
Deep Combinatorial Aggregation

Yuesong Shen 1,2 Daniel Cremers 1,2

1 Technical University of Munich, Germany
2 Munich Center for Machine Learning, Germany

{yuesong.shen, cremers}@tum.de

Abstract

Neural networks are known to produce poor uncertainty estimations, and a vari-
ety of approaches have been proposed to remedy this issue. This includes deep
ensemble, a simple and effective method that achieves state-of-the-art results for
uncertainty-aware learning tasks. In this work, we explore a combinatorial gener-
alization of deep ensemble called deep combinatorial aggregation (DCA). DCA
creates multiple instances of network components and aggregates their combina-
tions to produce diversified model proposals and predictions. DCA components can
be defined at different levels of granularity. And we discovered that coarse-grain
DCAs can outperform deep ensemble for uncertainty-aware learning both in terms
of predictive performance and uncertainty estimation. For fine-grain DCAs, we dis-
cover that an average parameterization approach named deep combinatorial weight
averaging (DCWA) can improve the baseline training. It is on par with stochastic
weight averaging (SWA) but does not require any custom training schedule or
adaptation of BatchNorm layers. Furthermore, we propose a consistency enforcing
loss that helps the training of DCWA and modelwise DCA. We experiment on
in-domain, distributional shift, and out-of-distribution image classification tasks,
and empirically confirm the effectiveness of DCWA and DCA approaches. 1

1 Introduction

Deep learning has achieved groundbreaking progress and neural networks are now widely used in
various domains [24]. However, they are known to produce poor uncertainty estimations [9, 37, 10],
which can be problematic for challenges like safety-critical applications [17, 26] or active learning
[35]. Numerous approaches have been proposed to tackle this issue, among which an effective yet
simple method is deep ensemble [23]. Deep ensemble yields state-of-the-art results for uncertainty
aware learning [37, 10], and it does not require elaborate architectural design and hyperparameter
search. However, while it aggregates multiple separately trained models, it can neither generate new
samples from the posterior to obtain more diverse predictions, nor produce a summarizing average
model which improves on the individual models in the ensemble.

Motivated by the success of deep ensemble, in this paper, we propose deep combinatorial aggregation
(DCA), which generalizes via a combinatorial perspective: given the hierarchical structure of neural
networks, we explore the idea of ensembling components of the network architecture and combining
them to form an enriched collection of model proposals. DCA inherits the simplicity and effectiveness
of deep ensemble, and additionally leads to several new possibilities: Apart from generating a
diversified set of model proposals, we discover that fine-grain DCA can lead to a new average
proposal via deep combinatorial weight averaging (DCWA). Furthermore, DCA training can benefit
from a consistency enforcing loss, which can produce DCA models that surpass standard deep
ensemble both in classification performance and uncertainty estimation.

1Source code is available at https://github.com/tum-vision/dca.
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1.1 Related work

Improving not only the predictive performance but also the uncertainty estimation of neural networks
has been a core objective of Bayesian deep learning, where an abundance of prior work exists. This
includes methods based on variational inference and weight perturbation such as Bayes by backprop
[8, 2] and its variants [41, 4], Bayesian interpretation of dropout including MC dropout [6] and
variational dropout [1, 30], expectation propagation which leads to probabilistic backpropagation
[14], Markov chain Monte Carlo (MCMC) with methods like stochastic gradient Langevin dynamics
(SGLD) [40] and stochastic gradient Hamiltonian Monte Carlo (SGHMC) [3], stochastic gradient
descent (SGD) as approximate MCMC which results in SWAG [28], as well as Bayesian noisy
optimizers such as variational online Gauss-Newton (VOGN) [18] and approaches using Laplace
approximation [20, 33]. Beyond the Bayesian formulation, methods like post-hoc calibration [9, 39]
readjust trained networks to produce more calibrated predictions, while approaches like evidential
deep learning [34] also make use of ideas like subjective logic.

Most relevant to our work is the deep ensemble method [23], which aggregates multiple independently
trained network models with different initial parameters. Deep ensemble has been shown to produce
state-of-the-art results for uncertainty estimation [37, 10]. It can be combined with methods like MC
dropout [5] and SWAG [44], or extended to the hyperparemeter space [43]. Several variants have also
been proposed, which often aim at providing more computationally or memory-efficient alternatives.
This includes snapshot ensemble [15], BatchEnsemble [42], fast geometric ensembling [7], TreeNet
[25], etc. In contrast, this work aims at exploring a combinatorial generalization of deep ensemble to
obtain new features and improve the performance of uncertainty estimation.

Lastly, our proposed DCWA method provides an alternative weight averaging scheme comparable to
stochastic weight averaging (SWA) [16].

1.2 Contributions

The main contributions of this paper are the following:

• We propose deep combinatorial aggregation, a combinatorial generalization of deep ensem-
ble that can produce more diverse model proposals and predictions.

• We explore DCA at different levels of granularity and propose deep combinatorial weight
averaging (DCWA) for fine-grain DCA models. It produces a new average model that
improves on standard training and is competitive w.r.t. alternatives like stochastic weight
averaging (SWA) [16].

• We introduce a consistency enforcing loss adapted for DCA training. It strengthens the
predictive consistency of DCA model proposals and consistently improves the performance
of DCA and DCWA models.

• We conduct experiments on in-domain, distributional shift, and out-of-distribution image
classification tasks, which validate our analysis and demonstrate the effectiveness of DCA
for uncertainty-aware learning.

2 Deep combinatorial aggregation (DCA)

In this section, we introduce the deep combinatorial aggregation (DCA) method. To simplify our
discussion, we start with a layerwise setting and assume that our base model is a neural network with
L layers. This setting can easily be generalized to other DCA variants discussed in Section 2.3.

DCA

Figure 1: Illustration of layerwise deep combinatorial aggregation using a three-layer neural network:
two sets of DCA parameter instances result in 23 = 8 model proposals. A random proposal is chosen
for each forward pass during both training and test time to generate diverse prediction samples.
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2.1 Methodology

The main idea of layerwise deep combinatorial aggregation is straightforward: while deep ensemble
[23] creates multiple copies of the entire model with different initializations, layerwise DCA instead
creates multiple instances for each layer in the model. Randomly selected instances from network
layers can be combined to form a variety of model proposals. As shown in Figure 1, this results in an
exponential number of proposals w.r.t. the network depth, since n sets of layer instances lead to nL
total network proposals.

To ensure consistency among the instance combinations, all layer instances are jointly trained: during
each feed-forward, a random instance choice from each layer is made to construct a model proposal,
and the parameters belonging to the selected layer instances are then updated via backpropagation.
This differs from deep ensemble [23] where model copies are independently trained. In Appendix A
we provide a pseudo-code for layerwise DCA training.

During inference time, to obtain uncertainty-aware predictions, one can simply sample multiple DCA
model proposals and aggregate their predictions.

2.2 Understanding DCA

While DCA is a simple and intuitive procedure, it is helpful to conduct a more in-depth theoretical
analysis to understand the assumptions it implicitly makes and their implications.

Being able to freely combine samples of layer parameters assumes that they follow mutually inde-
pendent distributions. This translates to the assumption that the weight posterior p(θ|y, x) should be
layerwise decomposable:

p(θ|y, x) ∝
L∏

l=1

φl(θl). (1)

Is this a valid assumption? Not exactly. Admittedly, the posterior is proportional to the product of
prior p(θ) and likelihood p(y|x,θ) (i.e. p(θ|y, x) ∝ p(θ)p(y|x,θ)), and the weight prior p(θ) often
satisfies a layerwise independence assumption, e.g., commonly used weight decay is equivalent to
Gaussian prior with constant diagonal covariance matrix. However, the likelihood term p(y|x,θ) is
in general not decomposable. In fact, following the directed graphical model [21] interpretation of
standard neural networks [36], the base network represents the overall distribution p(h1:L−1, y|x,θ)
where hl represents hidden neurons in layer l. Interestingly, p(h1:L−1, y|x,θ) is actually layerwise
decomposable itself

p(h1:L−1, y|x,θ) =

L∏
l=1

p(hl|hl−1, θl), (x, y := h0, hL). (2)

Nevertheless, the likelihood term p(y|x,θ) requires marginalization of all hidden neurons h1:L−1

p(y|x,θ) =

∫
h1:L−1

p(h1:L−1, y|x,θ)dh1:L−1. (3)

This entangles the layer parameters, and p(y|x,θ) is no longer decomposable in general.

Thus approximations are made when we perform layerwise DCA, and experiments show that this
indeed results in some performance penalty. The above analysis also implies that weight aggregation
at a coarser multilayer level could alleviate the issue. This is also confirmed by our empirical findings
(cf . Section 5.3).

2.3 Granularity of aggregation

The analysis in Section 2.2 raises an interesting concern about doing deep combinatorial aggregation
at different levels of granularity: From finest to coarsest, DCA can be defined at neuronwise, layerwise,
multilayer, or modelwise levels. For convolutional neural networks, due to weight-sharing along the
spatial dimensions, DCA can work with channel components instead of neurons. Note that modelwise
DCA is similar to deep ensemble, except that in each epoch DCA model copies are trained with
distinct subsets of training data which results from the random component selection, and it can benefit
from consistency enforcing loss introduced in Section 4.
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In general, DCA with finer granularity generates a greater amount of model proposals and more varied
predictions. However, the DCA components are more tightly coupled, deviating more significantly
from the assumption of decomposable posterior, which could lead to worse performance. This results
in a tradeoff between performance and prediction variety. Alternatively, one can also enrich the set of
model proposals by using more DCA instances, at the cost of a higher computational budget. This
can also lead to improved performance (cf . Section 5.3).

Among the broad range of granularities, there exists a notable dichotomy between (sub)layerwise
DCA and multilayered DCA. This comes from the fact that component instances from multilayered
DCA variants can have similar behaviors but dissimilar weights. Neural networks admit a large
number of equivalent reparameterizations via the reordering of hidden layer neurons. While the joint
training of DCA enforces consistency among different DCA components of the network model, it
does not prevent equivalent reordering of hidden neurons inside multilayer components. This issue
does not occur for (sub)layerwise DCA cases. To make the distinctions, we refer to (sub)layerwise
cases as fine-grain DCA and multilayered cases as coarse-grain DCA.

3 Deep combinatorial weight averaging (DCWA) for fine-grain aggregation

For fine-grain DCA models, it turns out that averaging the learned weights of DCA components leads
to an improved parameterization of the base model. We discuss this procedure here in detail.

Deep combinatorial weight averaging Since component instances of a fine-grain DCA model
have compatible weights after the joint training, it is sensible to consider their mean value. This
produces a new average parameterization for the base network model. We refer to this process as
deep combinatorial weight averaging (DCWA).

Consider as an example the layerwise DCA model for a base neural network with l layers. After
the joint training of n sets of DCA layer instances parameterized by Θ = (θ11:n, . . . , θ

L
1:n), DCWA

simply computes the average parameterization θ̄ = (θ̄1, . . . , θ̄L) for the base network model, where
for each layer l, we have θ̄l = 1

n

∑n
i=1 θ

l
i.

Experiments show that DCWA achieves comparable test accuracy w.r.t. corresponding DCA predic-
tions (cf . Section 5.3). It also consistently outperforms the standard training of the base network, and
delivers comparable results w.r.t. to SWA [16] (cf . Section 5.1).

Comparison to SWA It is interesting to compare DCWA with SWA [16] since they are both
weight averaging schemes that improve the standard training. This said, DCWA and SWA are based
on different principles: SWA averages over the SGD trajectory while DCA relies on combining
component aggregations. In practice, SWA requires custom learning rate scheduling and careful
choice of end learning rate. Also, SWA requires an additional Batch Normalization update [16] to
produce good predictions, which leads to an extra overhead. In contrast, DCWA does not have any of
these issues and is simple to implement and deploy.

4 Consistency enforcing loss for DCA and DCWA

Through component combination, DCA is able to produce a combinatorial amount of model proposals.
However, during the joint training, each DCA component receives gradient updates from different
model proposals. These updates can be inconsistent, which can lead to suboptimal training of
the DCA model. To remedy this issue, we propose in this section a consistency enforcing loss to
encourage consistency among DCA model proposals.

Consistency enforcing loss To promote consistency among DCA model proposals, we encourage
DCA predictions agree with both the ground-truth and the predictions from other model proposals.
To achieve this, given an input x with ground-truth y and a DCA model proposal parameterized by θ̂,
instead of minimizing the negative log-likelihood `NLL(x, y; θ̂) = − log p(y|x; θ̂), the consistency
enforcing loss includes an additional KL divergence term between the predictive output probability
p(y|x; θ̂) and a reference output probability p̃:

`(x, y, p̃; θ̂) = − log p(y|x; θ̂) +DKL(p̃‖p; θ̂). (4)
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Here the reference output probability p̃ should be chosen to reflect the predictions from other
model proposals. In practice, we perform multiple feed-forward steps on the same input x using
randomly chosen model proposals (θ̂(i))1≤i≤s, and the i-th consistency enforcing loss `(i) simply
uses the output probability prediction p(i−1) from the previous step as reference distribution: `(i) =

`(x, y, p(i−1); θ̂(i)). Note that the output predictions are reused and one additional feed-forward
pass is needed to compute a first reference distribution p(0). The gradient updates from the multiple
feed-forward steps can be accumulated together for a single optimization step on the global DCA
parameter set Θ.

Also, observe that the consistency enforcing loss uses a forward KL divergence DKL(p̃‖p) to
regularize the predictive output distribution p. The forward KL divergence DKL(p̃‖p) is “zero-
avoiding” and allows p to be flat and uncertain. This is helpful for the output predictive distribution p
to find a good compromise between the reference prediction p̃ and the ground-truth y, especially in
cases where they strongly disagree with each other.

Relation to existing approaches KL divergence as a regularization term in loss function appears
in many contexts: for Bayesian neural networks [8, 2] it is used to regularize weight posterior; in
variational autoencoders (VAE) [19] it regularizes the latent representation. Applying KL divergence
on output distributions has been proposed by Zhang et al. [46] for knowledge distillation, and Song
and Chai [38] for collaborative learning. However, to the best of our knowledge, this has not been
extensively explored in the context of uncertainty-aware learning. Also, existing approaches [46, 38]
require output predictions from all other models, which is impractical for DCA with a combinatorial
amount of model proposals. In comparison, our proposed consistency enforcing loss is efficient and
synergizes well with DCA training.

Consistency vs. diversity While strengthening the predictive consistency can help the DCA pa-
rameter training, it has the risk of reducing the diversity of model predictions. Since model diversity
has been found beneficial for ensemble approaches [43, 45, 29], the consistency enforcing loss has
a mixed effect on uncertainty estimation and could be advantageous in some cases. In practice (cf .
Section 5.3), we observe that the consistency enforcing loss boosts the predictive performance of
DCWA models and improves the uncertainty estimation of modelwise DCA.

To further analyze the consistency enforcing loss, we empirically study its effect on the classification
performance of individual DCA model proposals. The results are collected in Appendix C. We
observe that the consistency enforcing loss improves the prediction results of individual models but
reduces their diversity.

5 Experiments

To empirically evaluate the effectiveness of the proposed DCA and DCWA models, we conduct
a series of experiments: we benchmark the predictive performance of DCWA in Section 5.1 and
evaluate the uncertainty estimation of DCA models in Section 5.2. Also, ablation studies on DCA
variants are included in Section 5.3 to further analyze several design aspects. For all experiments we
use a common preactivation ResNet-20 architecture [11] as the base network, and five independent
runs are executed to produce the final results. Our implementation uses PyTorch [32] and can run on
a single modern GPU with 10Gb VRAM.

5.1 Image classification using DCWA

Table 1: Image classification results on CIFAR-10 and SVHN. DCWA has comparable performance
w.r.t. SWA and is simple to use. Both SWA and DCWA outperform the standard baseline training.

CIFAR-10 SVHN
Accuracy ↑ NLL ↓ Accuracy ↑ NLL ↓

Standard 0.9264± 0.0020 0.2507± 0.0078 0.9590± 0.0012 0.1786± 0.0038
SWA 0.9327± 0.0016 0.2167± 0.0069 0.9610± 0.0010 0.1809± 0.0016

DCWA 0.9337± 0.0022 0.2355± 0.0101 0.9606± 0.0024 0.1713± 0.0060
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Firstly, we evaluate the performance of the DCWA approach. For this we use CIFAR-10 [22] and
SVHN [31] datasets and compare against the standard training and SWA [16] as baselines. DCWA
models are obtained from training layerwise DCA models with five copies and consistency enforcing
loss is used. SWA models are trained following the settings from Izmailov et al. [16]. Test accuracy
and negative log-likelihood (NLL) on both datasets are reported in Table 1.

We observe that DCWA and SWA have comparable results, and both of them outperform the standard
training baseline. However, DCWA has the appealing practical advantages over SWA of not requiring
custom learning rate scheduling nor readjustment of batch normalization layers.

5.2 DCA for uncertainty-aware learning

We now focus on comparing the uncertainty estimation of DCA models against a selection of practical
uncertainty-aware learning methods, including MC dropout [6], SWAG [28], and deep ensemble
[23]. Also, results from the standard training of the base network are reported for reference. These
baselines are compared with trunkwise2 and modelwise DCA models. Following the ablation study
results in Table 3, consistency enforcing loss is used with modelwise DCA models while standard
negative log-likelihood loss is used to train trunkwise DCA models for best performance.

To evaluate the quality of uncertainty estimation, we conduct a series of experiments on in-domain,
distributional shift, and out-of-distribution (OOD) image classification problems. We consider
common metrics for uncertainty quantification, including negative log-likelihood (NLL), Brier score,
and expected calibration error (ECE) [9]. For OOD experiments, we follow the settings of Liang
et al. [27] and plot the ROC-curve, and report quantitative metrics such as FPR95, detection error,
AUPR-in, AUPR-out, and AUROC in Appendix B.3.

Overall, we observe that modelwise DCA produces the best results both in terms of predictive
performance and uncertainty estimation. It is the method of choice if the performance of uncertainty-
aware learning is the only concern. Trunkwise DCA is overall competitive with deep ensemble and
moreover it produces more diverse model proposals. It offers a trade-off for more varied predictions.

In-domain comparison We start by training the baselines and DCA models for the standard in-
domain image classification problems on the CIFAR-10 [22] and SVHN [31] datasets. For all training
we use SGD with momentum 0.9. We use a drop rate of 0.1 for MC dropout, and for SWAG we
follow the settings from Maddox et al. [28]. Deep ensemble is performed on five separate base
networks. And trunkwise and modelwise DCA models also use five copies. The results on CIFAR-10
are summarized in Table 2 and SVHN results are in Appendix B.1.

Table 2: In-domain image classification results on CIFAR-10. In general, modelwise DCA has the
best predictive performance and uncertainty estimation, while trunkwise DCA has slightly better
results w.r.t. deep ensemble while producing a richer set of model proposals.

Accuracy ↑ NLL ↓ ECE ↓ Brier ↓
Standard 0.9264± 0.0020 0.2507± 0.0078 0.0301± 0.0020 0.1132± 0.0030

MC dropout 0.9281± 0.0015 0.2186± 0.0034 0.0121± 0.0013 0.1057± 0.0021
SWAG 0.9329± 0.0018 0.2016± 0.0045 0.0149± 0.0023 0.0994± 0.0020

Deep ensemble 0.9434± 0.0017 0.1746± 0.0028 0.0085± 0.0011 0.0834± 0.0013
Trunk. DCA 0.9454± 0.0008 0.1676± 0.0018 0.0080± 0.0011 0.0809± 0.0011
Model. DCA 0.9481± 0.0008 0.1550± 0.0008 0.0084± 0.0009 0.0762± 0.0007

In general, modelwise DCA obtains the best performance both in terms of classification accuracy
and uncertainty estimation. Also, trunkwise DCA slightly outperforms deep ensemble in this case.
SVHN results in Appendix B.1 also confirm these observations.

Distributional shift experiments In-domain experiments alone are not sufficient to fully character-
ize the quality of uncertainty estimation, since they do not reflect the case when there is a mismatch
between the training data and the test set. This calls for additional distributional shift experiments,

2A trunk consists of a (residual) block with a non-identity main branch together with subsequent residual
blocks having an identity main branch, following the graphical model interpretation of Shen and Cremers [36].
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Figure 2: Distributional shift image classification results on CIFAR-10-C with various degrees
of corruption severities. Again, modelwsie DCA has the best overall performance. Severity 0
corresponds to the in-domain case.

which gradually transform the in-domain test set to make it increasingly different than the training
data. In our case, we use the CIFAR-10-C [12] dataset, which applies a wide range of corruptions to
the original CIFAR-10 test set. CIFAR-10-C quantizes corruptions into five severity levels where
higher levels generate stronger corruptions and are more dissimilar to the in-domain test set. We use
the models previously trained on CIFAR-10 in-domain training data, and evaluate their performance
on CIFAR-10-C separately for each severity level. Figure 2 summarizes the results.

Similar to the in-domain scenario, modelwise DCA has the best results overall. Trunkwise DCA has
comparable test accuracies w.r.t. deep ensemble. It tends to outperform deep ensemble in terms of
negative log-likelihood, however, it is worse in terms of Brier score and ECE, as indicated by the
additional plots in Appendix B.2.
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Figure 3: ROC curves with CIFAR-10 as the in-
domain dataset and SVHN as the OOD dataset.
Modelwise DCA shows the best performance for
OOD detection, followed by trunkwise DCA.

Out-of-distribution results Additionally, we
complement the distributional shift experiments
with out-of-distribution image detection [13].
The goal is to distinguish in-domain test sam-
ples from outliers that are drawn from a differ-
ent dataset. Thus we have a binary classifica-
tion setting. For our case, we reuse again the
models trained on in-domain CIFAR-10 training
data. Samples from the CIFAR-10 test set are re-
garded as in-domain positive samples while test
samples from SVHN are treated as negative out-
liers. We show the ROC curves for DCA models
and their baselines in Figure 3. Quantitative met-
rics following Liang et al. [27], which include
FPR95, detection error, AUPR-in, AUPR-out
and AUROC, are reported in Appendix B.3.

Again, we observe that modelwise DCA
achieves the best OOD performance. Trunk-
wise DCA has the second-best performance and
outperforms deep ensemble and SWAG. Inter-
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estingly, MC dropout turns out to perform poorly in the OOD case and is even worse than the standard
training baseline. The quantitative results in Appendix B.3 agree with the ROC curve.

5.3 Ablation studies

We wrap up the experiment section with a series of ablation studies on variants of DCA models.
We consider three main aspects: the effect of granularity, the usage of consistency enforcing loss
during training, and the influence of component instance count on DCA predictive results. We use
the in-domain CIFAR-10 classification task to compare the performance of different DCA variants.

Effect of granularity To understand the effect of DCA component granularity on the performance
of DCA models, we define five DCA model variants with different component granularities. This
includes DCA models whose components are channels, layers, residual blocks, residual trunks, and
entire models. All DCA model variants are constructed with five sets of component instances and
trained with the consistency enforcing loss (NLL loss leads to similar observations). We summarize
the results of these DCA variants and their DCWA models in Figure 4.
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Figure 4: Classification errors (= 1−accuracy, lower is better), NLLs, and ECEs of DCA (blue) /
DCWA (orange) models with different component granularities on in-domain CIFAR-10 classification.
As references, the results of standard baseline training (dashed lines), as well as deep ensemble
(dotted lines), are also provided. The metrics are all plotted in log scale.

Several interesting observations can be drawn from this experiment: For DCA models, coarser
component granularity generally leads to better results. This agrees with the analysis in Section 2.2.
For DCWA models we observe a clear distinction between fine-grain (channel and layer component
DCAs) and coarse-grain (block, trunk, and model component DCAs) variants: fine-grain DCWA
variants improve on the standard baseline, while coarse-grain DCWA variants result in considerably
worse performance than the standard baseline. This also matches our analysis in Section 2.3.
Interestingly, the DCWA model with block component is still able to yield significantly better than
random (i.e. 10%) accuracy. In this case, reparameterization mismatch only happens on the side
branches of the residual blocks, and the trained weights on the main branch are still able to produce
meaningful predictions despite the erroneous parameterization on the residual side branches.

Table 3: Comparison of DCA training using negative log-likelihood (NLL) loss and consistency
enforcing loss (CEL) for (layerwise) DCWA, trunkwise DCA, and modelwise DCA models.

Accuracy ↑ NLL ↓ ECE ↓
DCWA (NLL) 0.9314± 0.0017 0.2651± 0.0066 0.0365± 0.0014
DCWA (CEL) 0.9337± 0.0022 0.2355± 0.0101 0.0301± 0.0014

Trunkwise DCA (NLL) 0.9454± 0.0008 0.1676± 0.0018 0.0080± 0.0011
Trunkwise DCA (CEL) 0.9441± 0.0020 0.1728± 0.0043 0.0084± 0.0017
Modelwise DCA (NLL) 0.9495± 0.0008 0.1601± 0.0006 0.0107± 0.0004
Modelwise DCA (CEL) 0.9481± 0.0008 0.1550± 0.0008 0.0084± 0.0009

Consistency enforcing loss To analyze the influence of consistency enforcing loss for DCA train-
ing, we compare DCWA, trunkwise DCA, and modelwise DCA models which are trained with
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negative log-likelihood loss with those trained with consistency enforcing loss. We summarize the
results on CIFAR-10 in Table 3.

We observe that the consistency enforcing loss improves the overall performance of the DCWA model.
It is also beneficial for the uncertainty estimation of the modelwise DCA model, both in terms of
NLL and ECE. On the other hand, negative log-likelihood loss is the better choice for the trunkwise
DCA model. In Appendix B.4 we provide additional results for other DCA variants.
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Figure 5: Accuracy (solid lines) and negative log-
likelihood (dashed lines) of layerwise DCA models
(blue) and their corresponding DCWA models (or-
ange) with two, three, four and five sets of DCA
components. The results of standard baseline train-
ing (green) are also provided for reference.

Number of component instances Finally, we
investigate the influence of DCA instance count.
To properly train all the DCA component in-
stances jointly, we find out that it is beneficial to
multiply the training epochs and per-minibatch
gradient backpropagations accordingly. For ex-
ample, in our experiments, we schedule 200
epochs for standard baseline training. Then, for
training a DCA model with three sets of com-
ponent instances we use 600 epochs, and accu-
mulate for each minibatch an average gradient
over three backpropagations on randomly se-
lected DCA proposals for parameter update. We
train a series of layerwise DCA models with two,
three, four, and five sets of component instances,
and collect their results in Figure 5.

In general, we observe that more DCA instances
lead to better results (higher accuracy and lower
NLL loss in Figure 5). Therefore, DCA pro-
vides a reasonable trade-off between the com-
putational footprint and the predictive power.
Moreover, we see that a minimal DCA model
with two sets of components can already significantly improve the performance compared to the
standard base network training case.

6 Discussion

In this work, we propose deep combinatorial aggregation, a generalization of deep ensemble that has
also a simple setup and, unlike the choice of dropout rate for MC dropout or the custom learning
rate scheduling of SWAG, requires no elaborate hyperparameter search. We find that coarse-grain
DCAs are well suited for uncertainty-aware learning: modelwise DCA consistently outperforms all
other uncertainty-aware learning methods for in-domain, distributional shift, and OOD scenarios;
trunkwise DCA produces more diverse predictions while still delivering competitive performance
w.r.t. deep ensemble, which is the best among existing baselines. Additionally, we discover that
fine-grain DCA can produce a DCWA parameterization for the base network. DCWA improves the
predictive performance compared to the standard baseline training. It has on-par performance with
SWA but does not need custom learning rate scheduling and readjustment of batchnorm layers. Thus
DCWA can be an attractive alternative to SWA that is easy to implement and deploy.

Similar to deep ensemble, DCA requires multiple times the computational budget to perform the
joint training, compared to the standard baseline. While in this work we focused on the predictive
power, we plan to improve the efficiency of DCA in future work. Apart from this, it can also be
interesting to search for a variant that combines the benefits of both the fine-grain and coarse-grain
DCAs, as currently DCWA is only possible for fine-grain DCAs, while good uncertainty estimations
can only be attained via coarse-grain DCAs instead. Additionally, it is possible to combine DCA with
other uncertainty-aware methods, which might further improve the performance. We plan to further
investigate these aspects in future work.
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