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Abstract

Large Language Models (LLMs) have shown001
remarkable performance across a wide range002
of natural language tasks. However, a critical003
challenge remains in that they sometimes gener-004
ate factually incorrect answers. To address this,005
while many previous work has focused on iden-006
tifying errors in their generation and further re-007
fining them, they are slow in deployment since008
they are designed to verify the response from009
LLMs only after their entire generation (from010
the first to last tokens) is done. Further, we ob-011
serve that once LLMs generate incorrect tokens012
early on, there is a higher likelihood that subse-013
quent tokens will also be factually incorrect. To014
this end, in this work, we propose Streaming-015
VR (Streaming Verification and Refinement),016
a novel approach designed to enhance the effi-017
ciency of verification and refinement of LLM018
outputs. Specifically, the proposed Streaming-019
VR enables on-the-fly verification and correc-020
tion of tokens as they are being generated, sim-021
ilar to a streaming process, ensuring that each022
subset of tokens is checked and refined in real-023
time by another LLM as the LLM constructs its024
response. Through comprehensive evaluations025
on multiple datasets, we demonstrate that our026
approach not only enhances the factual accu-027
racy of LLMs, but also offers a more efficient028
solution compared to prior refinement methods.029

1 Introduction030

Large Language Models (LLMs) (Achiam et al.,031

2023; Jiang et al., 2023a; Dubey et al., 2024) have032

demonstrated significant advancements across vari-033

ous tasks, such as question answering (QA) (Yang034

et al., 2018; Kwiatkowski et al., 2019; Fan et al.,035

2019; Min et al., 2020) and its more complex real-036

world applications supported by information re-037

trieval (IR) (Xiong et al., 2020; Karpukhin et al.,038

2020; Ni et al., 2021). However, LLMs still face no-039

table limitations like hallucinations, mainly due to040

the incorrect or outdated knowledges of the model041

itself (Rawte et al., 2023) and the wrong applica- 042

tion and generalization of memorized or retrieved 043

knowledge (Jiang et al., 2024; Xu et al., 2024). 044

Previous approaches have sought to mitigate 045

these inaccuracies by augmenting LLMs with ex- 046

ternal knowledge sources (Guu et al., 2020; Lewis 047

et al., 2020; Luo et al., 2023). However, these 048

methods often face challenges in maintaining faith- 049

fulness, as they may retrieve information that is 050

either ungrounded or irrelevant to the context. To 051

this end, in the realm of error identification and 052

verification, recent research has highlighted the 053

challenges LLMs face in accurately detecting and 054

correcting mistakes (Peng et al., 2023). 055

However, traditional methods (Faltings et al., 056

2021; Yasunaga et al., 2021; Madaan et al., 2024) 057

have a couple of challenges. First, they are ineffi- 058

cient. They focus mainly on identifying and correct- 059

ing misinformation only after the complete answer 060

has been generated. This approach not only delays 061

error detection but also requires re-evaluating the 062

entire text, which is computationally expensive and 063

time-consuming. Second, cascading errors. LLMs 064

generate text sequentially, predicting one token at 065

a time based on the preceding context. An early 066

error in this sequence can propagate through subse- 067

quent tokens, compounding inaccuracies through- 068

out the response. This error propagation makes it 069

even more challenging to correct misinformation 070

effectively, especially when early mistakes lead to 071

increasingly complex or numerous errors to the 072

overall response. These challenges highlight the 073

critical need for intermediate corrections to prevent 074

further inaccuracies throughout the response. 075

In this work, we propose Streaming-VR 076

(Streaming Verification and Refinement), a 077

method designed to address the issue of error prop- 078

agation in LLM-generated text. As visually de- 079

picted in Figure 1 (b), Streaming-VR evaluates 080

model-generated answers in real-time, identifying 081

the entire sentence and correcting only if its sub- 082
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Q: Who wrote harry styles 
sign of the times lyrics?

Sign of the Times is the debut single
by English singer Harry Styles from
his self-titled debut studio album. 
Released on 7 April 2017 by
Columbia Records, it was written by
Styles from London, Jeff Bhasker 
from Kansas City, Mitch Rowland, 
Ryan Nasci, Alex Salibian from Long 
Beach, and tyler Johnson, and 
produced by Bhasker, Salibian, and 
Johnson. Musically, it was described 
by critics as a pop rock ···

Sign of the Times is the debut single
by English singer Harry Styles from
his self-titled debut studio album. 
Released on 7 April 2017 by
Columbia Records, it was written by
Styles from London, Jeff Bhasker 
from Kansas City, Mitch Rowland, 
Ryan Nasci, Alex Salibian from Long 
Beach, and tyler Johnson, and In 
2021, Rolling Stone placed it at 
number 428 on its list of The 500 
Greatest Songs of All Time.

…
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Figure 1: (a): Previous verify-and-refine framework after the entire answer generation. (b): Our proposed method, Streaming-
VR, that verifies intermediate answers in sentence-level and refine them if identified as error, with remarkable efficiency.

set is wrong. By employing an external verifi-083

cation model, Streaming-VR verifies errors dur-084

ing the generation process, detects inaccuracies in085

newly generated sequence of tokens, and promptly086

corrects them. Because rectification occurs im-087

mediately after verification and runs concurrently088

with text generation, Streaming-VR significantly089

enhances efficiency and improves the factual accu-090

racy of model outputs. Our experimental results091

show that when LLMs generate incorrect tokens092

early in a sequence, it substantially increases the093

likelihood of subsequent sentences being factually094

inaccurate. Specifically, approximately 37.6% of095

the answers in various settings were found to con-096

tain factual inaccuracies caused by error propa-097

gation (early erroneous tokens), highlighting the098

critical importance of employing Streaming-VR.099

We validate the effectiveness and efficiency100

of Streaming-VR experimentally on two bench-101

mark datasets: achieving approximately 39.8% and102

31.5% higher efficiency for ASQA (Stelmakh et al.,103

2022) and QuoteSum (Schuster et al., 2024) in av-104

erage, respectively. We have employed Mistral105

7B (Jiang et al., 2023a), LLaMA-3.1 8B (Dubey106

et al., 2024), and GPT-4o (Achiam et al., 2023).107

2 Related Work108

Large Language Models Recent advancements109

in Language Models (LMs) (Radford, 2018; Devlin110

et al., 2019; Liu et al., 2019; Raffel et al., 2023)111

and LLMs with billions of parameters, have led112

to significant improvements in performance across113

various natural language tasks. Since LMs can-114

not memorize or learn every real-world knowledge,115

several studies have explored methods to enhance116

their capabilities by leveraging external knowledge117

sources like retrieval-augmented generation (Lewis118

et al., 2020), for knowledge-intensive tasks. De-119

spite the assistance of external knowledge, models120

often generate incorrect answers due to the failure121

of factual recall (Jiang et al., 2024) as they may122

not succeed in retrieving or applying the relevant123

knowledge appropriately, and generalizing memo-124

rized knowledge accurately. 125

To address this issue, recent research has fo- 126

cused on verifying the relevance and accuracy of re- 127

trieved knowledge using separate verification mech- 128

anisms (Baek et al., 2023). Additionally, meth- 129

ods for generating answers through on-demand re- 130

trieval of external information, employing special 131

retrieval tokens, followed by critiquing the outputs 132

to improve their quality, have been explored (Asai 133

et al., 2024). A dynamic retrieval process that 134

determines both when and what to retrieve dur- 135

ing answer generation (Jiang et al., 2023b) has 136

demonstrated notable improvements in knowledge- 137

intensive tasks. This is particularly significant as 138

the retrieve-and-generate paradigm faces signifi- 139

cant challenges in generating lengthy texts, pri- 140

marily due to difficulties in maintaining coherence 141

and consistency. Retrieved knowledge is often 142

fragmented and lacks contextual integration, while 143

static retrieval methods fail to adapt dynamically 144

to evolving text, leading to disjointed or repetitive 145

outputs. Future research could address these is- 146

sues through iterative retrieval mechanisms that 147

refine knowledge during generation, advanced rea- 148

soning capabilities to synthesize information from 149

multiple sources, and hierarchical retrieval strate- 150

gies (Jeong et al., 2024) that organize information 151

at different levels of granularity and difficulty lever- 152

aging an external query complexity classifier. 153

Language Model Verification and Refinement 154

Other than the misinformation induced by wrong 155

knowledge, LLM itself often generates plausible 156

but incorrect texts (Zhang et al., 2024) (i.e., hallu- 157

cination). Thus, evaluating the factuality (Thorne 158

et al., 2018; Min et al., 2023) of LLM outputs cor- 159

recting inaccuracies has emerged as an important 160

topic. Various approaches explore methods to en- 161

hance the factual accuracy of model responses and 162

develop robust fact-checking or answer-verifying 163

models. For instance, Dhuliawala et al. (2024) gen- 164

erates a series of independent questions to check 165

the factual claims made in the model response, fol- 166
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lowed by synthesizing the answers from the veri-167

fication step. Beyond evaluating or verifying the168

faithfulness of LLM answers, answer-correction169

has also become a prominent area of focus in vari-170

ous fields. Iterative refinement is well known to be171

helpful for improving generative contents of natural172

language (Madaan et al., 2024) and code (Faltings173

et al., 2021; Yasunaga et al., 2021) autonomously,174

but limited to the final outcome after waiting for175

the whole generation is done.176

On the other hand, Lightman et al. (2023) demon-177

strates the effectiveness of process supervision by178

focusing on each step of the reasoning process, and179

allowing the model to identify and correct errors180

in the middle. It emphasizes the importance of181

intermediate verification in complex multi-step rea-182

soning tasks like mathematical problem solving183

where a single error can derail the entire answer.184

Also, Welleck et al. (2023) employs an online train-185

ing procedure for a separate corrector to learn from186

feedback on intermediate outputs. Nevertheless,187

LMs are capable of correcting errors only when188

their locations are identified (Tyen et al., 2024) ex-189

actly, which poses a bottleneck in improving self-190

correction capabilities. Furthermore, Huang et al.191

(2024) have demonstrated through experimental192

analyses that current LLMs struggle to self-correct193

their reasoning without external feedback, often194

resulting in degraded performance after attempting195

self-correction. Alternatively, Cobbe et al. (2021);196

Wang et al. (2023) utilize a trained critique model197

or verifier to correct errors on responses through198

their feedback. In addition, Gou et al. (2024) show199

that verification and correction can be done effec-200

tively by interacting with diverse external tools.201

In contrast to the previous works which have to202

wait for the entire answer generation or limited to203

the inherent answering ability, we propose a novel204

method with external model, that refines the spe-205

cific intermediate sentence of an answer identified206

as incorrect, with higher efficiency.207

3 Method208

3.1 Preliminaries209

We begin with preliminaries, formally explaining210

Large Language Models and traditional verify-and-211

refine approach, Full Verification and Refinement.212

Large Language Models Let us define the pro-213

cess of generating an answer a to a given question214

q as a function: a = LLM(q).215

For the real-time sentence-level verification and 216

refinement, we also analyze the individual sen- 217

tences in answer. To elaborate, an answer a 218

is structured as a sequence of n sentences, ex- 219

pressed as a = [s1, s2, · · · , sn], where the no- 220

tation [·] signifies concatenation in the specified 221

order. To facilitate real-time correction of incor- 222

rect sentences within intermediate answers, we 223

define the intermediate answer at a certain step 224

t (t ≥ 1) as a≤t = [s1, · · · , st] containing t sen- 225

tences in total. Note that this can also be expressed 226

as a≤t = [a≤t−1, st], where st is the most recently 227

generated sentence in streaming setup. We initial- 228

ize a≤0 as an empty string for coherence. 229

In QA systems that incorporate external knowl- 230

edge, such as in retrieval-augmented generation 231

(RAG), or examples as in in-context learning (ICL), 232

the answering process differs slightly. Formally, 233

let d denote the external knowledge or exam- 234

ple retrieved from the source D. The retrieval 235

is performed using a dedicated retrieval model 236

Retriever, for a given query q, defined as: d = 237

Retriever (q;D). This process involves ranking 238

the retrieved data based on its relevance or similar- 239

ity to the given query. After the related documents 240

are retrieved for RAG or ICL, we now incorporate 241

them as input to the LLMs as: a = LLM(q,d). 242

Full-VR The simplest traditional approach for 243

verifying and refining LLM answers, namely Full- 244

VR (Full Verification and Refinement), is the most 245

common strategy for improving them just by re- 246

generating the entire responses if identified to be 247

incorrect. While many previous works (Yasunaga 248

et al., 2021; Cobbe et al., 2021; Welleck et al., 249

2023) achieve significant improvements through 250

supplementary techniques, we focus solely on the 251

vanilla setting, for a direct efficiency comparison 252

without any additional methods designed to in- 253

crease the factual accuracy of answers. And finally, 254

the overall Full-VR pipeline is expressed as follow 255

for a given query q and its answer a = LLM (q): 256

ã =

{
a if o = True

Refiner (a) if o = False
257

where o = Verifier (a) is the verification output, 258

and ã is the final output of Full-VR. 259

3.2 Streaming Verification and Refinement 260

Our approach is structured in the following steps 261

during the generation of answers: 1) Streaming- 262
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Verification and 2) Streaming-Refinement if nec-263

essary; for the sentence identified as error and go264

back to 1). We formulate the overall framework of265

Streaming-VR as follow for a given query q and266

the t-th sentence st ∈ LLM (q) in its answer:267

s̃t =

{
st if ot = True

Refiner (st) if ot = False
268

where ot = Verifier ([a≤t−1, st]) is the verifica-269

tion output, and s̃t is the new sentence output of270

Streaming-VR at a certain step t. Note that the271

refinement model, Refiner takes into account the272

whole context of previously verified and (may have273

been) refined sentences, ã≤t−1 = [s̃1, · · · , s̃t−1].274

After processing all the sentences by Streaming-275

VR, the final refined answer output should be in276

the form as follow: ã = [s̃1, · · · , s̃n].277

The answer verification relies on the verifier’s278

output, ot = Verifier (a≤t) such that ot ∈279

{True, False}. We utilize a fine-tuned LLM to280

determine whether the input is True or False by281

evaluating the factuality of the generated answers282

in sentence-level. To this end, we augment training283

data with true- and false-labeled sentences, as there284

is no proper question answering dataset labeled285

accurately with unit-level (e.g. sentence-level) an-286

swers for our streaming-verifier. The augmented287

sentences are made from the provided reference288

answer data by rephrasing it for True and adding289

wrong information for False by GPT-4o (Achiam290

et al., 2023) with the specific prompt as in Ap-291

pendix A.1. To suit real-time verification sce-292

narios, we split the answer data into individual293

sentences using NLTK (Bird and Loper, 2004).294

These sentences are concatenated incrementally295

in their original order to form intermediate answers296

{a≤1, · · · ,a≤t}, ensuring that False-labeled sen-297

tences only appear at the end, never in the mid-298

dle. This design allows the streaming-verifier to299

focus on determining the factuality of the newly-300

generated sentence at the end. To further enhance301

the training process, a special sentence-separation302

token, [SEP] is inserted right before the last sen-303

tence in each intermediate answer, formatted as304

[s1, s2, · · · , [SEP], st] for a certain stage t. This305

setup allows a model to be trained to verify the last306

sentence along with the context from the preceding307

True-labeled paragraph in the train set.308

To facilitate a real-time scenario with conven-309

tional language models, we provide the entire310

prompt given for answering the test query to the re-311

finement model. Additionally, we only include the 312

retrieved passages or few-shot examples given to 313

the generation prompt, without incorporating any 314

extra information from external knowledge sources 315

for refinement. This strategy ensures that the con- 316

textual information relevant to the intermediate 317

generation processes is fully incorporated. Fur- 318

thermore, as the intermediate answers are refined, 319

they must be updated to reflect the newly refined 320

preceding sentences, thereby enabling a continuous 321

and coherent streaming refinement process. 322

4 Experiments 323

4.1 Datasets and Evaluation Metrics 324

We leverage two different datasets to evaluate the 325

effect of Streaming-VR especially for multi-answer 326

questions which require well-grounded responses 327

to assess the trustworthiness of QA systems. 328

ASQA (Stelmakh et al., 2022) is a challeng- 329

ing dataset serving as a bridge between factoid 330

and long-form QA tasks by addressing ambiguous 331

questions that can have multiple correct answers 332

depending on their interpretation. It is composed 333

of 4,353 and 948 questions in the train and dev 334

sets, respectively, while the test set is not publicly 335

available. So we use the dev set as our test set here. 336

ASQA provides the reference long-form answers 337

for every questions which are originated from Am- 338

bigQA (Min et al., 2020), the ambiguous questions 339

subset of questions from NQ (Kwiatkowski et al., 340

2019). In this paper, to evaluate the quantitative per- 341

formance of methods on ASQA, we follow the offi- 342

cial metrics and report: Disambiguous-Rouge (DR) 343

as the overall score which combines ROUGE-L 344

(R-L) (Lin, 2004) for text quality and Disambig-F1 345

(Dis-F1; QA score based on RoBERTa large (Liu 346

et al., 2019)) for factual correctness. 347

To evaluate the consistent impact of Streaming- 348

VR also in a Retrieval-Augmented Generation 349

(RAG) setting, as in the original ASQA paper (Stel- 350

makh et al., 2022), we perform experiments using 351

retrieved documents. Specifically, we use the top-k 352

documents ranked by semantic similarity between 353

the query and external documents for open-book 354

answer generation on the ASQA dataset. These 355

documents, retrieved from the Wikipedia corpus 356

(2018-12-20 snapshot) using GTR-XXL (Ni et al., 357

2021), are provided by the LLM citation bench- 358

mark ALCE (Gao et al., 2023). 359

QuoteSum (Schuster et al., 2024) is also a diffi- 360

cult question answering dataset for Semi-Extractive 361
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Multi-source Question Answering (SEMQA), a362

task designed to assess the comprehensive answer-363

ing ability by summarizing information from mul-364

tiple sources. To be specific, SEMQA requires365

models to generate a comprehensive response that366

integrate verbatim factual spans extracted from in-367

put sources along with supplementary non-factual368

text connecting them, thereby ensuring a cohesive369

answer. QuoteSum is made up of 4,009 semi-370

extractive answers to 1,376 unique questions from371

PAQ (Lewis et al., 2021) and NQ. For the quantita-372

tive evaluation on QuoteSum, we follow the official373

metrics and report: ROUGE-L, Sem-F1 for answer374

extraction quality, and overall SEMQA score where375

they do not require any model-based evaluations.376

Building on the original evaluation of Quote-377

Sum (Schuster et al., 2024), we further conduct a378

quantitative assessment of the variants of few-shot379

models. Specifically, we use dynamic prompt with380

top-k examples for each questions in the test set, as381

provided in the original paper. These examples are382

retrieved from the training set by selecting the pas-383

sages whose queries are most similar to the target384

test query, based on the cosine similarity between385

their sentence embeddings (Ni et al., 2022).386

4.2 Analyses on Efficiency387

In addition to evaluating the quality and factual ac-388

curacy of model responses, we also measure token389

count to assess the efficiency of each method. Since390

our experiments rely on models accessed through391

the HuggingFace (Wolf et al., 2020) API, it was392

not feasible to implement simultaneous execution393

of the verifier and refiner alongside the answering394

model, as would occur in real-world applications.395

Consequently, we analyze the inference cost (i.e.,396

the number of tokens) per model for each method.397

This metric is crucial as the number of refined to-398

kens directly affects to the LLM user’s waiting399

time for response corrections. To quantify the effi-400

ciency, we define the efficiency of Streaming-VR401

relative to Full-VR, taking a cue from the ther-402

mal efficiency in thermodynamics, which is formu-403

lated as: (Efficiency) := benefit
cost = 1 − TS

TF
. Here,404

TS and TF represent the average number of gener-405

ated tokens in the refinement phase per answer for406

Streaming-VR and Full-VR, respectively.407

It should be emphasized that the tokens being408

verified are identical for both methods. Consider409

an answer with N sentences, where each sentence410

contains Ti tokens (i = 1, . . . , N). Full-VR pro-411

cesses all
∑N

i=1 Ti tokens in a single step, whereas412

Streaming-VR verifies sentence segments sequen- 413

tially, processing Ti tokens at step i from i = 1 414

to N . Despite this difference in approach, both 415

methods process the same total number of tokens, 416

resulting in identical overall verification costs, irre- 417

spective of the number of verifier invocations. 418

4.3 Experimental Results and Analyses 419

Streaming-VR delivers higher efficiency while 420

maintaining its performance. We conduct a se- 421

ries of experiments on the ASQA and QuoteSum 422

datasets to quantitatively evaluate the efficiency 423

and effectiveness of two approaches: Streaming- 424

VR and Full-VR. For this comparison, we first 425

segment the model-generated answers for each test 426

query into individual sentences, treating these se- 427

quentially arranged sentences as distinct intermedi- 428

ate answers. Using Streaming-VR, we verify and 429

refine each intermediate answer in real-time, en- 430

abling dynamic adjustments as responses are gen- 431

erated. In contrast, Full-VR serves as the baseline, 432

where the entire answer is verified and refined only 433

after the complete sequence has been generated, 434

processing the output in a single pass from start 435

to finish. Note that for Full-VR, we utilize shared 436

verification results of Streaming-VR: an answer is 437

deemed incorrect if it contains at least one erro- 438

neous token in the overall context. By comparing 439

Streaming-VR and Full-VR, we aim to demonstrate 440

the advantages of real-time refinement in improv- 441

ing both answer quality and efficiency. 442

The main results on ASQA and QuoteSum 443

are summarized in Table 1. Both Full-VR and 444

Streaming-VR employ Mistral 7B as the verifier 445

and GPT-4o as the refiner across three different 446

backbone models (Mistral 7B, LLaMA-3.1 8B, and 447

GPT-4o) for answer generation, as indicated in the 448

method column. Across all response models, the fi- 449

nal outcomes after verification-and-refinement con- 450

verge to similar scores, indicating that the overall 451

quality and faithfulness of the answers are largely 452

determined by the refinement model. 453

However, we observe a notable performance de- 454

cline when GPT-4o is used as the backbone for an- 455

swer generation. Both Full-VR and Streaming-VR 456

with GPT-4o lead to significant drops in Disambig- 457

F1 on ASQA, a key metric for assessing the in- 458

formativeness of long-form answers, and no other 459

improvements on scores of QuoteSum. These re- 460

sults suggest that GPT-4o, which already gener- 461

ated high-quality answers, may be susceptible to 462

over-correction during the refinement process, re- 463
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Table 1: Results of Streaming-Verification by Mistral 7B and Refinement by GPT-4o on ASQA and QuoteSum for three
different backbone response models. TRef indicates the number of newly-generated tokens for refinement.

ASQA
Closed-Book Open-Book with 5 Passages

Method ROUGE-L Disambig-F1 DR TRef Efficiency ↑ ROUGE-L Disambig-F1 DR TRef Efficiency ↑

Mistral 7B 33.6 20.7 26.4 − − 36.4 31.2 33.7 − −
+ Full-VR 35.3 29.6 32.3 113.6

39.6%
36.6 33.9 35.2 101.8

26.9%+ Streaming-VR 35.2 29.6 32.3 68.6 36.9 33.7 35.3 74.4

LLaMA-3.1 8B 34.0 23.7 28.4 − − 36.6 31.7 34.1 − −
+ Full-VR 35.2 29.4 32.2 117.4

45.8%
37.0 34.2 35.6 106.8

42.1%+ Streaming-VR 35.3 29.4 32.2 63.6 36.8 34.0 35.4 61.9

GPT-4o 36.6 34.8 35.7 − − 37.1 35.0 36.0 − −
+ Full-VR 35.2 29.6 32.3 100.4

38.3%
37.0 33.9 35.4 116.1

46.0%+ Streaming-VR 35.3 29.4 32.2 61.9 36.9 33.9 35.4 62.7

QuoteSum
Zero-Shot Five-Shots

Method ROUGE-L Sem-F1 SEMQA TRef Efficiency ↑ ROUGE-L Sem-F1 SEMQA TRef Efficiency ↑

Mistral 7B 37.5 39.0 38.2 − − 46.8 51.8 50.1 − −
+ Full-VR 38.1 39.0 38.5 101.3

25.8%
57.6 49.0 53.1 72.5

24.3%+ Streaming-VR 37.9 39.0 38.4 75.2 57.5 48.9 52.9 54.9

LLaMA-3.1 8B 43.3 38.9 41.0 − − 59.1 61.2 60.1 − −
+ Full-VR 47.6 39.0 43.1 154.3

31.2%
60.7 62.1 61.4 84.1

30.0%+ Streaming-VR 47.5 39.0 43.0 106.1 60.7 62.3 61.5 58.9

GPT-4o 60.3 39.0 48.5 − − 65.8 54.7 60.0 − −
+ Full-VR 60.2 39.0 48.5 60.7

26.7%
65.8 54.7 60.0 78.9

42.2%+ Streaming-VR 60.0 39.0 48.4 44.5 65.3 54.7 59.8 45.6
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Figure 2: Performance comparison on various RAG and ICL settings.
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Figure 3: Efficiency comparison on various RAG and ICL settings. The numbers on top of the bars are their efficiency values.

ducing the overall effectiveness of the responses.464

This finding highlights a broader trend: refining465

answers with the same model used for genera-466

tion—even a powerful model like GPT-4o—may467

not improve performance and can even degrade it.468

For the applications like large-scale data analysis or469

high-frequency user requests handling thousands 470

or millions of queries daily, or individual users 471

requiring detailed lengthy responses, relying on 472

expensive models like GPT-4o for both generation 473

and refinement can quickly exceed budgetary con- 474

straints. Therefore, Streaming-VR, which uses a 475
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Table 2: Statistics on number of tokens. Here, TGen is the num-
ber of generated tokens during the initial answer generation,
TVer is the total number of tokens verified by the streaming
verifier, and TRef is the number of generated tokens during the
answer refinement phase by the streaming refiner. We report
the average number of tokens per answer.

ASQA
Closed-Book Open-Book w/ 5 Psgs

Method TGen TVer TRef TGen TVer TRef

Mistral 7B 143.8 − − 116.1 − −
+ Full-VR − 143.8 113.6 − 116.1 101.8
+ Streaming-VR − 143.8 68.6 − 116.1 74.4

LLaMA-3.1 8B 101.2 − − 66.9 − −
+ Full-VR − 101.2 117.4 − 66.9 106.8
+ Streaming-VR − 101.2 63.6 − 66.9 61.9

GPT-4o 100.4 − − 60.2 − −
+ Full-VR − 100.4 107.6 − 60.2 116.1
+ Streaming-VR − 100.4 61.9 − 60.2 62.7

QuoteSum
Zero-Shot Five-Shots

Method TGen TVer TRef TGen TVer TRef

Mistral 7B 120.4 − − 92.5 − −
+ Full-VR − 120.4 101.3 − 92.5 72.5
+ Streaming-VR − 120.4 75.2 − 92.5 54.9

LLaMA-3.1 8B 161.3 − − 83.6 − −
+ Full-VR − 161.3 154.3 − 83.6 84.1
+ Streaming-VR − 161.3 106.1 − 83.6 58.9

GPT-4o 58.5 − − 65.2 − −
+ Full-VR − 58.5 60.7 − 65.2 78.9
+ Streaming-VR − 58.5 44.5 − 65.2 45.6

more cost-effective model for response generation476

and GPT-4o solely for refinement, emerges as a477

more practical and economical solution.478

To assess the consistent efficacy of Streaming-479

VR across various settings of RAG and ICL for480

answer generation, we conduct additional experi-481

ments as visualized for performance in Figure 2482

and for efficiency in Figure 3. The answers are483

generated by LLaMA-3.1 8B, verified by Mistral484

7B and refined by GPT-4o on both datasets. The485

results show Streaming-VR’s competitive perfor-486

mance compared to Full-VR. Streaming-VR con-487

sistently outperforms the initial answers without488

refinement and achieves comparable results to Full-489

VR. It also illustrates that Streaming-VR delivers490

results on par with Full-VR across all retrieved491

passage and example shot counts, offering perfor-492

mance improvements over the unrefined original493

response outputs of language model.494

In terms of efficiency, Streaming-VR offers sub-495

stantial advantages over Full-VR across all mod-496

els and both closed-book and open-book settings.497

While Full-VR refines the entire response, gen-498

erating more tokens for error correction with un-499

necessary token refinement, Streaming-VR oper-500

ates at the sentence level, refining only those sen-501

tences identified as inaccurate, resulting in signif-502

icantly fewer tokens being produced. The key to503

Streaming-VR’s efficiency lies in its ability to min-504

Table 3: Result of Streaming-VR with LLaMA-3.1 8B
as a response model. Models are indicated as Streaming-
{Verifier}{Refiner}, where M, L and G stand for Mistral-
7B, LLaMA-3.1 8B and GPT-4o, respectively.

ASQA
Closed-Book Open-Book w/ 5 Psgs

Method R-L Dis-F1 DR R-L Dis-F1 DR

LLaMA-3.1 8B 34.0 23.7 28.4 36.6 31.7 34.1
+ Streaming-MM 34.5 23.7 28.6 36.2 30.5 33.2
+ Streaming-ML 34.2 24.3 28.8 36.8 31.1 33.8
+ Streaming-MG 35.3 29.4 32.2 36.8 34.0 35.4
+ Streaming-LG 35.2 28.3 31.6 36.8 33.8 35.3

+ Self-VR 34.2 23.3 28.2 36.6 31.1 33.7

QuoteSum
Zero-Shot Five-Shots

Method R-L Sem-F1 SEMQA R-L Sem-F1 SEMQA

LLaMA-3.1 8B 43.3 38.9 41.0 59.1 61.2 60.1
+ Streaming-MM 39.6 38.9 39.3 58.0 61.2 59.6
+ Streaming-ML 45.2 39.0 41.9 59.9 61.7 60.8
+ Streaming-MG 47.5 39.0 43.0 60.7 62.3 61.5
+ Streaming-LG 47.7 39.0 43.1 61.0 62.3 61.6

+ Self-VR 42.4 38.9 40.6 57.4 61.2 59.3

imize error propagation during the generation pro- 505

cess. By addressing inaccuracies early at the sen- 506

tence level, it reduces the need for extensive revi- 507

sions in subsequent stages with inefficiencies. This 508

streamlined process leads to token savings of 39.8% 509

for ASQA and 31.5% for Quotesum. 510

We further provide a comprehensive analysis of 511

the overall inference costs in Table 2, extending our 512

evaluation beyond token efficiency. This analysis 513

underscores the novelty of Streaming-VR across 514

the entire pipeline. As shown in Table 1, Full-VR 515

consistently generates significantly more tokens 516

compared to Streaming-VR. However, for practi- 517

cal deployment in real-world applications, latency 518

values play a critical role in assessing efficiency. 519

To quantify this, the latencies of Full-VR (tF) and 520

Streaming-VR (tS) can be calculated as follow: 521

tF = tVer + T F
Ref × tRef 522

tS = N × tVer + T S
Ref × tRef 523

Here, tVer represents the inference time of the ver- 524

ifier model, while tRef denotes the token genera- 525

tion time of the refiner. Since the verifier does not 526

generate tokens, it follows that tVer < tRef. Fur- 527

thermore, as shown in Table 2, with an average of 528

seven sentences per answer (N = 7), we observe 529

that N + T S
Ref < T F

Ref. Consequently, we can con- 530

clude that tS < tF due to the following inequality: 531

tS <
(
N + T S

Ref
)
× tRef < T F

Ref × tRef < tF 532

When Streaming-VR is applied in real-world sce- 533

narios, where the verifier and refiner operate si- 534

multaneously alongside the answering model, the 535

latency of Streaming-VR is updated to treal
S as: 536

treal
S = max

{
tVer, T S

Ref × tRef
}

537
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So it demonstrates that Streaming-VR achieves sig-538

nificantly lower latency compared to Full-VR, as539

treal
S ≪ tS < tF. As a result, comparing the number540

of tokens generated during refinement is sufficient541

to analyze the overall latency of both methods.542

Verification models don’t need to be bigger543

The results in Table 3 show that verifier models544

can be effective without being large. On both tasks,545

Streaming-MG performs comparably to Streaming-546

LG, demonstrating that smaller models can still de-547

liver significant performance gains. These findings548

highlight that the choice of verifiers is very robust549

in Streaming-VR, leading to choose smaller mod-550

els that are resource-efficient and effective, making551

them particularly valuable for real-world applica-552

tions with limited computational resources.553

Refinement models need to be bigger The re-554

sults in Table 3 highlight the critical role of employ-555

ing a larger, more advanced model for the refine-556

ment step after verification, even when the verifier557

is relatively small. Using Mistral 7B as both the558

verifier and refiner (Streaming-MM) results in no559

improvement or even degraded performance across560

datasets and settings.561

In contrast, larger refiners yield significant gains.562

With LLaMA-3.1 8B as the refiner (Streaming-563

ML), there is a modest Dis-F1 improvement for564

closed-book setting ASQA, though handling mul-565

tiple passages remains challenging. On Quote-566

Sum, Streaming-ML achieves notable improve-567

ments in both zero- and five-shot settings, while568

Streaming-MM reduces answer quality. The most569

substantial boost comes from GPT-4o as the refiner570

(Streaming-MG), whose advanced reasoning capa-571

bilities drive superior performance in both RAG572

and ICL settings. These results confirm the impor-573

tance of using a refiner larger than the response574

model for producing coherent, high-quality an-575

swers, especially in complex disambiguation and576

multi-passage reasoning tasks.577

LLMs still struggle with intrinsic self-correction578

Additionally, we conduct some experiments to579

evaluate the efficacy of self-verification and self-580

refinement within the Streaming-VR pipeline, uti-581

lizing only LLaMA-3.1 8B for backbone, verifier582

and refiner models. In Table 3, the rows of Self-VR583

(Self-Verification and Refinement; i.e., Streaming-584

LL) illustrate that LLMs continue to face chal-585

lenges with intrinsic self-correction with some per-586

formance drops. This result strengthens the con-587
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Figure 4: The ratio of derailed answers to incorrect answers.
(a): The rate of derailed answers on ASQA. (b): The rate of
derailed answers on QuoteSum.

clusions drawn by Huang et al. (2024), which also 588

have demonstrated that intrinsic self-correction, an 589

approach that model attempts to rectify its initial re- 590

sponses using only its inherent capabilities without 591

external feedback, degrades the response quality. 592

Any error in the middle derails the entire an- 593

swer As Zhang et al. (2024) point out that the 594

mistakes or hallucinations in the middle of answer 595

can skew the whole response, we report the statis- 596

tics of model-generated answers with the rate of 597

derailed answers on each dataset. Specifically, the 598

answers are generated by LLaMA-3.1 8B and veri- 599

fied the finetuned streaming verifier as before. The 600

rate of derailed answers is the ratio of the number of 601

‘answers composed of false sentences in sequence 602

from the first erroneous sentence to the last one’ to 603

‘false answers if at least one of their sentences is 604

identified as false’. Results in Figure 4 for ASQA 605

and QuoteSum are 26.3% and 48.9% on average 606

across different settings for RAG and ICL, respec- 607

tively. Therefore, they highlight the importance of 608

Streaming-VR to prevent derailed responses. 609

5 Conclusion 610

In this paper, we introduce Streaming-VR, a novel 611

approach aimed at improving the accuracy and effi- 612

ciency in language model text generation. Unlike 613

traditional methods solely relying on the final re- 614

sponse, Streaming-VR performs real-time verifica- 615

tion and correction of erroneous token sequences 616

as they are being produced, with external mod- 617

els simultaneously with answer generation. This 618

prevents error propagation in the early stage and 619

reduces the errors at the end by minimizing the 620

likelihood of compounding inaccuracies, then sig- 621

nificantly enhances the efficiency of answer refine- 622

ment. Extensive experiments for two different QA 623

datasets have clearly demonstrated that Streaming- 624

VR consistently achieves remarkably higher effi- 625

ciency without compromising response quality. 626
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Limitations627

Despite the improvements introduced by our628

method, Streaming-VR, which enhances both the629

efficiency and effectiveness of verification and re-630

finement in language model text generation by in-631

tervening during intermediate answer generation,632

there remain promising opportunities for enhancing633

the answer verifier. Specifically, the primary chal-634

lenge is the lack of dedicated datasets for answer635

verification, particularly those suited for real-time636

scenarios. To address this, we automatically aug-637

mented data by paraphrasing sentences or introduc-638

ing errors by an LLM. However, while effective,639

this approach carries the risk of mislabeling. There-640

fore, future work could focus on developing new641

datasets that are carefully annotated with a diverse642

range of answers ensuring more accurate verifi-643

cation and reducing the risk of incorrect labeling.644

Additionally, we can further extend these datasets645

to include fine-grained labels for multiple classes,646

rather than just binary ones, to accommodate dif-647

ferent types of errors and apply adaptive strategies648

for subsequent refinement after verification.649

Ethics Statement650

In our research, we use publicly available question-651

answering (QA) datasets to evaluate the effective-652

ness and applicability of Streaming-VR in real-653

world scenarios. The language model we employ654

may inadvertently reflect biases embedded in its655

training data, resulting in outputs that perpetuate656

racism, sexism, or other forms of discrimination.657

Such biases can manifest even in contexts that ap-658

pear neutral, highlighting the need for proactive659

bias detection and mitigation strategies. Moreover,660

harmful inputs might lead to the retrieval of offen-661

sive information or the generation of inappropriate662

responses by the language models. This presents a663

significant risk that we must recognize and address.664

To mitigate these issues, it is crucial to develop665

methods for detecting and managing offensive, in-666

appropriate, or biased content in both user inputs667

and the documents retrieved within our retrieval-668

augmented framework. We view this as a critical669

area for future research because minimizing the670

risk of biased or harmful outputs is essential for the671

safe and ethical deployment of QA systems.672
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A Appendix979

A.1 Implementation Details980

Models In our experiments, we employ two open-981

source LLMs Mistral 7B (Jiang et al., 2023a) and982

LLaMA-3.1 8B (Dubey et al., 2024) via Hugging983

Face (Wolf et al., 2020) API and GPT-4o (Achiam984

et al., 2023) which is accessible via OpenAI API,985

representing relatively small, medium, and large986

models, respectively. Here, these models are never987

fine-tuned or further trained except for their roles in988

verification. For the overall Streaming-VR pipeline,989

LLaMA-3.1 8B functions as the primary back-990

bone language model to generate answers for given991

queries, while all three models are employed for992

verification or refinement for experiments.993

Streaming Verifier We fine-tuned Mistral 7B994

and LLaMA-3.1 8B as verifiers using augmented995

training data derived from the ASQA and Quote-996

Sum datasets. Each verifier was trained for five997

epochs on its respective training set, with a learn-998

ing rate of 1e-5 and the AdamW (Loshchilov and999

Hutter, 2019) optimizer. To generate augmented1000

data for false-labeled sentences, we embedded fake1001

information into true sentences using GPT-4o, ad-1002

justing the temperature to 0.3, 0.5, and 0.7 to create1003

diverse forms of inaccuracies. Rather than synthe-1004

sizing entirely new sentences with large language1005

models, which risk introducing unrelated hallu-1006

cinations, we adopted this targeted augmentation1007

strategy as a more reliable approach. This method1008

proved highly effective in training verifiers to iden-1009

tify hallucinations, delivering exceptional results1010

that highlight the importance of Streaming-VR in1011

improving efficiency while preserving answer qual-1012

ity. The specific prompt used to generate incor-1013

rect information for each sentence (Sentence) in1014

the provided answers (Answer) to given question1015

(Question) is detailed below.1016

1017

You will be given a question (Q) with
its corresponding answer paragraph (A)
that may be incomplete and a sentence
(S) following the paragraph.\n \n Q:
{Question}\n A: {Answer}\n S: {Sentence}\n
You should modify the given sentence S, into
a plausible lie by inserting some wrong
information. Just return only the modified
‘sentence (S)’ itself.

1018

The final test results of the finetuned verifiers1019

used in the experiments, including a Random base-1020

line that selects verification results arbitrarily, are1021

presented in Table 4. For the entire pipeline, we 1022

establish a constraint that prohibits the use of any 1023

other verifier models larger than the answer genera- 1024

tion model. This decision is based on the principle 1025

that the verifier should not exceed the capabilities 1026

of the response model, as the verifier serves merely 1027

as a supplementary tool for identifying mistakes. 1028

This reflects our considerations regarding computa- 1029

tional costs and efficiency.

Table 4: The results of Streaming Verifier finetuned on train
set for each dataset. We report the test accuracy of verifiers
along with random classifier.

Method ASQA QuoteSum

Random 49.6 50.3
Mistral 7B 86.8 81.7
LLaMA-3.1 8B 86.7 93.0

1030

A.2 Additional Experimental Results 1031

Table 5: Result of baselines on ASQA

ASQA
Closed-Book Open-Book w/ 5 Psgs

Method R-L Dis-F1 DR R-L Dis-F1 DR

Self-RAG 7B 22.5 13.0 17.1 32.6 27.5 29.9
Self-RAG 13B 21.0 15.1 17.9 34.1 29.7 31.8

Mistral 7B 33.6 20.7 26.4 36.4 31.2 33.7
+ Streaming-VR 35.2 29.6 32.3 36.9 33.7 35.3

Additional Baselines In Table 5, we present ad- 1032

ditional results for other baselines on ASQA, Self- 1033

RAG (Asai et al., 2024), one of the most represen- 1034

tative methods with their trained models publicly 1035

available. Self-RAG performs on-demand retrieval 1036

of external information via a specialized retrieval 1037

token, followed by a critique of the generated out- 1038

put to refine it. When we compare the baseline 1039

results with the similar model size, Mistral 7B 1040

demonstrates significantly superior performance 1041

to Self-RAG even without the help of refinement. 1042
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