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Abstract

Sparse plus Low-Rank (S + LR) decomposition of Large Language Models
(LLMs) has emerged as a promising direction in model compression, aiming to
decompose pre-trained model weights into a sum of sparse and low-rank matri-
ces W ≈ S + LR. Despite recent progress, existing methods often suffer from
substantial performance degradation compared to dense models. In this work, we
introduce 3BASiL-TM, an efficient one-shot post-training method for (S + LR)
decomposition of LLMs that addresses this gap. Our approach first introduces
a novel 3-Block Alternating Direction Method of Multipliers (ADMM) method,
termed 3BASiL, to minimize the layer-wise reconstruction error with convergence
guarantees. We then design an efficient transformer-matching (TM) refinement
step that jointly optimizes the sparse and low-rank components across transformer
layers. This step minimizes a novel memory-efficient loss that aligns outputs at
the transformer level. Notably, the TM procedure is universal as it can enhance
any (S + LR) decomposition, including pure sparsity. Our numerical exper-
iments show that 3BASiL-TM reduces the WikiText2 perplexity gap relative to
dense LLaMA-8B model by over 30% under a (2:4 Sparse + 64 LR) configura-
tion, compared to prior methods. Moreover, our method achieves over 2.5x faster
compression runtime on an A100 GPU compared to SOTA (S + LR) method.
Our code is available at https://github.com/mazumder-lab/3BASiL.

1 Introduction
Large Language Models (LLMs) have demonstrated exceptional performance across diverse tasks
including complex reasoning [Xu et al., 2025], text generation [Achiam et al., 2023], mathematical
problem-solving [Romera-Paredes et al., 2024], and code synthesis [Roziere et al., 2023]. How-
ever, state-of-the-art LLMs [Achiam et al., 2023, Dubey et al., 2024, Google, 2023] with billions of
parameters face substantial deployment challenges due to their computational and memory require-
ments. These constraints substantially limit real-time applications and deployment on resource-
constrained devices. Consequently, model compression techniques have emerged as an essential
research direction to increase LLM accessibility while preserving their accuracy and functionality.

Established methods for model compression primarily include neural network pruning [LeCun et al.,
1989, Hassibi and Stork, 1992, Han et al., 2015b] and quantization [Han et al., 2015a, 2016]. For
LLMs, recent research has focused on one-shot post-training compression methods [Frantar and
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Alistarh, 2023, Dettmers et al., 2023, Lin et al., 2024, Frantar et al., 2022, Behdin et al., 2023,
Meng et al., 2024a,b] that compress model weights using a minimal calibration dataset without
expensive retraining. These approaches have become particularly attractive as they enable efficient
compression of modern LLMs even on a single commodity GPU.

An exciting recent line of research in one-shot compression studies the task of decomposing pre-
trained weight matrices W into a compressed backbone component (e.g., sparse or quantized) and
a low-rank component: W ≈ C(W) + LR. This LoRA-aware formulation effectively integrates
with Low-Rank Adaptation (LoRA) methods [Hu et al., 2022], allowing efficient downstream adap-
tation by freezing C(W) and fine-tuning only the low-rank components, which serve as a smart-
initialization to LoRA. Guo et al. [2024], Li et al. [2024] demonstrate that this approach outper-
forms the sequential approach of first compressing the model W ≈ C(W) (under similar backbone
components constraints) followed by standard LoRA fine-tuning (Noise & Zero adapter).

One-shot Quantized plus Low-Rank decomposition methods for LLMs [Guo et al., 2024, Li et al.,
2024, Saha et al., 2024] have demonstrated exceptional efficiency. These works decompose pre-
trained LLM matrices into low-rank components and memory-efficient quantized backbones, en-
abling aggressive quantization while preserving model performance.

Parallel advances in Sparse plus Low-Rank (S + LR) decomposition [Zhang and Papyan, 2025,
Makni et al., 2025] combine the strengths of pruning and matrix factorization. OATS [Zhang and
Papyan, 2025] pioneered post-training (S+LR) compression for LLMs, demonstrating its viability
as an alternative to unstructured pruning at the same compression rates and achieving CPU accelera-
tion via DeepSparse [NeuralMagic, 2021]. HASSLE-Free [Makni et al., 2025] established a unified
(S + LR) framework showing an underlying connection between OATS and various LLM prun-
ing methods—they focus on N:M sparse plus low-rank decompositions for GPU acceleration using
specialized CUDA kernels from [Mozaffari et al., 2024]. Despite their promise, existing (S+ LR)
algorithms for LLMs rely exclusively on alternating minimization approaches. Due to the complex-
ity of the underlying optimization problem, these procedures have limited convergence guarantees
and may perform poorly in joint optimization of the sparse and low-rank components. Indeed, our
empirical evidence in Figure 5a and Figure 5b suggests that our proposed algorithm more effectively
optimizes the sparse and low-rank parts compared to an alternating minimization approach.

In this paper, we propose 3BASiL1, an elegant 3-block ADMM approach tailored for (S + LR)
decomposition of LLMs. Unlike prior approaches that separate pruning and low-rank fitting steps,
3BASiL explicitly models their interaction through simultaneous optimization under a unified objec-
tive with provable convergence guarantees. We formulate the weight decomposition problem with
explicit sparsity and rank constraints, decomposing it into three variable sets—sparse component,
low-rank component, and original weights—optimized within an iterative ADMM framework. This
approach precisely enforces sparsity pattern and rank constraints at each iteration via closed-form
proximal updates while minimizing reconstruction error with respect to the original model weights.

Additionally, we propose a (memory-efficient) transformer-matching (TM) procedure that refines
sparse and low-rank components by aligning transformer block outputs with the dense model. In
contrast to prior (S+ LR) methods, which allow only low-rank components refinement via LoRA
after layerwise compression, TM enables joint refinement of both sparse and low-rank components at
the transformer level. This procedure is compatible with any existing (S+ LR) method and can be
applied prior to LoRA fine-tuning with minimal computational overhead, providing a more effective
initialization for downstream adaptation.

Our contributions can be summarized as follows:

1. 3-Block ADMM We introduce 3BASiL, a novel 3-Block Alternating Direction Method of Mul-
tipliers (ADMM) algorithm specifically designed for Sparse plus Low-Rank (S + LR) decom-
position of Language Models. Our method explicitly captures interactions between sparse and
low-rank components within a unified optimization framework, while providing theoretical con-
vergence guarantees as well. Moreover, 3BASiL offers remarkable computational advantages,
achieving over 7x speedup compared to the strong HASSLE-free-ALPS baseline, when com-
pressing a Llama3.2-3B model on an L40 48GB GPU.

13BASiL: 3Block ADMM for Sparsity and Low-Rank Constraints.
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Figure 1: Overview of the proposed 3BASiL framework. (Left) For each layer in a Transformer, we
employ multi-Block ADMM to efficiently decompose weights into high-quality Sparse plus Low-
Rank components by minimizing the layer reconstruction objective. (Right) At the Transformer
level, we apply gradient-based optimization to jointly refine all sparse and low-rank components
across layers to match the original transformer’s output, with the resulting low-rank components
serving as smart initialization for subsequent LoRA fine-tuning.

2. Transformer matching and Universality We introduce TM, a novel (memory-efficient) refine-
ment procedure that jointly optimizes sparse and low-rank components across transformer lay-
ers. This approach significantly improves sparse component quality with minimal computational
cost by directly leveraging transformer-level outputs, addressing a major limitation in current
(S + LR) methods. Crucially, our TM procedure is universally applicable and can enhance
any existing (S + LR) decomposition method, including purely sparse compression, providing
superior initialization for subsequent LoRA fine-tuning.

3. Empirical Validation and State-of-the-Art Results We introduce 3BASiL-TM as a new state-
of-the-art method for (S + LR) one-shot decomposition of Large Language Models. It signifi-
cantly improves LLM evaluation benchmarks including perplexity of different datasets and var-
ious zero-shot tasks. Specifically, our numerical experiments show that 3BASiL-TM reduces the
WikiText2 perplexity gap to dense model by over 30% compared to prior methods for a Llama-
8B model under a (2:4 Sparse + 64 LR) configuration. It also provides significant compression
runtime speedups compared to other (S+ LR) decomposition techniques for LLMs.

2 Highly effective Sparse plus Low-Rank decomposition via ADMM
2.1 Problem formulation
We compress the layers of an LLM sequentially, one at a time by minimizing the reconstruction error
between the outputs of pre-trained weights and compressed ones on a set of given input activations.
Formally, let Ŵ represent the pre-trained weight matrix of a given layer, and X denote the input
activations (i.e., output of previous layers) on a set of N calibration samples. In our setting, the
goal of layer-wise reconstruction is to find a (S + LR) decomposition that minimizes the ℓ2 error
between the outputs of the original and decomposed weights—this can be formulated as follows:

min
S,L

1

2

∥∥∥XŴ −X (S+ L)
∥∥∥2
F
+

λ

2

∥∥∥Ŵ − (S+ L)
∥∥∥2
F

s.t. S ∈ S, rank (L) ≤ r. (1)

Above ∥·∥F denotes the Frobenius norm, S denotes the set of matrices satisfying a specified sparsity
constraint (e.g., unstructured sparsity with given sparsity level or N:M sparsity); S and L denote
the sparse and low-rank components, respectively. Parameter λ > 0 encourages the decomposed
weights to remain close to the pre-trained ones.

2.2 A multi-Block ADMM approach for layer-wise reconstruction
The primary challenge in optimizing problem (1) lies in the joint minimization of S and L under two
complex constraints—sparsity and low-rank. To address this, we employ the Alternating Direction
Method of Multipliers (ADMM), which enables separate updates of S and L at each iteration while
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maintaining their interdependence through a Lagrangian multiplier. This approach preserves the
power of joint optimization while making the problem tractable. Our 3-block ADMM introduces an
auxiliary variable D as a copy of the sparse component S, reformulating problem (1) as:

min
S,D,L

1

2

∥∥∥XŴ −X (S+ L)
∥∥∥2
F
+

λ

2

∥∥∥Ŵ − (S+ L)
∥∥∥2
F
+ IS(D) (2)

s.t. S = D, rank (L) ≤ r.

where IS(D) is an indicator function that equals to infinity when D /∈ S and zero otherwise. The
augmented Lagrangian function with dual variable V and a quadratic penalty parameter ρ > 0 reads:

Lρ(S,L,D,V) =
1

2

∥∥∥XŴ −X (S+ L)
∥∥∥2
F
+

λ

2

∥∥∥Ŵ − (S+ L)
∥∥∥2
F
+ IS(D) +

ρ

2

∥∥∥∥S−D+
V

ρ

∥∥∥∥2
F

.

The method proceeds by minimizing the augmented Lagrangian with respect to three variables se-
quentially: the sparse component S, the low-rank component L, and sparse component’s constrained
copy D, followed by a dual update (in variable V). This sequential optimization over three variable
blocks gives the method its name: 3-Block ADMM. At iteration t, the updates are:

S(t+1) = argminS Lρ(S,L
(t),D(t),V(t)) L(t+1) = argminL Lρ(S

(t+1),L,D(t),V(t))

D(t+1) = argminD Lρ(S
(t+1),L(t+1),D,V(t)) V(t+1) = V(t) + ρ(S(t+1) −D(t+1)).

Below, we derive the updates. For notational simplicity, we denote H = X⊤X+ λI.

S-block update Since Lρ(S,L
(t),D(t),V(t)) is a quadratic function of S, we obtain the closed-

form solution by setting the gradient to zero:

S(t+1) = (H+ ρI)
−1
(
H(Ŵ − L(t))−V(t) + ρD(t)

)
. (3)

L-block update Note that the L-optimization subproblem can be reformulated as minimizing
∥H1/2(Ŵ − S(t+1) − L)∥2F subject to the rank constraint. When H is full-rank (satisfied for any
λ > 0), this problem has the closed-form solution (see Section 5 for a discussion about rank-reduced
regression results) :

L(t+1) = H−1/2Pr

(
H1/2(Ŵ − S(t+1))

)
, (4)

where Pr denotes the best rank-r approximation, which can be computed via SVD.2

D-block update The optimization over D involves projecting S(t+1) + V(t)/ρ onto the sparsity
constraint set S, which corresponds to magnitude-based pruning of (S(t+1) + V(t)/ρ)—we sort
[(S(t+1) + V(t)/ρ)ij ]

2 and retain only the largest values. For unstructured pruning, we keep a
predetermined fraction of the largest values; for N:M structured sparsity, we retain N largest values
out of every M consecutive weights.

In practice, we employ an iteration-dependent penalty parameter ρt, giving the following updates:

S(t+1)=(H+ ρtI)
−1

(H(Ŵ − L(t))−V(t) + ρtD
(t)) L(t+1)=H−1/2Pr(H

1/2(Ŵ − S(t+1)))

D(t+1)=PS(S
(t+1) +V(t)/ρt) V(t+1)=V(t) + ρt(S

(t+1) −D(t+1)).
(5)

Computational complexity We implement several tricks to reduce the computational cost in the
S and L-update steps, which constitute the major computational cost of 3-Block ADMM algorithm.
For the S-update step, we adopt the approach of Meng et al. [2024a] by pre-computing (once) and
storing the eigenvalue decomposition H = UΣU⊤. This allows us to efficiently calculate the ma-
trix inverse (H + ρI)−1 = U(Σ + ρI)−1U⊤ for varying values of ρ across iterations. For an
efficient L-update step, we store the matrices H−1/2 = UΣ−1/2, and H1/2 = Σ1/2U⊤ and em-
ploy a randomized-SVD procedure [Halko et al., 2011] for numerical efficiency. In the context of
LLMs, the weight matrices scale with the transformer’s hidden dimension N . Our algorithm’s per-
iteration time complexity comprises: five matrix-matrix multiplications with complexity O(N3),
a Randomized-SVD operation with complexity O(N2r) to enforce rank constraint (using constant
oversampling and power iterations as in [Halko et al., 2011]), and a projection onto S requiring at
most O(N2 log(N)) for sorting and thresholding operations—across the entire matrix for unstruc-
tured sparsity or within blocks for semi-structured sparsity. The overall time complexity is O(N3).

2The closed-form solution in Equation (4) can be used to improve other (S+LR) methods like HASSLE-
free (which employs gradient-descent on a reparameterized L = UV⊤)
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2.3 Convergence of ADMM
Despite its appeal and usage, the convergence properties of 3-Block ADMM remain theoretically
challenging. Chen et al. [2016] demonstrated that without additional conditions, the algorithm may
fail to converge, while later works [Lin et al., 2015, Wang et al., 2018] established various sufficient
conditions for convergence.

We observe that our proposed 3-block ADMM approach can be reformulated as a standard 2-block
ADMM by treating (L,D) as a single variable block. This reformulation is valid because the La-
grangian is separable with respect to L and D, meaning their joint minimization yields equivalent
updates to sequential optimization (although 3-blocks remain the “natural” way to conceptualize the
updates). While Meng et al. [2024a] established convergence guarantees for ADMM applied to lay-
erwise pruning, their analysis addresses a different problem formulation than ours. Specifically, they
apply ADMM solely to unstructured pruning, whereas our approach extends to (S + LR) decom-
position. Our framework includes a low-rank component with relatively complex updates in each
iteration, which introduces additional mathematical challenges in convergence analysis that prevent
direct application of the results in Meng et al. [2024a].

To address this gap, we establish the following novel convergence guarantee that ensures the de-
composition converges as long as we choose penalty parameter ρt that increases sufficiently rapidly
(refer to Appendix A for a complete proof).

Theorem 1. Let
{
S(t)

}∞
t=0

and
{
L(t)

}∞
t=0

be the sequence generated according to update rule (5).
Suppose the penalty parameter ρt chosen at iteration t is non-decreasing and satisfies

∑∞
t=0 1/ρt <

∞. Then for any t ≥ 1:

max{∥S(t+1) − S(t)∥F , ∥L(t+1) − L(t)∥F } ≤ C/ρt−1, (6)

where C is a constant depending on X, Ŵ, λ, ρ0, and
∑∞

t=0 1/ρt. In particular, there exists a
matrix W̄ such that S(t) + L(t) → W̄ as t → ∞.

3 Transformer-level matching
After layer-wise pruning, LoRA can directly refine the low-rank components in the (S + LR) de-
composition for task adaptation. However, the sparse components are not well-optimized by this
process, as they are determined solely via layer-wise objectives. These layer-wise objectives are im-
perfect proxies for the true end-to-end loss function. On the other hand, fully optimizing the sparse
components using the true end-to-end loss is computationally expensive and requires a full back-
propagation on the entire network. To address this limitation, we introduce an efficient transformer-
matching refinement step that leverages transformer-level information to enhance the sparse compo-
nents. This procedure is efficient because it requires comparable CUDA memory and runtime to the
compression algorithms themselves.

Our transformer-matching procedure jointly optimizes all sparse and low-rank components across
layers within a transformer block to better match the original transformer’s output. It acts as an
intermediate loss function between layer-wise proxies and the true end-to-end loss. This approach
can enhance any (S+LR) decomposition, including pruning (where LR = 0). Figure 2 illustrates
the performance gains obtained after applying TM to state-of-the-art one-shot (S + LR) decompo-
sition algorithms. In Table 3, we show results of applying transformer-matching to pruning
algorithms with pure sparsity constraints like WandA [Sun et al., 2024], SparseGPT [Frantar and
Alistarh, 2023], and ALPS [Meng et al., 2024a] highlighted in dark red.

Formally, for each transformer block Ti with L layers, after obtaining sparse and low-rank compo-
nents {S(i,ℓ),L(i,ℓ)}Lℓ=1 through layer-wise pruning, we denote the support of sparse components
as S(i,ℓ) = Supp(S(i,ℓ)). Let Xi represent the outputs from the previously compressed transformer
block Ti−1. We then refine these components using a transformer-level reconstruction loss:

min
{S(i,ℓ),L(i,ℓ)}L

ℓ=1

∥∥∥Ti

(
Xi; {W(i,ℓ)}Lℓ=1

)
− Ti

(
Xi; {S(i,ℓ) + L(i,ℓ)}Lℓ=1

)∥∥∥2
F
,

s.t. Supp(S(i,ℓ)) ⊂ S(i,ℓ), rank(L(i,ℓ)) ≤ r(i,ℓ)
(7)

where this constraint optimizes the weights of the decomposed components. Due to the non-linear
activations between layers, we use gradient-based optimization methods such as Adam. Nonethe-
less, this optimization remains computationally efficient as it is performed using iteratively chunks
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of the small calibration dataset used for compression. Additionally, the forward/backward passes
are limited to only one transformer block. The transformer-matching approach offers two key ad-
vantages. First, it creates a more accurate proxy of the original loss function by directly minimiz-
ing the discrepancy between the original and compressed transformer outputs, resulting in higher-
performance pruned models. Second, it reduces accumulated errors—introduced in layer-wise prun-
ing where input activations X are computed from outputs of previously pruned layers—by ensuring
that activations fed into subsequent layers more faithfully match those of the dense model:

Ti

(
Xi; {S(i,ℓ) + L(i,ℓ)}Lℓ=1

)
= Xi+1 ≈ X(oracle)

i+1 = Ti

(
Xi; {W(i,ℓ)}Lℓ=1

)
, (8)

therefore providing better activation statistics for compression on subsequent transformers compared
to layer-wise reconstruction which only matches weight matrices layer by layer.

After transformer-matching, the refined sparse components S(i,ℓ) remain fixed during downstream
fine-tuning, while the low-rank components L(i,ℓ) serve as smart initializations for efficient LoRA
adaptation to specific tasks.

>2x faster
A100 80GB

TM
>3x faster 
L40 48GB

Runtime:
Runtime+TM:

Figure 2: Our transformer matching (TM) procedure improves any one-shot (S+LR) decomposition method
(see baselines in Section 4) with a small computational overhead. Circled markers represent standard (S+LR)
methods, while filled markers indicate their TM-enhanced versions. Black arrows illustrate performance gains
due to TM. The compression runtimes are reported in hours. Llama3-8B models were run on a A100 GPU,
while Llama3.2-3B were run on a L40 GPU. Our proposal 3BASiL-TM, remains significantly faster: (left) over
2× speedup on an A100 80GB for the Llama3-8B model decomposed to (2:4+64LR) configuration, and (right)
over 3× speedup on an L40 48GB for the Llama3.2-3B model decomposed to (4:8+64LR) configuration (both
compared to Hf-ALPS).

4 Experimental results
4.1 Experimental setup
Models and LLM Evaluation Protocol To rigorously assess the effectiveness of our proposed ap-
proach 3BASiL and transformer-matching (TM) procedure, we conducted extensive experiments on
the Llama-3 and Llama-3.2 model families [Dubey et al., 2024] and scaled results in one experiment
to a OPT-30B [Zhang et al., 2022] model, hence covering architectures with number of parameters
ranging from 1B to 30B. Following the widely adopted setup introduced by Frantar and Alistarh
[2023] for one-shot compression, we select the calibration set consisting of 128 randomly sampled
text segments (2048 tokens each) from the C4 [Raffel et al., 2020] train dataset’s first shard. This
calibration set is shared across all evaluated compression methods to ensure consistency.

We adopt two evaluation criteria: (1) perplexity as a foundational measure of language model-
ing quality, and (2) zero-shot task performance to assess practical downstream capabilities post-
compression. Perplexity is measured using three standard benchmarks: WikiText2 [Merity et al.,
2017], Penn Treebank [Marcus et al., 1994], and C4 validation samples, computed using Hugging-
Face’s full-stride perplexity protocol [Per, 2022]. For zero-shot evaluation, we utilize the LM Har-
ness framework [Gao et al.] on a diverse suite of eight zero-shot tasks: PIQA [Bisk et al., 2020],
ARC-Easy/Challenge [Clark et al., 2018], HellaSwag [Zellers et al., 2019], Winogrande [Sakaguchi
et al., 2021], RTE [Poliak, 2020], OpenbookQA [Banerjee et al., 2019], and BoolQ [Clark et al.,
2019]. We report individual scores for each benchmark and the average across all tasks.

For perplexity, (↓) lower values are preferred. For zero-shot tasks, (↑) higher values are preferred.

Baselines Our main baselines are OATS [Zhang and Papyan, 2025], HASSLE-free-SparseGPT
(Hf-SparseGPT) and HASSLE-free-ALPS (Hf-ALPS)—the latter two use pruning approaches
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SparseGPT [Frantar and Alistarh, 2023] and ALPS [Meng et al., 2024a], respectively, in the sparsi-
fication step of the alternating minimization algorithm proposed by Makni et al. [2025].

For all these baselines, we follow the original configuration and perform 80 steps of alternating
minimization. For HASSLE-free methods, we propose an improved implementation that replaces
their original parameterization of L = UV⊤ and gradient-based optimization with the closed-form
solution provided in Equation (4). This modification leads to improved compression runtime and
better downstream LLM evaluation metrics–see Table 6. Under this improved implementation, the
method EoRA [Liu et al., 2024], which applies the update in Equation (4) once after one round of
compression, reduces to HASSLE-free (alternating minimization approach) with a number of itera-
tions equal to one. EoRA is the fastest (S + LR) method but underperforms HASSLE-free which
uses more alternating minimization steps (default=80), and hence there is a large gap compared to
our approach on most model/configuration settings. We show some results of EoRA in Table 6.

More details on the implementation of 3BASiL, TM and the baselines (with improved implementa-
tion) are provided in Appendix B.

4.2 Numerical results
Our evaluation focuses primarily on (N:M +LR) decompositions, which enable efficient GPU ac-
celeration via specialized CUDA kernels [Mozaffari et al., 2024, Makni et al., 2025]. We evaluate
both one-shot compression performance and downstream LoRA fine-tuning capabilities. Addition-
ally, we demonstrate the generality of our approach through experiments with unstructured sparsity
and integration with sparsity allocation methods. The downstream LoRA experiments have been
motivated by recent studies [Li et al., 2024, Guo et al., 2024, Saha et al., 2024] suggesting that de-
compositions of the form C(W) + LR are LoRA-aware: i.e. low-rank components obtained from
compression can act as smart initialization to improve downstream LoRA fine-tuning. Further nu-
merical experiments where we ablate on TM and LoRA fine-tuning for (S + LR) methods can be
found in Appendix C.

One-shot (Sparse + LR) results We compare 3BASiL to prior (S+LR) decomposition methods
in the one-shot compression setting—i.e., without fine-tuning. Table 1 reports results for LLaMA3.2
family under various (N:M + 64LR) configurations. Table 2 and Figure 3 show results for similar
configurations for the LLaMA3-8B model. 3BASiL reduces perplexity by up to 8% compared to
previous SOTA (due to better layer-wise reconstruction—see Figure 5a and Figure 5b), with the TM
step yielding further dramatic improvements of up to 40% perplexity reduction.

We also compare (S + LR) decompositions with semi-structured pure pruning methods under a
fixed compression ratio ρ = 50%. Results in Table 3 show that 3BASiL-TM achieves the best
compression-performance trade-off under (3:8 + LR) configurations among different (S + LR)
methods. Additionally, we expand our (S+LR) experiments to include a (2:4 + 112) configuration
for OPT-30B model [Zhang et al., 2022]. This configuration uses a 1.56% Low-Rank Adapter
(hidden size 7168). Under this configuration, Mozaffari et al. [2024] report a 1.53x speedup as well
as a 0.63x memory reduction compared to dense model. Results are reported in Table 4.

For unstructured sparsity configurations, we benchmark 3BASiL against prior (S + LR) methods on a
"less aggressive" (50% + 128) compression for both Llama3.2-1B and Llama3-8B models. Table 5
shows that our proposed method maintains its advantage even in this near-lossless configuration
regime. We further evaluate 3BASiL under high sparsity ratios with (Unstructured + 64) configu-
rations and demonstrate how our method integrates with the sparsity allocation method OWL [Yin
et al., 2024] for the Llama3-8B model—see Table 13 in Appendix B.

These results highlight the effectiveness and flexibility of our method 3BASiL.

LoRA fine-tuning after one-shot compression After applying (S + LR) decomposition, the
resulting low-rank components can serve as initialization for LoRA fine-tuning on downstream
tasks to recover lost performance. We conducted limited LoRA fine-tuning on 10% of the first
C4 training dataset shard (approximately 15 million tokens), with detailed hyperparameters in Ap-
pendix B. Figure 4a demonstrates that LFT-3BASiL-TM significantly reduces the C4 perplexity of
(S+LR) decompositions, particularly under aggressive compression regimes like 2:8+64LR. More-
over, while LoRA fine-tuning can recover a large portion of the performance lost due to compression,
an advanced one-shot decomposition approach retains its advantage post fine-tuning. For instance,
LFT-3BASiL-TM still outperforms competing decomposition methods after LoRA fine-tuning of
2:8+64LR configurations, achieving approximately 8% lower perplexity.
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Figure 3: One-shot C4 perplexity analy-
sis of Llama3-8B under different (N:M +
64LR) configurations.
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Table 1: Perplexity of Llama-3.2 family
Method Config Llama-3.2-1B Llama-3.2-3B

C4 ↓ WT2 ↓ PTB ↓ C4 ↓ WT2 ↓ PTB ↓
OATS

2:8+64LR

640.86 605.20 779.86 531.47 494.31 674.71
Hf-SparseGPT 162.45 134.21 170.12 106.07 106.17 151.92
Hf-ALPS 107.14 94.71 124.17 69.96 65.34 108.68
3BASiL 97.50 86.59 100.35 73.00 72.26 110.10
3BASiL-TM 55.24 49.74 69.49 45.35 42.38 68.29
OATS

3:8+64LR

125.91 92.13 115.80 65.08 47.27 81.29
Hf-SparseGPT 43.50 34.18 51.16 34.66 26.60 39.76
Hf-ALPS 37.80 29.00 43.60 27.94 22.77 34.59
3BASiL 34.81 26.96 41.55 26.35 20.66 31.77
3BASiL-TM 26.26 20.75 32.09 20.89 17.18 25.31
OATS

4:8+64LR

28.06 19.69 32.90 19.25 13.40 21.67
Hf-SparseGPT 22.24 15.90 27.35 17.09 12.30 19.19
Hf-ALPS 20.71 14.90 24.75 16.04 11.51 18.17
3BASiL 20.04 14.26 24.27 15.65 10.97 17.39
3BASiL-TM 18.66 13.19 22.46 14.89 10.29 16.52
OATS

2:4+64LR

41.80 28.45 45.36 25.18 17.41 28.60
Hf-SparseGPT 27.25 19.45 32.63 20.38 15.03 23.23
Hf-ALPS 23.90 17.66 28.96 18.45 13.79 20.50
3BASiL 23.16 17.27 27.77 17.89 13.12 20.10
3BASiL-TM 20.46 15.23 24.60 16.37 11.79 18.34
Dense – 14.01 9.75 17.59 11.33 7.81 13.53

Table 2: One-shot (N:M Sparse + LR) decomposition performance for Meta-Llama-3-8B.
Method Config C4 ↓ WT2 ↓ PTB ↓ PIQA ↑ HS ↑ ARC-E ↑ ARC-C ↑ WG ↑ RTE ↑ OQA ↑ BoolQ ↑ Avg ↑
OATS

3:8+64LR

58.88 40.76 67.35 63.71 39.48 42.68 24.32 53.91 52.71 28.40 63.98 46.15
Hassle-free-SparseGPT 29.32 21.46 32.06 68.66 51.99 50.97 30.38 63.85 53.07 32.00 71.31 52.78
Hassle-free-ALPS 23.93 18.20 26.31 70.62 56.54 54.42 30.12 64.72 55.23 32.80 71.96 54.55
3BASiL 23.07 18.03 24.84 71.06 56.96 57.70 32.59 66.69 54.51 33.00 66.70 54.90
3BASiL-TM 18.11 14.26 20.47 74.05 61.85 60.73 34.73 65.98 54.51 34.80 76.91 57.94
OATS

4:8+64LR

16.38 10.88 17.23 75.84 67.60 67.09 41.21 70.88 60.29 38.20 73.61 61.84
Hassle-free-SparseGPT 14.65 9.88 15.21 77.09 69.95 69.32 41.81 71.27 56.32 40.60 79.39 63.22
Hassle-free-ALPS 14.04 9.44 14.45 76.82 71.19 71.04 44.45 72.77 56.68 40.20 78.13 63.91
3BASiL 13.74 9.21 14.24 76.88 72.05 70.16 44.80 72.14 61.01 41.40 80.89 64.92
3BASiL-TM 13.02 8.64 13.70 78.24 72.59 73.11 47.35 71.98 63.18 42.40 80.49 66.17
OATS

2:4+64LR

21.59 14.76 23.41 72.74 60.70 60.86 34.81 65.51 57.76 35.20 68.32 56.99
Hassle-free-SparseGPT 17.77 12.38 18.71 74.81 65.04 66.16 38.57 70.09 54.87 38.40 77.71 60.71
Hassle-free-ALPS 16.15 11.38 16.71 75.19 67.10 64.44 38.91 69.53 59.93 39.40 78.38 61.61
3BASiL 15.76 11.23 16.25 76.50 67.61 67.21 40.10 70.24 64.26 38.20 78.29 62.80
3BASiL-TM 14.34 9.78 14.88 77.48 69.58 67.21 40.53 71.27 61.37 39.80 79.51 63.34

Meta-Llama-3-8B Dense – 9.44 6.14 11.18 80.79 79.17 77.69 53.33 72.85 69.68 45.00 81.44 69.99

Method Config C4 ↓ WT2 ↓ PTB ↓ PIQA ↑ ARC-E ↑ ARC-C ↑
Wanda 38.21 26.89 47.13 67.63 49.37 29.01
Wanda-TM 15.91 11.03 17.60 75.14 63.97 40.19
SparseGPT 22.65 16.22 25.15 71.16 56.48 32.59
SparseGPT-TM 15.30 10.83 16.77 76.28 65.28 40.36
ALPS 19.62 14.50 21.73 73.78 60.06 35.84
ALPS-TM

2:4

14.96 10.65 16.35 76.88 65.03 39.85

Wanda 22.70 15.58 26.62 72.03 58.63 36.09
Wanda-TM 13.99 9.28 15.09 77.48 68.22 42.75
SparseGPT 17.59 12.29 18.48 75.68 63.38 39.59
SparseGPT-TM 13.68 9.28 14.51 78.07 70.29 43.94
ALPS 16.06 11.17 16.60 76.12 66.25 40.87
ALPS-TM

4:8

13.59 9.15 14.18 77.58 69.57 43.94

OATS 21.03 14.54 24.15 73.67 59.68 37.12
Hf-SparseGPT 20.05 15.03 22.01 74.05 60.52 36.18
Hf-ALPS 17.89 13.07 19.11 74.54 65.53 39.08
3BASiL 15.20 10.64 15.80 76.71 70.08 43.52
3BASiL-TM

2:8+LR

13.81 9.50 14.74 77.15 73.36 44.54

OATS 16.87 11.43 18.53 75.24 65.91 39.85
Hf-SparseGPT 16.16 11.36 16.71 75.79 67.55 41.04
Hf-ALPS 14.85 10.20 15.42 77.15 69.40 43.64
3BASiL 13.73 9.29 14.62 78.45 71.42 43.43
3BASiL-TM

3:8+LR

13.01 8.69 13.74 77.80 75.00 47.44
Llama3-8B Dense – 9.44 6.14 11.18 80.79 77.69 53.33

Table 3: One-shot (N:M Sparse
+ LR) decomposition performance
of Llama3-8B model. The com-
pression ratio (percentage of non-
zero parameters retained) is fixed
to be ρ = 0.5. For Perplex-
ity, (↓) lower values are preferred.
For zero-shot tasks, (↑) higher val-
ues are preferred. Bolded val-
ues correspond to the overall best
compression scheme that satisfies
ρ = 0.5. Underlined values cor-
respond to the best pure pruning
algorithm for the same compres-
sion. This shows the universal-
ity of transformer-matching to
pure sparsity constraints.

Method C4 ↓ WT2 ↓ PTB ↓ Time (hrs) ↓
OATS-10 11.75 10.48 14.65 5.81
Hf-SparseGPT 11.58 10.17 14.39 5.97
Hf-ALPS-10 11.56 10.05 14.33 4.33
3BASiL 11.53 10.04 14.26 4.20
Dense 11.44 9.56 14.04 –

Table 4: One-shot (2:4 + 112) decomposition of
OPT-30B model. This configuration results in ef-
ficient inference. We limit the compression run-
time to 6 A100 GPU hours. 3BASiL-TM largely
exceeds this period. We limit the alternating min-
imization steps of Hf-ALPS and OATS to 10 to fit
within the time constraint.
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Table 5: One-shot (50% + 128) decomposition for Llama3.2-1B and Meta-Llama-3-8B models.
Method Config C4 ↓ WT2 ↓ PTB ↓ PIQA ↑ HS ↑ ARC-E ↑ ARC-C ↑ WG ↑ RTE ↑ OQA ↑ BoolQ ↑ Avg ↑
OATS 17.99 12.16 21.40 71.71 57.96 57.28 33.79 59.98 52.71 33.00 63.94 53.80
Hf-SparseGPT 17.25 11.99 20.87 72.91 59.04 56.82 33.11 58.88 57.76 35.00 57.03 53.82
Hf-ALPS 16.81 11.66 20.12 72.80 59.92 57.62 33.11 58.64 55.96 35.20 59.66 54.11
3BASiL 16.17 11.16 20.00 73.83 60.42 58.04 34.47 60.38 53.79 36.80 58.20 54.49
3BASiL-TM

50%+128

15.78 10.87 19.33 73.23 60.66 59.26 34.56 61.01 59.21 36.60 64.13 56.08
Llama-3.2-1B Dense – 14.01 9.75 17.59 74.59 63.66 60.48 36.26 60.69 56.68 37.20 63.98 56.69

OATS 12.25 7.78 12.92 78.40 75.32 73.99 49.15 73.80 58.84 41.80 79.42 66.34
Hf-SparseGPT 11.98 7.77 12.85 79.11 75.88 75.00 49.40 73.32 63.18 43.80 78.32 67.25
Hf-ALPS 12.09 7.99 12.86 78.78 76.29 76.52 51.19 73.09 60.65 40.20 81.62 67.29
3BASiL 11.51 7.47 12.36 79.54 76.69 74.75 48.72 72.69 67.87 43.00 80.24 67.94
3BASiL-TM

50%+128

11.27 7.30 12.26 79.65 76.07 75.84 47.78 71.98 70.40 44.20 80.70 68.33
Meta-Llama-3-8B Dense – 9.44 6.14 11.18 80.79 79.17 77.69 53.33 72.85 69.68 45.00 81.44 69.99

2:8+64LR 3:8+64LR 2:4+64LR 4:8+64LR
Configuration
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Meta-Llama-3-8B  C4 ppl After LoRA FT
LFT-OATS
LFT-Hf-SparseGPT
LFT-Hf-ALPS
LFT-3BASiL
LFT-3BASiL-TM

(a) C4 ppl of Llama3-8B model under different
(S+ LR) configurations after LoRA.

> 35% 
reduction

Gap to 
Dense

Runtime:
(H100 80GB)

Runtime LoRA FT (15M tokens on H100 GB GPU): 0.70h

0.28 h 0.50 h0.77 h0.80 h0.44 h

(b) C4 perplexity gap to dense model (Llama3.2-1B) under
(50%+128LR) configuration.

Figure 4: C4 perplexity performance of Llama3-8B & Llama3.2-1B before/after LoRA fine-tuning.

5 Related Work
One-shot Sparse/Quantized plus Low-Rank compression The seminal works of Yu et al. [2017]
proposed a compression technique for a neural network using sparsity plus low-rank constraints.
However, the authors study small-scale vision models. In addition, they consider a compression
that needs to be repeated over multiple rounds (decomposing selected layers and followed by a re-
training process). Our focus is different; we are interested in compressing at LLM-scale in one-shot
(no expensive retraining). Recent methods in LLM compression have focused on effectively com-
bining low-rank decomposition with quantization or sparsity. EoRA [Liu et al., 2024] has been
proposed as a method to compensate for the loss produced by a general-purpose compressed weight
C(W) using a low-rank component, it does the low-rank fitting step once post the initial weight
compression, which could include combinations of sparsity and quantization. LoftQ [Li et al.,
2024] jointly optimizes quantization and LoRA initialization by solving minQ,L ∥W− (Q+L)∥F ,
where W represents the original weights, Q the quantized component, and L the low-rank com-
ponent. LQ-LoRA [Guo et al., 2024] extends this by incorporating Fisher information weighting,
approximately solving minQ,L ∥F ⊙ (W − (Q + L))∥F . CALDERA [Saha et al., 2024] further
considers the layer-wise reconstruction error, optimizing minQ,L ∥XW − X(Q + L)∥F to main-
tain the outputs of individual layers rather than mere weight approximation. From the (S + LR)
perspective, OATS [Zhang and Papyan, 2025] proposes an outlier-aware alternating minimization,
effectively reducing to solving minS,L ∥DW −D(S + L)∥F with D = diag(XTX), as noted by
Makni et al. [2025]. HASSLE-free [Makni et al., 2025] directly tackles layer-wise reconstruction
error minS,L ∥XW −X(S+ L)∥F using alternating minimization. While methods such as OATS
and HASSLE-free separately optimize sparse and low-rank components, our proposed approach,
3BASiL, distinctly utilizes a unified optimization framework via a 3-block ADMM formulation,
jointly optimizing sparse and low-rank components simultaneously.

Sparse plus Low-Rank structures in transformers Beyond model compression, sparse plus low-
rank structures have a strong presence in the context of LLMs. LoRAPrune [Zhang et al., 2024] is
a purse sparsification method, which prunes a model (iteratively) by designing a memory-efficient
LoRA-guided (low-rank structure) pruning criterion. In contrast, LoSA (low-rank Sparse Adapta-
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tion) [Huang et al., 2025] jointly applies LoRA fine-tuning and pruning in a unified framework to
obtain a fine-tuned sparse-only (as opposed to (S + LR)) model, by dynamically sparsifying the
LoRA weights and adjusting their rank. SLTrain [Han et al., 2024] addresses (S + LR) from a
training perspective. It pre-trains an LLM using a fixed random sparse mask plus trainable low-rank
factors (similar to LoRA), achieving comparable accuracy to dense training with far fewer parame-
ters. SLTrain demonstrates the benefits of (S+LR) structure for pre-training but it doesn’t solve the
post-hoc decomposition problem of a dense model. There are connections between our transformer-
matching step and SLTrain as they both train sparse (fixed support) and low-rank components, but
they minimize different loss functions and serve different purposes.

ADMM approaches to compress networks The Alternating Direction Method of Multipliers
(ADMM) [Boyd et al., 2011, Davis and Yin, 2016] is an effective optimization technique for prob-
lems with coupled variables that has been successfully applied to neural network compression. Ye
et al. [2018] introduced ADMM-based progressive weight pruning that optimizes the original loss
function under sparsity constraints, which Ye et al. [2019] extended to preserve adversarial robust-
ness during compression. In contrast, recent methods have scaled ADMM to LLMs through layer-
wise reconstruction: Boža [2024] employed ADMM to solve a convex problem recovering optimal
weights on a fixed support of the weight matrix, while Meng et al. [2024a] utilized ADMM for a
non-convex problem that jointly optimizes both support and weights. Our proposed method differs
from these prior works as we explore a 3-block ADMM in model compression that simultaneously
optimizes (S+ LR) components with theoretical convergence guarantees.

Exact Low-Rank updates for layer-wise compression The problem of exact low-rank updates
found in Equation (4) has original roots from classical reduced-rank regression methods [Izenman,
1975, Reinsel and Velu, 1998], which provide closed-form solutions for optimally approximating
linear regression models under rank constraints. Recent work, including CALDERA [Saha et al.,
2024] and the low-rank correction method by Scetbon and Hensman [2024], applies these closed-
form updates to compress large language models into W ≈ Q + LR. We also use these exact
low-rank updates by integrating them directly in Equation (4) within our ADMM framework for
(S+ LR) decomposition.

6 Conclusion and limitations
We present 3BASiL as a highly-efficient (S + LR) decomposition algorithm with theoretical con-
vergence guarantees. It provides high-quality solutions to the layer-wise decomposition problem
presented in Equation (1) in terms of objective minimization (Figure 5a and Figure 5b) compared
to competing (S+ LR) decomposition methods. We further refine these decomposed weights with
our novel (memory-efficient) transformer matching step TM that can enhance any (S+LR) decom-
position. This shows that one route for optimal compression results (in the context of C(W) +LR)
is to unfold the LLM compression into 3 minimization steps: (i) [layer-wise reconstruction] this
is the loss that has been considered in many SOTA pruning/quantization algorithms [Frantar and
Alistarh, 2023, Meng et al., 2024a, Saha et al., 2024, Frantar et al., 2022, Meng et al., 2024b], (ii)
[transformer-matching] this is an intermediate loss function (to be optimized in a memory-efficient
manner) which is a more reliable approximation to the true loss function than simple layer-wise
reconstruction, and (iii) [LoRA fine-tuning] plugs the obtained low-rank components as smart ini-
tialization for LoRA to minimize the true LLM loss function. We believe that our 3-block ADMM
approach and TM can generalize to quantization or quantized-sparse constraints. We leave these ex-
plorations for future works.While we have shown how to integrate sparsity allocation mechanisms
like OWL to our framework, it remains to explore dedicated methods that can algorithmically al-
locate different sparsity/rank configurations to different layers to further improve efficiency-utility-
computations tradeoffs.
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Appendix

A Proofs of Theorem 1

Proof. For conciseness, throughout the proof, we denote H = X⊤X + λI and G =(
X⊤X+ λI

)
Ŵ. We denote CF as a large constant such that

max{1, ∥H−1/2∥2, ∥H∥2, ∥G∥F } ≤ CF . (9)
To establish the theorem, we first present the following three lemmas.

Lemma A.1. Let
{
D(t)

}∞
t=0

,
{
L(t)

}∞
t=0

and
{
V(t)

}∞
t=0

be the sequence generated according to
update rule (5). Then for any t ≥ 1, it holds

∥L(t)∥F ≤ C3
F

(
1 + ∥D(t)∥F +

∥V(t)∥F
ρt−1

+
∥V(t−1)∥F

ρt−1

)
. (10)

Lemma A.2. Let
{
D(t)

}∞
t=0

and
{
V(t)

}∞
t=0

be the sequence generated according to update rule
(5). Then for any t ≥ 1, it holds

∥V(t+1)∥F ≤ (CF + C4
F )

(
1 + ∥D(t)∥F +

∥V(t)∥F
ρt−1

+
∥V(t−1)∥F

ρt−1

)
. (11)

and

∥D(t+1) −D(t)∥F ≤ 2CF + 2C4
F

ρt

(
1 + ∥D(t)∥F +

∥V(t)∥F
ρt−1

+
∥V(t−1)∥F

ρt−1

)
. (12)

Lemma A.3. Let
{
D(t)

}∞
t=0

and
{
V(t)

}∞
t=0

be the sequence generated according to update rule
(5). Then for any t ≥ 1, it holds

∥D(t)∥F +
∥V(t)∥F
ρt−1

+
∥V(t−1)∥F

ρt−1

≤ exp

(
3(CF + C4

F )

t−1∑
s=1

1

ρs−1

)
·

(
∥D(1)∥F +

∥V(1)∥F
ρ0

+
∥V(0)∥F

ρ0
+

t−1∑
s=1

3(CF + C4
F )

ρs−1

)
(13)

Returning to the proof of the main theorem, define

CA = 2(CF + C4
F )

[
1 + exp

(
3(CF + C4

F )

∞∑
s=1

1

ρs−1

)
·(

∥D(1)∥F +
∥V(1)∥F

ρ0
+

∥V(0)∥F
ρ0

+
∞∑
s=1

3(CF + C4
F )

ρs−1

)]
.

(14)

It follows from the update rules (5) that CA is a constant depending on X, Ŵ, λ, ρ0, and
∑∞

t=0 1/ρt.

Lemma A.2 together with Lemma A.3 yields

∥D(t+1) −D(t)∥F ≤ 2CF + 2C4
F

ρt

(
1 + ∥D(t)∥F +

∥V(t)∥F
ρt−1

+
∥V(t−1)∥F

ρt−1

)
≤ CA

ρt
. (15)

and

∥V(t+1)∥F ≤ (CF + 2C4
F )

(
1 + ∥D(t)∥F +

∥V(t)∥F
ρt−1

+
∥V(t−1)∥F

ρt−1

)
≤ CA

2
. (16)

It then follows from V-update rule and triangle inequality that

∥S(t+1) − S(t)∥F ≤ ∥S(t+1) −D(t+1)∥F + ∥D(t+1) −D(t)∥F + ∥S(t) −D(t)∥F

≤ ∥V(t+1)∥F + ∥V(t)∥F
ρt

+ ∥D(t+1) −D(t)∥F +
∥V(t)∥F + ∥V(t−1)∥F

ρt−1

≤ 3CA

ρt−1
.

(17)

15



According to L-update rule, we have

∥L(t+1) − L(t)∥F =
∥∥∥H−1/2Pr(H

1/2(Ŵ − S(t+1)))−H−1/2Pr(H
1/2(Ŵ − S(t)))

∥∥∥
F

≤ ∥H−1/2∥2
∥∥∥Pr(H

1/2(Ŵ − S(t+1)))− Pr(H
1/2(Ŵ − S(t)))

∥∥∥
F

≤ CF ∥H1/2∥2∥S(t+1) − S(t)∥F
≤ C2

F ∥S(t+1) − S(t)∥F

≤ 3C2
FCA

ρt−1
.

(18)

Therefore, with constant C = 3C2
FCA, we obtain

max{∥S(t+1) − S(t)∥F , ∥L(t+1) − L(t)∥F } ≤ C

ρt−1
. (19)

Since
∑∞

s=0 1/ρs < ∞, both {S(t)}∞t=0 and {L(t)}∞t=0 are Cauchy sequences. Therefore, there exist
matrices S̄ and L̄ such that S(t) → S̄ and L(t) → L̄ as t → ∞. Setting W̄ = S̄ + L̄, we conclude
that S(t) + L(t) → W̄ as t → ∞.

A.1 Proof of Lemma A.1

Proof. The L-update rule in (5), together with (9) yields

∥L(t)∥F =
∥∥∥H−1/2Pr(H

1/2(Ŵ − S(t)))
∥∥∥
F

≤ ∥H−1/2∥2
∥∥∥Pr(H

1/2(Ŵ − S(t)))
∥∥∥
F

≤ CF

∥∥∥H1/2(Ŵ − S(t))
∥∥∥
F

≤ CF

∥∥∥H1/2
∥∥∥
2
∥Ŵ∥F + CF

∥∥∥H1/2
∥∥∥
2

∥∥∥S(t)
∥∥∥
F

≤ C2
F ∥Ŵ∥F + C2

F ∥S(t)∥F ,

(20)

where the second inequality follows from the non-expansiveness of rank-r projection operator Pr in
Frobenius norm. It then follows from the V-update rule in (5) that

∥L(t)∥F ≤ C2
F ∥Ŵ∥F + C2

F ∥S(t)∥F

= C2
F ∥Ŵ∥F + C2

F

∥∥∥∥D(t) +
V(t) −V(t−1)

ρt−1

∥∥∥∥
F

≤ C3
F

(
1 + ∥D(t)∥F +

∥V(t)∥F
ρt−1

+
∥V(t−1)∥F

ρt−1

)
.

(21)
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A.2 Proof of Lemma A.2

Proof. According to the S-update rule in (5), it holds

S(t+1) −D(t) +
V(t)

ρt
= (H+ ρtI)

−1(G−HL(t) −V(t) + ρtD
(t))−D(t) +

V(t)

ρt

=
(
(H+ ρtI)

−1ρt − I
)
D(t) + (H+ ρtI)

−1(G−HL(t) −V(t)) +
V(t)

ρt

= − 1

ρt

(
I+

H

ρt

)−1

HD(t) +
1

ρt

(
I+

H

ρt

)−1

(G−HL(t) −V(t)) +
V(t)

ρt

=
1

ρt

(
I+

H

ρt

)−1

(G−HL(t) −HD(t)) +
1

ρt

[
I−

(
I+

H

ρt

)−1
]
V(t)

=
1

ρt

(
I+

H

ρt

)−1(
G−HL(t) −HD(t) +

HV(t)

ρt

)
(22)

Therefore, we obtain∥∥∥∥S(t+1) −D(t) +
V(t)

ρt

∥∥∥∥
F

≤ 1

ρt

∥∥∥∥∥
(
I+

H

ρt

)−1
∥∥∥∥∥
2

∥∥∥∥G−HL(t) −HD(t) +
HV(t)

ρt

∥∥∥∥
F

≤ 1

ρt

∥∥∥∥G−HL(t) −HD(t) +
HV(t)

ρt

∥∥∥∥
F

≤ 1

ρt

(
∥G−HL(t) −HD(t)∥F +

∥HV(t)∥F
ρt

)
.

(23)

Denote Ĩ := {(i, j) ∈ [Nin] × [Nout] | D(t)
ij = 0}. It follows from the D-update rule and the

definition of the projection operator that∥∥∥∥D(t+1) − S(t+1) − V(t)

ρt

∥∥∥∥2
F

= min
I⊆[Nin]×[Nout]
|I|=NinNout−k

∑
(i,j)∈I

(
S(t+1) +

V(t)

ρt

)2

i,j

≤
∑

(i,j)∈Ĩ

(
S(t+1) +

V(t)

ρt

)2

i,j

=
∑

(i,j)∈Ĩ

(
S(t+1) −D(t) +

V(t)

ρt

)2

i,j

≤
∥∥∥∥S(t+1) −D(t) +

V(t)

ρt

∥∥∥∥2
F

(24)

Together with (23), we get∥∥∥∥D(t+1) − S(t+1) − V(t)

ρt

∥∥∥∥
F

≤ 1

ρt

(
∥G−HL(t) −HD(t)∥F +

∥HV(t)∥F
ρt

)
. (25)

It then follows from the V-update rule that
∥V(t+1)∥F

ρt
=

∥∥∥∥D(t+1) − S(t+1) − V(t)

ρt

∥∥∥∥
F

≤ 1

ρt

(
∥G−HL(t) −HD(t)∥F +

∥HV(t)∥F
ρt

)
(26)

According to Lemma A.1 and the monotonicity of {ρt}∞t=0, it holds

∥G−HL(t) −HD(t)∥F +
∥HV(t)∥F

ρt
≤ ∥G∥F + ∥H∥2∥L(t)∥F + ∥H∥2∥D(t)∥F +

∥H∥2∥V(t)∥F
ρt

≤ CF

(
1 + ∥D(t)∥F +

∥V(t)∥F
ρt−1

)
+ CF ∥L(t)∥F

≤ (CF + C4
F )

(
1 + ∥D(t)∥F +

∥V(t)∥F
ρt−1

+
∥V(t−1)∥F

ρt−1

)
.

(27)
Together with inequality (26), this establishes the first inequality of the lemma. Furthermore, by
summing up (23) and (25) and applying the triangle inequality, we verify the second inequality.
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A.3 Proof of Lemma A.3

Proof. It follows from Lemma A.2 that

∥V(t+1)∥F
ρt

≤ CF + C4
F

ρt

(
1 + ∥D(t)∥F +

∥V(t)∥F
ρt−1

+
∥V(t−1)∥F

ρt−1

)
(28)

and

∥D(t+1)∥F ≤ ∥D(t)∥F + ∥D(t+1) −D(t)∥F

≤ ∥D(t)∥F +
2CF + 2C4

F

ρt

(
1 + ∥D(t)∥F +

∥V(t)∥F
ρt−1

+
∥V(t−1)∥F

ρt−1

)
.

(29)

Summing up these two inequalities yields

∥D(t+1)∥F +
∥V(t+1)∥F

ρt
+

∥V(t)∥F
ρt

≤ ∥D(t+1)∥F +
∥V(t+1)∥F

ρt
+

∥V(t)∥F
ρt−1

≤ 3CF + 3C4
F

ρt

(
1 + ∥D(t)∥F +

∥V(t)∥F
ρt−1

+
∥V(t−1)∥F

ρt−1

)
+ ∥D(t)∥F +

∥V(t)∥F
ρt−1

≤
(
1 +

3CF + 3C4
F

ρt−1

)(
∥D(t)∥F +

∥V(t)∥F
ρt−1

+
∥V(t−1)∥F

ρt−1

)
+

3CF + 3C4
F

ρt−1
,

(30)

Denote at := ∥D(t)∥F + ∥V(t)∥F /ρt−1 + ∥V(t−1)∥F /ρt−1, then the above inequality can be
rewritten as

at+1 ≤
(
1 +

3CF + 3C4
F

ρt−1

)
at +

3CF + 3C4
F

ρt−1
(31)

Therefore,

at+1∏t
s=1(1 + 3(CF + C4

F )/ρs−1)
≤ at∏t−1

s=1(1 + 3(CF + C4
F )/ρs−1)

+
3(CF + C4

F )

ρt−1

∏t
s=0(1 + 3(CF + C4

F )/ρs−1)

≤ at∏t−1
s=1(1 + 3(CF + C4

F )/ρs−1)
+

3(CF + C4
F )

ρt−1

(32)
It then follows from telescoping that

at∏t−1
s=1(1 + 3(CF + C4

F )/ρs−1)
≤ a1 +

t−1∑
s=1

3(CF + C4
F )

ρs−1
(33)

Note that
t−1∏
s=1

(1 + 3(CF + C4
F )/ρs−1) ≤ exp

(
3(CF + C4

F )

t−1∑
s=1

1

ρs−1

)
, (34)

recalling the definition of at completes the proof.
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B Additional Experimental Details

Computing environments All experiments were conducted on a computing cluster. Unless oth-
erwise specified, we utilized an Intel Xeon Gold 6248 machine with 16 CPU cores and a single
NVIDIA L40 48GB / A100 80GB / H100 80GB GPU. When runtime compression results are re-
ported, all experiments have been run on the same node (including GPU) configuration. All language
models and pruning methods were implemented using the PyTorch library Paszke et al. [2017].

Implementation Details of 3BASiL We use H′ = H+ 0.005diag(X⊤X) + 0.005Tr(X⊤X)I.

In practice, we employ an iteration-dependent penalty parameter ρt, giving the following updates at
iteration t:

S(t+1)=(H+ ρtI)
−1

(H(Ŵ − L(t))−V(t) + ρtD
(t)) L(t+1)=H−1/2Pr(H

1/2(Ŵ − S(t+1)))

D(t+1)=PS(S
(t+1) +V(t)/ρt) V(t+1)=V(t) + ρt(S

(t+1) −D(t+1)).
(35)

The initial ρ0 = 0.1. The ρ-update for ADMM depends on the support change similar to what was
proposed by Meng et al. [2024a]. The (S+ LR) decomposition is more “sensitive” to increasing ρ
aggressively compared to pure pruning in the works of Meng et al. [2024a]. We use the following
ρ update rules. We update ρ every 10 iteration based on a step function that depends on the current
value of ρt and st := |Supp

(
D(t)

)
∆Supp

(
D(t−10)

)
|, which represents the number of elements

in the symmetric difference between Supp
(
D(t)

)
and Supp

(
D(t−10)

)
. Specifically, we set

ρt+1 =

{
1.1ρt if st ≥ 0.1k,
1.05ρt if st ≥ 0.005k,
1.02ρt if st ≥ 0.5.

(36)

It is worth noting that the algorithm can converge significantly faster if we set these parameters to the
ones proposed by Meng et al. [2024a] (ADMM for pruning) but the solution quality can be slightly
compromised.

Implementation Details of transformer matching (TM) Given a transformer Ti with input ac-
tivations Xi (obtained from the outputs of the previously compressed transformer block Ti−1, we
start by creating a copy of Ti, termed T ori

i . We then compress Ti layers using an (S+LR) method.
We now replace dense layers with LoRA layers that contain new linear sparse layers and low-rank
components A,B. We set all parameters in transformer block Ti to be trainable and minimize us-
ing Adam the loss ∥Ti(Xi)− T

(ori)
i (Xi)∥2F . The input activations fed into subsequent transformer

blocks are T
(TM)
i (Xi), where T

(TM)
i is the transformer block after (S + LR) decomposition and

TM refinement steps.

For TM step, we employ the Adam optimizer with PyTorch’s default hyperparameters. We use 20
epochs (on the 128 calibration data points selected for compression). The batch size used is 8. The
learning rate is 2e−5 using a Cosine Annealing Scheduler with ηmin = 4e−6.

Baseline Implementation Details Below are the implementation specifications for:

• OATS: We adopt the official implementation from Zhang and Papyan [2025] (accessible via
GitHub) and apply the default hyperparameters and 80 alternating minimization steps.

• HASSLE-free-SparseGPT: We adopt the official implementation from Makni et al. [2025] (ac-
cessible via GitHub) and provide an improved implementation that uses the closed-form solution
Equation (4) for the low-rank fitting step. We apply the default hyperparameters and 80 alternating
minimization steps.

• HASSLE-free-ALPS: We adopt the official implementation from Makni et al. [2025] (accessible
via GitHub) and provide an improved implementation that uses the closed-form solution Equa-
tion (4) for the low-rank fitting step. We apply the default hyperparameters and 80 alternating
minimization steps.

In Table 3, we use the values reported in Makni et al. [2025]. For all other reported values, instead
of minimizing ∥X(W−M)∥F s.t. rank(M) ≤ r by reparameterizing M = UV⊤ and optimizing
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Model Algorithm
Perplexity (↓) Zero-shot (↑)

C4 WT2 PTB PIQA HS ARC-E ARC-C WG RTE OQA BoolQ Avg

Llama3-8B

Hf-SparseGPT-original 18.06 12.66 18.66 74.86 64.77 63.85 37.37 69.22 56.68 36.40 76.12 59.91
Hf-SparseGPT-ours 17.77 12.38 18.71 74.81 65.04 66.16 38.57 70.09 54.87 38.40 77.71 60.71
EoRA-SparseGPT 21.89 15.69 23.91 72.25 58.87 57.70 34.56 66.30 54.87 33.80 73.58 56.49
Hf-ALPS-original 16.76 11.83 17.76 75.08 66.37 63.64 37.54 69.69 64.62 37.20 77.89 61.50
Hf-ALPS-ours 16.15 11.38 16.71 75.19 67.10 64.44 38.91 69.53 59.93 39.40 78.38 61.61
EoRA-ALPS 18.69 13.61 20.55 73.99 62.21 61.07 37.20 68.59 57.40 36.00 74.16 58.83

Table 6: Comparison of (original paper), our reproduced results (with improved implementation)
and EoRA (reduces to HASSLE-free with alternating minimization steps set to 1) for Llama3-8B
under the configuration (2:4 + 64). Perplexity (lower is better), Zero-shot accuracy (higher is better).

with gradient-descent on U and V as proposed by the authors, we use our improved implementa-
tion of HASSLE-free with closed-form solution Equation (4). This results in significant speedup
improvements. A slight improvement in LLM evaluation benchmarks is also sometimes observed
using the improved implementation. This is expected because gradient-descent on U and V ap-
proximately solves the reduced-rank regression problem, whereas the closed-form solution is an
optimal solution.

Table 6 shows an extract of the differences between the implementation of HASSLE-free proposed
in Makni et al. [2025] and ours (using closed-form solution for low-rank update). Moreover, the
original paper reports a compression runtime (of a Llama3-8B under a 2:4+64LR configuration) of
20.13 hours using a single A100 80GB GPU, whereas we report a compression runtime (for the
same setup) of 15.71 hours in Figure 2 (using a single A100 80GB GPU) thanks to the efficiency of
the closed-form solution. It is worth noting that 3BASiL and 3BASiL-TM are still over 7 times and 3
times, respectively, faster than HASSLE-free-ALPS, even when using the improved implementation
for HASSLE-free.

LoRA Finetuning Details We follow a similar LoRA fine-tuning pipeline to the one introduced
in Guo et al. [2024]. For LoRA fine-tuning use a learning rate of 2e-5 and a batch size of size 64
per step. The block size used is 1024 tokens per batch. The effective batch size is obtained by using
a physical batch size of 2 on GPU with 32 gradient accumulation steps before each weight update.
Training is conducted on 10% of the first shard of the C4 training dataset, which contains over 15
million tokens. We employ the Adam optimizer with PyTorch’s default hyperparameters. A cosine
learning rate scheduler is used, with a warm-up ratio of 0.03 and no weight decay applied.

Layer-wise reconstruction error of 3BASiL Figure 5a and Figure 5b show the objective of Equa-
tion (1) attained by 3BASiL and other (S + LR) methods for the first transformer block of a
2:4+64LR decomposition of a Llama3-8B model for Attention and MLP layers, respectively.
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Figure 5: Comparison of true loss values introduced in Equation (1) across different (S + LR)
methods. Lower values indicate better optimization quality. 3BASiL consistently outperforms other
methods, particularly for attention layers.
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C Additional Experimental Results

We provide additional performance results considered in Section 4. We compare different (S+LR)
algorithms and their TM-enhanced versions (apply TM as an add-on to the decomposition algorithm).
In that case, we add the suffix -TM to the algorithm. We mark algorithms with TM in gray. We also
study the results of the (S+LR) decomposition after LoRA fine-tuning as described in Appendix B.
In that case, we add the prefix LFT- to the algorithm.

Example: LFT-OATS-TM denotes the results of (S + LR) decomposition after (i) using OATS to
obtain sparse and low-rank components, (ii) refine these decomposed components with TM and (iii)
LoRA fine-tunes the model by using the low-rank components from the (S + LR) decomposition
as a smart initialization.

Method Config C4 ↓ WT2 ↓ PTB ↓ PIQA ↑ HS ↑ ARC-E ↑ ARC-C ↑ WG ↑ RTE ↑ OQA ↑ BoolQ ↑ Avg
OATS

2:8+64LR

640.86 605.20 779.86 52.01 27.67 28.66 23.12 49.96 52.71 25.00 37.83 37.12
OATS-TM 116.29 99.92 126.06 55.55 28.78 31.44 20.56 51.38 52.71 26.80 46.79 39.25
Hassle-free-SparseGPT 162.45 134.21 170.12 54.19 28.28 31.40 22.01 49.17 52.71 26.80 57.25 40.23
Hassle-free-SparseGPT-TM 74.50 67.59 88.05 57.24 30.03 33.12 21.33 52.33 52.71 26.20 60.34 41.66
Hassle-free-ALPS 107.14 94.71 124.17 55.39 29.98 32.07 20.82 52.72 53.07 27.20 49.27 40.06
Hassle-free-ALPS-TM 58.30 52.30 73.97 58.81 32.21 34.93 21.59 52.80 52.71 26.20 62.20 42.68
3BASiL 97.50 86.59 100.35 56.91 30.49 32.37 21.08 53.75 53.07 24.40 61.74 41.73
3BASiL-TM 55.24 49.74 69.49 58.81 32.80 35.14 22.78 53.04 53.07 26.60 62.14 43.05
OATS

3:8+64LR

125.91 92.13 115.80 57.13 32.14 35.98 22.61 51.46 51.99 26.80 62.51 42.58
OATS-TM 36.32 27.69 41.98 63.17 38.47 43.69 23.21 52.88 52.71 29.80 62.08 45.75
Hassle-free-SparseGPT 43.50 34.18 51.16 61.86 38.24 41.29 24.66 53.75 52.71 29.20 62.08 45.47
Hassle-free-SparseGPT-TM 30.48 24.18 37.28 65.18 41.40 45.41 25.68 55.96 52.71 30.40 62.26 47.38
Hassle-free-ALPS 37.80 29.00 43.60 64.04 41.47 42.34 25.85 54.22 54.51 30.40 62.02 46.86
Hassle-free-ALPS-TM 27.34 21.42 34.23 66.38 44.48 45.62 25.51 55.88 53.43 30.40 62.23 47.99
3BASiL 34.81 26.96 41.55 64.91 42.34 45.24 27.47 56.12 53.07 31.20 62.60 47.87
3BASiL-TM 26.26 20.75 32.09 66.43 45.47 47.47 27.05 57.77 52.71 32.00 62.20 48.89
OATS

4:8+64LR

28.06 19.69 32.90 67.30 49.07 48.48 27.65 56.20 52.71 30.20 62.45 49.26
OATS-TM 20.65 14.59 24.50 69.37 51.37 55.05 31.40 57.22 54.51 30.60 62.81 51.54
Hassle-free-SparseGPT 22.24 15.90 27.35 70.51 52.08 50.76 29.44 57.38 58.12 34.20 62.63 51.89
Hassle-free-SparseGPT-TM 19.63 13.85 24.17 70.24 53.12 55.05 31.14 56.83 54.87 33.80 63.18 52.28
Hassle-free-ALPS 20.71 14.90 24.75 69.59 53.27 53.07 29.78 57.77 53.79 33.60 63.33 51.78
Hassle-free-ALPS-TM 19.07 13.70 23.06 71.11 54.82 55.30 31.83 58.64 52.71 31.60 62.42 52.30
3BASiL 20.04 14.26 24.27 70.62 54.55 55.72 30.72 60.06 55.23 34.00 63.06 52.99
3BASiL-TM 18.66 13.19 22.46 72.09 55.48 55.60 31.48 59.12 53.07 34.00 63.46 53.04
OATS

2:4+64LR

41.80 28.45 45.36 63.28 41.89 47.01 26.37 53.51 51.26 28.40 63.09 46.85
OATS-TM 23.89 17.04 27.99 68.23 47.76 51.01 27.73 55.64 56.32 32.60 62.32 50.20
Hassle-free-SparseGPT 27.25 19.45 32.63 67.63 47.70 45.96 26.96 55.88 52.71 30.40 62.14 48.67
Hassle-free-SparseGPT-TM 22.17 16.41 26.67 69.10 49.90 50.29 27.99 56.59 57.04 33.40 62.42 50.84
Hassle-free-ALPS 23.90 17.66 28.96 69.15 49.62 49.66 28.16 57.77 55.23 32.00 63.06 50.58
Hassle-free-ALPS-TM 20.93 15.35 25.15 70.46 51.14 51.09 28.24 58.33 57.04 34.60 63.55 51.81
3BASiL 23.16 17.27 27.77 69.80 51.74 51.35 27.82 58.72 54.87 33.40 62.84 51.32
3BASiL-TM 20.46 15.23 24.60 70.18 52.91 52.06 30.12 58.96 52.71 33.40 62.39 51.59

Llama-3.2-1B Dense – 14.01 9.75 17.59 74.59 63.66 60.48 36.26 60.69 56.68 37.20 63.98 56.69

Table 7: One-shot (N:M Sparse + LR) decomposition performance for Llama-3.2-1B. For Perplexity,
(↓) lower values are better. For zero-shot tasks, (↑) higher values are better.

Method Config C4 ↓ WT2 ↓ PTB ↓ PIQA ↑ HS ↑ ARC-E ↑ ARC-C ↑ WG ↑ RTE ↑ OQA ↑ BoolQ ↑ Avg
OATS

2:8+64LR

531.47 494.31 674.71 52.50 27.33 28.16 23.29 49.57 52.71 26.60 39.60 37.47
OATS-TM 100.87 87.20 120.98 56.64 29.01 30.13 20.65 50.99 52.71 26.00 62.11 41.03
Hassle-free-SparseGPT 106.07 106.17 151.92 54.62 29.67 29.92 21.67 50.28 52.71 26.60 61.93 40.93
Hassle-free-SparseGPT-TM 61.50 56.02 90.37 58.98 32.53 33.75 22.10 51.78 52.71 26.40 62.11 42.55
Hassle-free-ALPS 69.96 65.34 108.68 57.34 32.59 33.59 20.82 50.67 52.71 27.00 62.26 42.12
Hassle-free-ALPS-TM 46.12 44.03 61.25 61.26 36.36 36.83 23.12 52.80 52.71 25.00 62.51 43.82
3BASiL 73.00 72.26 110.10 57.29 32.62 34.01 21.42 51.14 52.71 26.80 62.20 42.27
3BASiL-TM 45.35 42.38 68.29 61.10 36.90 38.17 22.78 53.12 53.07 26.00 62.66 44.23
OATS

3:8+64LR

65.08 47.27 81.29 61.75 37.80 42.17 23.89 52.88 52.71 27.20 62.75 45.14
OATS-TM 27.09 20.94 30.21 67.68 47.26 51.26 28.41 57.46 52.71 29.20 64.65 49.83
Hassle-free-SparseGPT 34.66 26.60 39.76 65.94 46.19 47.77 26.88 58.96 53.07 29.60 65.02 49.18
Hassle-free-SparseGPT-TM 23.69 19.54 27.45 69.70 51.64 52.78 29.35 60.22 55.96 30.60 62.72 51.62
Hassle-free-ALPS 27.94 22.77 34.59 69.15 50.18 53.32 29.01 61.48 52.71 32.00 63.58 51.43
Hassle-free-ALPS-TM 21.52 17.80 26.42 71.00 54.45 57.37 30.80 59.75 56.32 33.40 66.02 53.64
3BASiL 26.35 20.66 31.77 68.66 51.44 52.10 29.95 61.25 54.15 31.20 68.32 52.13
3BASiL-TM 20.89 17.18 25.31 71.82 55.35 55.22 32.08 60.85 54.15 33.40 65.41 53.53

OATS

4:8+64LR

19.25 13.40 21.67 72.47 61.10 60.82 35.15 66.30 57.40 34.00 73.24 57.56
OATS-TM 15.92 11.00 17.82 74.21 63.46 65.61 37.80 66.14 64.62 36.80 72.26 60.11
Hassle-free-SparseGPT 17.09 12.30 19.19 73.83 63.01 64.23 36.52 65.59 58.12 37.80 72.08 58.90
Hassle-free-SparseGPT-TM 15.42 10.84 17.23 74.65 65.22 64.94 38.14 65.19 58.84 40.40 69.69 59.63
Hassle-free-ALPS 16.04 11.51 18.17 74.54 64.63 63.76 36.95 66.38 59.57 36.80 72.08 59.34
Hassle-free-ALPS-TM 15.07 10.54 16.84 75.19 65.93 66.84 40.02 67.40 60.65 40.00 74.01 61.25
3BASiL 15.65 10.97 17.39 75.68 65.87 66.46 39.42 67.25 59.93 38.80 73.52 60.87
3BASiL-TM 14.89 10.29 16.52 75.79 66.46 67.05 38.82 66.06 59.93 39.20 72.32 60.70

OATS

2:4+64LR

25.18 17.41 28.60 70.89 54.76 57.74 32.76 61.17 53.07 32.80 70.40 54.20
OATS-TM 18.08 12.85 20.22 72.42 59.46 62.79 35.24 62.27 58.84 34.60 70.21 56.98
Hassle-free-SparseGPT 20.38 15.03 23.23 71.55 58.62 59.93 32.94 63.85 57.40 33.60 69.94 55.98
Hassle-free-SparseGPT-TM 17.24 12.66 19.41 73.78 61.50 61.66 34.64 63.69 58.48 37.20 68.62 57.45
Hassle-free-ALPS 18.45 13.79 20.50 73.78 60.82 63.30 35.49 64.56 57.40 35.80 72.78 57.99
Hassle-free-ALPS-TM 16.60 12.11 18.59 74.21 62.97 63.05 37.54 66.14 58.84 36.00 70.58 58.67
3BASiL 17.89 13.12 20.10 73.34 61.99 62.50 35.07 66.46 61.73 39.60 71.80 59.06
3BASiL-TM 16.37 11.79 18.34 73.78 63.38 63.05 38.05 64.25 59.57 36.80 71.13 58.75

Llama-3.2-3B Dense – 11.33 7.81 13.53 77.48 73.61 71.63 45.99 69.85 54.51 43.00 73.39 63.68

Table 8: One-shot (N:M Sparse + LR) decomposition performance for Llama-3.2-3B. For Perplexity,
(↓) lower values are better. For zero-shot tasks, (↑) higher values are better.
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Method Config C4 ↓ WT2 ↓ PTB ↓ PIQA ↑ HS ↑ ARC-E ↑ ARC-C ↑ WG ↑ RTE ↑ OQA ↑ BoolQ ↑ Avg
OATS

2:8+64LR

424.55 431.81 590.88 51.63 28.11 27.61 23.72 49.72 52.71 27.00 38.26 37.34
OATS-TM 73.42 64.21 100.59 58.43 31.23 32.20 20.22 51.38 52.71 26.00 62.29 41.81
Hassle-free-SparseGPT 88.39 96.61 109.71 54.95 30.77 31.48 20.65 50.75 52.71 26.20 61.59 41.14
Hassle-free-SparseGPT-TM 46.24 42.75 71.66 61.48 36.76 36.74 23.12 53.51 52.71 27.60 63.15 44.38
Hassle-free-ALPS 60.16 56.03 77.11 57.94 34.92 34.64 21.67 54.62 52.71 27.80 56.12 42.55
Hassle-free-ALPS-TM 36.50 34.31 50.14 64.91 41.18 40.28 24.40 56.99 52.71 28.20 59.60 46.03
3BASiL 56.99 53.83 72.48 59.25 35.34 35.98 21.59 54.06 52.71 27.40 64.62 43.87
3BASiL-TM 36.16 33.51 52.87 63.60 41.47 39.81 24.32 58.41 52.71 26.80 63.67 46.35
OATS

3:8+64LR

58.88 40.76 67.35 63.71 39.48 42.68 24.32 53.91 52.71 28.40 63.98 46.15
OATS-TM 22.67 17.17 24.46 71.22 54.29 54.88 31.48 63.22 54.15 32.80 71.38 54.18
Hassle-free-SparseGPT 29.32 21.46 32.06 68.66 51.99 50.97 30.38 63.85 53.07 32.00 71.31 52.78
Hassle-free-SparseGPT-TM 19.97 15.51 22.28 72.85 58.72 58.12 33.96 65.67 61.37 32.00 74.92 57.20
Hassle-free-ALPS 23.93 18.20 26.31 70.62 56.54 54.42 30.12 64.72 55.23 32.80 71.96 54.55
Hassle-free-ALPS-TM 18.38 14.52 20.15 74.48 61.56 59.01 33.28 67.48 57.40 35.20 75.11 57.94
3BASiL 23.07 18.03 24.84 71.06 56.96 57.70 32.59 66.69 54.51 33.00 66.70 54.90
3BASiL-TM 18.11 14.26 20.47 74.05 61.85 60.73 34.73 65.98 54.51 34.80 76.91 57.94
OATS

4:8+64LR

16.38 10.88 17.23 75.84 67.60 67.09 41.21 70.88 60.29 38.20 73.61 61.84
OATS-TM 13.77 9.06 14.37 76.82 70.15 70.16 43.52 70.88 65.70 40.20 77.89 64.41
Hassle-free-SparseGPT 14.65 9.88 15.21 77.09 69.95 69.32 41.81 71.27 56.32 40.60 79.39 63.22
Hassle-free-SparseGPT-TM 13.40 8.90 14.11 77.58 71.42 73.23 43.60 70.40 64.98 41.40 79.39 65.25
Hassle-free-ALPS 14.04 9.44 14.45 76.82 71.19 71.04 44.45 72.77 56.68 40.20 78.13 63.91
Hassle-free-ALPS-TM 13.21 8.71 13.85 78.56 72.54 72.81 45.73 71.43 65.34 41.40 79.88 65.96
3BASiL 13.74 9.21 14.24 76.88 72.05 70.16 44.80 72.14 61.01 41.40 80.89 64.92
3BASiL-TM 13.02 8.64 13.70 78.24 72.59 73.11 47.35 71.98 63.18 42.40 80.49 66.17
OATS

2:4+64LR

21.59 14.76 23.41 72.74 60.70 60.86 34.81 65.51 57.76 35.20 68.32 56.99
OATS-TM 15.49 10.61 16.11 76.01 65.66 67.00 40.61 68.59 56.68 36.60 75.69 60.86
Hassle-free-SparseGPT 17.77 12.38 18.71 74.81 65.04 66.16 38.57 70.09 54.87 38.40 77.71 60.71
Hassle-free-SparseGPT-TM 14.95 10.28 15.97 76.88 68.18 67.21 41.81 69.46 64.98 38.20 78.81 63.19
Hassle-free-ALPS 16.15 11.38 16.71 75.19 67.10 64.44 38.91 69.53 59.93 39.40 78.38 61.61
Hassle-free-ALPS-TM 14.45 10.00 15.23 77.09 69.32 67.26 40.10 70.17 60.65 38.80 75.75 62.39
3BASiL 15.76 11.23 16.25 76.50 67.61 67.21 40.10 70.24 64.26 38.20 78.29 62.80
3BASiL-TM 14.34 9.78 14.88 77.48 69.58 67.21 40.53 71.27 61.37 39.80 79.51 63.34

Meta-Llama-3-8B Dense – 9.44 6.14 11.18 80.79 79.17 77.69 53.33 72.85 69.68 45.00 81.44 69.99

Table 9: One-shot (N:M Sparse + LR) decomposition performance for Meta-Llama-3-8B. For Per-
plexity, (↓) lower values are better. For zero-shot tasks, (↑) higher values are better.

Method Config C4 ↓ WT2 ↓ PTB ↓ PIQA ↑ HS ↑ ARC-E ↑ ARC-C ↑ WG ↑ RTE ↑ OQA ↑ BoolQ ↑ Avg
LFT-OATS

2:8+64LR

71.41 63.58 95.05 56.58 29.22 30.72 22.10 53.83 52.71 23.00 61.10 41.16
LFT-OATS-TM 53.01 47.68 68.98 59.09 31.07 36.15 21.84 52.49 52.71 24.60 62.14 42.51
LFT-Hassle-free-SparseGPT 51.19 47.09 63.87 59.03 31.16 35.14 22.18 50.83 52.71 26.60 60.70 42.29
LFT-Hassle-free-SparseGPT-TM 42.85 39.46 55.53 60.55 33.37 35.27 22.18 50.36 52.71 28.00 62.14 43.07
LFT-Hassle-free-ALPS 44.15 41.02 57.45 59.36 33.22 34.68 22.18 51.93 52.71 26.60 60.95 42.70
LFT-Hassle-free-ALPS-TM 37.54 35.50 50.15 60.28 35.80 37.50 23.63 55.09 52.71 27.20 62.14 44.29
LFT-3BASiL 36.09 33.42 45.13 60.55 35.52 37.71 23.21 53.12 53.07 27.00 62.02 44.02
LFT-3BASiL-TM 36.03 34.13 47.11 60.07 36.16 37.29 24.66 55.41 53.07 29.40 62.32 44.80
LFT-OATS

3:8+64LR

32.20 25.47 41.74 62.35 39.71 44.36 25.68 52.33 53.79 29.20 62.14 46.20
LFT-OATS-TM 27.05 21.14 34.83 65.51 43.37 46.25 26.62 54.93 52.71 29.60 61.99 47.62
LFT-Hassle-free-SparseGPT 27.17 21.96 34.55 65.72 44.09 44.99 26.79 55.17 52.71 30.60 61.59 47.71
LFT-Hassle-free-SparseGPT-TM 24.74 20.38 32.36 67.03 45.71 48.36 26.62 55.01 52.71 30.20 62.02 48.46
LFT-Hassle-free-ALPS 25.20 20.03 32.26 65.61 46.19 45.12 28.16 54.85 55.96 32.00 62.63 48.81
LFT-Hassle-free-ALPS-TM 23.42 18.81 30.32 68.23 47.85 46.59 27.22 55.25 54.51 31.20 62.23 49.14
LFT-3BASiL 22.97 18.23 29.74 67.36 48.30 48.36 29.52 55.72 54.87 31.80 62.72 49.83
LFT-3BASiL-TM 22.73 18.29 29.94 68.01 49.22 48.86 29.35 56.83 52.71 33.20 63.21 50.17
LFT-OATS

4:8+64LR

28.06 19.69 32.90 67.30 49.07 48.48 27.65 56.20 52.71 30.20 62.45 49.26
LFT-OATS-TM 18.95 13.77 23.65 70.73 54.25 56.36 32.51 58.80 54.87 33.60 62.72 52.98
LFT-Hassle-free-SparseGPT 19.38 14.15 24.74 71.71 53.78 53.58 30.80 56.35 57.76 33.20 60.67 52.23
LFT-Hassle-free-SparseGPT-TM 18.45 13.35 23.60 71.55 55.21 56.02 32.94 56.43 53.07 36.00 63.43 53.08
LFT-Hassle-free-ALPS 18.77 13.82 23.63 71.06 55.59 55.01 30.29 56.99 53.79 33.80 62.91 52.43
LFT-Hassle-free-ALPS-TM 18.11 13.28 22.75 71.93 56.97 56.99 32.00 59.43 54.51 33.80 62.66 53.54
LFT-3BASiL 17.88 12.99 22.56 72.74 56.91 56.86 31.66 60.62 59.57 36.40 62.39 54.64
LFT-3BASiL-TM 17.75 12.82 22.30 72.52 56.81 56.44 32.94 59.51 51.62 35.20 63.61 53.58

LFT-OATS

2:4+64LR

23.55 17.52 29.60 67.08 48.04 49.28 27.90 55.33 54.15 31.60 62.57 49.49
LFT-OATS-TM 21.00 15.40 25.77 69.80 50.92 52.15 29.01 55.96 55.23 33.00 62.63 51.09
LFT-Hassle-free-SparseGPT 21.56 15.99 26.81 69.53 51.03 48.65 28.67 56.04 52.35 31.40 62.14 49.98
LFT-Hassle-free-SparseGPT-TM 20.16 15.16 25.23 71.11 53.40 52.86 29.69 57.22 56.68 35.00 62.17 52.27
LFT-Hassle-free-ALPS 20.38 15.57 25.47 71.16 52.53 53.41 29.69 56.99 54.87 33.60 62.84 51.89
LFT-Hassle-free-ALPS-TM 19.42 14.51 24.31 71.16 54.01 53.16 28.92 58.01 54.15 34.20 60.43 51.75
LFT-3BASiL 19.25 14.60 24.56 71.76 54.72 53.16 29.01 57.77 53.43 34.00 63.15 52.12
LFT-3BASiL-TM 19.07 14.37 23.88 71.44 55.12 54.04 29.95 58.17 53.43 33.60 62.69 52.30

Llama-3.2-1B Dense – 14.01 9.75 17.59 74.59 63.66 60.48 36.26 60.69 56.68 37.20 63.98 56.69

Table 10: (N:M Sparse + LR) decomposition performance for Llama-3.2-1B after LoRa Fine-Tuning
(LFT). For Perplexity, (↓) lower values are better. For zero-shot tasks, (↑) higher values are better.
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Method Config C4 ↓ WT2 ↓ PTB ↓ PIQA ↑ HS ↑ ARC-E ↑ ARC-C ↑ WG ↑ RTE ↑ OQA ↑ BoolQ ↑ Avg
LFT-OATS

2:8+64LR

48.53 44.51 62.21 58.27 32.84 36.95 22.78 52.96 52.71 25.60 61.44 42.94
LFT-OATS-TM 100.87 87.20 120.98 56.64 29.01 30.13 20.65 50.99 52.71 26.00 62.11 41.03
LFT-Hassle-free-SparseGPT 35.91 33.44 46.64 61.48 37.33 36.70 23.46 51.54 52.35 26.20 62.17 43.90
LFT-Hassle-free-SparseGPT-TM 31.46 30.77 42.12 62.79 40.19 38.76 23.63 54.78 53.07 29.00 58.32 45.07
LFT-Hassle-free-ALPS 31.43 29.50 44.39 63.38 40.65 39.73 23.46 55.72 52.71 28.40 46.06 43.76
LFT-Hassle-free-ALPS-TM 28.22 26.81 36.23 65.02 43.69 40.78 23.46 55.72 52.71 28.40 60.46 46.28
LFT-3BASiL 30.58 28.27 41.30 63.11 41.25 41.75 24.23 55.09 52.71 28.40 63.88 46.30
LFT-3BASiL-TM 27.48 26.18 38.35 65.34 44.37 43.18 26.54 57.46 53.43 29.20 61.04 47.57
LFT-OATS

3:8+64LR

21.98 16.44 27.23 69.59 52.26 52.78 29.44 57.22 59.21 31.00 64.07 51.95
LFT-OATS-TM 27.09 20.94 30.21 67.68 47.26 51.26 28.41 57.46 52.71 29.20 64.65 49.83
LFT-Hassle-free-SparseGPT 20.01 15.72 24.87 70.46 56.25 54.59 30.72 60.22 58.12 33.20 63.64 53.40
LFT-Hassle-free-SparseGPT-TM 18.73 15.18 23.25 71.00 58.49 54.21 32.51 61.72 59.21 35.40 53.00 53.19
LFT-Hassle-free-ALPS 18.83 15.54 22.96 71.60 58.27 57.15 32.51 63.22 54.87 33.80 66.64 54.76
LFT-Hassle-free-ALPS-TM 18.04 14.68 23.08 72.91 60.26 60.23 34.22 61.09 62.82 36.00 58.90 55.80
LFT-3BASiL 18.40 14.61 22.90 72.20 59.70 57.83 32.17 62.67 55.23 35.20 68.47 55.43
LFT-3BASiL-TM 17.69 14.38 22.42 72.96 61.21 57.32 34.04 61.80 58.48 34.80 55.81 54.55

LFT-OATS

4:8+64LR

15.50 10.77 17.94 75.63 65.47 65.24 38.65 65.98 57.40 37.80 65.69 58.98
LFT-OATS-TM 15.92 11.00 17.82 74.21 63.46 65.61 37.80 66.14 64.62 36.80 72.26 60.11
LFT-Hassle-free-SparseGPT 14.97 10.62 17.48 75.24 66.87 65.87 39.25 66.22 58.12 38.60 72.11 60.29
LFT-Hassle-free-SparseGPT-TM 14.47 10.25 16.92 75.68 67.79 66.37 39.76 66.54 55.96 42.80 67.86 60.35
LFT-Hassle-free-ALPS 14.60 10.33 16.73 75.79 67.42 64.27 37.63 65.82 62.82 38.20 55.78 58.47
LFT-Hassle-free-ALPS-TM 14.30 10.11 16.50 75.63 68.18 66.75 41.21 67.88 59.21 40.00 69.39 61.03
LFT-3BASiL 14.38 10.10 16.56 76.77 68.06 67.26 40.70 67.48 59.57 39.60 68.35 60.97
LFT-3BASiL-TM 14.15 9.89 16.29 77.26 68.44 66.20 39.59 66.69 62.82 39.80 72.29 61.64
LFT-OATS

2:4+64LR

25.18 12.08 20.26 73.99 61.58 62.88 36.09 63.46 61.73 36.60 62.63 57.37
LFT-OATS-TM 18.08 12.85 20.22 72.42 59.46 62.79 35.24 62.27 58.84 34.60 70.21 56.98
LFT-Hassle-free-SparseGPT 16.36 11.79 19.43 73.94 63.71 63.51 35.07 64.01 51.62 36.80 68.99 57.21
LFT-Hassle-free-SparseGPT-TM 15.65 11.37 18.41 75.14 65.65 62.88 36.35 64.33 56.32 38.60 66.85 58.27
LFT-Hassle-free-ALPS 15.81 11.57 18.44 74.59 64.91 64.06 36.52 64.56 54.51 37.80 68.69 58.20
LFT-Hassle-free-ALPS-TM 15.37 11.22 17.90 74.70 66.45 64.56 38.48 66.22 55.60 38.60 66.09 58.84
LFT-3BASiL 15.52 11.23 17.87 75.08 66.45 63.05 36.60 66.06 64.98 39.80 69.94 60.25
LFT-3BASiL-TM 15.19 10.96 17.59 74.48 66.46 63.01 39.08 63.06 61.37 38.40 69.27 59.39

Llama-3.2-3B Dense – 11.33 7.81 13.53 77.48 73.61 71.63 45.99 69.85 54.51 43.00 73.39 63.68

Table 11: (N:M Sparse + LR) decomposition performance for Llama-3.2-3B after LoRa Fine-Tuning
(LFT). For Perplexity, (↓) lower values are better. For zero-shot tasks, (↑) higher values are better.

Method Config C4 ↓ WT2 ↓ PTB ↓ PIQA ↑ HS ↑ ARC-E ↑ ARC-C ↑ WG ↑ RTE ↑ OQA ↑ BoolQ ↑ Avg
LFT-OATS

2:8+64LR

37.46 31.49 49.71 62.24 36.88 38.72 24.23 51.93 52.71 27.20 62.02 44.49
LFT-OATS-TM 28.23 23.86 36.25 65.61 43.81 42.09 25.26 52.64 52.71 30.60 64.13 47.11
LFT-Hassle-free-SparseGPT 28.80 24.47 33.94 62.35 43.30 40.28 24.91 54.85 53.07 29.40 64.46 46.58
LFT-Hassle-free-SparseGPT-TM 24.89 22.14 31.65 66.00 48.49 43.77 26.37 58.25 52.71 29.80 66.27 48.96
LFT-Hassle-free-ALPS 25.31 21.97 31.99 66.38 48.42 43.73 26.62 59.43 53.43 29.60 47.16 46.85
LFT-Hassle-free-ALPS-TM 22.85 20.23 28.00 67.95 52.18 46.84 27.99 60.54 53.43 31.20 61.44 50.20
LFT-3BASiL 24.51 21.43 30.05 66.81 49.63 44.02 26.37 60.06 55.60 30.60 68.10 50.15
LFT-3BASiL-TM 22.45 20.00 29.00 68.12 52.97 45.92 26.96 60.69 53.43 32.20 70.34 51.33
LFT-OATS

3:8+64LR

17.87 12.65 20.59 72.36 61.20 57.45 35.58 63.93 53.07 35.00 70.58 56.15
LFT-OATS-TM 16.18 11.43 18.34 73.61 65.43 60.65 37.46 66.54 57.40 36.80 75.72 59.20
LFT-Hassle-free-SparseGPT 16.65 12.07 18.84 73.94 64.77 58.00 37.20 66.69 61.01 35.00 69.79 58.30
LFT-Hassle-free-SparseGPT-TM 15.68 11.51 18.08 75.68 66.50 62.04 37.54 67.25 70.40 35.20 76.79 61.42
LFT-Hassle-free-ALPS 15.92 11.77 17.89 74.59 66.86 60.35 36.43 68.67 65.34 37.20 74.71 60.52
LFT-Hassle-free-ALPS-TM 15.29 11.46 17.74 75.90 68.34 61.66 37.03 68.98 62.45 36.20 69.33 59.99
LFT-3BASiL 15.64 11.79 17.85 74.70 67.47 63.55 38.65 67.48 55.60 38.20 73.27 59.87
LFT-3BASiL-TM 15.11 11.38 17.27 75.41 68.15 63.17 39.08 68.03 62.09 37.60 77.34 61.36

LFT-OATS

4:8+64LR

13.09 8.67 14.64 77.80 72.31 70.92 45.39 70.72 60.65 40.40 75.60 64.22
LFT-Hassle-free-SparseGPT 12.73 8.57 14.03 78.18 73.45 70.45 43.86 71.35 62.45 41.40 78.81 64.99
LFT-Hassle-free-SparseGPT-TM 12.38 8.32 13.71 78.78 74.29 74.12 45.65 70.48 66.79 40.80 79.24 66.27
LFT-Hassle-free-ALPS 12.55 9.44 14.45 76.82 71.19 71.04 44.45 72.77 56.68 40.20 78.13 63.91
LFT-Hassle-free-ALPS-TM 12.31 8.29 13.43 78.84 74.92 73.86 48.29 71.19 68.59 40.80 79.51 67.00
LFT-3BASiL 12.39 8.33 13.43 78.51 74.85 71.00 45.56 72.45 61.73 43.40 77.92 65.68
LFT-3BASiL-TM 12.17 8.25 13.41 79.33 74.40 73.23 48.72 71.90 61.73 41.60 78.90 66.23

LFT-OATS

2:4+64LR

14.34 9.67 16.24 77.15 69.54 65.66 40.70 68.27 66.43 38.80 73.73 62.54
LFT-OATS-TM 13.46 9.09 14.81 77.69 71.25 69.99 44.28 69.77 58.84 40.60 78.07 63.81
LFT-Hassle-free-SparseGPT 13.83 9.50 15.35 77.04 71.62 68.86 41.72 70.01 61.37 39.40 76.02 63.25
LFT-Hassle-free-SparseGPT-TM 13.35 9.15 14.84 79.00 72.57 67.80 43.60 70.01 63.90 40.40 75.69 64.12
LFT-Hassle-free-ALPS 13.49 9.29 14.61 77.48 72.40 67.09 42.92 70.56 67.15 39.80 77.13 64.32
LFT-Hassle-free-ALPS-TM 13.20 9.12 14.34 78.24 72.51 67.38 41.89 70.88 62.45 40.40 75.63 63.67
LFT-3BASiL 13.35 9.25 14.54 77.37 72.90 69.19 43.52 71.98 67.15 41.20 76.24 64.94
LFT-3BASiL-TM 13.07 9.00 14.17 78.73 73.17 68.14 41.89 71.98 59.57 39.20 76.42 63.64

Meta-Llama-3-8B Dense – 9.44 6.14 11.18 80.79 79.17 77.69 53.33 72.85 69.68 45.00 81.44 69.99

Table 12: (N:M Sparse + LR) decomposition performance for Meta-Llama-3-8B after LoRa Fine-
Tuning (LFT). For Perplexity, (↓) lower values are better. For zero-shot tasks, (↑) higher values are
better.
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Method Config C4 ↓ WT2 ↓ PTB ↓ PIQA ↑ HS ↑ ARC-E ↑ ARC-C ↑ WG ↑ RTE ↑ OQA ↑ BoolQ ↑ Avg
3BASiL 25.31 20.59 28.33 71.27 55.56 54.25 30.80 64.56 53.43 33.20 72.91 54.50
3BASiL+OWL 23.21 19.54 27.09 71.71 57.90 56.69 33.53 67.56 54.15 33.40 77.86 56.60
3BASiL-TM 19.55 16.44 21.64 74.16 59.76 58.04 33.28 66.38 58.12 35.20 73.15 57.26
3BASiL-TM+OWL

70% + 64

19.52 16.22 21.37 73.56 59.92 58.88 31.40 64.33 56.32 35.40 70.80 56.33

3BASiL 62.85 61.08 79.49 59.52 35.07 35.40 22.27 54.22 52.71 27.00 60.95 43.39
3BASiL+OWL 50.51 58.16 79.09 61.70 39.42 37.63 23.98 59.35 55.60 28.00 68.23 46.74
3BASiL-TM 36.51 39.32 57.94 65.07 42.05 39.94 25.00 58.80 52.71 26.00 64.59 46.77
3BASiL-TM+OWL

80%+64

36.32 38.19 56.05 64.96 41.92 41.37 25.43 58.56 52.71 28.20 63.46 47.08

Meta-Llama-3-8B Dense – 9.44 6.14 11.18 80.79 79.17 77.69 53.33 72.85 69.68 45.00 81.44 69.99

Table 13: Impact of OWL on 3BASiL for (Unstructured + 64) decompositions of Meta-Llama-3-8B.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We conclude the introduction with a paragraph that explicitly outlines the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitation of our work at the end of Section ??.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

25



Justification: We clearly state all assumptions in Theorem 1 and provide a rigorous proof
in Appendix A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We present a detailed description of the proposed 3-Block ADMM algorithm,
including update rules and computational procedures, in Section 2, and describe the Trans-
former matching procedure in Section 3. Additional implementation details necessary for
reproducing our results are provided in Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will release the codes if the paper is accepted.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide detailed training and evaluation settings for both our proposed
pipeline and the baseline methods in Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [No]

Justification: While we aimed to provide rigorous evaluation, we were constrained by com-
putational resources and thus could not include statistical significance measures. We have,
however, ensured consistent settings and fair comparisons across all baselines.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide details of the computational resources used for our experiments
in Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have carefully reviewed the NeurIPS Code of Ethics and confirm that all
research presented in this paper adheres to its principles.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: To the best of our knowledge, our work has no societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: To the best of our knowledge, our work poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: At the start of Section 4, we reference all datasets and models involved in our
experiments. The sources of the code used are listed in Appendix B.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]

Justification: Our paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Although our work focuses on pruning LLMs, the core methods proposed
do not involve LLMs as important, original, or non-standard components of the algorithm
itself.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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