
Zero-Shot Embedding Drift Detection: A Lightweight
Defense Against Prompt Injections in LLMs

Anonymous Author(s)
Affiliation
Address
email

Abstract

Prompt injection attacks have become an increasing vulnerability for Large1

Language Model (LLM) applications, where adversarial prompts exploit indirect2

input channels such as emails or user-generated content to circumvent alignment3

safeguards and induce harmful or unintended outputs. Despite advances in4

alignment, even state-of-the-art LLMs remain broadly vulnerable to sophisticated5

adversarial prompts, underscoring the urgent need for robust, productive, and6

generalizable detection mechanisms beyond inefficient, model-specific patches.7

In this work, we propose Zero-Shot Embedding Drift Detection (ZEDD), a8

lightweight, low-engineering-overhead framework that identifies both direct and9

indirect prompt injection attempts by quantifying semantic shifts in embedding10

space between benign and suspect inputs. ZEDD operates without requiring access11

to model internals, prior knowledge of attack types, or task-specific retraining,12

enabling efficient zero-shot deployment across diverse LLM architectures. Our13

method leverages aligned adversarial-clean prompt pairs and measures embedding14

drift via cosine similarity, abstracting away surface-level perturbations to capture15

subtle adversarial manipulations inherent to real-world injection attacks. To ensure16

robust evaluation, we assemble and re-annotate the comprehensive LLMail-Inject17

dataset spanning five injection categories derived from publicly available18

sources. Extensive experiments demonstrate that embedding drift is a robust19

and transferable signal, outperforming traditional regex-based and supervised20

methods in both detection accuracy and operational efficiency. With greater than21

93% accuracy in classifying prompt injections across model architectures like22

Llama 3, Qwen 2, and Mistral with a false positive rate of <3%, our approach23

offers a lightweight, scalable defense layer that integrates into existing LLM24

pipelines, addressing a critical gap in securing LLM-powered systems to withstand25

progressively adaptive adversarial threats. All code utilized in this project26

is disclosed at https://anonymous.4open.science/r/ZEDD-719C/Zero_27

Shot_Embedding_Drift_Detection_A_Lightweight_Defense_Against_28

Prompt_Injection_in_LLMS.ipynb29

1 Introduction and Related Works30

Large Language Models (LLMs) have rapidly become central to a wide range of applications,31

from conversational AI and content generation to software development and research assistance [1].32

However, the growing reliance on these systems has brought to light significant security concerns,33

particularly the threat of prompt injection attacks [2]. These attacks involve creating inputs that34

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

https://anonymous.4open.science/r/ZEDD-719C/Zero_Shot_Embedding_Drift_Detection_A_Lightweight_Defense_Against_Prompt_Injection_in_LLMS.ipynb
https://anonymous.4open.science/r/ZEDD-719C/Zero_Shot_Embedding_Drift_Detection_A_Lightweight_Defense_Against_Prompt_Injection_in_LLMS.ipynb
https://anonymous.4open.science/r/ZEDD-719C/Zero_Shot_Embedding_Drift_Detection_A_Lightweight_Defense_Against_Prompt_Injection_in_LLMS.ipynb
https://anonymous.4open.science/r/ZEDD-719C/Zero_Shot_Embedding_Drift_Detection_A_Lightweight_Defense_Against_Prompt_Injection_in_LLMS.ipynb
https://anonymous.4open.science/r/ZEDD-719C/Zero_Shot_Embedding_Drift_Detection_A_Lightweight_Defense_Against_Prompt_Injection_in_LLMS.ipynb

manipulate an LLM into bypassing its alignment safeguards, leading to the generation of harmful,35

misleading, or policy-violating outputs [3].36

While significant progress has been made in aligning LLMs to avoid overtly dangerous behaviors37

through reinforcement learning from human feedback (RLHF) and other fine-tuning techniques,38

these models remain vulnerable to adversarial prompting [4, 5]. Recent research has shown that39

both manual and automated prompt-based attacks can consistently induce even the most advanced40

commercial models to produce objectionable content, including instructions for illegal activities,41

disinformation, and hate speech [6]. In particular, adversarial prompts generated through gradient-42

based optimization methods have shown high success rates in evading existing safety measures, often43

transferring between different models and architectures, as shown by [7, 8].44

However, despite growing awareness of prompt injection risks, most existing defenses remain limited45

in their effectiveness or practicality [9, 10, 11]. Embedding drift has been explored, but these46

approaches utilize optimizations via methods such as Logistic Regression, XGBoost, and Random47

Forests rather than fine-tuning the LLMs embedding space to produce optimized classifications [12].48

Some different approaches have been explored, but many of these approaches are not lightweight49

[2, 13], introducing non-trivial computational and latency overhead that hinders scalable deployment50

in latency sensitive applications, as discussed by [14].51

2 Our Contributions52

Current approaches to detecting both direct and indirect prompt injections (IPI) rely on additional large53

models and rule-based filters to classify injections at a high level, which create heavy computational54

and integration overhead [15, 16, 17].55

In this work, we introduce a simple yet effective defense mechanism: Zero-Shot Embedding Drift56

Detection (ZEDD). Our key insight is that adversarial prompts subtly shift the semantic representation57

of inputs in the embedding space, even when the surface text appears clean, allowing for a quicker58

and more lightweight analysis of prompts while maintaining accuracy.59

By measuring the drift, or the change in vector embeddings between clean prompts and candidate60

prompts, we can detect injection attempts without any training, labeled data, or model fine-tuning.61

Our method is efficient, model-agnostic, and compatible with both open-source embedding models62

and commercial APIs. These characteristics eliminate the need for model retraining, internal model63

access, or prior knowledge of specific attack patterns.64

Our contributions are as follows:65

1. A zero-shot, prompt injection detection method based on embedding drift, requiring no66

retraining, model access, or prior knowledge of attack types.67

2. A flagging method utilizing Gaussian Mixture Modeling (GMM) and Kernel Density68

Estimation (KDE) to analyze the distribution of embeddings to adequately flag injected69

prompts while minimizing false positives.70

3. A comprehensive empirical evaluation showing that embedding drift serves as a signal for71

prompt injection across diverse LLM architectures, outperforming many traditional methods72

in speed while maintaining high accuracy.73

Ultimately, this work aims to enhance prompt injection defenses by introducing a lightweight,74

training-free detection layer that efficiently integrates into existing LLM pipelines with minimal75

engineering overhead.76

3 Threat Model77

Attackers’ Goals: The attacker seeks to inject adversarial instructions into email content processed by78

an LLM-integrated email assistant. The objectives map to common semantic manipulation patterns:79

2

1. Jailbreak: Bypass safety mechanisms via role-play, hypothetical scenarios, or implicit80

persona adoption.81

2. System leak: Extract system prompts, configuration details, or internal model parameters82

through seemingly innocent email queries83

3. Task override: Redirect the assistant from its intended task to perform unauthorized actions.84

4. Encoding Manipulation: Use special characters, formatting tricks, or obfuscated language85

to evade detection while preserving malicious intent.86

5. Prompt confusion: Introduce convoluted, multi-step instructions designed to mislead the87

model’s instruction-following process.88

Because LLMs often operate on top of semi-structured input such as user messages or system89

templates, they are vulnerable to prompt injection, where adversarial content is placed within inputs90

in a way that manipulates the behavior of the LLM [18].91

Attackers’ Knowledge: We assume that the attacker has access to public or inferable information92

about the target LLM-integrated application. This includes knowledge of how email content is93

formatted and incorporated into prompts, how user-facing summaries or responses are generated,94

and the general behavior of the underlying LLM (via documentation, reverse engineering, or trial95

interactions) as a whole. Additionally, attackers have access to public prompt injection techniques96

and methodologies, including those potentially documented in data sets such as LLMail-Inject. In97

line with the constructions of prompt injection attacks, we assume no access to private model weights98

or the internal application architecture, but only to the same interfaces available to a standard external99

user.100

Attackers’ Capabilities: The attacker’s capabilities are limited to the email medium, specifically the101

ability to craft and send malicious email content that will be processed by the LLM-integrated assistant.102

They can manipulate email structure, metadata, and content to embed adversarial instructions, and103

perform iterative refinement on attack strategies based on observable system responses. This reflects104

indirect prompt injection; the attacker relies on the host application (e.g., the email assistant) [19],105

to automatically retrieve and concatenate email content into the model’s input. Despite having no106

control over the model’s infrastructure, this level of access is sufficient to mount effective attacks, as107

many real-world systems rely on content (such as emails) that are not trusted to power LLM-based108

automation workflows. LLMail-Inject captures and tests this threat model through examples designed109

by the public to evade system-level defenses.110

4 LLMail-Inject Dataset Construction111

4.1 Prompt Pair Generation112

Figure 1: ZEDD Data Processing Pipeline

We use the Microsoft LLMail-Inject Dataset [20], which contains adversarial emails targeting LLM-113

integrated assistants via indirect prompt injection. To support drift analysis later in our pipeline, we114

3

generate a dataset of aligned adversarial-clean prompt pairs, applying the following preprocessing115

pipeline:116

Deduplication and Language Filtering. We deduplicate the data and filter out prompts in any117

language other than English with FastText’s lid.176.ftz language identification model [21, 22]. We118

only keep the unique English prompts that contain the term “system” (capturing system prompt119

leakage attempts).120

4.1.1 Injection Classification121

For stratified evaluation, we use GPT-3.5-turbo-0125 to label each prompt as one of "jailbreak",122

"system leak", "task override", "encoding manipulation", and "prompt confusion."123

By creating category classifications, we make the ZEDD technology adaptable to different scenarios124

depending on the type of injection.125

4.1.2 Clean Prompt Generation126

Each filtered injected prompt is paired with a clean variant using a constrained LLM-based rewrite.127

We employ a custom writing function that utilizes the OpenAI Batch API to create calls to the128

GPT-3.5-turbo-0125 model, similar to section 4.1.1, with a system-level safety prompt aimed at129

preserving the original task semantics while eliminating malicious or override behavior. This results130

in aligned injected and clean prompt pairs, suitable for drift analysis.131

4.1.3 Dataset Reduction and Fully Clean Prompt Pair Generation132

We subsample around 86,000 injected–clean pairs and generate an additional 86,000 clean–clean133

pairs using the OpenAI Batch API to provide a baseline for embedding calculations. The unused134

portion of the dataset is reserved for evaluation. Clean–clean pairs are labeled with the category135

“clean” to distinguish them from injected–clean pairs.136

For training the ZEDD embedding model, we assign similar to clean–clean pairs and not similar to137

injected–clean pairs. These labels serve as ground-truth labels for semantic similarity detection.138

5 ZEDD Pipeline139

We propose a modular, zero-shot pipeline for detecting prompt injection attacks by quantifying140

semantic drift between benign and adversarial prompt variants. The design prioritizes productive141

computation while maintaining detection accuracy across different embedding models and transformer142

architectures.143

Figure 2: Overview of the ZEDD pipeline

4

As illustrated by the ZEDD Pipeline in figure 2, the method comprises three core stages:144

1. Embedding extraction using a fine-tuned encoder145

2. Semantic drift computation via cosine similarity146

3. Flagging suspicious prompts via GMMs and KDEs147

By analyzing changes in embedding space rather than surface form, ZEDD captures subtle ma-148

nipulations that bypass lexical filters. This abstraction enables model-agnostic detection, drawing149

inspiration from inference-time robustness approaches [23] without the computational overhead of150

task-specific fine-tuning.151

5.1 Embedding Extraction152

For each prompt in our matched clean/injected pairs (described in section 4.1), we extract a vector153

representation using fine tuned embedding representations from Sentence BERT All MPNET Base154

V2, Llama 3 8B Instruct, Mistral 7B Instruct, and Qwen 2 7B Instruct. Further information on155

URLs and Licensing can be found in Appendix A.156

During fine-tuning, the models utilize the embedding representations of each clean-injected and157

clean-clean prompt pair to better classify and identify the differences between injected and clean158

prompts in the embedding space, allowing for ZEDD to perform significantly better.159

5.2 Drift Measurement and Detection160

To quantify how adversarial prompts alter a model’s internal understanding, we measure the semantic161

drift between each injected prompt and its clean counterpart utilizing Cosine Similarity. Using vector162

embeddings extracted from a language model’s encoder, we compute cosine distance as a proxy for163

semantic change. A larger distance implies a greater shift in meaning, potentially indicating injection.164

This approach is significantly more lightweight in comparison to other approaches mentioned in165

Section 1.166

We define this embedding drift score as:167

Drift(x, x′) = 1− f(x) · f(x′)

||f(x)|| · ||f(x′)||
(1)

This formulation captures how much the injected prompt deviates from its clean counterpart, but is168

significantly more lightweight in comparison with previous approaches mentioned in Section 1.169

In order to properly analyze our dataset of prompts, we separate our dataset into a training and testing170

dataset with around 70% being the training dataset containing both fully clean (clean - clean) prompt171

pairs and partially clean (injected-clean) prompt pairs, keeping accurate category distributions to the172

original dataset for the injected-clean prompt pairs. We then run a Binary Classification Evaluation173

where the models we test get fine-tuned based on the category of the prompt pair, where the score is 1174

if the category is clean and 0 otherwise, to properly establish a baseline where the model can learn175

the relationships of the prompts to optimize the way they are embedded. We used approximately176

10% of the training dataset (which as we recall was 70% of the total dataset) to fine tune the models177

tested in an effort to reduce fine-tuning time and to prevent overfitting of the models.178

5.3 Drift Detection Framework179

To accurately detect adversarial prompt injections without labeled ground truth, we develop an180

ensemble flagging approach to classify suspected injected prompt pairs utilizing the drift scores of181

embeddings from each of the models.182

5.3.1 Distributional Modeling and Threshold Calibration183

Utilizing a hierarchical approach, our flagging algorithm first uses Gaussian Mixture Modeling184

(GMM) and has Kernel Density Estimation (KDE) as a fallback mechanism.185

5

Gaussian Mixture Modeling (GMM): The system fits a two-component GMM on the drift-score186

distribution, using mean separation to separate clean and injected drift score populations, with the187

lower mean score corresponding to the clean-clean prompt pairs as they have lower semantic drift and188

the higher mean score corresponding to the injected-clean prompt pairs with higher semantic drift.189

The optimal decision threshold is computed as:190

fclean(x) · wclean = finjected(x) · winjected (2)

Where fi(x) represents the Gaussian density function for component i and wi denotes the mixture191

weight.192

KDE Fallback: When GMM fails to converge or produces unstable results, the flagging algorithm193

falls back to a KDE-based approach, identifying peaks and valleys in the distribution to distinguish194

between the injected-clean and clean-clean prompt pairs.195

5.3.2 Constrained Optimization for Detection Performance196

The threshold optimization section aims to optimize both the false postive rate and the overall number197

of items flagged. These values are preset to values of 3% and 50% respectively as we found those to198

yield the most optimal performance, but have the possibility to be modified as needed.199

The final threshold used to flag values is determined through iterative binary search within the200

feasible range, bounded by the statistical tail of the estimated clean distribution at the desired false201

positive rate in order to ensure that our threshold calculations can be applicable across embedding202

distributions.203

6 Experimentation and Results204

To ensure reproducibility and transparency we specifically fine-tuned each model utilizing the205

NVIDIA B200 GPU from Runpod, with hyperparameters available in the GitHub mentioned in the206

abstract. The fine-tuning times were approximately 15-18 minutes for each of the four models tested.207

We executed the drift detector on a held-out test slice of 51,603 aligned pairs: 25,801 clean–clean208

and 25,802 injected–clean spanning five attack categories. Pairs were encoded in batches of 64 and209

scored with cosine drift (1–cosine similarity). The decision threshold was selected automatically210

via a 2-component GMM on the drift scores with a clean false-positive cap of 3% and a soft target of211

≈ 50% overall flagged rate.212

Table 1: Results by Category Distribution: Side-by-side comparison of ZEDD’s performance on
different model encoding types. In the the table headings, the percentage refers to the percent of
entries flagged in the category. "C" refers to Clean, "EM" refers to encoding manipulation, "J"
refers to Jailbreak, "PC" refers to Prompt Confusion, "SL" refers to System Leak, and "TO" refers
to Task Override.

Model % C % EM % J % PC % SL % TO
Sentence BERT (All-MPNET-BASE-V2) 1.7% 95.9% 86.2% 90.5% 91.6% 86.7%
Llama 3 8B Instruct 5.5% 98.1% 92.2% 94.4% 96.7% 90.7%
Mistral 7B Instruct 2.3% 98.1% 92.2% 93.3% 96.9% 90.8%
Qwen 2 7B Instruct 2.2% 98.2% 90.8% 94.2% 96.8% 90.3%

Observations: High precision with a very low clean FPR (2.93% avg across all models tested)213

indicates the cap-controlled operating point is conservative on false alarms. Across models, slight214

weaknesses in classification were noticed within the Jailbreak, Encoding Manipulation, and the215

System Leak Categories. This dip in classification was most drastic within the Sentence BERT216

Model. However, from an overall standpoint, model performance in most categories had lower and217

upper bounds being primarily above 90% overall as shown in Table 3, showcasing effectiveness with218

the GMM and KDE flagging algorithm.219

6

Table 2: Side-by-side metrics at each model’s unsupervised operating point (same cap and selection
logic).

Encoder Acc. Prec. Recall (adv) F1 Clean FPR
SBERT All-MPNET-Base-V2 90.75% 99.65% 81.78% 89.84% 1.7%
Llama-3 8B Instruct 95.32% 95.85% 94.75% 95.30% 5.5%
Mistral 7B Instruct 95.55% 96.58% 94.45% 95.50% 2.3%
Qwen2-7B Instruct 95.46% 96.27% 94.52% 95.38% 2.2%

Table 3: 95% Confidence Intervals for each model and metric. Values are reported as mean ± margin
of error.

Model Metric (%) 95% CI

Sentence BERT (All-MPNET-BASE-V2)

C 1.70% ± 0.12%
EM 95.90% ± 0.16%
J 86.20% ± 0.26%
PC 90.50% ± 0.24%
SL 91.60% ± 0.21%
TO 86.70% ± 0.26%

Llama 3 8B Instruct

C 5.50% ± 0.18%
EM 98.10% ± 0.16%
J 92.20% ± 0.19%
PC 94.40% ± 0.18%
SL 96.70% ± 0.15%
TO 90.70% ± 0.23%

Mistral 7B Instruct

C 2.30% ± 0.14%
EM 98.10% ± 0.16%
J 92.20% ± 0.19%
PC 93.30% ± 0.19%
SL 96.90% ± 0.14%
TO 90.80% ± 0.23%

Qwen 2 7B Instruct

C 2.20% ± 0.13%
EM 98.20% ± 0.13%
J 91.70% ± 0.21%
PC 94.10% ± 0.20%
SL 96.90% ± 0.14%
TO 90.40% ± 0.23%

In comparison to other projects on Prompt Injection Classification, ZEDD outperforms existing220

models in many key areas such as precision and F1 score as shown in Figure 3. In addition these221

results (around 51,000 testing prompt pairs) were obtained after fine tuning within less than 8 minutes222

on the NVIDIA B200 GPU on Runpod, showing a strong classification speed in combination with223

high accuracy.224

7

7 Ablation Studies225

In order to validate our results, we conducted multiple different trials with our flagging algorithm,226

specifically the cap of our false positive rate, to analyze the performance of our model with different227

hyper parameters.228

Table 4: ZEDD Results for each model with clean false positive cap at 5%. Values shown as %
flagged.

Model C EM J PC SL TO
Sentence BERT (All-MPNET-BASE-V2) 2.2% 95.9% 86.2% 90.5% 91.6% 86.8%
Llama 3 8B Instruct 5.4% 98.1% 92.2% 94.2% 96.8% 91.0%
Mistral 7B Instruct 3.4% 98.2% 92.2% 93.3% 96.9% 90.9%
Qwen 2 7B Instruct 5.4% 98.2% 91.7% 94.1% 96.9% 90.4%

Table 5: ZEDD Results for each model with clean false positive cap at 10%. Values shown as %
flagged.

Model C EM J PC SL TO
Sentence BERT (All-MPNET-BASE-V2) 8.1% 96.0% 86.2% 90.6% 91.6% 86.8%
Llama 3 8B Instruct 5.4% 98.1% 92.2% 94.2% 96.8% 91.0%
Mistral 7B Instruct 5.4% 98.2% 92.2% 93.3% 96.9% 90.9%
Qwen 2 7B Instruct 5.4% 98.2% 91.7% 94.1% 96.9% 90.4%

Observations: Evident from our ablation studies, the training of the Gaussian Mixture Model (GMM)229

is more effective at lower thresholds in comparison with higher thresholds as it significantly reduced230

the false positives reported by the GMM. Between the 5% threshold and the 10% threshold, the231

GMM performed as expected, increasing the overall flag rate and thus flagging more prompt pairs232

that are on the lower end of the tail in the distribution of embeddings, evident by the larger False233

Positive Rate (C%) in the 10% false positive cap.234

8 Limitations and Future Works235

Though ZEDD does pose good results, there are possible improvements to be made. The nature of236

ZEDD itself does have a reliance on the created embedding to properly measure drift and characterize237

injected prompts, which could pose limitations as smaller and larger LLMs utilize different semantic238

embedding types. The drift quality is directly tied to the embedding model that is chosen which could239

pose limitations in certain cases where the embedding model is not able to effectively capture the240

semantic meaning of prompts in its embedding space. In terms of scalability, there are methods in241

which the ZEDD model may run more efficiently with at a higher-scale, considering both more data242

and larger models to fine-tune.243

In future works, we plan to address issues with size of the model by utilizing adaptive approaches to244

effectively conserve resources and compute better drift overall by adjusting for possible changes due245

to the size of the model in the semantic embedding space. In addition, it may be valuable to explore a246

Few-Shot method to improve ZEDD’s accuracy, however it may compromise the lightweight, fast247

nature which ZEDD excels in, especially in larger datasets.248

LLMail-Inject was able to give us strong results, however one tradeoff was that the nature of the249

datasets were in email format. In future works, we plan to utilize multiple datasets with varying250

formats to ensure ZEDD stays effective on data not necessarily in email form.251

Because of the lightweight nature of ZEDD, there is a tradeoff with the fact that more injected252

prompts may bypass ZEDD potentially creating issues with injected prompts. There may also be253

8

cases where prompts are purposefully manipulated to bypass ZEDD on the embedding level. Because254

of this, we advocate ZEDD as a strong first defense against prompt injections due to its lightweight255

nature, but in future works, we plan to explore further how we can make ZEDD even tougher to256

bypass and increase accuracy.257

References258

[1] Sergio Morales, Robert Clarisó, and Jordi Cabot. A framework to model ml engineering259

processes, 2024. URL https://arxiv.org/abs/2404.18531.260

[2] Yi Liu, Gelei Deng, Yuekang Li, Kailong Wang, Zihao Wang, Xiaofeng Wang, Tianwei Zhang,261

Yepang Liu, Haoyu Wang, Yan Zheng, and Yang Liu. Prompt injection attack against llm-262

integrated applications, 2024. URL https://arxiv.org/abs/2306.05499.263

[3] Miles Q. Li and Benjamin C. M. Fung. Security concerns for large language models: A survey,264

2025. URL https://arxiv.org/abs/2505.18889.265

[4] Adam Dahlgren Lindström, Leila Methnani, Lea Krause, Petter Ericson, Íñigo Martínez de266

Rituerto de Troya, Dimitri Coelho Mollo, and Roel Dobbe. Ai alignment through reinforcement267

learning from human feedback? contradictions and limitations, 2024. URL https://arxiv.268

org/abs/2406.18346.269

[5] Victoria Benjamin, Emily Braca, Israel Carter, Hafsa Kanchwala, Nava Khojasteh, Charly270

Landow, Yi Luo, Caroline Ma, Anna Magarelli, Rachel Mirin, Avery Moyer, Kayla Simpson,271

Amelia Skawinski, and Thomas Heverin. Systematically analyzing prompt injection vulnerabil-272

ities in diverse llm architectures, 2024. URL https://arxiv.org/abs/2410.23308.273

[6] Kai Greshake, Sahar Abdelnabi, Shailesh Mishra, Christoph Endres, Thorsten Holz, and Mario274

Fritz. Not what you’ve signed up for: Compromising real-world llm-integrated applications275

with indirect prompt injection, 2023. URL https://arxiv.org/abs/2302.12173.276

[7] Samuel Jacob Chacko, Sajib Biswas, Chashi Mahiul Islam, Fatema Tabassum Liza, and Xiuwen277

Liu. Adversarial attacks on large language models using regularized relaxation, 2024. URL278

https://arxiv.org/abs/2410.19160.279

[8] Yuqi Jia, Zedian Shao, Yupei Liu, Jinyuan Jia, Dawn Song, and Neil Zhenqiang Gong. A critical280

evaluation of defenses against prompt injection attacks, 2025. URL https://arxiv.org/281

abs/2505.18333.282

[9] Stuart Armstrong and R. Gorman. Using gpt-eliezer against chatgpt jailbreaking. Posted on283

AI Alignment Forum, December 2022. URL https://www.alignmentforum.org/posts/284

pNcFYZnPdXyL2RfgA/using-gpt-eliezer-against-chatgpt-jailbreaking. Ac-285

cessed: 2025-08-11.286

[10] OWASP Foundation. Owasp top 10 for large language model ap-287

plications. Online report, 2023. URL https://owasp.org/288

www-project-top-10-for-large-language-model-applications/assets/PDF/289

OWASP-Top-10-for-LLMs-2023-v1_1.pdf. Accessed: 2025-08-11.290

[11] Yupei Liu, Yuqi Jia, Runpeng Geng, Jinyuan Jia, and Neil Zhenqiang Gong. Formalizing and291

benchmarking prompt injection attacks and defenses, 2024. URL https://arxiv.org/abs/292

2310.12815.293

[12] Adeel Ayub and Aniruddha Majumdar. Embedding-based classifiers detect prompt injections294

and adversarial inputs, 2024. URL https://arxiv.org/pdf/2410.22284.295

[13] Yupei Liu, Yuqi Jia, Runpeng Geng, Jinyuan Jia, and Neil Zhenqiang Gong. Formalizing and296

benchmarking prompt injection attacks and defenses, 2024. URL https://arxiv.org/abs/297

2310.12815.298

9

https://arxiv.org/abs/2404.18531
https://arxiv.org/abs/2306.05499
https://arxiv.org/abs/2505.18889
https://arxiv.org/abs/2406.18346
https://arxiv.org/abs/2406.18346
https://arxiv.org/abs/2406.18346
https://arxiv.org/abs/2410.23308
https://arxiv.org/abs/2302.12173
https://arxiv.org/abs/2410.19160
https://arxiv.org/abs/2505.18333
https://arxiv.org/abs/2505.18333
https://arxiv.org/abs/2505.18333
https://www.alignmentforum.org/posts/pNcFYZnPdXyL2RfgA/using-gpt-eliezer-against-chatgpt-jailbreaking
https://www.alignmentforum.org/posts/pNcFYZnPdXyL2RfgA/using-gpt-eliezer-against-chatgpt-jailbreaking
https://www.alignmentforum.org/posts/pNcFYZnPdXyL2RfgA/using-gpt-eliezer-against-chatgpt-jailbreaking
https://owasp.org/www-project-top-10-for-large-language-model-applications/assets/PDF/OWASP-Top-10-for-LLMs-2023-v1_1.pdf
https://owasp.org/www-project-top-10-for-large-language-model-applications/assets/PDF/OWASP-Top-10-for-LLMs-2023-v1_1.pdf
https://owasp.org/www-project-top-10-for-large-language-model-applications/assets/PDF/OWASP-Top-10-for-LLMs-2023-v1_1.pdf
https://owasp.org/www-project-top-10-for-large-language-model-applications/assets/PDF/OWASP-Top-10-for-LLMs-2023-v1_1.pdf
https://owasp.org/www-project-top-10-for-large-language-model-applications/assets/PDF/OWASP-Top-10-for-LLMs-2023-v1_1.pdf
https://arxiv.org/abs/2310.12815
https://arxiv.org/abs/2310.12815
https://arxiv.org/abs/2310.12815
https://arxiv.org/pdf/2410.22284
https://arxiv.org/abs/2310.12815
https://arxiv.org/abs/2310.12815
https://arxiv.org/abs/2310.12815

[14] Hui Liu, Bo Zhao, Kehuan Zhang, and Peng Liu. Nowhere to hide: A lightweight unsupervised299

detector against adversarial examples, 2022. URL https://arxiv.org/abs/2210.08579.300

[15] Anonymous Ji. Detection method for prompt injection by integrating pre-trained model and301

heuristic feature engineering, 2025. URL https://arxiv.org/abs/2505.18333.302

[16] Deep Ganguli et al. Red teaming language models with language models, 2023. URL https:303

//arxiv.org/abs/2304.04375.304

[17] Rui Zou, Xin Jiang, Linyi Wang, et al. Universal adversarial prompts for language models.305

arXiv preprint arXiv:2307.15043, 2023. URL https://arxiv.org/pdf/2307.15043.306

[18] Diego Gosmar, Deborah A. Dahl, and Dario Gosmar. Prompt injection detection and mitigation307

via ai multi-agent nlp frameworks, 2025. URL https://arxiv.org/abs/2503.11517.308

[19] Jingwei Yi, Yueqi Xie, Bin Zhu, Emre Kiciman, Guangzhong Sun, Xing Xie, and Fangzhao309

Wu. Benchmarking and defending against indirect prompt injection attacks on large language310

models. In Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and311

Data Mining V.1, KDD ’25, page 1809–1820. ACM, July 2025. doi: 10.1145/3690624.3709179.312

URL http://dx.doi.org/10.1145/3690624.3709179.313

[20] Sahar Abdelnabi, Aideen Fay, Ahmed Salem, Egor Zverev, Kai-Chieh Liao, Chi-Huang Liu,314

Chun-Chih Kuo, Jannis Weigend, Danyael Manlangit, Alex Apostolov, Haris Umair, João315

Donato, Masayuki Kawakita, Athar Mahboob, Tran Huu Bach, Tsun-Han Chiang, Myeongjin316

Cho, Hajin Choi, Byeonghyeon Kim, Hyeonjin Lee, Benjamin Pannell, Conor McCauley, Mark317

Russinovich, Andrew Paverd, and Giovanni Cherubin. Llmail-inject: A dataset from a realistic318

adaptive prompt injection challenge, 2025. URL https://arxiv.org/abs/2506.09956.319

[21] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. Bag of tricks for320

efficient text classification, 2016. URL https://arxiv.org/abs/1607.01759.321

[22] Armand Joulin, Edouard Grave, Piotr Bojanowski, Matthijs Douze, Hérve Jégou, and Tomas322

Mikolov. Fasttext.zip: Compressing text classification models, 2016. URL https://arxiv.323

org/abs/1612.03651.324

[23] Md. Ahsan Ayub and Subhabrata Majumdar. Embedding-based classifiers can detect prompt325

injection attacks, 2024. URL https://arxiv.org/abs/2410.22284.326

[24] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-327

networks, 2019. URL https://arxiv.org/abs/1908.10084.328

[25] Aaron Grattafiori and Abhimanyu Dubey et al. The llama 3 herd of models, 2024. URL329

https://arxiv.org/abs/2407.21783.330

[26] Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh331

Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile332

Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut333

Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL334

https://arxiv.org/abs/2310.06825.335

[27] An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,336

Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong337

Tang, Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jianxin Yang, Jin Xu,338

Jingren Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin339

Yang, Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao,340

Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin341

Ge, Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng342

Ren, Xuejing Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu,343

Zeyu Cui, Zhenru Zhang, Zhifang Guo, and Zhihao Fan. Qwen2 technical report, 2024. URL344

https://arxiv.org/abs/2407.10671.345

10

https://arxiv.org/abs/2210.08579
https://arxiv.org/abs/2505.18333
https://arxiv.org/abs/2304.04375
https://arxiv.org/abs/2304.04375
https://arxiv.org/abs/2304.04375
https://arxiv.org/pdf/2307.15043
https://arxiv.org/abs/2503.11517
http://dx.doi.org/10.1145/3690624.3709179
https://arxiv.org/abs/2506.09956
https://arxiv.org/abs/1607.01759
https://arxiv.org/abs/1612.03651
https://arxiv.org/abs/1612.03651
https://arxiv.org/abs/1612.03651
https://arxiv.org/abs/2410.22284
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2407.10671

A Appendix A: Model Licensing and URLs346

Here are the specific URLs and Licensing Information for the models involved in our experiment:347

• Sentence-BERT: an open source transformer based embedding model trained on natural348

language inference tasks [24].349

– License: Apache 2.0 license350

– URL: https://huggingface.co/sentence-transformers/351

all-mpnet-base-v2352

• Llama 3-8B Instruct: an open source Large Language Model (LLM) released by Meta in353

April 2024 [25]354

– License: Llama 3 Community License Agreement355

– URL: https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct356

• Mistral 7B Instruct (v0.2): an open source model released by Microsoft in October 2023357

[26]358

– License: Apache 2.0 License359

– URL: https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2360

• Qwen2-7B Instruct: an open source model released by Alibaba Cloud in July 2025 listed361

under the Apache 2.0 License [27]362

– License: Apache 2.0 License363

– URL: https://huggingface.co/Qwen/Qwen2-7B-Instruct364

B Appendix B: Results Baseline365

Showcases the results of ZEDD in comparison with experiments conducted by other research366

regarding prompt injection classification.

Figure 3: Result comparison from experiments proposed in [12] and illustrates the effectiveness and
strong performance of ZEDD in comparison with models from other experiments.

367

11

https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://huggingface.co/Qwen/Qwen2-7B-Instruct

C Appendix C: Injected-to-Clean Prompt Pairs368

This appendix provides a series of tables that provide a sample injected prompt and its pair from369

each prompt injection category, as mentioned in section 4.1.1. The captions of the figures serve as370

analyses of the cleaning process.371

Figure 4: The jailbreak attack was neutralized by removing the authority establishment markers
(triple exclamation points) that attempted to create a false sense of legitimate administrative hierarchy
and command structure. By stripping away these emphatic formatting elements that were designed
to make the email request appear more authoritative and urgent, the cleaning process eliminated
the attack’s social engineering component that tried to pressure the model into compliance through
artificial authority signals.

12

Figure 5: The system leak injection attack was neutralized by removing fake context boundaries and
session terminators designed to make the AI model believe it had exited user interaction mode, along
with malicious XML commands attempting to trigger unauthorized email notifications. By removing
these deceptive system-level instructions, the cleaning process prevented the attack from exploiting
simulated administrative privileges to bypass security controls.

13

Figure 6: The task override attack was neutralized by removing the deceptive newsletter format that
attempted to disguise malicious email collection instructions as legitimate subscription management
communications. By stripping away the fake unsubscribe mechanism that redirected users to send
confirmation messages to unauthorized addresses, the cleaning process eliminated the attack’s ability
to hijack routine communication tasks for data harvesting purposes.

14

Figure 7: The encoding manipulation attack was neutralized by removing the embedded fake system
instructions that used deceptive markers to simulate legitimate system boundaries, along with the
fabricated XML task structure that attempted to trigger unauthorized email actions to a specific
contact address with confirmation messages. By removing these elements, the cleaning process
stopped the attack from using fake boundaries and authority markers to bypass security controls and
perform unauthorized actions.

15

Figure 8: The prompt confusion attack was neutralized by removing the deliberate text corruption and
hidden commands that tried to disguise malicious instructions within what appeared to be legitimate
communication about "Project Zenith." By stripping away the intentionally scrambled text with
random character errors, fake system tokens, and multiple conflicting command formats, the cleaning
process eliminated the attack’s ability to use semantics to sneak email commands past security filters.

16

Table 6: Dataset Overview

State Number of Entries Average # of Characters per Prompt

Initial Injected Dataset 461, 640 1415.5148
Deduplicated Dataset 179, 920 1748.0917
English-Filtered Dataset 172, 875 1794.9394
Categorized Dataset 172, 673 1794.5603
Dataset w/ Clean Prompts 171, 999 1752.2811

The dataset processing and manipulation that was taken to properly filter the dataset used to fine-tune372

ZEDD is best showcased by the ZEDD Data Processing Pipeline in Figure 1.373

17

NeurIPS Paper Checklist374

1. Claims375

Question: Do the main claims made in the abstract and introduction accurately reflect the376

paper’s contributions and scope?377

Answer: [Yes]378

Justification: The paper’s contributions and scope are accurately reflected by the claims379

made in the abstract, matching the results discussed in Section 6 and the implications of380

these results discussed in Section 2.381

Guidelines:382

• The answer NA means that the abstract and introduction do not include the claims383

made in the paper.384

• The abstract and/or introduction should clearly state the claims made, including the385

contributions made in the paper and important assumptions and limitations. A No or386

NA answer to this question will not be perceived well by the reviewers.387

• The claims made should match theoretical and experimental results, and reflect how388

much the results can be expected to generalize to other settings.389

• It is fine to include aspirational goals as motivation as long as it is clear that these goals390

are not attained by the paper.391

2. Limitations392

Question: Does the paper discuss the limitations of the work performed by the authors?393

Answer: [Yes]394

Justification: The paper describes the limitations of the work in Section 8 and concludes395

that it could benefit from utilizing more adaptive resources and newer metrics.396

Guidelines:397

• The answer NA means that the paper has no limitation while the answer No means that398

the paper has limitations, but those are not discussed in the paper.399

• The authors are encouraged to create a separate "Limitations" section in their paper.400

• The paper should point out any strong assumptions and how robust the results are to401

violations of these assumptions (e.g., independence assumptions, noiseless settings,402

model well-specification, asymptotic approximations only holding locally). The authors403

should reflect on how these assumptions might be violated in practice and what the404

implications would be.405

• The authors should reflect on the scope of the claims made, e.g., if the approach was406

only tested on a few datasets or with a few runs. In general, empirical results often407

depend on implicit assumptions, which should be articulated.408

• The authors should reflect on the factors that influence the performance of the approach.409

For example, a facial recognition algorithm may perform poorly when image resolution410

is low or images are taken in low lighting. Or a speech-to-text system might not be411

used reliably to provide closed captions for online lectures because it fails to handle412

technical jargon.413

• The authors should discuss the computational efficiency of the proposed algorithms414

and how they scale with dataset size.415

• If applicable, the authors should discuss possible limitations of their approach to416

address problems of privacy and fairness.417

• While the authors might fear that complete honesty about limitations might be used by418

reviewers as grounds for rejection, a worse outcome might be that reviewers discover419

limitations that aren’t acknowledged in the paper. The authors should use their best420

18

judgment and recognize that individual actions in favor of transparency play an impor-421

tant role in developing norms that preserve the integrity of the community. Reviewers422

will be specifically instructed to not penalize honesty concerning limitations.423

3. Theory assumptions and proofs424

Question: For each theoretical result, does the paper provide the full set of assumptions and425

a complete (and correct) proof?426

Answer: [NA]427

Justification:428

Guidelines:429

• The answer NA means that the paper does not include theoretical results.430

• All the theorems, formulas, and proofs in the paper should be numbered and cross-431

referenced.432

• All assumptions should be clearly stated or referenced in the statement of any theorems.433

• The proofs can either appear in the main paper or the supplemental material, but if434

they appear in the supplemental material, the authors are encouraged to provide a short435

proof sketch to provide intuition.436

• Inversely, any informal proof provided in the core of the paper should be complemented437

by formal proofs provided in appendix or supplemental material.438

• Theorems and Lemmas that the proof relies upon should be properly referenced.439

4. Experimental result reproducibility440

Question: Does the paper fully disclose all the information needed to reproduce the main ex-441

perimental results of the paper to the extent that it affects the main claims and/or conclusions442

of the paper (regardless of whether the code and data are provided or not)?443

Answer: [Yes]444

Justification: This paper discloses all code and experiments via an anonymous Github445

Repository and also the methodologies/pipeline taken to create the ZEDD architecture,446

making each model experiment reproducible.447

Guidelines:448

• The answer NA means that the paper does not include experiments.449

• If the paper includes experiments, a No answer to this question will not be perceived450

well by the reviewers: Making the paper reproducible is important, regardless of451

whether the code and data are provided or not.452

• If the contribution is a dataset and/or model, the authors should describe the steps taken453

to make their results reproducible or verifiable.454

• Depending on the contribution, reproducibility can be accomplished in various ways.455

For example, if the contribution is a novel architecture, describing the architecture fully456

might suffice, or if the contribution is a specific model and empirical evaluation, it may457

be necessary to either make it possible for others to replicate the model with the same458

dataset, or provide access to the model. In general. releasing code and data is often459

one good way to accomplish this, but reproducibility can also be provided via detailed460

instructions for how to replicate the results, access to a hosted model (e.g., in the case461

of a large language model), releasing of a model checkpoint, or other means that are462

appropriate to the research performed.463

• While NeurIPS does not require releasing code, the conference does require all submis-464

sions to provide some reasonable avenue for reproducibility, which may depend on the465

nature of the contribution. For example466

(a) If the contribution is primarily a new algorithm, the paper should make it clear how467

to reproduce that algorithm.468

19

(b) If the contribution is primarily a new model architecture, the paper should describe469

the architecture clearly and fully.470

(c) If the contribution is a new model (e.g., a large language model), then there should471

either be a way to access this model for reproducing the results or a way to reproduce472

the model (e.g., with an open-source dataset or instructions for how to construct473

the dataset).474

(d) We recognize that reproducibility may be tricky in some cases, in which case475

authors are welcome to describe the particular way they provide for reproducibility.476

In the case of closed-source models, it may be that access to the model is limited in477

some way (e.g., to registered users), but it should be possible for other researchers478

to have some path to reproducing or verifying the results.479

5. Open access to data and code480

Question: Does the paper provide open access to the data and code, with sufficient instruc-481

tions to faithfully reproduce the main experimental results, as described in supplemental482

material?483

Answer: [Yes]484

Justification: The paper provides open access to the data and code through an anonymous485

GitHub included in the submission and referenced in the abstract.486

Guidelines:487

• The answer NA means that paper does not include experiments requiring code.488

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/489

public/guides/CodeSubmissionPolicy) for more details.490

• While we encourage the release of code and data, we understand that this might not be491

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not492

including code, unless this is central to the contribution (e.g., for a new open-source493

benchmark).494

• The instructions should contain the exact command and environment needed to run to495

reproduce the results. See the NeurIPS code and data submission guidelines (https:496

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.497

• The authors should provide instructions on data access and preparation, including how498

to access the raw data, preprocessed data, intermediate data, and generated data, etc.499

• The authors should provide scripts to reproduce all experimental results for the new500

proposed method and baselines. If only a subset of experiments are reproducible, they501

should state which ones are omitted from the script and why.502

• At submission time, to preserve anonymity, the authors should release anonymized503

versions (if applicable).504

• Providing as much information as possible in supplemental material (appended to the505

paper) is recommended, but including URLs to data and code is permitted.506

6. Experimental setting/details507

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-508

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the509

results?510

Answer: [Yes]511

Justification: Dataset splits and the percentage between training and testing were disclosed512

and specified within Section 4 and Section 5. Specific hyperparameters to train each model513

are well showcased in our GitHub Repository linked in the abstract.514

Guidelines:515

• The answer NA means that the paper does not include experiments.516

20

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The experimental setting should be presented in the core of the paper to a level of detail517

that is necessary to appreciate the results and make sense of them.518

• The full details can be provided either with the code, in appendix, or as supplemental519

material.520

7. Experiment statistical significance521

Question: Does the paper report error bars suitably and correctly defined or other appropriate522

information about the statistical significance of the experiments?523

Answer: [Yes]524

Justification: Our paper showcases the confidence intervals at 90%, 95%, and 99% for our525

results in Section 6, with the specific formula and z∗ used for each Confidence Level.526

Guidelines:527

• The answer NA means that the paper does not include experiments.528

• The authors should answer "Yes" if the results are accompanied by error bars, confi-529

dence intervals, or statistical significance tests, at least for the experiments that support530

the main claims of the paper.531

• The factors of variability that the error bars are capturing should be clearly stated (for532

example, train/test split, initialization, random drawing of some parameter, or overall533

run with given experimental conditions).534

• The method for calculating the error bars should be explained (closed form formula,535

call to a library function, bootstrap, etc.)536

• The assumptions made should be given (e.g., Normally distributed errors).537

• It should be clear whether the error bar is the standard deviation or the standard error538

of the mean.539

• It is OK to report 1-sigma error bars, but one should state it. The authors should540

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis541

of Normality of errors is not verified.542

• For asymmetric distributions, the authors should be careful not to show in tables or543

figures symmetric error bars that would yield results that are out of range (e.g. negative544

error rates).545

• If error bars are reported in tables or plots, The authors should explain in the text how546

they were calculated and reference the corresponding figures or tables in the text.547

8. Experiments compute resources548

Question: For each experiment, does the paper provide sufficient information on the com-549

puter resources (type of compute workers, memory, time of execution) needed to reproduce550

the experiments?551

Answer: [Yes]552

Justification: The paper provides comprehensive compute resource information in Section553

6, including NVIDIA B200 GPU specifications on RunPod instances, memory require-554

ments, and execution times for each model’s fine-tuning run. Complete hyperparameter555

configurations are available in the GitHub repository referenced in the abstract.556

Guidelines:557

• The answer NA means that the paper does not include experiments.558

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,559

or cloud provider, including relevant memory and storage.560

• The paper should provide the amount of compute required for each of the individual561

experimental runs as well as estimate the total compute.562

• The paper should disclose whether the full research project required more compute563

than the experiments reported in the paper (e.g., preliminary or failed experiments that564

didn’t make it into the paper).565

21

9. Code of ethics566

Question: Does the research conducted in the paper conform, in every respect, with the567

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?568

Answer: [Yes]569

Justification: There are no harms introduced through our research. As mentioned in 4.1, all570

datasets used were open-source under the MIT License and were appropriately cited. ZEDD571

is compliant with legal codes and measures have been taken to minimize negative societal572

impact, including the public release of the technology to ensure reproducibility.573

Guidelines:574

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.575

• If the authors answer No, they should explain the special circumstances that require a576

deviation from the Code of Ethics.577

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-578

eration due to laws or regulations in their jurisdiction).579

10. Broader impacts580

Question: Does the paper discuss both potential positive societal impacts and negative581

societal impacts of the work performed?582

Answer: [Yes]583

Justification: The positive and negative societal impacts of ZEDD are well discussed in "Our584

Contributions" (section 2) and in the "Limitations and Future Works" (section8) respectively,585

outlining the positive and negative impacts that ZEDD will have in the real world.586

Guidelines:587

• The answer NA means that there is no societal impact of the work performed.588

• If the authors answer NA or No, they should explain why their work has no societal589

impact or why the paper does not address societal impact.590

• Examples of negative societal impacts include potential malicious or unintended uses591

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations592

(e.g., deployment of technologies that could make decisions that unfairly impact specific593

groups), privacy considerations, and security considerations.594

• The conference expects that many papers will be foundational research and not tied595

to particular applications, let alone deployments. However, if there is a direct path to596

any negative applications, the authors should point it out. For example, it is legitimate597

to point out that an improvement in the quality of generative models could be used to598

generate deepfakes for disinformation. On the other hand, it is not needed to point out599

that a generic algorithm for optimizing neural networks could enable people to train600

models that generate Deepfakes faster.601

• The authors should consider possible harms that could arise when the technology is602

being used as intended and functioning correctly, harms that could arise when the603

technology is being used as intended but gives incorrect results, and harms following604

from (intentional or unintentional) misuse of the technology.605

• If there are negative societal impacts, the authors could also discuss possible mitigation606

strategies (e.g., gated release of models, providing defenses in addition to attacks,607

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from608

feedback over time, improving the efficiency and accessibility of ML).609

11. Safeguards610

Question: Does the paper describe safeguards that have been put in place for responsible611

release of data or models that have a high risk for misuse (e.g., pretrained language models,612

image generators, or scraped datasets)?613

Answer: [NA]614

22

https://neurips.cc/public/EthicsGuidelines

Justification:615

Guidelines:616

• The answer NA means that the paper poses no such risks.617

• Released models that have a high risk for misuse or dual-use should be released with618

necessary safeguards to allow for controlled use of the model, for example by requiring619

that users adhere to usage guidelines or restrictions to access the model or implementing620

safety filters.621

• Datasets that have been scraped from the Internet could pose safety risks. The authors622

should describe how they avoided releasing unsafe images.623

• We recognize that providing effective safeguards is challenging, and many papers do624

not require this, but we encourage authors to take this into account and make a best625

faith effort.626

12. Licenses for existing assets627

Question: Are the creators or original owners of assets (e.g., code, data, models), used in628

the paper, properly credited and are the license and terms of use explicitly mentioned and629

properly respected?630

Answer: [Yes]631

Justification: All models used for experimentation and datasets used to prepare training and632

testing data had licenses and URL access appropriately mentioned in 5.1 and 4.1 respectively.633

Guidelines:634

• The answer NA means that the paper does not use existing assets.635

• The authors should cite the original paper that produced the code package or dataset.636

• The authors should state which version of the asset is used and, if possible, include a637

URL.638

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.639

• For scraped data from a particular source (e.g., website), the copyright and terms of640

service of that source should be provided.641

• If assets are released, the license, copyright information, and terms of use in the642

package should be provided. For popular datasets, paperswithcode.com/datasets643

has curated licenses for some datasets. Their licensing guide can help determine the644

license of a dataset.645

• For existing datasets that are re-packaged, both the original license and the license of646

the derived asset (if it has changed) should be provided.647

• If this information is not available online, the authors are encouraged to reach out to648

the asset’s creators.649

13. New assets650

Question: Are new assets introduced in the paper well documented and is the documentation651

provided alongside the assets?652

Answer: [Yes]653

Justification: We introduce a new asset in this paper and we specify fine-tuning and training654

processes in the methodology section. Also, we provide an extensive ReadMe in the GitHub655

linked in the abstract, which outlines how to run and appropriately use ZEDD under the656

MIT license.657

Guidelines:658

• The answer NA means that the paper does not release new assets.659

• Researchers should communicate the details of the dataset/code/model as part of their660

submissions via structured templates. This includes details about training, license,661

limitations, etc.662

23

paperswithcode.com/datasets

• The paper should discuss whether and how consent was obtained from people whose663

asset is used.664

• At submission time, remember to anonymize your assets (if applicable). You can either665

create an anonymized URL or include an anonymized zip file.666

14. Crowdsourcing and research with human subjects667

Question: For crowdsourcing experiments and research with human subjects, does the paper668

include the full text of instructions given to participants and screenshots, if applicable, as669

well as details about compensation (if any)?670

Answer: [NA]671

Justification: The research did not involve human subjects or crowdsourcing.672

Guidelines:673

• The answer NA means that the paper does not involve crowdsourcing nor research with674

human subjects.675

• Including this information in the supplemental material is fine, but if the main contribu-676

tion of the paper involves human subjects, then as much detail as possible should be677

included in the main paper.678

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,679

or other labor should be paid at least the minimum wage in the country of the data680

collector.681

15. Institutional review board (IRB) approvals or equivalent for research with human682

subjects683

Question: Does the paper describe potential risks incurred by study participants, whether684

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)685

approvals (or an equivalent approval/review based on the requirements of your country or686

institution) were obtained?687

Answer: [NA]688

Justification: The research did not involve human subjects or crowdsourcing.689

Guidelines:690

• The answer NA means that the paper does not involve crowdsourcing nor research with691

human subjects.692

• Depending on the country in which research is conducted, IRB approval (or equivalent)693

may be required for any human subjects research. If you obtained IRB approval, you694

should clearly state this in the paper.695

• We recognize that the procedures for this may vary significantly between institutions696

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the697

guidelines for their institution.698

• For initial submissions, do not include any information that would break anonymity (if699

applicable), such as the institution conducting the review.700

16. Declaration of LLM usage701

Question: Does the paper describe the usage of LLMs if it is an important, original, or702

non-standard component of the core methods in this research? Note that if the LLM is used703

only for writing, editing, or formatting purposes and does not impact the core methodology,704

scientific rigorousness, or originality of the research, declaration is not required.705

Answer: [Yes]706

Justification: All LLMs utilized for fine-tuning and testing of the ZEDD model is well707

described in the methodology, cited with license stated and url of access as well for repro-708

ducibility.709

Guidelines:710

24

• The answer NA means that the core method development in this research does not711

involve LLMs as any important, original, or non-standard components.712

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)713

for what should or should not be described.714

25

https://neurips.cc/Conferences/2025/LLM

	Introduction and Related Works
	Our Contributions
	Threat Model
	LLMail-Inject Dataset Construction
	Prompt Pair Generation
	Injection Classification
	Clean Prompt Generation
	Dataset Reduction and Fully Clean Prompt Pair Generation

	ZEDD Pipeline
	Embedding Extraction
	Drift Measurement and Detection
	Drift Detection Framework
	Distributional Modeling and Threshold Calibration
	Constrained Optimization for Detection Performance

	Experimentation and Results
	Ablation Studies
	Limitations and Future Works
	Appendix A: Model Licensing and URLs
	Appendix B: Results Baseline
	Appendix C: Injected-to-Clean Prompt Pairs

