve
the equation (4) or (6) everywhere in space. We can solve the associated losses on a mesh
to achieve this. Notably, the mesh need not be sampled from the target p.

We refer to this method as Neural Stein Estimation (NSE). The overall NSE algo-
rithm, for the loss (5), is presented in Figure 1.

Figure 1: The Neural Stein Estimation (NSE) algorithm

This method yields a way to calculate expectations without sampling. In contrast to
MCMC, it is more stable, and supplies a loss function with which we can monitor progress.

In contrast to control variate methods the xi doesn’t need to be samples from p. This
bypasses the issues with “overfitting” noted when using neural networks (Wan et al., 2019;
Sun et al., 2023), since we are free to generate points in the mesh as we like.

The mesh still requires attention: namely it should capture “salient” features of the
distribution p, such as modes, or boundaries of the support (if it’s finite). Some examples
are included in the appendix. In this sense, a mesh distribution r(x) that places points on
high-probability regions of p is needed. This doesn’t mean r(x) = p(x); in particular, the
mesh statistics (e.g., the mean and variance) need not be the same as those of p.

For the purpose of this work, we choose the solve (4) or with a neural network. We
could have instead used a numerical method. The reason for preferring neural networks
is that for future work, we’d like to amortize the procedure of learning g across multiple
different h(x).

4. Experiments

We experimentally test the viability of the method (with loss (5) labelled ”NSE (G)” and
(7) labelled “NSE (D)”) on a multivariate Gaussian distribution. We estimate the second
moment (summed across dimensions) E[

∑d
i=1X

2
i ] for the multivariate Gaussian N (3, 5Id).

We compare to the CV baselines such as Control Functionals (CF) (Oates et al., 2017)
and Neural Control Variates (NCV) (Wan et al., 2019), as well as to MCMC methods
such as (unadjusted) Langevin Monte Carlo (LMC) (Rossky et al., 1978; Parisi, 1981), and
Hamiltonian Monte Carlo (HMC) (Duane et al., 1987; Neal et al., 2011).

Figure 2 compares the moment estimates as dimension increases. The training mesh
used is sampled uniformly from the hypercube r(x) = U [−10, 10]d, and a 4-layer neural
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Figure 2: Estimation of E[
∑

iX
2
i ] for different

number of dimensions when p(x) =
N (3, 5Id).
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Figure 3: Estimation of E[
∑

iX
2
i ]

for p(x) = N (3, 5I5)
for different values of the
mesh mean.

network is used for NSE (and NCV). MCMC methods perform best overall, while among
the methods which use the mesh, NSE with the gradient loss performs best, followed by
NSE with the difference loss.

Figure 3 fixes the dimension to 5, and trains the CV methods and NSE on a mesh
sampled from N (µ, I), for varying µ. In this case, we observe that the CV methods are
less robust to changes in mesh compared to NSE. Note that these results for CV use the
regression objective. Directly using the variance objective (2) produces different results
(sometimes better and sometimes worse), which requires further investigation.

5. Conclusion

We presented Neural Stein Estimation (NSE), a method which approximately solves a
differential equation to estimate the expectation of a given function h(x) under a distribu-
tion p(x). The method is stable, doesn’t require sampling, and empirically demonstrates
favourable properties compared to CV methods when they aren’t trained on target samples.
Some future directions to improve the work include:

• The method only estimates a single expectation, in contrast to MCMC. One possible
route to address this is to amortize the procedure of learning g across a set of expecta-
tions {hi}. The ability to meta-learn control variates across different h(x) (and p(x))
as in (Sun et al., 2023) suggests that this amortization may be practically achievable.

• The method currently works only for scalar-valued integrands, h : Rd → R. There
may be ways of efficiently adapting the method to vector valued integrands, which
would allow the method to be used for gradient estimation tasks.
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Appendix A. The Choice of Mesh

We start with some experiments clarifying the role of the mesh, and to better understand
when our method fails. Specifically, we evaluated the method on one-dimensional distribu-
tions, specifically the Mixture of Gaussians (∼ 0.5N (−10, 32) + 0.5N (10, 32)), estimating
the mean h(x) = x, and the Exponential distribution (∼ Exp(1)), estimating the second
moment h(x) = x2. The mesh is a grid of equally spaced points over some interval.

Figure 4 contains two examples demonstrating the impacts of both inadequate and
adequate mesh selections. For the MoG distribution, the top left figure shows the result
of using an inadequate mesh, yielding an estimated expectation E[X] ≈ 10. In contrast,
the bottom left figure, with an adequate mesh, accurately estimates E[X] ≈ 0. The reason
for the failure is that the mesh covers only 1 mode of the distribution p. The differential
equation is thus solved assuming p ≈ N (10, 32), producing an estimate of its mean, since
this is the only information the loss function observes.

Similarly, for the Exponential distribution, the top right figure with an inadequate mesh
results in E[X2] ≈ 11, while the bottom right figure, using an appropriate mesh, correctly
estimates E[X2] ≈ 2. Notice that for this problem, one of the boundaries is x = 0. Here
the issue is that the loss function doesn’t observe the differential equation on an interval
starting from the boundary. For meshes which do, the neural network learns a smooth
solution respecting the boundary condition, producing accurate expectations. Otherwise
the neural network can learn a different solution which violates the boundary conditions.
Note that this occurs even if we fix the architecture of the net to enforce the boundary
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condition (for instance here, outputting g(x) = xϕ(x), with neural net ϕ). The reason is
that the neural net is very flexible and can attain different solutions on different intervals,
depending on where it sees data.

Figure 4: Impact of mesh selection on 1D MoG and Exponential distributions. Top Left:
MoG with inadequate mesh: E[X] ≈ 10. Bottom Left: MoG with adequate mesh:
E[X] ≈ 0. Top Right: Exponential with inadequate mesh: E[X2] ≈ 11. Bottom
Right: Exponential with adequate mesh: E[X2] ≈ 2.

From these examples we can observe that:

• The mesh should cover representative regions of the distribution p (for instance, mul-
tiple modes). In this sense, the challenges from multimodality persist with NSE, but
in a different way from MCMC.

• (For non-asymptotic boundaries), the mesh should cover the boundary ∂V of the
support of p.
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