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ABSTRACT

An increasing number of high-stakes domains rely on machine learning to make
decisions that have significant consequences for individuals, such as in loan ap-
provals and college admissions. The black-box nature of these processes has led
to a growing demand for solutions that make individuals aware of potential ways
they could improve their qualifications. Counterfactual explanations (CFEs) are
one form of feedback commonly used to provide insight into decision-making
systems. Specifically, contemporary CFE generators provide explanations in the
form of low-level CFEs whose constituent actions precisely describe how much a
negatively classified individual should add to or subtract from their input features
to achieve the desired positive classification. However, the low-level CFE gen-
erators have several shortcomings: they are hard to scale, often misaligned with
real-world conditions, constrained by information access (e.g., they can not query
the classifier), and make inadequate use of available historical data. To address
these challenges, we propose three data-driven CFE generators that create gener-
alizable CFEs with desirable characteristics for individuals and decision-makers.
Through extensive empirical experiments, we compare the proposed CFE gen-
erators with a low-level CFE generator on four real-world (BRFSS, Foods, and
two NHANES datasets), five semi-synthetic, and five variants of fully-synthetic
datasets. Our problem can also be seen as learning an optimal policy in a family
of large but deterministic Markov decision processes.

1 INTRODUCTION

Machine learning models are increasingly used to guide consequential decision-making. Since these
decisions can significantly impact livelihoods, society demands the right to explanation, as stated in
Articles 13–15 of the European Parliament and Council of the EU (2016) General Data Protection
Regulation. One of the most needed explanations is how individuals (agents) can modify their state
(i.e., the input features to the models) to achieve a (desirable) positive classification. Counterfactual
explanations (CFEs) provide one such solution in the form of actionable insights (Wachter et al.,
2017; Dandl et al., 2020; Mothilal et al., 2020; Ustun et al., 2019; Karimi et al., 2021; Joshi et al.,
2019; Karimi et al., 2022). Most contemporary CFE generators like actionable recourse (Ustun
et al., 2019), provide low-level CFEs, where each action specifies the precise amount by which the
individual should add to or subtract from a specific feature to ensure that the new features collectively
result in a positive classification. For example, if an individual is classified as having an unhealthy
waist-to-hip ratio (WHR), one of the recommended low-level actions to help them achieve a healthier
WHR, as shown in Figure 1(a) blue, is to “increase selenium (mg) from 45 to 327.7319.”

However, such low-level CFEs exhibit several notable shortcomings (Figure 1) that limit their effec-
tiveness in practice. As we discuss in Section 2, these include a focus on precise changes to individ-
ual features, which can make them difficult for a person to act upon; high computational complexity
that affects scalability; a reliance on access to potentially privileged information (e.g., the ability to
query the classifier); and a limited ability to utilize existing domain knowledge or historical data.
To address these limitations, we propose three novel data-driven CFE generator frameworks: hl-
continuous (high-level continuous), hl-discrete (high-level discrete), and hl-id (high-level identifier)
CFE generators (see Section 3). Each proposed CFE generator produces generalizable CFEs that
empower individuals to use their agency to gain capabilities that favorably transform their current
state (features).
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(a) For an individual with input features x yellow and a negative WHR classification, the low-
level CFE blue suggests 19 actions, while the hl-continuous CFE orange suggests 2.
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Figure 1: For an individual negatively classified as having an unhealthy WHR (a)(yellow), to help
them make changes that lead to a healthy WHR classification, the low-level CFE generator suggests
a unique CFE (a)(blue) with 19 actions, modifying 19 features at the cost of 56.588, resulting
in an improvement of 5679.95. In contrast, the hl-continuous CFE generator recommends a CFE
(a)(orange) with only two actions—“take leavening agents: cream of tartar” and “take fish, tuna,
light, canned in water, drained solids”—at a cost of 4.010, modifying 19 features but achieving
a higher improvement of 16682.62, and the CFE optimal for 105 other agents. An investigation
of the difference in number of modified features (δfeatures(P,Q)) and difference in improvement
achieved (δimprovement(P,Q)) when each negatively classified WHR agent takes a low-level CFE
(P) vs. an hl-continuous CFE (Q), shows that hl-continuous CFEs modify more features (b) and lead
to significantly higher improvement (c) than low-level CFEs.

The effects of the CFE’s actions on an individual’s state are explicit in hl-continuous and hl-discrete
CFEs, but not in an hl-id CFE. Specifically, an hl-continuous action is a signed (±) and named,
general predefined action that might modify several features simultaneously (e.g., action-1 (orange)
in Figure 1(a) simultaneously modifies 11 features). An hl-continuous CFE is then the lowest-cost
set of hl-continuous actions, which is solution of a integer linear program (ILP). That is, given a
negatively classified individual and a set of hl-continuous actions with known costs, the goal of
the ILP is to find the lowest-cost subset that modifies the individual’s features to achieve a positive
classification. We propose a deep learning-based hl-continuous CFE generator that, given instances
of individuals and their corresponding hl-continuous CFEs, can quickly and accurately generate
hl-continuous CFEs for new individuals without generator re-optimization.

On the other hand, an hl-discrete action is a binary action that specifies whether an action fulfills
the required capabilities for a specific feature. This formulation of actions is particularly efficient
in scenarios where each feature’s satisfiability is based on the feature’s respective threshold and
can be reduced to a yes/no question. For example, in level one decision-making, e.g., wellness,
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customer satisfaction, and compliance checks, an individual must satisfy a subset of prerequisites to
guide subsequent decisions. We formulate the hl-discrete CFE as a solution to a weighted set cover
problem. Specifically, given a set of hl-discrete actions with known costs and effects on binary state
features, the problem is to find the lowest-cost subset that modify the individual’s state such that
they become positively classified. We propose a deep learning hl-discrete CFE generator trained on
instances of individuals and their optimal hl-discrete CFEs (individual7→hl-discrete CFE dataset) to
generate hl-discrete CFEs for new individuals.

Lastly, an hl-id CFE is a unique identifier (or name) for a CFE. It is particularly efficient for set-
tings where decision-makers have minimal information access, for example, no query access to the
classifier, and the actions and their costs and explicit effects on the features are unknown. It is also
often the case that the hl-id CFE holds significant implicit information. For instance, a registered
dietitian might recommend the hl-id CFE, “remove gluten from the child’s diet” to a parent of a
child diagnosed with celiac disease to flip the diagnosis. The dietitian generates this CFE based on
historical patient-CFE (intervention) information, even without direct access to the celiac classifier
and without specifying a comprehensive list of restricted foods and their effects on relevant features.
More detailed examples are provided in Section 3.3.

2 BACKGROUND

We consider a binary classification setting, where an individual with state x receives either a positive
(desirable) or negative (undesirable) classification under a model f(x). Although we focus on this
setting, our proposed CFE generation framework generalizes to other scenarios. Given an individual
state x with an undesirable model outcome, the objective of the CFE generator is to provide the
individual with information that they can act on to achieve a desirable classification under the model.
Contemporary low-level CFE generators, such as actionable recourse (Ustun et al., 2019), provide
low-level CFEs where each action in the CFE precisely specifies how much the individual should
add or subtract from a specific feature to ensure that, collectively, the new features (state) result in
the individual receiving a desirable model outcome.

The low-level CFE generator Ustun et al. (2019) proposed an ILP-based low-level CFE generator
(Equation 1) that generates a low-level CFE to help an individual change an undesirable model
outcome to a desirable one.

min cost(a;x)
s.t. f(x+ a) = ŷ⋆

a ∈ A(x),

(1)

where ŷ⋆ is the desired model outcome, A(x) denotes the set of feasible actions given the input
x, and the function cost(·;x) : A(x) → R+ encodes the preferences between these actions. When
Equation 1 is feasible, the optimal actions that modify the features (i.e., x+a) and lead to a desirable
model outcome are recommended to the individual (Figure 1(a) blue). We refer the reader to Ustun
et al. (2019) for a more detailed description and to Appendix C.1 for dataset-specific experimental
setup and supplemental examples of this low-level CFE generator.

Shortcomings of low-level CFE generators We address four notable limitations of the low-level
CFE generators (Verma et al., 2020; Karimi et al., 2022; Barocas et al., 2020). First, they are hard
to scale due to the need to solve a computationally intensive NP-hard optimization problem for each
new agent (Karp, 1972; Karimi et al., 2022), and the CFE’s actions are overly specific (e.g., Fig-
ure 1(a) blue). Second, some assumptions about the problem structure may not hold in the real
world. For instance, most assume that the CFE’s actions are in final implementable steps and that
each action directly modifies an individual feature, thus the need for high sparsity (few modified
features) and high proximity (minimal improvement). Third, if there are information access chal-
lenges, i.e., no access to critical information—such as the classifier data and parameters, a prediction
training data manifold to ensure diverse, representative and optimal CFEs, or a complete list of ac-
tions and their costs—contemporary CFE generation becomes infeasible, biased, or flawed. Lastly,
in real-world contexts, there might be data on historical mappings of individuals and their CFEs that
the contemporary CFE generation does not adequately leverage, limiting its effectiveness.
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3 DATA-DRIVEN CFE GENERATION

We propose three data-driven CFE generators of increasing generality, hl-continuous, hl-discrete,
and hl-id. The proposed CFE generators work under various information access constraints, leverage
data beyond that key to classification (e.g., classifier parameters and predictive training data) and
generalize to negatively classified individuals beyond those on which the model was trained.

3.1 THE HL-CONTINUOUS CFE GENERATORS

The data-driven hl-continuous CFE generator is trained on instances of individual states paired with
their corresponding hl-continuous CFEs to generate respective CFEs for new individuals without
generator re-optimization . Our empirical results demonstrate that even a simple deep-learning based
hl-continuous CFE generator performs strongly at this task. In the following, we provide formal
definitions of hl-continuous actions and hl-continuous CFEs, while Section 4.2 includes detailed
descriptions of the experimental generator model architecture.

Definition 1. (hl-continuous action) : An hl-continuous action is a signed (±) and named, general
predefined action whose cost and varied effects on an individual’s input features are predefined and
known. For example, action-1(orange) in Figure 1(a), “take leavening agents: cream of tartar”
adds nutritional values to 11 nutrients by a known amount and incurs a cost (e.g., estimated average
price in USD) that is known a priori.

Definition 2. (hl-continuous CFE): An hl-continuous CFE is a solution to an ILP where, given
a negatively classified individual state x and a set of hl-continuous actions with known costs, the
problem is to find the lowest-cost subset of hl-continuous actions that when taken, can favorably
modify the individual’s state. The ILP is of the form:

minimize
∑
j∈J

costjaj

s.t. cT
∑
j∈J

aj · (2ϵj − 1) · vj ≥ −(cTx+ b) + δ

ϵj ∈ {0, 1}, aj ∈ {0, 1}, ∀j ∈ J

(2)

where J denotes the indices of the hl-continuous actions, with each action represented by a vector
vj and with a predefined cost, costj ∈ R+. The boolean variable aj indicates the inclusion (aj = 1)
or exclusion (aj = 0) of the jth hl-continuous action, while ϵj encodes the sign of this action, repre-
senting addition (ϵj = 1) or subtraction (ϵj = 0). The coefficients c and intercept b are predefined
parameters of the linear classifier, and δ is a small positive value that ensures strict inequality.

3.2 THE HL-DISCRETE CFE GENERATORS

We propose the data-driven hl-discrete CFE generator, trained on individual7→hl-discrete CFE data,
to quickly and accurately produce hl-discrete CFEs for new individuals. Below, we formally de-
fine hl-discrete actions and hl-discrete CFEs and defer further details about the experimental model
architecture of the hl-discrete CFE generator to Section 4.2.

Definition 3. (hl-discrete action): An hl-discrete action is a binary vector that specifies which fea-
tures the action adds capabilities. For example, consider the individual state x = [0, 0, 0, 0, 1] and
the hl-discrete action vj = [1, 1, 0, 0, 0]. When taken, the hl-discrete action adds capabilities to fea-
tures 1 and 2 of x, transforming it to a new state [1, 1, 0, 0, 1]. Although we focus on binary actions,
the setting can be extended to more general cases.

Definition 4. (hl-discrete CFE): An hl-discrete CFE is formulated as a solution to a weighted set
cover problem. Specifically, the CFE is the lowest-cost subset of hl-discrete actions, each with
predefined costs, that a negatively classified individual x ∈ {0, 1}n (e.g., someone deemed a health
risk) can undertake to achieve a desirable classification (e.g., no longer classified as a health risk).
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The problem can be formally defined as follows:

minimize
∑
j∈J

costjaj

s.t.
∑
j∈J

djiaj + xi ≥ ti, ∀i ∈ [n],

aj ∈ {0, 1}, dji ∈ {0, 1},

(3)

where J are the indices of the hl-discrete actions, each represented by a vector vj and with a pre-
defined cost: costj ∈ R+. The threshold classifier t = {t1, t2, · · · , tn} over n features classifies
an individual state x positive if xi ≥ ti, ∀i ∈ [n], and negative otherwise. The binary variable aj
denotes inclusion (aj = 1) or exclusion (aj = 0) of the jth hl-discrete action, while dji indicates
whether the jth hl-discrete action transforms (adds capabilities to) the feature i of the individual state
x, i.e., when performed, the new individual state x+ vj = x′ is such that x′

i > xi and x′
i ≥ ti.

3.3 THE HL-ID CFE GENERATORS

The hl-id CFE generator is a supervised learning model trained on an individual 7→hl-id CFE dataset
to generate hl-id CFEs (unique CFE identifiers) for new individuals. Details on the experimental
model architecture are provided in Section 4.2. Typically, detailed information about the actions
within each hl-id CFE—including the costs and the specific effects of the actions on input features—
is unknown, and decision-makers cannot query the classifier. This approach is instrumental when the
CFE unique identifier conveys significant implicit information. For example, consider two health-
related scenarios: 1) an individual diagnosed with an unhealthy heart condition could receive an
hl-id CFE such as “cardiac rehabilitation” (Fernández-Rubio et al., 2022), without direct access
to the heart diagnostic classifier or specifying underlying actions (e.g., aerobics exercises); 2) an
individual classified with an unhealthy weight might be assigned an hl-id CFE such as “adopt a
ketogenic diet,” without query access to the classifier or specifying sub-actions involved or which
nutrients they change and by how much (e.g., add leavening agents: cream of tartar to their diet).

4 EXPERIMENTAL SETUP

We empirically evaluate the three proposed data-driven CFE generators against the low-level gener-
ator using various metrics (see Appendix A). For example, we use δfeatures(P,Q) = |Pfeatures| −
|Qfeatures| to measure the difference in the number of modified features when an individual takes
CFE P vs. Q. To assess accuracy of the proposed generators, we use zero-one loss (see Equation 4),
which checks if the generated CFE Î matches the true CFE I .

Leval(I, Î) =

{
0 if I = Î

1 if I ̸= Î
(4)

4.1 DATASETS

We conducted experiments with 4 real-world, 5 semi-synthetic, and 5 variants of fully-synthetic
datasets. Each of the individual 7→CFE datasets (instances of individuals and their corresponding
CFEs) was split 80/20 for training and evaluation of data-driven CFE generators. While generaliz-
able to other cases, we focused on a setting where each individual in the respective individual7→CFE
datasets has one optimal CFE match, categorized as either hl-continuous, hl-discrete, or hl-id, de-
pending on the dataset considered. The following provides key details about the datasets used in the
experiments. Further information, including the preprocessing procedure and the specific nature of
the feature representations, is available in Appendices B.1 and B.2.

The real-world datasets We use four real-world datasets. The first is the Behavioral Risk Factor
Surveillance System (BRFSS) dataset (Teboul, 2024b; Centers for Disease Control and Prevention,
2024), consisting of 23617 individuals with 16 binary health risk factors after preprocessing.

Additionally, we extracted the BMI (body mass index) and WHR (waist-to-hip ratio) datasets from
NHANES body measurement surveys (CDC, 1999; ICPSR at the University of Michigan, 2024)

5
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for the years 1999 to pre-pandemic 2020. After preprocessing, the BMI dataset contained 50918
individuals, each with 3 demographic and 19 nutrient intake features, and classified as healthy (1)
or unhealthy (0) BMI. The WHR dataset contained 9120 individuals, each with 3 demographic and
20 nutrient intake features, and classified as either healthy (1) or unhealthy (0) WHR.

After preprocessing, the extracted Foods dataset contains 3901 food items, each with details on
portions and nutritional compositions (USDA, Agricultural Research Service, Nutrient Data Labo-
ratory, 2016; Awram, 2024). For each food item, we add two types of costs: monetary cost in USD
(obtained via internet scraping) and caloric cost, reflecting each food’s caloric content (Caputo,
2023).

The semi-synthetic datasets Using the BMI and WHR datasets and the two types of hl-continuous
actions defined by the Foods dataset, with each food having costs defined by either monetary or
caloric costs, i.e., Foods+monetary costs and Foods+caloric costs (refer to Appendix B.1 for further
details), we created four individual7→hl-continuous CFE datasets using ILP (Equation 2) and dataset-
specific hyperparameter-tuned logistic regression models. Additionally, using the BRFSS dataset
and the ILP defined in Equation 3 with a threshold classifier t = 1n, we generated a semi-synthetic
individual7→hl-discrete CFE dataset.

We used the unique identifiers for the CFEs to create three individual7→hl-id CFE datasets from the
following individual 7→CFE datasets: the BMI dataset with Foods+monetary cost actions, the WHR
dataset with Foods+caloric cost actions, and the individual7→hl-discrete CFE BRFSS dataset.

Lastly, for each of the semi-synthetic individual 7→CFE datasets described above, before the train/test
split, we generated three “varied frequency of CFEs” datasets: all (including all data), >10 (more
than 10 individuals per CFE), and >40 (more than 40 individuals per CFE).

The fully-synthetic datasets We use the ILP defined in Equation 3 to generate five variants of
the individual 7→hl-discrete CFE datasets: varied dimensionality, frequency of CFEs, information
access, feature satisifiability, and actions access. Below, we briefly describe some of the variants
and include more details about these and other variants in Appendix B.2.
For “varied dimensionality”, we generated datasets with 20, 50, and 100 dimensions (actionable
features), where we set the individual’s feature to 1 with a probability pf , and each discrete action
can add capabilities to a feature with a probability pa. The cost of each action depends on the features
it transforms. Lastly, we created three varied frequency of CFEs datasets—all, >10, and >40—,
individual7→hl-id CFE datasets for each varied dimensionality dataset, using a similar approach as
in the semi-synthetic individual7→CFE datasets described above.

4.2 CFE GENERATOR ARCHITECTURES

Below, we provide important details about the experimental model architectures for the data-driven
CFE generators, with more information included in Appendix C.2.

The hl-continuous CFE generator model Although generalizable to other settings, we use the
names and costs of the hl-continuous actions of the CFEs in the individual7→hl-continuous CFE
dataset, e.g., {action-a, action-b, and action-c} and their corresponding costs: {cost-a cost-b, and
cost-c} to design the generator model. We design the model as a neural network with three hid-
den layers, each with 2000 neurons, ℓ2 regularization, dropout, and batch normalization. We used
the Adam optimizer (Kingma & Ba, 2014) and implemented early stopping with the best weights
restored after a patience level of 300. We set the batch size to 6000 and the number of epochs to
5000, on average. To ensure that the hl-continuous CFE generator performs well on the training
individual7→CFE dataset and accurately generates hl-continuous CFEs for new individuals, we op-
timize the model loss function LFA given by:

LFA = − 1

M

M∑
m=1

J∑
j=1

[ajm log(âjm) + (1− ajm) log(1− âjm)] (5)

where âjm is the predicted probability and ajm is the true indication of a presence (1) or absence
(0) of the jth hl-continuous action in individual m’s hl-continuous CFE. There are J possible hl-
continuous actions and M individuals in the individual7→hl-continuous CFE training dataset.

6
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The hl-discrete CFE generator model We design a sequential encoder-decoder network to gen-
erate hl-discrete CFEs for new individuals. The model is trained on a dataset comprising instances
of individuals and their associated hl-discrete CFEs, enabling it to quickly and accurately predict
CFEs for previously unseen individuals. The model configuration varied depending on the experi-
mental setting. On average, we used 500 training epochs with a batch size of 128, a dropout rate of
0.4, a learning rate of 0.0005, and either the mean squared error loss or binary cross-entropy loss as
the objective function. The encoder and decoder networks typically consisted of three layers, each
using ReLU activation functions.

The hl-id CFE generator model Given the individual7→hl-id CFEs training dataset, we design
a neural network model with an average of two hidden layers, each consisting of 2000 neurons,
ℓ2 regularization, dropout, and batch normalization. We used the Adam optimizer (Kingma & Ba,
2014) and implemented early stopping and restoration of the best weights after a patience level of
360. On average, we set the batch size to 2000 and the number of epochs set to 3000. To ensure that
the hl-id CFE generator performs well on the training dataset and accurately generates hl-id CFEs
for new individuals, we optimize the model loss function LNC given by:

LNC = − 1

M

M∑
m=1

K∑
k=1

[akm log(âkm)] (6)

where âkm is the predicted probability and akm is the true indication of the kth CFE being the hl-id
CFE (1) or not (0) for the mth individual. There are K possible hl-id CFEs and M individuals in the
training dataset.

5 EXPERIMENTAL RESULTS

In this section, we provide thorough empirical evidence to show the strong performance of our
generators and how and in what ways in comparison to low-level CFEs, hl-continuous, hl-discrete
and hl-id CFEs, might be preferable to both individuals and decision-makers.

5.1 THE HL-DISCRETE AND HL-CONTINUOUS CFES ARE PREFERABLE

Below and in Appendices D.1 and D.2, we provide empirical evidence to show that, compared to
low-level CFEs, both hl-continuous and hl-discrete CFEs involve fewer actions, lead to more diverse
improvements, are easier to personalize, and simplify the design and interrogation of CFE generators
for fairness issues. Additionally, they more accurately reflect real-world conditions.

Sparsity In low-level CFE generation, sparsity—typically defined as a small number of modified
features (Verma et al., 2020)—is often a primary goal due to the presumed one-to-one relationship
between number of actions taken and features modified. However, achieving sparsity in practice may
be both undesirable and challenging because individuals often aim to implement as many changes
as possible with minimal actions, and is rarely the case that each action modifies one feature (see
Figure 2(a)). Our results, as shown in Appendix D.1 and demonstrated here for the WHR dataset
with Foods+caloric cost actions, underscore this point.

For example, the hl-continuous actions in Figure 1(a) orange modify several features simultane-
ously. Additionally, while in low-level CFEs there is a perfect positive correlation between the num-
ber of modified features and actions (Kendall’s τ = 1.0, p-value = 0.0), the correlation between the
number of modified features and actions in hl-continuous CFEs is positive but not perfect (Kendall’s
τ = 0.722, p-value = 0.0). Furthermore, as the number of modified features decreases in low-level
CFEs, a different trend is observed for hl-continuous CFEs (Kendall’s τ = −0.233, p-value = 1.7e-
73). Lastly, despite hl-continuous CFEs having fewer actions on average (∼ 2), they result in more
feature changes (∼ 16) compared to low-level CFEs, which have an average of ∼ 9 actions and ∼ 9
feature changes (refer to Figures 1 and 2(a)).

Proximity Similar to sparsity, maximizing proximity—defined as ensuring that the new state after
taking the CFE is close to the initial state (Verma et al., 2020)—is based on the real-world assump-
tion of a strong positive correlation between proximity and the number of actions taken. However,

7
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Figure 2: On average, (a) hl-continuous CFEs involve fewer actions, modify more features, lead
to states more distant from current states (higher improvement), and have a higher CFEs frequency
(average of number of individuals per CFE is 27.5) than low-level CFEs. Additionally, (b) there is
more variability in number of modified features across sensitive groups (less fairness) with low-level
CFEs than hl-continuous CFEs (see Figures 11 and 12 and Appendix D.2 for more details).

while high proximity suggests fewer changes, it also implies minimal improvement (i.e., a small
distance between the initial and new state), which can be undesirable and challenging to achieve in
practical settings. Our results, as demonstrated in Appendix D.1 and here with the WHR dataset and
Foods+caloric cost actions, show that hl-continuous CFEs typically involve fewer actions but lead
to more distant states – higher improvement (see Figures 1 and 2(a)).

Although there is a significant positive correlation between improvement in hl-continuous CFEs and
improvement in low-level CFEs (Kendall τ = 0.542, p-value = 0.0), there is almost no relationship
between the number of actions taken and improvement achieved in hl-continuous CFEs (Kendall
τ = 0.0625, p-value = 3.21e-06). In contrast, there is a notable positive correlation between
actions taken and improvement achieved in low-level CFEs (Kendall τ = 0.368, p-value = 5.41e-
227. Additionally, on average, hl-continuous CFEs, with fewer actions (∼ 2) result in states that are
more distant (improvement: ∼ 12765) compared to low-level CFEs, which typically involved ∼ 9
actions and achieved an improvement of ∼ 4485 (see Figure 2(a)).

Diverse and higher improvement A key observation from the differences in sparsity and prox-
imity between low-level CFEs and hl-continuous or hl-discrete CFEs, as described earlier, is that hl-
continuous CFEs tend to be more desirable for decision-makers and individuals alike. For decision-
makers, these CFEs make individuals more “positive” or “qualified.” For individuals, hl-continuous
CFEs are preferable because they involve fewer, more clearly defined actions, lead to more diverse
and substantial improvements (modify more features and result in distant states from the current
state)), and reduce the costs associated with interpreting and executing the CFEs (see Figures 1
and 2(a) and in Appendix Figures 8 and 10).

Personalization and fairness Since both hl-discrete actions and hl-continuous actions are prede-
fined and general, it is more straightforward and transparent to examine the data-driven hl-discrete
and hl-continuous CFE generators for potential fairness issues and to tailor the generation of CFEs
to individual needs. For example, our hl-continuous CFE generators can produce CFEs for indi-
viduals who place greater importance on monetary costs over caloric costs. Moreover, in general,
the hl-continuous and hl-discrete CFEs have less variability in number of actions taken and mod-
ified features (e.g., Figure 2(b)) and improvement achieved by individuals across various sensitive
groups (more fair), in comparison to low-level CFEs (see Appendices D.2.1 and D.2.2). Lastly,
when there are restrictions on the actions individuals have access to or variations in feature sat-
isfiability, our hl-discrete CFE generators demonstrate strong performance in generating CFEs for
diverse individuals, even without explicit knowledge of grouped actions or varied feature thresholds
(see Appendices D.2.3 and D.2.4).

5.2 THE CFE GENERATORS ARE ACCURATE, MORE RESOURCE-EFFICIENT AND SCALABLE

Our results demonstrate that the proposed data-driven CFE generators, operating under various in-
formation access constraints—such as no query access to the classifier or, in the case of the hl-id CFE

8
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Accuracy of CFE generators

hl-continuous hl-discrete hl-id

BMI 0.92± 0.0053 0.94± 0.0045
WHR 0.92± 0.0176 0.97± 0.0107
BRFSS 0.98± 0.0102 0.99± 0.0050
20-dim 0.94± 0.0042 0.99± 0.0014

Effect of frequency of CFEs

all >10 >40

20-dim 0.84± 0.0060 0.89± 0.0052 0.94± 0.0042
20-dim⋆ 0.97± 0.0028 0.98± 0.0021 0.99± 0.0014
BMI 0.90± 0.0057 0.91± 0.0055 0.92± 0.0053
BRFSS 0.70± 0.0182 0.86± 0.0158 0.98± 0.0102

Table 1: (left) The accuracy of the hl-continuous, hl-discrete, and hl-id CFE generators on the
new negatively classified individuals for >40, BMI, BRFSS, WHR, and fully-synthetic (20-dim):
20-dimensional, datasets. (right) The CFE generator accuracy decreases with a decrease in the
frequency of CFEs in the training set, regardless of the dataset type. Specifically, training and
testing on the (20-dim): the 20-dimensional individual7→hl-discrete CFE dataset, (20-dim)⋆: the
20-dimensional individual 7→hl-id dataset, (BMI): the BMI individual 7→hl-continuous CFE dataset,
and (BRFSS): the BRFSS individual 7→hl-discrete CFE dataset all show this trend. Our results show
that accuracy improves as the frequency of CFEs increases, with generators trained on datasets
containing the highest CFE frequency (>40) performing best.

generator, without knowledge of the cost and impact of actions on individual states—are scalable
and accurately and efficiently produce CFEs, without requiring re-optimization of the generator (see
Table 1(left) and Appendices D.3 to D.5). In contrast to the overly specific low-level CFEs, which
are generally unique to each individual, hl-continuous and hl-discrete CFEs are often optimal for a
broad range of individuals (refer to Figures 1 and 2(a) and Appendix Figure 16). The removal of
the need for re-optimization for each new individual, combined with the general applicability of the
actions to individuals, enhances the scalability of our proposed CFE generators compared to low-
level generators. Additionally, because the actions in the hl-continuous and hl-discrete CFEs are
both general and predefined, they are more transparent and easier to interpret (see Figure 1), making
them cheaper and more desirable than the overly specific and unique low-level CFEs.

Our results show that the accuracy of the proposed data-driven generators declines with the low
frequency of CFEs (see Table 1 (right)) and the scalability of CFE generation decreases with an in-
crease in the number of actionable features. We observed that this is due to the growing uniqueness
of CFEs (see Table 1 (right)) and Appendix D.6). Data augmentation mitigates the negative effects of
low CFE frequency. For instance, on the all 20-dimensional dataset, data augmentation improves
accuracy from 0.969 to 0.982. Lastly, our proposed data-driven CFE generator performance im-
proves with the complexity of the generator models. For instance, given a discrete, individual7→hl-
id dataset, the neural network model outperforms the Hamming distance method (see Appendix
Figure 18). Valuable for future works is an exploration of more advanced, data-driven models for
CFE generation and techniques like federated learning to facilitate CFE generation under varied data
access and privacy constraints.

6 LIMITATIONS AND ETHICAL CONSIDERATIONS

The decision-maker must have access to data on instances of individuals and their corresponding
optimal CFEs to train the proposed data-driven CFE generators. Although this level of access mit-
igates some information access challenges—such as needing at least query access to the classifier
and representative prediction training data or having an exhaustive list of actions and the associated
costs—obtaining historical individual7→CFE data may still pose significant challenges. Future re-
search could investigate techniques like federated learning and secure multi-party computation to
collaboratively train robust CFE generators under varied privacy and data access constraints.

Our formulations of hl-continuous and hl-discrete CFEs restrict them to being defined as a set of
actions. More generally, one could consider settings where the order of actions matters, such as
where a CFE corresponds to an optimal policy for an agent in a deterministic Markov decision
process (MDP). Even more generally, one could consider actions whose effects are stochastic, and
a CFE then corresponds to an optimal policy for the agent in a general MDP.

The proposed approaches to CFE generation are closely related to data-driven algorithm design.
As a result, ethical concerns related to data-driven algorithms, for example, potentially propagating

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

and exacerbating biases in historical individual 7→CFE data and the potential for flawed resource
allocation, might apply to our proposed CFE generators. Future research should investigate these
ethical implications in greater depth.

Although we focus on health datasets in our experiments, our approach generalizes to a broad spec-
trum of real-world scenarios, such as college admissions, loan applications, judicial systems, and
other settings. Future works could expand our setup to other data settings and informational access
challenges. Lastly, we caution readers that the experimentally generated CFEs from our empirical
analyses are intended solely for illustrative purposes, and readers should not use them for self-
treatment.

7 RELATED WORK

Our formulations for hl-continuous and hl-discrete CFEs as solutions to ILPs are in principle, similar
to search-based optimization CFE generation frameworks (Ramakrishnan et al., 2019), user-specific
ILP recourse approaches (Ustun et al., 2019; Cui et al., 2015; Gupta et al., 2019a), and CFE gen-
eration methods based on logic and answer-set programming (Bertossi, 2020; Liu & Lorini, 2023;
Marques-Silva, 2023). However, unlike these formulations, we focus on general, predefined ac-
tions that often modify multiple features simultaneously (see Figure 1), which could lead to more
improvement and help enhance the generalization of the CFE generation.

In addition, contemporary low-level CFE generators are often computationally expensive, requiring
the solution of NP-hard optimization problems for each new individual. In contrast, we introduce
novel data-driven CFE generators that address the question: Can we, by learning from training
data (i.e., instances of individuals and their optimal CFEs), develop a CFE generator that quickly
provides optimal CFEs for new individuals? While in some ways, similar to reinforcement learning-
based CFE generation tools (De Toni et al., 2023; Shavit & Moses, 2019; Naumann & Ntoutsi, 2021),
our proposed generators offer a more efficient, exact, and scalable alternative to their often high
computational and approximate solutions. Notably, our approach is closest to that of Verma et al.
(2022). While our method is akin to learning an optimal policy in a large but deterministic family of
Markov decision processes (MDPs), Verma et al. (2022) focuses on learning optimal policies within
smaller, stochastic MDP settings.

Finally, our work also relates to data-driven algorithm design (Gupta & Roughgarden, 2016; Bal-
can et al., 2018; Balcan, 2020), where models trained on training data instances perform well on the
training data and generalize to the testing data. Unlike contemporary CFE generators that rely solely
on classification data (i.e., prediction training data and classifier parameters), our data-driven CFE
generators leverage access to individuals and their optimal CFEs and more closely mirror real-world
scenarios. Our generators also excel in generating CFEs for new individuals, are more computation-
ally efficient and scalable, and function under varied informational settings. For example, unlike
other methods that require, at a minimum, query access to the classifier and knowledge of the cost
and impact of each action on state features (Naumann & Ntoutsi, 2021; De Toni et al., 2023; Shavit
& Moses, 2019; Verma et al., 2022), our CFE generators—such as the hl-id CFE generator—can
effectively produce CFEs without explicit access to any of this information.

8 CONCLUSION

In this work, we make a strong case for expanding the focus beyond just classification data (e.g.,
classifier parameters and prediction training datasets), when automating CFE-based recourse gener-
ation. Our findings show that it’s more efficient to examine, compare, and personalize the general
predefined actions (e.g., hl-continuous and hl-discrete actions), and they significantly enhance the
scalability of CFE generation. Additionally, the respective CFEs, hl-continuous, hl-discrete and hl-
id CFEs, compared to low-level CFEs are, in retrospect, simpler and more efficient for individuals to
execute while yielding more favorable outcomes for decision-makers. Through extensive empirical
analysis, we show that the proposed data-driven CFE generators are more scalable, computationally
efficient, and better aligned with real-world conditions, all while effectively leveraging data beyond
that specific to classification. Our code is available at this: anonymized link.
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A CFE EVALUATION METRICS: SUPPLEMENTAL DETAILS

We compute the difference in number of actions taken, number of modified features, and improve-
ment achieved if an individual took two different CFEs: a low-level CFE and another type, such as
an hl-continuous CFE. Specifically, these differences are computed for each training set negatively
classified individual.

To compare the low-level CFE to other CFEs, e.g., to analyze sparsity, improvement, fairness, and
scalability, we focus exclusively on individual 7→CFE datasets derived from computing respective
CFEs for negatively classified individuals from the training sets of three datasets: BMI, WHR, and
BRFSS. Additionally, since the low-level CFE generator (Equation 1) occasionally fails to generate
a CFE for a given individual, we take steps to ensure we more accurately compare hl-continuous
and hl-discrete CFEs with low-level CFEs. Specifically, we align the individuals in both datasets
to ensure a precise match. For example, individual one in the individual 7→low-level CFE dataset
corresponds directly to individual one in the individual7→hl-continuous CFE dataset, and so forth.

Change in actions The metric, change in actions denoted as δactions(·, ·) (Equation 7) assesses
the difference in number of actions taken when an individual takes two different CFEs

δactions(P,Q) = |Pactions| − |Qactions| (7)
where P,Q are the two CFEs being considered and |Pactions| and |Qactions| respectively, are the num-
ber of actions taken with the execution of each CFE.

Change in improvement To compute the change in improvement δimprovement(·, ·), we first com-
pute improvement, a distance between the initial state and resultant state (final state after taking a
CFE) for each CFE. The change in improvement δimprovement(·, ·) is meant to assess the difference
in how far agents change (improve) when they take two different CFEs, a low-level CFE and another
CFE: hl-continuous or hl-discrete CFE.

Pimprovement = ∥x′ − x∥ (8)
where P is the CFE taken and x′ is the resultant individual state after taking the CFE from x, which
is the initial individual state. Ideally high improvement (low proximity), x′ more distant from x is
preferred.

δimprovement(P,Q) = Pimprovement −Qimprovement (9)
Where P,Q are the two CFEs and Pimprovement and Qimprovement respectively, is the improvement
achieved for taking the CFEs.

Change in features We also compute the change in features δfeatures(·, ·) (Equation 10) to assess
the difference in number of modified features when taking two different CFEs, a low-level CFE and
another CFE: hl-continuous or hl-discrete CFE.

δfeatures(P,Q) = |Pfeatures| − |Qfeatures| (10)
Where P,Q are the two CFEs and |Pfeatures| and |Qfeatures| respectively, are the number of modified
features with taking each CFE.

Statistical significance between variables Given the different variables, e.g., list of the num-
ber of actions taken, number of modified features, and improvement achieved with each CFE: hl-
continuous, hl-discrete CFEs, and low-level CFEs, we compute the statistical significance of the
differences. We use the Scipy stats tool (Developers, 2023) to compute the Kendall tau and p-value
to assess the statistical significance of difference, and the relationship between the two variables at
a time.

Coefficient of variation To assess how much the variables like number of modified features vary
across groups, for example, between male and female individuals, we compute the coefficient of
variations (Equation 11), a normalized measure of dispersion calculated as the ratio of the standard
deviation to the mean.

coefficient of variation(V ) =
standard deviationV

meanV
× 100 (11)

Where V is the variable, such as number of actions taken by male and female negatively classified
individuals.
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B DATASETS: SUPPLEMENTAL DETAILS

This section describes the supplemental details about the datasets used in the experiments.

B.1 REAL-WORLD AND SEMI-SYNTHETIC DATASETS

First, we describe the extraction and preprocessing of real-world datasets: Foods, BMI, WHR,
and BRFSS. Then, we describe the creation of semi-synthetic individual 7→hl-continuous CFE,
individual7→hl-discrete CFE, and individual7→hl-id CFE datasets.

B.1.1 FOODS, BMI, AND WHR DATASETS PREPROCESSING

Intersectional nutritional features After extracting the datasets for Foods, BMI, and WHR and
removing features with missing values in the Foods dataset, we selected an intersectional subset of
nutritional value features in the Foods and BMI datasets and the Foods and WHR datasets. This
subset consisted of 20 features, including: ‘protein (gm)’, ‘carbohydrate (gm)’, ‘dietary fiber (gm)’,
‘calcium (mg)’, ‘iron (mg)’, ‘magnesium (mg)’, ‘phosphorus (mg)’, ‘potassium (mg)’, ‘sodium
(mg)’, ‘zinc (mg)’, ‘copper (mg)’, ‘selenium (mcg)’, ‘vitamin C (mg)’, ‘niacin (mg)’, ‘vitamin B6
(mg)’, ‘total folate (mcg)’, ‘vitamin B12 (mcg)’, ‘total saturated fatty acids (gm)’, ‘total monoun-
saturated fatty acids (gm)’, and ‘total polyunsaturated fatty acids (gm)’.

Foods dataset preprocessing The Foods dataset from Awram (2024) initially contained 53 fea-
tures. After finding the intersectional subset of nutritional value features and removing data-
points with missing values, the dataset had 27 features. These included the following: ‘NDB No’,
‘Shrt Desc’, ‘GmWt 1’, ‘GmWt Desc1’, ‘GmWt 2’, ‘GmWt Desc2’, and ‘Refuse Pct’, along with
the 20 nutritional features described above. To add costs to the dataset, we web-scraped the aver-
age USD prices and extracted caloric prices for each food item given their name specified in the
‘Shrt Desc’ feature. Out of 3901 food items, we successfully extracted USD prices for 3871 food
items and caloric prices for 3125 food items. Therefore, when using USD prices as costs, there were
3871 possible actions, while using caloric prices meant 3125 possible actions.

BMI dataset preprocessing The body mass index (BMI) dataset originally had 57 features. After
removal of features with at least 20% null values and selecting the above nutritional features, except
the feature ‘total folate (mcg)’, we had 23 features including: ‘gender’, ‘age’, ‘race’, and ‘body
mass index (kg/m**2)’. We selected individuals whose age was greater than or equal to 20 at the
time of surveys. Using the features ‘body mass index (kg/m**2)’ and ‘age’, we computed the class
for each individual as either healthy (1) BMI or unhealthy (0) (WebMD, 2024). We then removed
the feature ‘body mass index (kg/m**2)’ and all the duplicates datapoints. At the end of data prepro-
cessing, we did the 80/20 train/test data split resulting in 40734 data points in the predictive training
set and 10184 in the predictive testing set.

WHR dataset preprocessing Unlike the BMI dataset, there were fewer datapoints with ‘waist-to-
hip ratio’ (WHR) information among the NHANES body measurement surveys (for years 1999 to
prepandemic 2020) we scraped. First, we removed all features with at least 20% null values. Then
using the features ‘waist circumference (cm)’, ‘hip circumference (cm)’ and ‘gender‘, we created the
binary class variable whr-class (Wikipedia contributors, 2024), indicating healthy (1) or unhealthy
(0) WHR. After preprocessing, we had 23 features, including the 20 nutritional features described
above and the demographic features: ‘gender’, ‘age’, and ‘race’. Lastly, we removed the duplicates
and split the dataset 80/20, creating 7296 data points in the predictive training set and 1824 in the
predictive testing set.

B.1.2 BEHAVIORAL RISK FACTOR SURVEILLANCE SYSTEM (BRFSS) DATASET
PREPROCESSING

The initial BRFSS dataset comprised 253680 rows and 22 features, each detailing various health and
demographic attributes of individuals (Teboul, 2024b;a).

First, we removed all data points where ‘Age’ = 1 denoting an age range of 18-24 because computa-
tion a new variable which relied on age being equal to or above 20 years, which reduced the dataset
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to 247, 980 rows. The new variable was called ‘HealthBMI,’ an adult health BMI classification
value (WebMD, 2024) from the feature ‘BMI.’ Next, we transformed the existing features, which
were predominantly binary, into new features where the 1 represents a desirable condition and 0
otherwise. We focused particularly on features we deemed actionable and renamed them to enhance
their intuitiveness, specific to satisfiability. For instance, we renamed the feature ‘HighBP’, which
indicated high blood pressure (0 = no, 1 = yes), to ‘LowBP’: {1 = yes (lowBP), 0 = no (highBP)}.
Additionally, we removed six features ‘CholCheck,’ Diabetes 012,’ ‘Sex,’ ‘Age,’ ‘Education,’ and
’Income,’ and remained with 16 features.

These final 16 binary features included the following: ‘LowBP’: {1 = yes (lowBP), 0 = no (highBP)},
‘LowChol’: {1 = yes (lowChol), 0 = no (highChol)}. The feature ‘HealthBMI’: {1 =yes (healthy), 0
= no (unhealthy), ‘NoSmoke’: {1 = yes, 0 = no}, ‘NoStroke’: {1 = yes, 0 = no}, ‘NoCHD’: {1 = yes,
0 = no}, ‘PhysActivity’: {1 = yes, 0 = no}, ‘Fruits’: {1 = yes, 0 = no}, ‘Veggies’: {1 = yes, 0 = no},
‘LightAlcoholConsump’: {1 = yes, 0 = no}, ‘AnyHealthcare’: {1 = yes, 0 = no}, ‘DocbcCost’: {1
= yes, 0 = no}, ‘GoodGenHlth’: {1 = excellent (1,2,3), 0 = bad (4,5)}, ‘GoodMentHlth’: {1 = {1 =
good (< 2), 0 = bad (≥ 2)}, ‘GoodPhysHlth’: {1 = good (< 2), 0 = bad (≥ 2)}, and ‘NoDiffWalk’:
{1 = yes, 0 = no}.
Since we consider the setting where t = 116, of the remaining data points, 8392 were considered
to have a desirable outcome (no health risk) because all their features met the respective feature
thresholds. Lastly, after removing the duplicate health risk individuals and splitting the whole dataset
80/20, we had 11039 data points in the predictive training set and 2760 in the predictive testing set.

B.1.3 GENERATION OF THE SEMI-SYNTHETIC DATASETS

Below, we describe the creation of the four semi-synthetic, individual 7→hl-continuous CFE datasets:
BMI and WHR individual states with either monetary or caloric cost actions. Additionally, we
provide details of generating the one individual7→hl-discrete CFE dataset: BRFSS with synthetic
hl-discrete actions. Finally, we detail the creation of the derivative individual7→hl-id CFE datasets.
Figure 3 shows examples of generated hl-continuous CFEs for BMI and WHR individual states, and
an hl-discrete CFE for a BRFSS individual state.

After creating the individual 7→hl-continuous CFE, individual7→hl-discrete CFE, and the
individual7→hl-id CFE datasets, we trained and tested the corresponding CFE generators. For in-
stance, we trained and tested the data-driven hl-continuous CFE generator using the individual7→hl-
continuous CFE datasets. We conducted all experiments on a laptop with a CPU featuring the
following hardware specifications: a 2.6 GHz 6-Core Intel Core i7 processor, 16 GB of 2400 MHz
DDR4 RAM, and an Intel UHD Graphics 630 with 1536 MB of video memory.

The individual 7→hl-continuous CFE datasets Using the BMI, WHR, and Foods+Costs (mone-
tary and caloric) datasets, we generated four distinct individual 7→hl-continuous CFE datasets. First,
we trained classification models to identify individuals who required CFEs. For both the BMI and
WHR datasets, we hyperparameter-tuned the solver and max iter parameters of logistic regression
models using their respective training predictive data. The respective best logistic regression models
achieved a test accuracy of 72.78% on the BMI dataset, 85.18% on the WHR dataset and 100.00%
on BRFSS dataset. Based on these models, we determined the model prediction outcome for all
individuals in the training and testing sets.

After identifying negatively classified individuals in the training and test sets, we computed their re-
spective hl-continuous CFEs. We considered two types of actions: Foods with either monetary costs
or caloric costs. For the negatively classified individuals and given the classifier model parameters
(coefficients and intercepts) and hl-continuous actions, we used the ILP (see Equation 2) to generate
two types of hl-continuous CFEs for each individual: one optimized for caloric cost and the other
for monetary cost actions.

Consequently, we generated four distinct individual 7→hl-continuous CFE datasets. Each dataset
comprises hl-continuous CFEs characterized by Foods and their associated costs, which can be either
monetary or caloric, optimized accordingly. For the BMI dataset, we generated two individual7→hl-
continuous CFE datasets, 40692 for the training set and 10167 for the test set. With similar statistics,
in one, the hl-continuous CFE result of optimization with the food+monetary cost actions, and an-
other from the food+caloric cost actions. Likewise, for the WHR dataset, we generated 6387 training
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set, and 1603 test set individual 7→hl-continuous CFEs datasets with actions described by Foods and
monetary costs, and the same with actions defined by Foods and caloric costs.

(a) for a BRFSS individual state

(b) for a BMI individual state (c) for a WHR individual state

Figure 3: In (a), for an individual negatively classified based on their BRFSS features, with values
[0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0] arranged similarly to the features in (a), the hl-discrete CFE
generator recommends hl-discrete actions, specifically action-1 and action-2.
In (b), for a negatively classified BMI individual, given their actionable features with values
[253.51, 352.76, 48.2, 1327., 29.61, 1204., 3966., 6163., 5890.0, 44.19, 7.903, 275.1, 30., 109.198,
3.492, 2.3, 59.686, 154.24, 113.429], arranged in the same order as features shown in (b), the
hl-continuous CFE generator recommends a CFE containing the following hl-continuous actions:
action-1 (take Swiss chard, raw), action-2 (take leavening agents: cream of tartar), and action-3
(take clams, mixed species, canned, in liquid).
Similarly, in (c), for a negatively classified WHR individual with actionable feature values
[29.03, 109.45, 4.1, 309., 4.08, 96., 488., 994., 1326., 2.61, 0.425, 45., 35.7, 8.755, 0.482, 172., 1.21,
10.077, 12.392, 13.999], ordered as features in (c), the hl-continuous CFE generator recommends a
CFE with the following hl-continuous actions: action-1 (take leavening agents: cream of tartar)
and action-2 (take fish, tuna, light, canned in water, drained solids).
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The individual 7→hl-discrete CFE datasets First, we generated 100 synthetic actions, each of
length 16. We set the probability pa of an action fulfilling the capability of a given at 0.5. The
costs associated with fulfilling the capabilities of each feature were randomly predefined and were
uniform across all actions and individuals. We computed the cost of an action as the sum of the costs
of adding capabilities to individual features.

Given the BRFSS dataset, synthetic actions, and the unit threshold-based binary classifier t = 1n,
we used the ILP (see Equation 3) to generate an individual 7→hl-discrete CFE dataset. At the end,
we had 11039 train-set and 2760 test set BRFSS with synthetic actions individual 7→hl-discrete CFE
dataset.

The individual 7→hl-id CFE datasets Given the individual7→hl-continuous CFE and
individual7→hl-discrete CFE datasets described earlier, we created corresponding individual7→hl-id
CFE datasets. This process involves encoding each CFE in the individual 7→CFE dataset with a
unique identifier that distinguishes it from all other possible CFEs in that dataset. For example,
given instances of individuals–hl-discrete CFEs, we generate unique identifiers for all the hl-discrete
CFEs to generate corresponding hl-id CFEs.

The semi-synthetic varied frequency of CFEs datasets Before the train/test individual7→CFE
datasets split, for each of the generated individual 7→hl-continuous CFE, individual7→hl-discrete
CFE, and the individual 7→hl-id CFE datasets, we generate three frequency of CFE dataset vari-
ants: all (including all data), >10 (more than 10 individuals per CFE), and >40 (more than 40
individuals per CFE).

B.2 FULLY-SYNTHETIC DATASETS

We created five variants of the synthetic individual7→hl-discrete CFE datasets: varied dimension,
frequency of CFEs, information access, feature satisfiability, and actions access. We provide sta-
tistical detailed information about the five variations of the individual 7→hl-discrete CFE datasets in
Table 2 and Figure 4.

B.2.1 VARIED DIMENSIONS

We created 20-, 50- and 100-dimensional individual datasets by varying the number of actionable
features (n = 20, 50, 100) and keeping pf = 0.68 the same for all datasets. We consider a unit
vector threshold of length n. The cost associated with fulfilling the capabilities of each feature was
predefined randomly and the same across all actions and individuals. Each action was of length n, pa
was 0.5, and action cost was the sum of the cost for each features the action fulfills. To create the 20-
, 50- and 100-dimensional individual 7→hl-discrete CFE datasets, we computed the hl-discrete CFEs
for each varied dimensional dataset individual using the information above and the ILP defined in
Equation 3 using CVXPY Python package (Diamond & Boyd, 2016; Agrawal et al., 2018).

B.2.2 VARIED FREQUENCY OF CFES

To investigate the effect of frequency of CFEs in the individual7→CFE training set on the per-
formance of the data-driven CFE generator, we create the varied frequency of CFEs variant
datasets. For each of the varied dimensional individual7→hl-discrete CFE datasets described in Ap-
pendix B.2.1, before the train/test split, we created three frequency-based dataset variants: all,
where all data is included, >10, where we ensure a frequency of more than 10 individuals per hl-
discrete CFE, and >40 with insurance of a frequency of more than 40 individuals per hl-discrete
CFE.

B.2.3 VARIED INFORMATION ACCESS

In addition to general “varied information access” variants that we considered: individual7→hl-
continuous CFE, individual 7→hl-discrete CFE, and the individual 7→hl-id CFE datasets, we investi-
gate more settings derived from the fully synthetic hl-discrete CFEs.

For each of the 20-, 50- and 100-dimensional individual 7→hl-discrete CFE datasets and their cor-
responding frequency-based datasets (all, >10, and >40), we created three “varied information
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Dataset name Dataset size One-action CFEs Two-action CFEs Three-action CFEs

20-dimensional dataset 71125 23687 44858 2576

50-dimensional dataset 98966 1262 96770 934

100-dimensional dataset 99728 0 45515 54213

Manual groups 73484 13480 56653 3351

Probabilistic groups 70226 44661 20258 5307

First10 74524 61794 12046 39

First5 74594 60656 6005 0

Last10 74401 53822 19952 1

Last5 74565 66068 644 0

Mid5 74594 63530 3010 0

Table 2: Statistics of the individual 7→hl-discrete CFE variant datasets used in the experiments. Each
individual in all datasets has atmost 3 hl-discrete actions in their CFE.
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(b) Probabilistic groups

Figure 4: Statistics of the “varied actions access” datasets for Manual groups and
Probabilistic groups. For the Probabilistic groups, Group 0 is pa = 0.4, Group
1 is pa = 0.5, Group 2 is pa = 0.6, Group 3 is pa = 0.7, and Group 4 is pa = 0.8.

access” datasets variants to represent the hl-discrete CFEs: the original hl-discrete CFE, left un-
changed; the hl-discrete-named CFE, where a unique name encodes each hl-discrete action in the
hl-discrete CFE; and the hl-discrete-id CFE, where a unique identifier denotes the entire hl-discrete
CFE. For example, consider an individual x = [0, 0, 0, 0, 1] and their corresponding hl-discrete CFE
given by {[0, 0, 1, 1, 0], [0, 1, 0, 0, 0], [1, 0, 0, 0, 0]}. The hl-discrete-named CFE is then given by
{a, b, c} where each hl-discrete action has a name/label (e.g., a) that uniquely identifies a specific
hl-discrete action (e.g., [0, 0, 1, 1, 0]) among all hl-discrete actions. On the other hand, a unique
name, say z, denotes the hl-discrete-id CFE, where z uniquely represents this specific hl-discrete
CFE among all the hl-discrete CFEs.

This setting aims to study the effectiveness of the data-driven CFE generators under various infor-
mation access constraints within an individual 7→CFE training set, for example, (1) full access to
hl-discrete actions and their effects on features (hl-discrete CFE), (2) access only to the names of
hl-discrete actions without any information on how each action affects features (hl-discrete-named
CFE), and (3) minimal information access, where only hl-discrete-id CFEs are known, with no ex-
plicit knowledge of the corresponding hl-discrete actions or their impact on features.

Given the individual 7→hl-discrete CFE “varied information access” datasets, we use the data-driven
CFE generator architectures described in Section 4.2 to generate the CFEs. Specifically, we use
the hl-discrete CFE generator to generate hl-discrete CFEs, hl-continuous CFE generators for hl-
discrete-named CFEs, and hl-id CFE generators for hl-discrete-id CFEs.
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B.2.4 VARIED FEATURE SATISFIABILITY

Using the ILP formulation defined in Equation 3 with n = 20, and following the same individual
and hl-discrete generation approach as in Appendix B.2.1 while varying the feature satisfiability for
the threshold-based binary classifier (differing in which features are classifier-active (non-zero)), we
generated five individual 7→hl-discrete CFE datasets. For the dataset Last5, the threshold vector is
set as t = [15 zeros, 5 ones], while for the dataset First5, it is set as t = [5 ones, 15 zeros]. The
third dataset, First10, has a threshold vector of t = [10 ones, 5 zeros], and the dataset Last10
has t = [10 zeros, 10 ones]. Finally, the dataset Mid5 has all features set to zero except for the five
middle features set to one.

These “varied feature satisfiability” variants of the individual 7→hl-discrete CFE datasets are specif-
ically created to investigate the effect of feature satisfiability on the nature of the hl-discrete CFEs
and the effectiveness of the hl-discrete CFE generator at generating CFEs for new individuals.

B.2.5 VARIED ACCESS TO ACTIONS

Lastly, we consider two settings where grouped individuals have restricted access to a set of actions:
1) manual groups where actions generated with the same probability pa = 0.5 and individuals
are randomly assigned a restricted subset of actions; and 2) probabilistic groups where
individuals are assigned to groups and each group has its actions generated by different probabilities
pa = [0.4, 0.5, 0.6, 0.7, 0.8]. See Figure 4 for the statistics of the datasets.

We designed the “varied access to actions” variants to empirically investigate fairness in CFE gen-
eration. Specifically, we examine the impact of restricting access of a group of individuals to some
actions on the characteristics of hl-discrete CFEs, such as their associated costs and the variations in
accuracy of hl-discrete CFE generators across different groups.
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C CFE GENERATION: SUPPLEMENTAL DETAILS

Below we provide the supplemental detailed information on the experimental setups and methodol-
ogy for generation of CFEs, using the proposed data-driven CFE generators and the low-level CFE
generator (actionable recourse) (Ustun et al., 2019).

C.1 THE LOW-LEVEL CFE GENERATOR

To compare the low-level CFE generators with the proposed data-driven CFE generators, we first
generate low-level CFEs (see examples in Figure 5) for individuals who were negatively classified
in the BMI, WHR, and BRFSS datasets, using Equation 1.

For all datasets, to determine which individuals require CFEs, we use the classification models
detailed in Appendix B.1.3. Additionally, we employ the same actionable features as those used
for generating hl-continuous CFEs for the BMI and WHR negatively classified individuals and hl-
discrete CFEs generation for the BRFSS negatively classified individuals.

BMI actionable features For BMI individuals states, we considered the following 19 actionable
features: ‘protein (gm)’, ‘carbohydrate (gm)’, ‘dietary fiber (gm)’, ‘calcium (mg)’, ‘iron (mg)’,
‘magnesium (mg)’, ‘phosphorus (mg)’, ‘potassium (mg)’, ‘sodium (mg)’, ‘zinc (mg)’, ‘copper (mg)’,
‘selenium (mcg)’, ‘vitamin C (mg)’, ‘niacin (mg)’, ‘vitamin B6 (mg)’, ‘vitamin B12 (mcg)’, ‘total
saturated fatty acids (gm)’, ‘total monounsaturated fatty acids (gm)’, and ’total polyunsaturated
fatty acids (gm)’.

WHR actionable features For the generation of recourse for WHR individuals, we use the fol-
lowing 20 actionable features: ‘protein (gm)’, ‘carbohydrate (gm)’, ‘dietary fiber (gm)’, ‘calcium
(mg)’, ‘iron (mg)’, ‘magnesium (mg)’, ‘phosphorus (mg)’, ‘potassium (mg)’, ‘sodium (mg)’, ‘zinc
(mg)’, ‘copper (mg)’, ‘selenium (mcg)’, ‘vitamin C (mg)’, ‘niacin (mg)’, ‘vitamin B6 (mg)’, ‘total
folate (mcg)’, ‘vitamin B12 (mcg)’, ‘total saturated fatty acids (gm)’, ‘total monounsaturated fatty
acids (gm)’, and ’total polyunsaturated fatty acids (gm)’.

BRFSS actionable features Lastly, for the BRFSS individual states, we considered the following
16 actionable features: ‘PhysActivity’, ‘Fruits’, ‘Veggies’, ‘AnyHealthcare’, ‘LowBP’, ‘NoSmoke’,
‘LowChol’, ‘HealthBMI’, ‘NoStroke’, ‘NoCHD’, ‘LightAlcoholConsump’, ‘DocbcCost’, ‘Good-
GenHlth’, ‘GoodMentHlth’, ‘GoodPhysHlth’, and ‘NoDiffWalk’.

Refer to Appendix B.1.1 and Appendix B.1.2 for a detailed dscription of the meaning of the features.

C.2 DATA-DRIVEN CFE GENERATORS ARCHITECTURES: SUPPLEMENTAL DETAILS

This section includes supplemental details about the architectures of the data-driven CFE generators
and information about other baseline models.

C.2.1 THE HL-CONTINUOUS CFE GENERATOR

The neural-network hl-continuous CFE generator we use in these experiments is susceptible to im-
balance and overfitting. Therefore, we weight and regularize the loss function LFA in Equation 5 as
follows:

Lw
FA = pwLFA + α

1

M

M∑
m=1

||âm − am||1 (12)

The weighting factor pw weights LFA by scaling the contribution of each individual to the loss
function. The term α 1

M

∑M
m=1 ||âm − am||1 regularizes the model, thus preventing overfitting

by nudging the model towards producing hl-continuous CFEs closer to am’s distribution. We, on
average chose the values of α from the set {0.05, 0.1, 0.07} and pw from {0.05, 0.1, 0.07}.
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(a) for a BMI individual state

(b) for a WHR individual state (c) for a BRFSS individual state

Figure 5: In (a), for a negatively classified a BMI individual, given their actionable features, with
values [253.51, 352.76, 48.2, 1327., 29.61, 1204., 3966., 6163., 5890.0, 44.19, 7.903, 275.1, 30.,
109.198, 3.492, 2.3, 59.686, 154.24, 113.429] presented in the order specified in Appendix C.1, the
low-level CFE generator recommends the CFE shown in (a). In (b), given actionable features values
[29.03, 109.45, 4.1, 309., 4.08, 96., 488., 994., 1326., 2.61, 0.425, 45., 35.7, 8.755, 0.482, 172., 1.21,
10.077, 12.392, 13.999] in the order as described in Appendix C.1 for a negatively classified
WHR individual, the low-level CFE generator recommends the CFE shown in (b). Finally,
in (c), for an individual negatively classified based on their BRFSS features, with values
[0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0] in the order described below, the low-level CFE generator
recommends the CFE shown in (c).

C.2.2 THE HAMMING DISTANCE CFE GENERATOR

To produce hl-discrete-id CFEs (refer to Appendix B.2.3) for new individuals, we mainly used the
hl-id CFE generator. However, we wanted to investigate the effect of model complexity on the
accuracy of CFE generation. Therefore, we compare the more complex hl-id CFE generator (refer
to Section 4.2) with a basic model, e.g., Hamming distance-based CFE generator, whose choice is
due to the individual features being binary for this setting. Below is a description of the Hamming
distance hl-discrete-id CFE generator.

Given a negatively classified new individual xts, we compute the Hamming distance (see Figure 7)
between them and each of the individuals xtr in the individual7→hl-discrete-id CFE training set.
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Input: x ∈ {0, 1}n Output: Î ∈ {0, 1}s×n

Encoder

Internal state

Decoder

Figure 6: An encoder-decoder hl-discrete CFE generator, where n is the dimension and s is the
number of hl-discrete actions in the CFE.

xtr

xts

1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0

1 0 1 0 0 0 1 1 0 1 0 1 0 1 1 0 0 0 1 0

Hamming Distance: (xtr, xts) = 6

Figure 7: Hamming distance between a training set individual xtr and a new individual xts.

Then, based on these distances, we choose the k nearest training set individuals and their associated
hl-discrete-id CFEs. We then use the most common hl-discrete-id CFE as the hl-discrete-id CFE for
the new individual xts. We experimented with varied number of nearest neighbours: 5, 10 and 15,
for the 20-, 50- and 100-dimensional individual7→hl-discrete-id CFE datasets, respectively.
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D EXPERIMENTAL RESULTS: SUPPLEMENTAL DETAILS

In this section, we provide additional and thorough empirical evidence demonstrating the strong
performance of the proposed data-driven CFE generators in producing optimal CFEs for new indi-
viduals. We also show how they address the challenges associated with low-level CFE generators.
Specifically, we highlight the strong and desirable characteristics of the hl-continuous and hl-discrete
CFEs in comparison to low-level CFEs. We also analyze how various constraints–such as varied data
dimensions, the frequency of CFEs, decision-makers information access, feature satisfiability, and
restrictions on individuals’ access to actions—affect the individual 7→CFE data distribution and the
effectiveness of data-driven CFE generators.

D.1 LEAD TO DIVERSE AND HIGHER IMPROVEMENT

Unlike low-level CFEs, using hl-continuous and hl-discrete CFEs generally requires fewer actions
on average (see Figure 8(a)). These CFEs also lead to more diverse improvements, simultaneously
modifying multiple features (see Figures 8(b) and 9(a)) and resulting in states that are significantly
further from the initial state (Figures 8(c) and 9(b)).
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Figure 8: All figure annotations rounded to one decimal place, the figures show the comparison of
hl-continuous CFEs (monetary and caloric costs) for WHR and BMI datasets and hl-discrete CFEs
on BRFSS dataset with the low-level CFEs on respective datasets. Results show that taking low-level
CFEs involves (a) more actions, (b) fewer feature modifications, and (c) less improvement (closer
resultant (new) states), than hl-discrete and hl-continuous CFEs.
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20 15 10 5 0 5 10
features(low-level CFE, hl-continuous CFE)
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Mean: -6.74
Std Dev: 7.30

(a) Change in sparsity
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improvement(low-level CFE, hl-continuous CFE)
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Std Dev: 3706.34

(b) Change in improvement

Figure 9: Given WHR negatively classified individuals and the low-level and hl-continuous CFEs
they took, a computation of δimprovement(P,Q) (Equation 9)} and δfeatures(P,Q) (Equation 10)
where P denotes taking a low-level CFE and Q denotes taking an hl-continuous CFE, shows that
when individuals take hl-continuous CFEs, a higher number of their features is modified (a) and
their improvement is significantly higher (b) than if they took low-level CFEs.
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Figure 10: In (a), we illustrate the correlations for three different aspects: (1) between the number
of actions taken with CFEs P and Q, (2) between the number of features modified with CFEs P and
Q, and (3) between the improvement achieved after taking CFEs P and Q. For the BMI and WHR
datasets, P and Q represent low-level and hl-continuous CFEs, respectively. For the BRFSS dataset,
P and Q denote low-level and hl-discrete CFEs, respectively. On the other hand, (b) shows the
correlation between the number of actions taken and the number of modified features and between
the number of actions taken and improvement achieved for each CFE and dataset. In general, low-
level CFEs have a perfect positive relationship between the number of actions and modified features.

Moreover, while low-level CFEs exhibit a perfect correlation between the number of actions taken
and the number of features modified, as shown in Figure 10(b), hl-continuous and hl-discrete CFEs
display a positive but weaker relationship. This imperfect correlation is often more desirable as
it better reflects real-world scenarios, and ideally, one wants to make more changes with fewer
and interpretable actions. Additionally, there was a high positive correlation (τ = 0.708) between
number of modified features with hl-discrete and low-level CFEs (see Figure 10(a)). In general,
there was a weak negative correlation between number of modified feature with hl-continuous and
low-level CFEs, and between number of actions taken with hl-continuous and low-level CFEs.

D.2 EASIER TO PERSONALIZE AND INTERROGATE FAIRNESS

Fairness in CFE generation has primarily been studied along the dimension of equalizing the re-
course costs across different groups (e.g, (Gupta et al., 2019b)). In this work, we extend the analysis
by exploring several dimensions of fairness in CFE generation. First, we assess the variability out-
come of CFEs execution. Specifically, we investigate how individuals using the same CFE generator
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Figure 11: The figures illustrate the variations in three variables: the average number of actions
taken, the number of features modified, and the improvement achieved by individuals from different
sensitive groups when using the same type of CFE, such as low-level or hl-continuous CFEs. (a),
(c), and (e) depict the distributions for these variables across sensitive groups. To better assess
variability, (b), (d), and (f) present the coefficients of variation that concisely illustrate the extent of
dispersion around the mean. All figures indicate that low-level CFEs are less fair than hl-continuous
CFEs, as the latter have lower coefficients of variation across all variables, which means that agents
from different sensitive groups are more likely to achieve close to similar outcomes when they take
hl-continuous CFEs.
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(same kind of CFEs) experience differences in how much they improve, the number of actions taken,
the number of modified features, and the costs incurred, particularly across sensitive groups. Sec-
ond, we explore the effects of limiting access to a subset of actions (“varied access to actions”) on
the distribution of individual 7→CFE datasets and the accuracy of CFE generators across different
groups. Lastly, we examine how classification models or predetermined actionable features (“varied
feature satisfiability”) influence the distribution of the individual7→CFE dataset and the performance
of generators on different groups.

In addition to fairness, we also investigate the personalization of CFE generation along two dimen-
sions. 1) Individuals may be interested in a subset of actions (“varied access to actions”) and thus
restricted to CFEs that involve only specific actions. 2) Individuals might prioritize different costs
in the generation process (“varied cost preferences”) and thus prefer CFE generators that optimize
those specific costs in CFE generation, e.g., caloric costs over monetary ones.

Below is the detailed empirical evidence on how hl-continuous and hl-discrete CFEs are easier to
personalize and how their generators are easier to interrogate for fairness issues.

D.2.1 FAIRNESS BASED ON VARIABILITY OF CFES EXECUTION OUTCOME

We investigate variation in costs incurred and individual improvement (number of actions taken,
number of features modified, and improvement) across intersectional sensitive groups to understand
how the fairness of the low-level CFE generators compares to that of hl-continuous CFE and hl-
discrete CFE generators.

Variability in individual improvement across sensitive groups We investigate variations in im-
provement by studying the differences in improvement, i.e., how far the resultant state is from the
initial state (proximity), diversity of improvement, i.e., how many features the CFE modifies, and
ease of improvement, i.e., number of actions taken, across sensitive groups.

Figure 11 shows that on the WHR dataset, using low-level CFEs led to significant variation in
improvement across sensitive groups, specific to how much individuals improve, the number of
actions taken, and the number of features modified. Specifically, variations with taking low-level
CFEs versus low-level are such that the coefficient of variation for how much individual improve
was 27.53% compared to 22.67%, for average number of actions taken it was 43.29% compared to
27.48%, and for modified features it was 43.29% compared to 12.88%. These findings highlight
that the benefits of low-level CFEs differ substantially across sensitive groups, potentially favoring
some over others, a potential fairness issue in CFE generation.

Variability in costs incurred across sensitive groups Although the costs individuals incur by
taking low-level CFEs cannot be directly compared with taking hl-continuous CFEs because they
are contextually different, we study how the costs of executing the same kind of CFEs varies across
individuals in different sensitive groups.

Our results show that taking low-level CFEs varies more widely across various sensitive groups than
taking hl-continuous CFEs. For example, in Figure 12, the coefficient of variation for taking low-
level CFEs is 41.16% and 79.55% versus 5.60% and 37.61% with taking hl-continuous CFEs, on
BMI and WHR datasets , respectively. Therefore, compared to taking hl-continuous CFEs, taking
low-level CFEs is more biased and more likely to cost-wise favor some sensitive groups over others
than taking.
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(c) WHR: average cost across groups
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Figure 12: The figures illustrate the variations in the average costs incurred by individuals from dif-
ferent sensitive groups in BMI and WHR datasets when they take low-level or hl-continuous CFEs.
Although not comparable across CFEs, (a) and (c) show the distribution of costs between groups
within the CFE, and (b) and (d) show the coefficient of variations - indicating how variable around
mean the average costs in groups are. Costs across sensitive groups vary more when individuals take
low-level CFEs, than when they take hl-continuous CFEs.

D.2.2 VARIED COSTS PREFERENCES

We model two types of hl-continuous CFEs: one where an hl-continuous action is in terms of
Foods+monetary costs, and the other by Foods+caloric costs (see Appendix B.1.3). In a setting
where negatively classified individuals care more about monetary costs over caloric costs, and vice
versa, the CFE generator adapts to these diverse preferences and recommends the corresponding
optimal CFE, as demonstrated in Figure 13.

Additionally, regardless of whether monetary or caloric costs were the desired costs by the indi-
vidual, we consistently observed that hl-continuous CFEs involved fewer actions, resulted in more
feature modifications and higher improvement (proximity) when compared to low-level CFEs (see
Figure 11 and Figure 13 ).

Future research could investigate the data-driven CFE generation at the intersection of various set-
tings. For instance, this could involve exploring Pareto-optimal solutions where individuals seek to
simultaneously optimize multiple factors, such as monetary and caloric costs.
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(a) low-level CFE

(b) hl-continuous CFE with caloric costs (c) hl-continuous CFE with monetary costs

Figure 13: When given actionable features values [29.03, 109.45, 4.1, 309., 4.08, 96., 488., 994.,
1326., 2.61, 0.425, 45., 35.7, 8.755, 0.482, 172., 1.21, 10.077, 12.392, 13.999], in the same order as
shown in (b) and (c), for a negatively classified WHR individual, the low-level CFE generator rec-
ommends a CFE (a) with a cost of 56.588. This CFE was unique to the individual. In contrast, the
hl-continuous CFE generator generates two CFEs optimized for different individual’s preferences.
When optimizing for caloric cost, the CFE generator generates CFE (a) with a cost of 2.750. This
CFE, which was also optimal for other 25 negatively classified individuals, includes action-1 (con-
sume endive, raw) and action-2 (consume leavening agents: cream of tartar). When optimizing for
monetary cost, the CFE generator produces a CFE (b) of cost 4.010. This CFE, also optimal for
other 105 individuals, consists of action-1 (consume leavening agents: cream of tartar) and action-
2 (consume fish, tuna, light, canned in water, drained solids). Lastly, while the low-level CFE (a)
takes 19 actions, modifies 19 features and improves by 5679.95, the hl-continuous CFEs both take
2 actions, modify 19 features and improves by 16815.04 (b) and 16682.62 (c).
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Manual Groups Probabilistic Groups

Group Accuracy Group Accuracy

Group 0 0.881± 0.01200 Group 0 (0.4) 0.880± 0.04400
Group 1 0.871± 0.01260 Group 1 (0.5) 0.771± 0.02081
Group 2 0.875± 0.01249 Group 2 (0.6) 0.802± 0.01571
Group 3 0.847± 0.01359 Group 3 (0.7) 0.873± 0.01241
Group 4 0.886± 0.01212 Group 4 (0.8) 0.931± 0.00947

Table 3: Group-wise accuracy of the hl-discrete CFE generator on manual groups &
probabilistic groups (see Appendix B.2.5).

D.2.3 VARIED FEATURE SATISFIABILITY

In general, as shown in Table 2, compared to the unit threshold datasets: 20- 50- and 100-
dimensional individual 7→CFE datasets, individuals in the varied binary feature satisfiability datasets
described in Appendix B.2.4 required fewer actions. This is mainly due to fewer number of features
that individuals need to satisfy to get a desirable classification.

Our results show that without explicit knowledge of the varied feature satisfiability, when given test
set individuals, the hl-discrete CFE generator trained on instances of a mixture of individual7→hl-
discrete CFE varied feature satisfiability datasets successfully generate the right hl-discrete CFEs for
the new individuals. The hl-discrete CFE generator achieves an accuracy of 99.683% on First10,
99.496% on Last10, 100% on First5, 100% on Mid5, and 100% on Last5, dataset variants.

D.2.4 VARIED ACCESS TO ACTIONS

The Manual groups individual7→hl-discrete CFE datasets (described in Appendix B.2.5) are
more balanced in terms of the number of actions individuals take (see Figure 4(a)). The reason is
individuals have access to the same distribution of hl-discrete actions, i.e., although individuals in
each group have access to only a selected group of hl-discrete actions, all the hl-discrete actions for
all groups were generated with the same probability, pa = 0.5.

However, for the Probabilistic groups individual7→hl-discrete CFEs datasets (described in
Appendix B.2.5), Figure 4(b) shows that as the probability of hl-discrete capabilities pa decreases,
the number of hl-discrete individuals require to get all the necessary capabilities to transform their
states to get a positive model outcome increases. In other words, individuals in certain groups only
have access to more expensive and limited hl-discrete actions compared to others. For instance,
individuals in the Probabilistic groups Group 0 face more difficulty (due to limited capa-
bilities and more costly hl-discrete actions) in achieving positive classification outcomes than those
in the Group 4.

Since the individuals in the Manual groups individual7→hl-discrete CFE datasets had more
balanced access to hl-discrete actions as depicted in Figure 4(a), the hl-discrete CFE generators
had almost similar accuracy (∼87%) in the generation of CFEs across all individuals in differ-
ent Manual groups, as shown in Table 3 (left). On the other hand, since the individuals in the
Probabilistic groups had access to varied hl-discrete actions, the accuracy of the hl-discrete
CFE generator varied greatly across the groups, as shown in Table 3 (right). For instance, as ex-
pected, the CFEs for Probabilistic groups Group 4 individuals with one-action hl-discrete
CFEs were more accurately generated with an accuracy of 93.06% as compared to Group 0 and
Group 1 individuals, generated at an accuracy of 88.04% and 77.09%, respectively.

D.3 ACCURATE, CONFIDENT AND APPROXIMATE WHEN NEEDED

Our results show that the data-driven CFE generators are accurate and confident information-specific
CFE generators. Additionally, unlike low-level CFE generators that sometimes fail to produce a
CFE entirely for an individual, our data-driven CFE generators generate approximately good CFEs
instead of no CFEs at all. The supplemental results in this appendix subsection are mainly for the
fully-synthetic datasets.
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D.3.1 ACCURACY AND CONFIDENCE

0 1
100

101

102

103

104

105

9
9
.4

%

0
.6

%

9
6
.2

%

3
.8

%

8
7
.1

%

1
2
.9

%
(a) hl-discrete-id CFEs

N
um

be
r

of
in

di
vi

du
al

s

0 1

9
3
.1

%

6
.9

%

8
3
.1

%

1
6
.9

%

5
3
.5

%

4
6
.5

%

(b) hl-discrete-named CFEs
0 1

9
4
.6

%

5
.4

%

7
9
.6

%

2
0
.4

%

6
0

%

4
0

%

(c) hl-discrete CFEs

1-action 2-action 3-action

Figure 14: The data-driven hl-id CFE generator for the (a) hl-discrete-id CFEs, the hl-continuous
CFE generator for the (b) hl-discrete-named CFEs, and the hl-discrete CFE generator for the (c)
hl-discrete CFEs, achieved strong performance on the 20-dimensional all individual7→hl-discrete
CFE, varied information access, test datasets (new individuals for the respective variants).

Performance of the CFE generator on 20-, 50-, and 100-dimensional datasets
all >10 >40

20-dimensional 0.969± 0.00284 0.984± 0.00208 0.993± 0.00141
50-dimensional 0.744± 0.00608 0.838± 0.00534 0.915± 0.00458

100-dimensional 0.354± 0.00664 0.630± 0.00778 0.856± 0.00772

Table 4: Accuracy of generation of hl-discrete-id CFEs for 20-dimensional, 50-dimensional and
100-dimensional: all, >10, and >40 datasets.

The proposed data-driven CFE generators are evidenced to perform strongly on the varied datasets.
As shown in Figure 14, on the 20-dimensional all individual7→CFEs dataset variants, the CFE gen-
erators achieved high accuracy at generating hl-discrete CFEs, hl-discrete-id CFEs, and hl-discrete-
id CFEs. All the generators perform best on the single-action CFE individuals. Furthermore, with
strong confidence, i.e., low margin error rates (see Table 4), the proposed data-driven CFE generators
performed well on all datasets regardless of the data dimension or frequency of CFEs. Notably, they
excelled on high-frequency datasets, that is to say, >40 datasets regardless of the data dimensions,
as seen in Table 4.

D.3.2 APPROXIMATION

Unlike ILP-based low-level CFE generators, which do not generate CFEs for individuals when the
ILP solution is sub-optimal or infeasible, our data-driven CFE generators alternatively produce valid
CFE mistakes when suboptimal (see Figure 15), which might be preferable in retrospect. For ex-
ample, of the 1.58%, 16.23% and 37.00% mistakes the hl-id generator makes on the 20-, 50-, and
100-dimensional >10 individual7→hl-discrete-id CFE datasets, 100%, 99.23%, and 87.29%, respec-
tively, were valid CFE mistakes. Similarly, the majority of the mistakes of the hl-discrete CFE
generators were valid, e.g., on the 20-dimensional >10 individual7→hl-discrete CFE dataset, of the
10.8% mistakes the generator makes, 63.10% were valid.

Additionally, the likelihood of the ILP-based low-level CFE generator’s failure at generating CFEs
(i.e., returns no CFEs) increases with the number of actionable features (data dimensions). Similarly,
the percentage of valid mistakes from our proposed CFE generators decreases with the frequency of
CFEs in the individual7→CFE training set, e.g., the percentage of valid mistakes is 87.29% on the
>10 dataset and 57.83% on the 100-dimensional all dataset.
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Figure 15: A generated CFE is a mistake if the CFE doesn’t match the true CFE. A valid CFE
mistake transforms the individual’s initial state to get a desirable model outcome. An invalid CFE
mistake does not favorably transform the individual state. Distribution of costs of generated and true
CFEs for (a) invalid and (b) valid CFE mistakes the hl-id CFE generator makes on 20-dimensional
all individual7→hl-discrete-id dataset. Valid CFE mistakes are, by definition, more expensive than
the true CFEs, while invalid CFE mistakes are cheaper than the true CFEs.

D.4 EASIER TO SCALE AND MORE INTERPRETABLE

Our results demonstrate that our data-driven CFE generators—hl-continuous, hl-discrete, and hl-
id—are more scalable than the low-level CFE generators. Furthermore, the costs and actions asso-
ciated with the hl-continuous and hl-discrete CFEs are interpretable and more transparent, making
them easier to validate and compare.

D.4.1 SCALABILITY

Unlike the overly specific actions in the low-level CFEs (see Figure 13(a)), actions in hl-continuous
and hl-discrete CFEs are more general, which allows to generalize the actions to various individuals.
For example, our results, in Figure 16 show that while low-level CFEs were on average unique to
a given individual, hl-continuous and hl-discrete CFEs were on average simultaneously optimal for
several individuals (see Figure 16 and Figure 13).

Additionally, unlike the ILP-based low-level CFE generators that solve an expensive optimization
problem for each new individual, our data-driven hl-continuous, hl-discrete, and hl-id CFE genera-
tors accurately and quickly generate CFEs without need for re-optimization.
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Figure 16: Regardless of the dataset considered, on average, while low-level CFEs were unique
to a given individual, hl-continuous and hl-discrete CFEs were simultaneously optimal to multiple
individuals.
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D.4.2 INTERPRETABILITY

The hl-continuous and hl-discrete CFEs consist of general, predefined actions, e.g., Figures 13(b)
and 13(c) illustrates a typical hl-continuous: take leavening agents: cream of tartar. Due to this
characteristic, these CFEs offer unique advantages over low-level CFEs, which are often overly spe-
cific and less straightforward for individuals to translate into practical actions (see Figure 13(a)). On
the other hand, the hl-continuous and hl-discrete CFEs are more intuitive for users to interpret, exe-
cute, and compare with others. Additionally, the costs associated with these actions are comparable
and easier to understand, with general knowledge of how they were derived—an essential factor for
ensuring transparency in CFE generation.

D.5 WORKS WELL WITH VARIOUS INFORMATION ACCESS CONSTRAINTS

With the purpose of investigating the effectiveness the data-driven CFE generators under various in-
formation access constraints, from the original individual7→hl-discrete CFE datasets, we created two
more information access variants,individual 7→hl-discrete-named CFE and individual 7→hl-discrete-
id CFE datasets as described in Appendix B.2.3. Given the individual 7→hl-discrete CFE information
access datasets, we use the data-driven hl-discrete CFE generators for the hl-discrete CFEs, hl-
continuous CFE generators for hl-discrete-named CFEs, and hl-id CFE generators for hl-discrete-id
CFEs.

In general, all the data-driven CFE generators, regardless of information access constraints described
in Appendix B.2.3, generate single-action CFEs more accurately than multiple-action CFEs. For
example, the hl-discrete CFE generator, as seen in Figure 14 (c), generates one-action CFEs at an
accuracy of 94.6%, two-action CFEs at an accuracy of 79.6%, and three-action CFEs at an accuracy
of 60.0%.

Performance of CFE generators on 20-dimensional datasets
all >10 >40

hl-id CFE generator 0.969± 0.00284 0.984± 0.00208 0.993± 0.00141
hl-continuous CFE generator 0.854± 0.00581 0.886± 0.00531 0.940± 0.00411
hl-discrete CFE generator 0.839± 0.00605 0.892± 0.00518 0.937± 0.00420

Table 5: Accuracy of CFE generators on 20-dimensional: all, >10, and >40 datasets.

However, in general, hl-id CFE generators were shown in Figure 14 (a) to 14 (c) and Table 5 to
be more accurate and need less CFE frequency in the training set than the hl-continuous and hl-
discrete CFE generators. For example, on the 20-dimensional all dataset, the hl-id CFE generator
had an accuracy of 96.9%, compared to 85.4% with hl-continuous CFE generator and 83.9% with
hl-discrete CFE generator.

D.6 POTENTIAL CHALLENGES AND SOLUTIONS

We recognize several challenges faced by the proposed data-driven CFE generators: the low fre-
quency of CFEs, the high number of actionable features, and the heavy reliance on the complexity
of the CFE generator model. In this work, we thoroughly examine these challenges, propose plausi-
ble solutions, and suggest avenues for future research to explore these issues in greater depth.

D.6.1 NEGATIVELY AFFECTED BY HIGH NUMBER OF ACTIONABLE FEATURES

As the data dimensions (number of actionable features) increase, the number of actions in-
dividuals need to take also increases. For example, 54.4% of the individuals in the 100-
dimensional individual 7→hl-discrete CFE dataset needed three hl-discrete actions and 0.0% needed
one hl-discrete (see Table 2). In comparison, 33.3% of the individuals in the 20-dimensional
individual7→hl-discrete CFE dataset had one action in their CFE, and very few, only 3.6% of in-
dividuals had three actions in their hl-discrete CFEs (see Table 2).

In addition to an increase in actions needed, the uniqueness of CFEs also increases as the data
dimension or the number of actionable features increases. The average frequency of the CFEs
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for the all individual7→hl-discrete CFE training set for the 20-, 50-,and 100-dimensional datasets
was 46.64%, 21.75%, and 8.09%, respectively. Additionally, 18.115%, 20.797%, and 31.072% of
the CFEs 20-, 50-, and 100-dimensional all individual7→hl-discrete CFE training sets, respec-
tively, had a frequency of one (unique to one individual). Due to the low frequency of CFEs in
the individual 7→CFE datasets, after the train/test splits, some CFEs appeared in one data split and
not the other. For example, for the 20-, 50-, and 100-dimensional all individual7→hl-discrete CFE
datasets, there were 52, 154 and 708 unique CFEs in the test set not present in the training set, for
the varied dimensional datasets respectively.

As a result, the data-driven CFE generators become less accurate as data dimensions increase. As
seen in Table 4, in all cases, the hl-id CFE generator had the lowest accuracy on the 100-dimensional
dataset and the highest on the 20-dimensional dataset. For example, while the hl-id CFE generator
had an accuracy of 74.4% on the 50-dimensional all dataset, it had an accuracy of 96.9% on the
20-dimensional all dataset.

D.6.2 NEGATIVELY AFFECTED BY LOW FREQUENCY OF CFES

We created the varied frequency datasets: all, >10, and >40 (see Appendix B.2.2) to study the
effect of frequency of CFEs in the individual7→hl-discrete CFE dataset on the robustness of the
data-driven CFE generators. After the train/test split, a frequency of atleast 20 individuals with the
same CFE in the training set was insured with (>40) dataset. By definition, the >40 datasets had
the highest frequency of CFEs and all had the lowest. This frequency was also affected by data
dimensions, as illustrated in Appendix D.6.1.
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Figure 17: Accuracy of CFE generators improve with increase in the frequency of CFEs.

The low frequency of CFEs in the individual 7→hl-discrete CFE training sets negatively impacted
CFE generation across all datasets, regardless of data dimensionality. However, this effect became
more pronounced as data dimensions increased. For instance, as shown in Table 4, the accuracy of
CFE generators on the 20-dimensional dataset was highest when CFEs had a frequency of at least 20
in the training set (>40) and lowest on the all dataset, where some CFEs appeared in the test set but
not in the training set. Specifically, the hl-id CFE generator achieved an accuracy of 99.3% on the
20-dimensional >40 dataset, compared to 96.9% on the 20-dimensional all dataset. In contrast,
CFE generation accuracy on the 20-dimensional dataset was significantly higher than on the 100-
dimensional dataset. This difference highlights that the negative impact of low CFE frequency in
the training set becomes more severe as data dimensionality increases.

Additionally, the minimum frequency of CFEs required for a strong CFE generator increases with
number of actionable features. While the frequency of at least 20 in the training set ensured an
accuracy of 99.3% of the CFE generator on the 20-dimensional dataset (see Table 4), a higher
frequency is needed for the 50- and 100-dimensional datasets (see Table 4 and Figure 17).
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Algorithm 1: The individual7→hl-discrete CFE dataset augmentation
Input: an individual x and their hl-discrete CFE I , and the threshold classifier t
Output: valid derived augmentations of individual x, xaugs with the same CFE
Data: indices of features ids where the hl-discrete CFE when taken, adds more than

needed capabilities to x
augs← 2|ids| possible worse-off individuals;
foreach aug in augs do

if aug is valid then
xaugs ← xaugs ∪ {aug};

end
end

Data augmentation algorithm We investigate the effect of increasing the frequency of CFEs,
through data augmentation, on the performance of the data-driven CFE generator. The data augmen-
tation algorithm described in Algorithm 1 is specific for the individual 7→hl-discrete CFEs datasets
and can be generalized to other -hl-discrete CFEs generated with other threshold classifiers. To
generate new individuals for which a given hl-discrete CFE is the most optimal, we ensure that no
other hl-discrete CFE within the set of all hl-discrete CFEs can, at a lower cost, transform the new
individual augment.

Therefore, given an individual state, we find all possible worse-off individual states such that the
current optimal hl-discrete CFE is still the best CFE for the worse-off individual states. Worse-off
individual states are those such that the features where the hl-discrete CFE is adding more capabil-
ities than required to transform the individual state favorably are made worse, i.e., for i such that
x⋆
i > ti, augi < xi. Specific to the threshold classifier we use in the experiments, an hl-discrete

CFE is adding more capabilities than required to feature i of x, if by taking the action, the trans-
formed feature x⋆

i is such that x⋆
i > ti. The derived worse-off individual state (augment) aug is

valid if x’s hl-discrete CFE is also its the optimal CFE.

Data augmentation reduces negative impact of low frequency of CFEs With Algorithm 1, we
augment the individual 7→hl-discrete CFE training set to increase diversity (AG1) and the frequency
(AG2) of CFEs whose current frequency is less than 20 hl-discrete CFEs. For example, we reduce
the number of hl-discrete CFEs with less than 20 individuals from 813 to 638, 2676 to 2005, and
9043 to 7144 for the 20- 50- and 100-dimensional datasets, respectively.

Experimental results show an improvement in the accuracy of the CFE generators on the test sam-
ples. For example, on the 100-dimensional dataset, the accuracy of the hl-id CFE generator increases
from 35.37% before data augmentation to 50.54 after AG1, and 78.99% after AG2 (refer to Table 6).
We, therefore, believe that data augmentation and other similar methods can be employed to im-
prove the robustness of CFE generators in cases where there is a low frequency of CFEs in the
individual7→CFE training datasets.

Effect of data augmentation
20-dimensional 50-dimensional 100-dimensional

Before data augmentation 0.969± 0.00284 0.744± 0.00608 0.354± 0.00664
After AG1 0.965± 0.00303 0.760± 0.00595 0.505± 0.00694
After AG2 0.982± 0.00218 0.845± 0.00504 0.790± 0.00565

Table 6: Data augmentation alleviates the negative effects of low frequency of CFEs and improves
accuracy of data-driven CFE generators on the 20-, 50-, and 100-dimensional: all datasets.

D.7 HEAVILY DEPENDS ON COMPLEXITY OF CFE GENERATOR MODEL

Given the individual 7→hl-discrete-id CFE 20-dimensional, >40 dataset variant, we compare the
effectiveness of the neural network-based CFE generator against the Hamming distance-based CFE
generator. As shown in Figure 18, the neural network-based CFE generator demonstrates greater
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(a) Neural network-based CFE generator
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Figure 18: A comparison of accuracy of two CFEs generators on the 20-dimensional >40 dataset.

accuracy in generating CFEs for new individuals. Interesting for future works is an exploration of
the effectiveness of CFE generators based on more advanced and alternative methods, e.g., multi-
chain neural networks, reinforcement learning, and transformer models.
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