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Abstract

Sparse plus Low-Rank (S + LR) decomposition of Large Language Models
(LLMs) has emerged as a promising direction in model compression, aiming to
decompose pre-trained model weights into a sum of sparse and low-rank matri-
ces W = S + LR. Despite recent progress, existing methods often suffer from
substantial performance degradation compared to dense models. In this work, we
introduce 3BASiL-TM, an efficient one-shot post-training method for (S + LR)
decomposition of LLMs that addresses this gap. Our approach first introduces
a novel 3-Block Alternating Direction Method of Multipliers (ADMM) method,
termed 3BASiL, to minimize the layer-wise reconstruction error with convergence
guarantees. We then design an efficient transformer-matching (TM) refinement
step that jointly optimizes the sparse and low-rank components across transformer
layers. This step minimizes a novel memory-efficient loss that aligns outputs at
the transformer level. Notably, the TM procedure is universal as it can enhance
any (S + LR) decomposition, including pure sparsity. Our numerical exper-
iments show that 3BASiL-TM reduces the WikiText2 perplexity gap relative to
dense LLaMA-8B model by over 30% under a (2:4 Sparse + 64 LR) configura-
tion, compared to prior methods. Moreover, our method achieves over 2.5x faster
compression runtime on an A100 GPU compared to SOTA (S + LR) method.
Our code is available at https://github.com/mazumder-lab/3BASiL)

1 Introduction

Large Language Models (LLMs) have demonstrated exceptional performance across diverse tasks
including complex reasoning [Xu et al.,[2025]], text generation [|Achiam et al., [2023]], mathematical
problem-solving [Romera-Paredes et al., [2024]], and code synthesis [Roziere et al., [2023[]. How-
ever, state-of-the-art LLMs [Achiam et al.,[2023| [Dubey et al., 2024] |Googlel 2023 with billions of
parameters face substantial deployment challenges due to their computational and memory require-
ments. These constraints substantially limit real-time applications and deployment on resource-
constrained devices. Consequently, model compression techniques have emerged as an essential
research direction to increase LLM accessibility while preserving their accuracy and functionality.

Established methods for model compression primarily include neural network pruning [LeCun et al.,
1989\ |[Hassibi and Storkl (1992, |[Han et al.l [2015b] and quantization [Han et al., 2015a, 2016|. For
LLMs, recent research has focused on one-shot post-training compression methods [Frantar and
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Alistarh, 2023|, IDettmers et al., [2023| [Lin et al., 2024, |[Frantar et al., 2022, [Behdin et al., [2023|
Meng et al., 2024alb] that compress model weights using a minimal calibration dataset without
expensive retraining. These approaches have become particularly attractive as they enable efficient
compression of modern LLMs even on a single commodity GPU.

An exciting recent line of research in one-shot compression studies the task of decomposing pre-
trained weight matrices W into a compressed backbone component (e.g., sparse or quantized) and
a low-rank component: W ~ C(W) + LR. This LoRA-aware formulation effectively integrates
with Low-Rank Adaptation (LoRA) methods [Hu et al., 2022, allowing efficient downstream adap-
tation by freezing C(W) and fine-tuning only the low-rank components, which serve as a smart-
initialization to LoRA. |Guo et al. [2024], [Li et al.|[2024]] demonstrate that this approach outper-
forms the sequential approach of first compressing the model W = C(W) (under similar backbone
components constraints) followed by standard LoRA fine-tuning (Noise & Zero adapter).

One-shot Quantized plus Low-Rank decomposition methods for LLMs [Guo et al.| [2024] [Li et al.,
2024 Saha et al., |2024] have demonstrated exceptional efficiency. These works decompose pre-
trained LLM matrices into low-rank components and memory-efficient quantized backbones, en-
abling aggressive quantization while preserving model performance.

Parallel advances in Sparse plus Low-Rank (S + LR) decomposition [Zhang and Papyan), [2025|
Makni et all |2025] combine the strengths of pruning and matrix factorization. OATS [Zhang and
Papyan, |[2025]] pioneered post-training (S + LR) compression for LLMs, demonstrating its viability
as an alternative to unstructured pruning at the same compression rates and achieving CPU accelera-
tion via DeepSparse [NeuralMagic, 2021]. HASSLE-Free [Makni et al., [2025] established a unified
(S + LR) framework showing an underlying connection between OATS and various LLM prun-
ing methods—they focus on N:M sparse plus low-rank decompositions for GPU acceleration using
specialized CUDA kernels from [Mozaffari et al., 2024]. Despite their promise, existing (S + LR)
algorithms for LLMs rely exclusively on alternating minimization approaches. Due to the complex-
ity of the underlying optimization problem, these procedures have limited convergence guarantees
and may perform poorly in joint optimization of the sparse and low-rank components. Indeed, our
empirical evidence in Figure[5aland Figure[Sb|suggests that our proposed algorithm more effectively
optimizes the sparse and low-rank parts compared to an alternating minimization approach.

In this paper, we propose 3BASiI_ﬂ an elegant 3-block ADMM approach tailored for (S + LR)
decomposition of LLMs. Unlike prior approaches that separate pruning and low-rank fitting steps,
3BASiL explicitly models their interaction through simultaneous optimization under a unified objec-
tive with provable convergence guarantees. We formulate the weight decomposition problem with
explicit sparsity and rank constraints, decomposing it into three variable sets—sparse component,
low-rank component, and original weights—optimized within an iterative ADMM framework. This
approach precisely enforces sparsity pattern and rank constraints at each iteration via closed-form
proximal updates while minimizing reconstruction error with respect to the original model weights.

Additionally, we propose a (memory-efficient) transformer-matching (TM) procedure that refines
sparse and low-rank components by aligning transformer block outputs with the dense model. In
contrast to prior (S + LR) methods, which allow only low-rank components refinement via LoRA
after layerwise compression, TM enables joint refinement of both sparse and low-rank components at
the transformer level. This procedure is compatible with any existing (S + LR) method and can be
applied prior to LoRA fine-tuning with minimal computational overhead, providing a more effective
initialization for downstream adaptation.

Our contributions can be summarized as follows:

1. 3-Block ADMM We introduce 3BASiL, a novel 3-Block Alternating Direction Method of Mul-
tipliers (ADMM) algorithm specifically designed for Sparse plus Low-Rank (S 4+ LR.) decom-
position of Language Models. Our method explicitly captures interactions between sparse and
low-rank components within a unified optimization framework, while providing theoretical con-
vergence guarantees as well. Moreover, 3BASiL offers remarkable computational advantages,
achieving over 7x speedup compared to the strong HASSLE-free-ALPS baseline, when com-
pressing a Llama3.2-3B model on an L40 48GB GPU.

13BASiL: 3Block ADMM for Sparsity and Low-Rank Constraints.
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Figure 1: Overview of the proposed 3BASiL framework. (Left) For each layer in a Transformer, we
employ multi-Block ADMM to efficiently decompose weights into high-quality Sparse plus Low-
Rank components by minimizing the layer reconstruction objective. (Right) At the Transformer
level, we apply gradient-based optimization to jointly refine all sparse and low-rank components
across layers to match the original transformer’s output, with the resulting low-rank components
serving as smart initialization for subsequent LoRA fine-tuning.

2. Transformer matching and Universality We introduce TV, a novel (memory-efficient) refine-
ment procedure that jointly optimizes sparse and low-rank components across transformer lay-
ers. This approach significantly improves sparse component quality with minimal computational
cost by directly leveraging transformer-level outputs, addressing a major limitation in current
(S + LR) methods. Crucially, our TM procedure is universally applicable and can enhance
any existing (S + LR) decomposition method, including purely sparse compression, providing
superior initialization for subsequent LoRA fine-tuning.

3. Empirical Validation and State-of-the-Art Results We introduce 3BASiL-TM as a new state-
of-the-art method for (S + LR) one-shot decomposition of Large Language Models. It signifi-
cantly improves LLM evaluation benchmarks including perplexity of different datasets and var-
ious zero-shot tasks. Specifically, our numerical experiments show that 3BASiL-TM reduces the
WikiText2 perplexity gap to dense model by over 30% compared to prior methods for a Llama-
8B model under a (2:4 Sparse + 64 LR) configuration. It also provides significant compression
runtime speedups compared to other (S + LR) decomposition techniques for LLMs.

2 Highly effective Sparse plus Low-Rank decomposition via ADMM
2.1 Problem formulation

We compress the layers of an LLM sequentially, one at a time by minimizing the reconstruction error
between the outputs of pre-trained weights and compressed ones on a set of given input activations.

Formally, let W represent the pre-trained weight matrix of a given layer, and X denote the input
activations (i.e., output of previous layers) on a set of N calibration samples. In our setting, the
goal of layer-wise reconstruction is to find a (S + LR)) decomposition that minimizes the ¢ error
between the outputs of the original and decomposed weights—this can be formulated as follows:

1 — 2 N~ 2
in - [|xW-x LH fHW— LH t SeS, rank(L)<r (1
min 2H (S+)F—|—2 (S—|—)F s €S, rank(L)<r. (1)
Above || || 7 denotes the Frobenius norm, S denotes the set of matrices satisfying a specified sparsity
constraint (e.g., unstructured sparsity with given sparsity level or N:M sparsity); S and L denote
the sparse and low-rank components, respectively. Parameter A > 0 encourages the decomposed
weights to remain close to the pre-trained ones.

2.2 A multi-Block ADMM approach for layer-wise reconstruction

The primary challenge in optimizing problem (I)) lies in the joint minimization of S and L under two
complex constraints—sparsity and low-rank. To address this, we employ the Alternating Direction
Method of Multipliers (ADMM), which enables separate updates of S and L at each iteration while



maintaining their interdependence through a Lagrangian multiplier. This approach preserves the
power of joint optimization while making the problem tractable. Our 3-block ADMM introduces an
auxiliary variable D as a copy of the sparse component S, reformulating problem (I)) as:

1.~ 2 A~ 2
n - ||xXW-x(s LH fHW— S LH Is(D 2
Juin 2H (+)F+2 (+)F+s() (2)

st. S=D, rank(L)<r.

where Is(D) is an indicator function that equals to infinity when D ¢ S and zero otherwise. The
augmented Lagrangian function with dual variable V and a quadratic penalty parameter p > 0 reads:

~ 2 — 2
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The method proceeds by minimizing the augmented Lagrangian with respect to three variables se-

quentially: the sparse component S, the low-rank component L, and sparse component’s constrained

copy D, followed by a dual update (in variable V). This sequential optimization over three variable
blocks gives the method its name: 3-Block ADMM. At iteration ¢, the updates are:

S#D = argming £,(S,LY, DM v®) LY = argming, £,(S) L, DO v®)
DY = argming £,(SEHY, LD D v®) v — v 4 gt _ plt+D),

Below, we derive the updates. For notational simplicity, we denote H = X T X + AL

S-block update Since £,(S, L™, D® V") is a quadratic function of S, we obtain the closed-
form solution by setting the gradient to zero:

S+ = (H 4 pI) " (H(\Tv B O) VOR pD(t)> . 3)

L-block update Note that the L-optimization subproblem can be reformulated as minimizing

|[HY2(W — S(t+1) — L)||2, subject to the rank constraint. When H is full-rank (satisfied for any
A > 0), this problem has the closed-form solution (see SectionE]for a discussion about rank-reduced
regression results) :

L+ — gH-1/2p, (HW(W - S(t“))) , 4)
where P, denotes the best rank-r approximation, which can be computed via SVDE]

D-block update The optimization over D involves projecting S¢+1) ++ V() /5 onto the sparsity
constraint set S, which corresponds to magnitude-based pruning of (S¢+1) + V() /p)—we sort
[(SU+1) + V(®) /p),;]? and retain only the largest values. For unstructured pruning, we keep a
predetermined fraction of the largest values; for N:M structured sparsity, we retain N largest values
out of every M consecutive weights.

In practice, we employ an iteration-dependent penalty parameter p;, giving the following updates:
St — (H + pI) ' (H(W —LO) = v 4+ p,D®) LD —H-Y/2p,(H/>(W — 8(+D))

DD :PS(S(t'H) + V(t)/pt) vt —yv® 4 pt(s(t+1) _ D(t+1))_
5

Computational complexity We implement several tricks to reduce the computational cost in t(hg
S and L-update steps, which constitute the major computational cost of 3-Block ADMM algorithm.
For the S-update step, we adopt the approach of Meng et al.| [2024a] by pre-computing (once) and
storing the eigenvalue decomposition H = UXU '. This allows us to efficiently calculate the ma-
trix inverse (H + pI)~! = U(Z + pI)~'UT for varying values of p across iterations. For an
efficient L-update step, we store the matrices H~/2 = UX~1/2 and H'/2 = £'/2U" and em-
ploy a randomized-SVD procedure [Halko et al.,|2011]] for numerical efficiency. In the context of
LLMs, the weight matrices scale with the transformer’s hidden dimension N. Our algorithm’s per-
iteration time complexity comprises: five matrix-matrix multiplications with complexity O(N?),
a Randomized-SVD operation with complexity O(N?7r) to enforce rank constraint (using constant
oversampling and power iterations as in [Halko et al.l [2011]]), and a projection onto S requiring at
most O(N?log(N)) for sorting and thresholding operations—across the entire matrix for unstruc-
tured sparsity or within blocks for semi-structured sparsity. The overall time complexity is O(N?3).

The closed-form solution in Equation @) can be used to improve other (S + LR) methods like HASSLE-
free (which employs gradient-descent on a reparameterized L = UV ")

2
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2.3 Convergence of ADMM

Despite its appeal and usage, the convergence properties of 3-Block ADMM remain theoretically
challenging. (Chen et al.|[2016] demonstrated that without additional conditions, the algorithm may
fail to converge, while later works [Lin et al.,|2015, |Wang et al., 2018 established various sufficient
conditions for convergence.

We observe that our proposed 3-block ADMM approach can be reformulated as a standard 2-block
ADMM by treating (L, D) as a single variable block. This reformulation is valid because the La-
grangian is separable with respect to L and D, meaning their joint minimization yields equivalent
updates to sequential optimization (although 3-blocks remain the “natural” way to conceptualize the
updates). While Meng et al.|[2024a] established convergence guarantees for ADMM applied to lay-
erwise pruning, their analysis addresses a different problem formulation than ours. Specifically, they
apply ADMM solely to unstructured pruning, whereas our approach extends to (S + LR) decom-
position. Our framework includes a low-rank component with relatively complex updates in each
iteration, which introduces additional mathematical challenges in convergence analysis that prevent
direct application of the results in Meng et al.|[2024a].

To address this gap, we establish the following novel convergence guarantee that ensures the de-
composition converges as long as we choose penalty parameter p, that increases sufficiently rapidly
(refer to Appendix [A|for a complete proof).

Theorem 1. Let {S(t) }ZO and {L(t) }Zo be the sequence generated according to update rule ().

Suppose the penalty parameter p; chosen at iteration t is non-decreasing and satisfies Z:io 1/ps <
oo. Then for any t > 1:

max{||[SUH) — SO ||, [LEHY — L p} < C/py_y, (6)

where C' is a constant depending on X, \/7\\7 A\ po, and Y o 1/pe. In particular, there exists a
matrix W such that S®) + L) — W as t — cc.

3 Transformer-level matching

After layer-wise pruning, LoRA can directly refine the low-rank components in the (S + LR) de-
composition for task adaptation. However, the sparse components are not well-optimized by this
process, as they are determined solely via layer-wise objectives. These layer-wise objectives are im-
perfect proxies for the true end-to-end loss function. On the other hand, fully optimizing the sparse
components using the true end-to-end loss is computationally expensive and requires a full back-
propagation on the entire network. To address this limitation, we introduce an efficient transformer-
matching refinement step that leverages transformer-level information to enhance the sparse compo-
nents. This procedure is efficient because it requires comparable CUDA memory and runtime to the
compression algorithms themselves.

Our transformer-matching procedure jointly optimizes all sparse and low-rank components across
layers within a transformer block to better match the original transformer’s output. It acts as an
intermediate loss function between layer-wise proxies and the true end-to-end loss. This approach
can enhance any (S + LR) decomposition, including pruning (where LR = 0). Figureillustrates
the performance gains obtained after applying TM to state-of-the-art one-shot (S + LR) decompo-
sition algorithms. In Table [3} we show results of applying transformer-matching to pruning
algorithms with pure sparsity constraints like WandA [Sun et al.| [2024]), SparseGPT [Frantar and
Alistarh, [2023]], and ALPS [Meng et al.| 2024a] highlighted in dark red.

Formally, for each transformer block 7; with L layers, after obtaining sparse and low-rank compo-
nents {S(M), L(M)}EL:1 through layer-wise pruning, we denote the support of sparse components

as S = Supp(S+9). Let X; represent the outputs from the previously compressed transformer
block T;_1. We then refine these components using a transformer-level reconstruction loss:

. , , 2
T; (Xz‘; {W(Z’E)}eLzl) =T (Xz‘§ {89 + L(M)}eL:l) HF’

min ‘
{sG:0 LGOYL |
st. Supp(SE0) c SO rank(L(0) < ¢

where this constraint optimizes the weights of the decomposed components. Due to the non-linear
activations between layers, we use gradient-based optimization methods such as Adam. Nonethe-
less, this optimization remains computationally efficient as it is performed using iteratively chunks

(7



of the small calibration dataset used for compression. Additionally, the forward/backward passes
are limited to only one transformer block. The transformer-matching approach offers two key ad-
vantages. First, it creates a more accurate proxy of the original loss function by directly minimiz-
ing the discrepancy between the original and compressed transformer outputs, resulting in higher-
performance pruned models. Second, it reduces accumulated errors—introduced in layer-wise prun-
ing where input activations X are computed from outputs of previously pruned layers—by ensuring
that activations fed into subsequent layers more faithfully match those of the dense model:

T, (xi; (860 4 L@%f)}g:l) =X~ XOO (xi; {w“v‘f)}g:l) : (8)

therefore providing better activation statistics for compression on subsequent transformers compared
to layer-wise reconstruction which only matches weight matrices layer by layer.

After transformer-matching, the refined sparse components S(+*) remain fixed during downstream
fine-tuning, while the low-rank components L(**) serve as smart initializations for efficient LORA
adaptation to specific tasks.

Transformer-Matching Universality
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Figure 2: Our transformer matching (TM) procedure improves any one-shot (S + LR)) decomposition method
(see baselines in Section with a small computational overhead. Circled markers represent standard (S+LR.)
methods, while filled markers indicate their TM-enhanced versions. Black arrows illustrate performance gains
due to TM. The compression runtimes are reported in hours. Llama3-8B models were run on a A100 GPU,
while Llama3.2-3B were run on a L40 GPU. Our proposal 3BASiL-TM, remains significantly faster: (left) over
2x speedup on an A100 80GB for the LLlama3-8B model decomposed to (2:4+64LR) configuration, and (right)
over 3x speedup on an L40 48GB for the Llama3.2-3B model decomposed to (4:8+64LR) configuration (both
compared to Hf-ALPS).

4 Experimental results
4.1 Experimental setup

Models and LLM Evaluation Protocol To rigorously assess the effectiveness of our proposed ap-
proach 3BASiL and transformer-matching (TM) procedure, we conducted extensive experiments on
the Llama-3 and Llama-3.2 model families [Dubey et al.,[2024]] and scaled results in one experiment
to a OPT-30B [Zhang et al.,|2022] model, hence covering architectures with number of parameters
ranging from 1B to 30B. Following the widely adopted setup introduced by [Frantar and Alistarh
[2023]] for one-shot compression, we select the calibration set consisting of 128 randomly sampled
text segments (2048 tokens each) from the C4 [Raffel et al., 2020] train dataset’s first shard. This
calibration set is shared across all evaluated compression methods to ensure consistency.

We adopt two evaluation criteria: (1) perplexity as a foundational measure of language model-
ing quality, and (2) zero-shot task performance to assess practical downstream capabilities post-
compression. Perplexity is measured using three standard benchmarks: WikiText2 [Merity et al.,
2017]], Penn Treebank [Marcus et al.| [1994], and C4 validation samples, computed using Hugging-
Face’s full-stride perplexity protocol [Per, |2022]]. For zero-shot evaluation, we utilize the LM Har-
ness framework [Gao et al.] on a diverse suite of eight zero-shot tasks: PIQA [Bisk et al., [2020],
ARC-Easy/Challenge [[Clark et al., [2018]], HellaSwag [Zellers et al.,[2019]], Winogrande [Sakaguchi
et al.| [2021]], RTE [Poliak, 2020], OpenbookQA [Banerjee et al., [2019], and BoolQ [Clark et al.,
2019]. We report individual scores for each benchmark and the average across all tasks.

For perplexity, (J) lower values are preferred. For zero-shot tasks, (1) higher values are preferred.

Baselines Our main baselines are OATS [Zhang and Papyan, [2025]], HASSLE-free-SparseGPT
(Hf-SparseGPT) and HASSLE-free-ALPS (Hf-ALPS)—the latter two use pruning approaches



SparseGPT [Frantar and Alistarh, [2023]] and ALPS [Meng et al,|2024al], respectively, in the sparsi-
fication step of the alternating minimization algorithm proposed by Makni et al.|[2025]].

For all these baselines, we follow the original configuration and perform 80 steps of alternating
minimization. For HASSLE-free methods, we propose an improved implementation that replaces
their original parameterization of L = UV | and gradient-based optimization with the closed-form
solution provided in Equation (). This modification leads to improved compression runtime and
better downstream LLM evaluation metrics—see Table[6] Under this improved implementation, the
method EoRA [Liu et al., 2024]], which applies the update in Equation () once after one round of
compression, reduces to HASSLE-free (alternating minimization approach) with a number of itera-
tions equal to one. EoRA is the fastest (S + LR) method but underperforms HASSLE-free which
uses more alternating minimization steps (default=80), and hence there is a large gap compared to
our approach on most model/configuration settings. We show some results of EoRA in Table 6]

More details on the implementation of 3BASiL, TM and the baselines (with improved implementa-
tion) are provided in Appendix

4.2 Numerical results

Our evaluation focuses primarily on (N:M + LR) decompositions, which enable efficient GPU ac-
celeration via specialized CUDA kernels [Mozaffari et al., 2024}, [Makni et al., [2025]. We evaluate
both one-shot compression performance and downstream LoRA fine-tuning capabilities. Addition-
ally, we demonstrate the generality of our approach through experiments with unstructured sparsity
and integration with sparsity allocation methods. The downstream LoRA experiments have been
motivated by recent studies [Li et al., 2024} |Guo et al., 2024, Saha et al.l [2024| suggesting that de-
compositions of the form C(W) + LR are LoRA-aware: i.e. low-rank components obtained from
compression can act as smart initialization to improve downstream LoRA fine-tuning. Further nu-
merical experiments where we ablate on TM and LoRA fine-tuning for (S + LR) methods can be
found in Appendix [C]

One-shot (Sparse + LR) results We compare 3BASiL to prior (S 4+ LR) decomposition methods
in the one-shot compression setting—i.e., without fine-tuning. Table[I|reports results for LLaMA3.2
family under various (N:M + 64LR) configurations. Table [2| and Figure [3| show results for similar
configurations for the LLaMA3-8B model. 3BASiL reduces perplexity by up to 8% compared to
previous SOTA (due to better layer-wise reconstruction—see Figure [5aand Figure [5b), with the TM
step yielding further dramatic improvements of up to 40% perplexity reduction.

We also compare (S + LR) decompositions with semi-structured pure pruning methods under a
fixed compression ratio p = 50%. Results in Table [3| show that 3BASiL-TM achieves the best
compression-performance trade-off under (3:8 + LR) configurations among different (S + LR)
methods. Additionally, we expand our (S + LR) experiments to include a (2:4 + 112) configuration
for OPT-30B model [Zhang et al.| [2022]. This configuration uses a 1.56% Low-Rank Adapter
(hidden size 7168). Under this configuration, Mozaffari et al.[[2024] report a 1.53x speedup as well
as a 0.63x memory reduction compared to dense model. Results are reported in Table 4]

For unstructured sparsity configurations, we benchmark 3BASiL against prior (S + LR) methods on a
"less aggressive" (50% + 128) compression for both Llama3.2-1B and Llama3-8B models. Table 5]
shows that our proposed method maintains its advantage even in this near-lossless configuration
regime. We further evaluate 3BASiL under high sparsity ratios with (Unstructured + 64) configu-
rations and demonstrate how our method integrates with the sparsity allocation method OWL [[Yin
et al.,[2024] for the Llama3-8B model—see Table[13]in Appendix

These results highlight the effectiveness and flexibility of our method 3BASiL.

LoRA fine-tuning after one-shot compression  After applying (S + LR) decomposition, the
resulting low-rank components can serve as initialization for LoRA fine-tuning on downstream
tasks to recover lost performance. We conducted limited LoRA fine-tuning on 10% of the first
C4 training dataset shard (approximately 15 million tokens), with detailed hyperparameters in Ap-
pendix [B] Figure [da] demonstrates that LFT-3BASiL-TM significantly reduces the C4 perplexity of
(S+LR) decompositions, particularly under aggressive compression regimes like 2:8+64LR. More-
over, while LoRA fine-tuning can recover a large portion of the performance lost due to compression,
an advanced one-shot decomposition approach retains its advantage post fine-tuning. For instance,
LFT-3BASiL-TM still outperforms competing decomposition methods after LoRA fine-tuning of
2:8+64LR configurations, achieving approximately 8% lower perplexity.



Figure 3: One-shot C4 perplexity analy-
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20 Hf-SparseGPT 27.25 19.45 32.63 20.38 15.03 23.23
Hf-ALPS 2:4+64LR | 23.90 17.66 28.96 18.45 13.79 20.50
. R _ . 3BASiL 23.16 17.27 27.717 17.89 13.12 20.10
2:8+64LR 3'85‘;4;; urazf‘};?14LR 4:8+64LR 3BASIL-TH 2046 1523 2460 | 1637 1179 1834
g Dense ‘ - 14.01 9.75 17.59 ‘ 11.33 7.81 13.53
Table 2: One-shot (N:M Sparse + LR) decomposition performance for Meta-Llama-3-8B.
Method | Config | C4, WT2| PTB||PIQAT HSt ARC-ET ARC-Ct WGT RTET OQA1 BoolQt Avg?t
0ATS 5888 4076 6735 | 6371 3948 4268 2432 5391 5271 2840 6398 4615
Hassle-free-SparseGPT 2932 2146 3206 | 6866 5199 5097 3038 6385 5307 3200 7131 5278
Hassle-free-ALPS 3:8+64LR | 23.93 1820 2631 | 7062 5654 5442 3012 6472 5523 3280 7196 5455
3BASIL 2307 1803 2484 | 7106 5696 5770 3259 6660 5451 3300 6670 5490
3BASHL-TM 18.11 1426 2047 | 7405 6185 6073 3473 6598 5451 3480 7691 5794
0ATS 1638 1088 1723 | 7584 6760 67109 4121 7088 6029 3820 7361  61.84
Hassle-free-SparseGPT 14.65  9.88 15.21 77.09  69.95 69.32 41.81 71.27 5632 40.60 79.39 63.22
Hassle-free-ALPS 4:8+64LR | 1404 944 1445 | 7682 7119 7104 4445 7277 5668 4020 7813 6391
3BASL 1374 921 1424 | 7688 7205 7016 4480 7214 6101 4140 8089 6492
3BASIiL-TM 1302 864 1370 | 7824 7259 7311 4735 7198 6318 4240 8049 6617
0ATS 21.59 14.76 23.41 72.74 60.70 60.86 34.81 65.51 57.76 35.20 68.32 56.99
Hassle-free-SparseGPT 1777 1238 1871 | 7481 6504 6616 3857 7009 5487 3840 7771  60.71
Hassle-free-ALPS 24+64LR | 1615 1138 1671 | 7519 6710 6444 3891 6953 5993 3940 7838  61.61
3BASIL 1576 1123 1625 | 7650 6761 6721 4010 7024 6426 3820 7829  62.80
3BASHL-TM 1434 978 1488 | 7748 69.58 6721 4053 7127 6137 3980 7951 6334
Meta-Llama-3-8BDense | - | 944 614 1118 | 8079 79.17 7760 5333 7285 6968 4500 8144 6099
Method Config | C4/ WT2| PTIB| |PIQA1 ARC-E1 ARC-C
etho | Conflg | C4/ v L PIOA T ! ' Table 3: One-shot (N:M Sparse
Wanda | 3821 2689 47.13 | 67.63  49.37 2901 LR) d o h
Wanda-TM 1591 1103 1760 | 75.14 6397 40.19 + LR) decomposition performance
SparseGPT . | 2265 1622 2515 | 716 5648 3259  of Llama3-8B model. The com-
SparseGPT-TM 4 1530 1083 1677 | 7628 6528 4036 ; .
ALPS | 1962 1450 2173 | 7378  60.06 3584  pression ratio (percentage of non-
ALPS-TM 1496 1065 1635 | 7688 6503 985 zero parameters retained) is fixed
Wanda | 2270 1558 2662 | 7203  58.63 36.00 _
Wanda-TM 1390 958 1509 | 7748 822 4275 to be p = 0.5 For Perplex-
SparseGPT 4y | 1759 1229 1848 | 7568 63.38 39.59 ity, (i) lower values are preferred.
SparseGPT-TM : 1368 928 1451 | 7807 7029 s394 p h K hich 1
ALPS | 1606 1117 1660 | 7612  66.25 40.87 or zero-shot tasks, (1) higher val-
ALPS-TM 13.59 9.15 14.18 77.58 69.57 43.94 ues are preferred. Bolded Val_
OATS 2103 1454 2415 | 7367  59.68 37.12
H-SparseGPT 2005 1503 2201 | 7405  60.52 3618 UGS CoITesp ond to the overall' best
Hf-ALPS 28+LR | 17.89 1307 19.11 | 7454 6553 3908  compression scheme that satisfies
3BASIL 1520 10.64 1580 | 7671  70.08 4352 _ :
3BASIL-TM 1381 950 1474 | 7715 7336  aasa P = 0.5. Underlined values cor-
OATS 1687 1143 1853 | 7524 6591 39.85 reqund to the best pure pruning
Hf-SparseGPT 16.16 11.36  16.71 75.79 67.55 41.04 a]gorlthm for the same compres-
Hf-ALPS 3:8+LR | 1485 1020 1542 | 77.15  69.40 43.64 . . .
3BASIL 1373 929 1462 | 7845 71.42 43.43 sion. This shows the universal-
3BASIL-TM 1301 869 1374 | 7780  75.00 4744 jty of transformer-matching to
Llama3-8BDensc | - 944 614 1118 | 8079  77.69 533 pure sparsity constraints.
Method Cal WI2. PIBL | Timeh Table 4: One-shot (2:4 + 112) decomposition of
etho | 1 5 | | Time (hrs) | 1. Thi fi . Its in ef:
ATS-10 75 1048 1463 81 OPT-30B model. This configuration results in ef-
Hf-SparseGPT | 11.58  10.17 1439 507 ﬁment inference. We limit the compression run-
Hf-ALPS-10 1156 1005  14.33 4.33 time to 6 A100 GPU hours. 3BASiL-TM largely
3BASiL 1153 10.04  14.26 4.20 exceeds this period. We limit the alternating min-
Dense 1144 956  14.04 = imization steps of Hf -ALPS and 0ATS to 10 to fit

within the time constraint.



Table 5: One-shot (50% + 128) decomposition for Llama3.2-1B and Meta-Llama-3-8B models.

Method | Config | C4) WT2, PTB||PIQAt HST ARC-ET ARC-Ct WG?T RTET OQAT BoolQt Avg?
OATS 17.99  12.16 21.40 71.71 57.96 57.28 33.79 59.98 5271 33.00 63.94 53.80
Hf-SparseGPT 17.25  11.99 20.87 7291 59.04 56.82 33.11 58.88  57.76 35.00 57.03 53.82
Hf-ALPS 50%+128 | 16.81 11.66 20.12 72.80  59.92 57.62 33.11 58.64  55.96 35.20 59.66 54.11
3BASIL 16.17  11.16 20.00 73.83  60.42 58.04 34.47 60.38  53.79 36.80 58.20 54.49
3BASIL-TM 15.78 10.87 19.33 7323 60.66 59.26 34.56 61.01 59.21 36.60 64.13 56.08
Llama-3.2-1B Dense - 14.01 9.75 17.59 \ 7459  63.66 60.48 36.26 60.69  56.68 37.20 63.98 56.69
OATS 12.25 778 12.92 78.40  75.32 73.99 49.15 73.80 58.84 41.80 79.42 66.34
Hf-SparseGPT 11.98 7.77 12.85 79.11 75.88 75.00 49.40 7332 63.18 43.80 78.32 67.25
Hf-ALPS 50%+128 | 12.09  7.99 12.86 | 7878  76.29 76.52 51.19 73.09  60.65  40.20 81.62  67.29
3BASIL 11.51 7.47 12.36 79.54  76.69 74.75 48.72 7269  67.87 43.00 80.24 67.94
3BASIL-TM 11.27 7.30 12.26 79.65  76.07 75.84 47.78 71.98  70.40 44.20 80.70 68.33
Meta-Llama-3-8B Dense - 9.44 6.14 11.18 \ 80.79  79.17 77.69 EESS 72.85  69.68 45.00 81.44 69.99
Meta-Llama-3-8B — C4 ppl After LoRA FT C4 Perplexity: Methods Without/With LoRA Finetuning vs Dense Model
B -G~ LFT-0ATS 3 Without LoRA Finetuning
35 N\ LFT-HE-SparseGPT 8l = e
\ -~ LFT-Hf-ALPS
30 -&- LFT-3BASIL N
—=— LFT-3BASIL-TM M

£ >35%

3 duction
25 %16 Lseo 1578 reduc

15

a
20 < 15 Gap to

O Dense

14.01
15 14
2:8+64LR 3:8+64LR 2:4+64LR 4:8+64LR B OATS Hf-SparseGPT Hf-ALPS ~ 3BASIL 3BASILTM Dense
Configuration Runtime:  0.44h 0.80h 077h 0.28h os0n  (Llama-3.2-1B)

(H100 80GB)
Runtime LoRA FT (15M tokens on H100 GB GPU): 0.70h

(a) C4 ppl of Llama3-8B model under different (b) C4 perplexity gap to dense model (Llama3.2-1B) under
(S + LR) configurations after LoRA. (50%+128LR) configuration.

Figure 4: C4 perplexity performance of Llama3-8B & Llama3.2-1B before/after LoORA fine-tuning.

5 Related Work

One-shot Sparse/Quantized plus Low-Rank compression The seminal works of
proposed a compression technique for a neural network using sparsity plus low-rank constraints.
However, the authors study small-scale vision models. In addition, they consider a compression
that needs to be repeated over multiple rounds (decomposing selected layers and followed by a re-
training process). Our focus is different; we are interested in compressing at LLM-scale in one-shot
(no expensive retraining). Recent methods in LLM compression have focused on effectively com-
bining low-rank decomposition with quantization or sparsity. EoRA has been
proposed as a method to compensate for the loss produced by a general-purpose compressed weight
C(W) using a low-rank component, it does the low-rank fitting step once post the initial weight
compression, which could include combinations of sparsity and quantization. LoftQ
2024] jointly optimizes quantization and LoRA initialization by solving ming r, ||[W — (Q+L)|| 7,
where W represents the original weights, Q the quantized component, and L the low-rank com-
ponent. LQ-LoRA 2024] extends this by incorporating Fisher information weighting,
approximately solving ming r, [|[F ©® (W — (Q + L))|| . CALDERA [Saha et al., [2024] further
considers the layer-wise reconstruction error, optimizing ming 1, || XW — X Q —|— L F to main-
tain the outputs of individual layers rather than mere weight approximation. From the S +LR)

perspective, OATS [Zhang and Papyan| [2025]] proposes an outlier-aware alternating mlnlmlzatlon,
effectively reducing to solving ming 1, [DW — D(S + L)||» with D = diag(X?X), as noted by
Makni et al| [2025]. HASSLE-free [Makni et al., [2025]] directly tackles layer-wise reconstruction
error ming , || XW — X(S + L) || ¢ using alternating minimization. While methods such as OATS
and HASSLE-free separately optimize sparse and low-rank components, our proposed approach,
3BASiL, distinctly utilizes a unified optimization framework via a 3-block ADMM formulation,
jointly optimizing sparse and low-rank components simultaneously.

Sparse plus Low-Rank structures in transformers Beyond model compression, sparse plus low-
rank structures have a strong presence in the context of LLMs. LoRAPrune [Zhang et al [2024] is
a purse sparsification method, which prunes a model (iteratively) by designing a memory-efficient
LoRA-guided (low-rank structure) pruning criterion. In contrast, LoSA (low-rank Sparse Adapta-




tion) [Huang et al.l [2025] jointly applies LoRA fine-tuning and pruning in a unified framework to
obtain a fine-tuned sparse-only (as opposed to (S + LR)) model, by dynamically sparsifying the
LoRA weights and adjusting their rank. SLTrain [Han et al., 2024] addresses (S + LR) from a
training perspective. It pre-trains an LLLM using a fixed random sparse mask plus trainable low-rank
factors (similar to LoRA), achieving comparable accuracy to dense training with far fewer parame-
ters. SLTrain demonstrates the benefits of (S+ LR) structure for pre-training but it doesn’t solve the
post-hoc decomposition problem of a dense model. There are connections between our transformer-
matching step and SLTrain as they both train sparse (fixed support) and low-rank components, but
they minimize different loss functions and serve different purposes.

ADMM approaches to compress networks The Alternating Direction Method of Multipliers
(ADMM) [Boyd et al., 2011} |Davis and Yinl 2016] is an effective optimization technique for prob-
lems with coupled variables that has been successfully applied to neural network compression. |Ye
et al.| [2018] introduced ADMM-based progressive weight pruning that optimizes the original loss
function under sparsity constraints, which Ye et al.| [2019] extended to preserve adversarial robust-
ness during compression. In contrast, recent methods have scaled ADMM to LLMs through layer-
wise reconstruction: [Bozal [2024]] employed ADMM to solve a convex problem recovering optimal
weights on a fixed support of the weight matrix, while Meng et al.| [2024a] utilized ADMM for a
non-convex problem that jointly optimizes both support and weights. Our proposed method differs
from these prior works as we explore a 3-block ADMM in model compression that simultaneously
optimizes (S + LR) components with theoretical convergence guarantees.

Exact Low-Rank updates for layer-wise compression The problem of exact low-rank updates
found in Equation (@) has original roots from classical reduced-rank regression methods [Izenman
1975} Reinsel and Velu, [1998]], which provide closed-form solutions for optimally approximating
linear regression models under rank constraints. Recent work, including CALDERA [Saha et al.,
2024 and the low-rank correction method by [Scetbon and Hensman| [[2024]], applies these closed-
form updates to compress large language models into W ~ Q + LR. We also use these exact
low-rank updates by integrating them directly in Equation () within our ADMM framework for
(S + LR) decomposition.

6 Conclusion and limitations

We present 3BASiL as a highly-efficient (S + LR) decomposition algorithm with theoretical con-
vergence guarantees. It provides high-quality solutions to the layer-wise decomposition problem
presented in Equation (I)) in terms of objective minimization (Figure [5a] and Figure [5b) compared
to competing (S + LR) decomposition methods. We further refine these decomposed weights with
our novel (memory-efficient) transformer matching step TM that can enhance any (S + LR) decom-
position. This shows that one route for optimal compression results (in the context of C(W) + LR)
is to unfold the LLM compression into 3 minimization steps: (i) [layer-wise reconstruction] this
is the loss that has been considered in many SOTA pruning/quantization algorithms [Frantar and
Alistarh, 2023| Meng et al., [2024a} Saha et al., 2024, Frantar et al.| 2022, Meng et al., |2024b]], (ii)
[transformer-matching] this is an intermediate loss function (to be optimized in a memory-efficient
manner) which is a more reliable approximation to the true loss function than simple layer-wise
reconstruction, and (iii) [LoRA fine-tuning] plugs the obtained low-rank components as smart ini-
tialization for LORA to minimize the true LLM loss function. We believe that our 3-block ADMM
approach and TM can generalize to quantization or quantized-sparse constraints. We leave these ex-
plorations for future works.While we have shown how to integrate sparsity allocation mechanisms
like OWL to our framework, it remains to explore dedicated methods that can algorithmically al-
locate different sparsity/rank configurations to different layers to further improve efficiency-utility-
computations tradeoffs.
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Appendix

A Proofs of Theorem [1]
Proof. For conciseness, throughout the proof, we denote H = X'X 4+ A and G
(XTX + )\I) ‘W. We denote C'r as a large constant such that

max{1, [H™"2|3, |H]2, |G| r} < Cr. ©)

To establish the theorem, we first present the following three lemmas.

Lemma A.1. Let {D(t)}:i(y {L(t)}:io and {V(t)}zo be the sequence generated according to
update rule (). Then for any t > 1, it holds

(10)

) v©® vt-1)
L0l < ¢ (1+ D0+ e Ve,

Pt—1 Pt—1

Lemma A.2. Let {D(t) }tio and {V(t) }io be the sequence generated according to update rule
@). Then for any t > 1, it holds /

v®) AVAGSD)
||V(t+1)||F < (CF —&-C?:) <1 =+ HD(t)HF + H HF + H ||F> ) (11)
Pt—1 Pt—1
and
2CF +2C% v v(t-1)
DD _ p0|, < 2CF F <1+ DO + [VPr . | HF). (12)
Pt Pt—1 Pt—1

Lemma A.3. Let {D(t)}zo and {V(t)};io be the sequence generated according to update rule
@). Then for any t > 1, it holds

v® v(E-1)
Pt—1 Pt—1
t—1 t—1
1 v v©) 3(Cr + C
< exp 3(CF+C?I‘)Z . HD(1)||F+ H HF + H HF +Z ( F F)
o= Ps—1 Po Po — Ps—1
(13)
Returning to the proof of the main theorem, define
- 1
cAzzmy+(ﬁ)1+@m<acp+c®§: )-
o1 Ps—1
(€] (0) 4 (19
A% A% — 3(Cp +C
<|D<1>F+ IVOLe | VOl | §3(Cr F>>
Po Po — Ps—1

It follows from the update rules (@) that C'4 is a constant depending on X, W, A, po,and 3.2 0 1/py.

Lemmal[A.2]together with Lemma [A.3]yields

2CF +2CH
Pt (

D) — D < 1+ (DY) p +

v® (t-1)
VO | VY o

Pt—1 Pt—1 Pt

and

v® vE=1) C
||V(t+1)HF < (CF + 2021?) (1 + HD(t)HF + H HF + H ”F) < A. (16)
Pt—1 Pt—1 2
It then follows from V-update rule and triangle inequality that

[8¢+Y —80 ] < 8¢+ — DU + DI — DO 48 — DO £
Ve + IVOle | pesn — poy, o IVOle 1Vl
Pt Pt—1

< |

< 3

T pt—1
17
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According to L-update rule, we have

||L(t+1) - L(t)”F _ HH71/2PT(H1/2(W o S(t+1))) o H71/2PT(H1/2(W o S(t)))H

a
< 2z | P (VAW - SUHD)) - B HYVA(W - S0)||
< Cp|[HYV? oIS — 80 (18)
< CEIStY — 8O p
- 301%0,4.
Pt—1
Therefore, with constant C' = BC%C 4, we obtain
(t+1) _ q(t) (t+1) _ 1.0 c
max{||S -S| F, ||L -LYp} < —. (19)

Pt—1

Since 3°20, 1/ps < 00, both {S®}22 and {LM}2 are Cauchy sequences. Therefore, there exist
matrices S and L such that S() — S and L") — L as t — oo. Setting W = S + L, we conclude
that S® + L) — W as t — oo. O

A.1 Proof of LemmalA_T]

Proof. The L-update rule in (3)), together with (@) yields

ILO e = [H2PHY2(W - 8O))]

F

< |2 | P AW - 80|

o5,

< Co[E | Wile + o E2]| |50
2 2

F
< CZL|W]|r + C2ISD||r,

where the second inequality follows from the non-expansiveness of rank-r projection operator P, in
Frobenius norm. It then follows from the V-update rule in (3)) that

ILO | p < C2|W || r + C2||SD|| £

—~ v® —yi-1)
= C2||lW clip®y 2 -
FH ”F +CF + D1 - (21)
) v® vt-1)
Pt—1 Pt—1
O
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A.2 Proof of LemmalA.2]
Proof. According to the S-update rule in (), it holds

v® v®
St _DW 4 — — — (H+ pI)"H(G-HLY —V® 1 p, D) DO 4 ~__
Pt Pt
Vv ®)
=(H+pD) o, —I)DY + (H+p, )" (G -HLY - VW) 4 —
Pt
1 H) 1 H\ ' v®
== (I+> HDY  — (I+> (G-HLY - v®) 4 —
Pt Pt Pt Pt Pt

1 H\ ' H\ ™
— (1 + ) (G —HL® —HDW) + — |1 <I + ) ] v
Pt Pt

1 H\ ' HV®
<I+> (G—HL(t)—HD(t)—i- v )

Pt Pt Pt
(22)
Therefore, we obtain
‘ 1 ¢
sty _po YU o1 (I N H> G - HLY - gp® 4 BV
Pt lp Pt Pt ) Pt g
(t)
< G- HL® - HD® + HV (23)
Pt Pt F
1 HV®)
< — <G —~HLY —HDY| r + ”F> .
Pt Pt

Denote Z := {(i,§) € [Nin] X [Nout] | Dg;) = 0}. It follows from the D-update rule and the
definition of the projection operator that
2
‘D<t+1> gy VY
Pt

2

(s“*” N V(t)>
Pt /i

= m.
ZC[Nin]X[Nout] Z
Z|=

F in ouf_k( )GI
< Y (S“*” ve )) = > (s<f+1> po 4 V¢ )) 24)
- Pt /iy . Pt /iy
(i,9)€T (i,J)€T
o2
< Hs<t+1> _pw Y
B Pt F
Together with (23)), we get
(t) (t)
HD<t+1> _guery VU1 (||G ~HL® =D,  IEVr ”F> NGL)
Pt F Pt t
It then follows from the V-update rule that
t+1 t t
VI || p _ ‘D(Hl) _gt+1) _ v®) (HG HL® _ HD(t)”F 4 [HV( )||F>
Pt Pt |lp Pt Pt
(26)
According to Lemma[A.1]|and the monotonicity of {p;}72, it holds
HV® Hi,||[V®
16~ HLO ~ 1D + I < g4 L o + e D) e P
t ¢

v®)
< Cr (1 + DY+ lellF) +Cr|LO|
t—

VOl Vi |F)
+ .
Pt—1 Pt—1
(27
Together with inequality (26), this establishes the first inequality of the lemma. Furthermore, by
summing up and and applying the triangle inequality, we verify the second inequality. [

< (Cp +C%) (1 + DD F +
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A.3 Proof of Lemmal[A.3]
Proof. 1t follows from Lemma [A 2] that

V(t+1) Cr + o4
| 72 < ZF F <1+ ||D(t)||F+
Pt Pt

v®) Vv E=1)
Vlle  IV¢~2)e) o)

Pt—1 Pt—1
and
DV < DO p + DY) — DO
2CF + 2C%
Pt <

< IDW|| + 1+ DY+

IVOle ||v<“>|p) 29)
Pt—1 Pt—1 '

Summing up these two inequalities yields

V(E+1) Vv ®) vV (E+1) Vv ®)
D Ve IVOle ey IVl VOl
Pt Pt Pt Pt—1
3CFr + 3C% v® AVAGEY) V)
t t—1 Pt—1 Pt—
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< (1439250 (1o, o WWe IV Dle) | 30r 30}
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Denote a; := |[D®||g + [[V®O|r/pi—1 + |[VE V| r/pi_1, then the above inequality can be
rewritten as o o o o
3 3 3 3
a1 < (1+F+F) at+g (31)
Pt—1 Pt—1
Therefore,
Qi1 < ag n 3(Cr +Ct)
[T (143(Cr +CE)/pem) ~ TL1(L+3(Cr +Ch)/ps1) et [Teo(1+3(Cr + CF) /ps1)
< at + 3(Cr + C?«“)
T IL (L +3(Cr + CF) /ps-1) pr-1
(32)
It then follows from telescoping that
t—1
a 3(Cr+C%
— t - <a;+ Z 3(Cr +Cp) (33)
Hs:l(l + 3(CF + CF)/psfl) s—1 Ps—1
Note that
t—1 =1y
[T +3(Cr+Ci)/ps1) < exp <3(CF +CE)Y p 1) : (34)
s=1 s=1 157
recalling the definition of a; completes the proof. O
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B Additional Experimental Details

Computing environments All experiments were conducted on a computing cluster. Unless oth-
erwise specified, we utilized an Intel Xeon Gold 6248 machine with 16 CPU cores and a single
NVIDIA L40 48GB / A100 80GB / H100 80GB GPU. When runtime compression results are re-
ported, all experiments have been run on the same node (including GPU) configuration. All language
models and pruning methods were implemented using the PyTorch library |Paszke et al.|[2017].

Implementation Details of 3BASiL. We use H' = H + 0.005diag(X " X) + 0.005 Tr(X " X)IL.

In practice, we employ an iteration-dependent penalty parameter p;, giving the following updates at
iteration t:

S =(H + p )" (H(W — L") = V) 4+ p,DO) LD =H~V/2P, (H'/2(W — 8(+1))

DD :ps(s(tJrl) + V(t)/pt) v —yv@®) 4 pt(S(Hl) _ D(t+1))_
(35)

The initial pg = 0.1. The p-update for ADMM depends on the support change similar to what was
proposed by Meng et al.| [2024a]]. The (S + LR.) decomposition is more “sensitive” to increasing p
aggressively compared to pure pruning in the works of Meng et al.| [2024a]]. We use the following
p update rules. We update p every 10 iteration based on a step function that depends on the current
value of p; and s; := | Supp (D®) A Supp (D*~19)) |, which represents the number of elements

in the symmetric difference between Supp (D(t)) and Supp (D(t*m)). Specifically, we set

11p;  ifs; > 0.1k,
pro1 =4 1.05p, if s, > 0.005k, (36)
1.02p; if s; > 0.5.

It is worth noting that the algorithm can converge significantly faster if we set these parameters to the
ones proposed by Meng et al.|[2024a] (ADMM for pruning) but the solution quality can be slightly
compromised.

Implementation Details of transformer matching (TM) Given a transformer 7; with input ac-
tivations X; (obtained from the outputs of the previously compressed transformer block 7T;_;, we
start by creating a copy of T}, termed 7. We then compress 7; layers using an (S + LR)) method.
We now replace dense layers with LoRA layers that contain new linear sparse layers and low-rank
components A, B. We set all parameters in transformer block 7; to be trainable and minimize us-

ing Adam the loss ||T}(X;) — T.°"” (X;)||%. The input activations fed into subsequent transformer

blocks are Ti(TM) (X;), where Ti(TM) is the transformer block after (S + LR) decomposition and
TM refinement steps.

For TM step, we employ the Adam optimizer with PyTorch’s default hyperparameters. We use 20
epochs (on the 128 calibration data points selected for compression). The batch size used is 8. The
learning rate is 2 ~° using a Cosine Annealing Scheduler with 1, = 4e~5.

Baseline Implementation Details Below are the implementation specifications for:

* OATS: We adopt the official implementation from [Zhang and Papyan| [2025]] (accessible via
GitHub)) and apply the default hyperparameters and 80 alternating minimization steps.

* HASSLE-free-SparseGPT: We adopt the official implementation from Makni et al.| [2025] (ac-
cessible via|GitHub) and provide an improved implementation that uses the closed-form solution
Equation (@) for the low-rank fitting step. We apply the default hyperparameters and 80 alternating
minimization steps.

* HASSLE-free-ALPS: We adopt the official implementation from Makni et al.|[2025] (accessible
via \GitHub) and provide an improved implementation that uses the closed-form solution Equa-
tion (4) for the low-rank fitting step. We apply the default hyperparameters and 80 alternating
minimization steps.

In Table 3] we use the values reported in[Makni et al.| [2025]). For all other reported values, instead
of minimizing | X(W — M)||p s.t. rank(M) < 7 by reparameterizing M = UV " and optimizing
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Perplexity (]) Zero-shot (1)

Model Algorithm
C4 WT2 PTB PIQA HS ARC-E ARC-C WG RTE OQA BoolQ Avg
Hf-SparseGPT-original 18.06 12.66 18.66 7486 6477  63.85 3737 6922 56.68 36.40 76.12 5991
Llama3-8B Hf-SparseGPT-ours 17.77 12.38 18.71 7481 65.04 66.16 38.57 70.09 54.87 3840 7771 60.71
EoRA-SparseGPT 21.89 1569 2391 7225 5887 5770 3456 6630 54.87 3380 7358 56.49
Hf-ALPS-original 1676 11.83 17.76 75.08 6637  63.64 3754 69.69 64.62 3720 7789 61.50
Hf-ALPS-ours 16.15 11.38 16.71 75.19  67.10 64.44 3891  69.53 5993 3940 7838 61.61
EoRA-ALPS 18.69 13.61 20.55 73.99 6221  61.07 3720 6859 57.40 36.00 74.16 58.83

Table 6: Comparison of (original paper), our reproduced results (with improved implementation)
and EoRA (reduces to HASSLE-free with alternating minimization steps set to 1) for Llama3-8B
under the configuration (2:4 + 64). Perplexity (lower is better), Zero-shot accuracy (higher is better).

with gradient-descent on U and V as proposed by the authors, we use our improved implementa-
tion of HASSLE-free with closed-form solution Equation (@). This results in significant speedup
improvements. A slight improvement in LLM evaluation benchmarks is also sometimes observed
using the improved implementation. This is expected because gradient-descent on U and V ap-
proximately solves the reduced-rank regression problem, whereas the closed-form solution is an
optimal solution.

Table [f] shows an extract of the differences between the implementation of HASSLE-free proposed
in [Makni et al.| [2025] and ours (using closed-form solution for low-rank update). Moreover, the
original paper reports a compression runtime (of a Llama3-8B under a 2:4+64LR configuration) of
20.13 hours using a single A100 80GB GPU, whereas we report a compression runtime (for the
same setup) of 15.71 hours in Figure 2] (using a single A100 80GB GPU) thanks to the efficiency of
the closed-form solution. It is worth noting that 3BASiL and 3BASiL-TM are still over 7 times and 3
times, respectively, faster than HASSLE-free-ALPS, even when using the improved implementation
for HASSLE-free.

LoRA Finetuning Details We follow a similar LoRA fine-tuning pipeline to the one introduced
in [2024]. For LoRA fine-tuning use a learning rate of 2e-5 and a batch size of size 64
per step. The block size used is 1024 tokens per batch. The effective batch size is obtained by using
a physical batch size of 2 on GPU with 32 gradient accumulation steps before each weight update.
Training is conducted on 10% of the first shard of the C4 training dataset, which contains over 15
million tokens. We employ the Adam optimizer with PyTorch’s default hyperparameters. A cosine
learning rate scheduler is used, with a warm-up ratio of 0.03 and no weight decay applied.

Layer-wise reconstruction error of 3BASiL. Figure[5aland Figure [5b|show the objective of Equa-
tion attained by 3BASiL and other (S + LR) methods for the first transformer block of a
2:4+64LR decomposition of a Llama3-8B model for Attention and MLP layers, respectively.

True Loss Comparison for Attention Layers True Loss Comparison for MLP Layers
635.3

16227.5

B 0TS 142308 B OATS
600 [ Hf-SparseGPT 100 [ Hf-SparseGPT
BN HFALPS BN HFALPS

B 3BASIL

Bl 3BASIL

500

400

300

200

True Loss (lower is better) L
True Loss (lower is better) {

10?

100

Attention Attention

Attention Attention MLP MLP
Query Proj Key Proj Value Proj Output Proj Gate Proj Up Proj Down Proj
Attention Layer Types MLP Layer Types
(a) True loss for attention layers (linear scale). (b) True loss for MLP layers (log scale).

Figure 5: Comparison of true loss values introduced in Equation (1) across different (S + LR)
methods. Lower values indicate better optimization quality. 3BASiL consistently outperforms other
methods, particularly for attention layers.
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C Additional Experimental Results

We provide additional performance results considered in Section{4] We compare different (S +LR)
algorithms and their TM-enhanced versions (apply TM as an add-on to the decomposition algorithm).
In that case, we add the suffix -TM to the algorithm. We mark algorithms with TM in gray. We also
study the results of the (S+LR) decomposition after LORA fine-tuning as described in Appendix
In that case, we add the prefix LFT- to the algorithm.

Example: LFT-0ATS-TM denotes the results of (S + LR) decomposition after (i) using OATS to
obtain sparse and low-rank components, (ii) refine these decomposed components with TM and (iii)
LoRA fine-tunes the model by using the low-rank components from the (S + LR decomposition
as a smart initialization.

Method | Config | C4) WT2| PTB||PIQAt HS? ARC-Et ARC-CT WG?T RTET OQAT BoolQ? Avg
0ATS | 640.86  605.20 779.86 | 52.01 27.67 28.66 23.12 49.96 5271 25.00 37.83 37.12
OATS-TM 11629 99.92  126.06 | 5555 28.78 31.44 20.56 5138 5271 26.80 46.79  39.25
Hassle-free-SparseGPT | 16245 13421 170.12 | 54.19  28.28 31.40 2201 49.17 5271 26.80 5725 40.23
Hassle-free-SparseGPT-TM | , o /i p 7450  67.59  88.05 57.24  30.03 33.12 21.33 5233 5271 26.20 60.34  41.66
Hassle-free-ALPS - | 107.14 9471 124.17 | 5539  29.98 32.07 20.82 5272 53.07 27.20 49.27 40.06
Hassle-free-ALPS-TM 5830 5230  73.97 5881 3221 34.93 21.59 5280 5271 26.20 6220 4268
3BASiL 97.50 8659 100.35 | 5691  30.49 32.37 21.08 53.75  53.07 24.40 61.74  41.73
3BASiL-TM 5524 4974  69.49 5881  32.80 35.14 2278 53.04  53.07 26.60 62.14  43.05
OATS | 12591 9213 11580 | 57.13  32.14 35.98 2261 5146 51.99 26.80 62.51 42.58
OATS-TM 3632 27.69 4198 63.17 3847 43.69 2321 5288 5271 29.80 62.08 4575
Hassle-free-SparseGPT | 4350 3418 5116 61.86  38.24 41.29 24.66 53.75 5271 29.20 62.08 4547
Hassle-free-SparseGPT-TM 3.8464LR 3048  24.18  37.28 65.18  41.40 4541 25.68 5596 5271 30.40 6226  47.38
Hassle-free-ALPS o | 3780  29.00  43.60 64.04 4147 42.34 25.85 5422 54.51 30.40 62.02  46.86
Hassle-free-ALPS-TM 2734 2142 3423 66.38 4448 45.62 25.51 55.88 5343 30.40 62.23 47.99
3BASiL 34.81 2696  41.55 6491 4234 45.24 2747 56.12  53.07 31.20 62.60 4787
3BASiL-TM 26.26 2075 32.09 66.43 4547 47.47 27.05 57.77 5271 32.00 62.20  48.89
OATS | 28.06 19.69  32.90 67.30  49.07 48.48 27.65 56.20 5271 30.20 62.45 49.26
OATS-TM 20.65 1459 2450 69.37  51.37 55.05 31.40 5722 54.51 30.60 62.81 51.54
Hassle-free-SparseGPT | 2224 1590  27.35 70.51 52.08 50.76 29.44 5738  58.12 34.20 62.63 51.89
Hassle-free-SparseGPT-TH | ;o o/ 19.63 1385  24.17 7024 53.12 55.05 31.14 56.83  54.87 33.80 63.18 5228
Hassle-free-ALPS : | 20.71 1490 2475 69.59  53.27 53.07 29.78 5777 5379 33.60 63.33 51.78
Hassle-free-ALPS-TM 19.07 1370 23.06 7111 54.82 55.30 31.83 58.64 5271 31.60 6242 5230
3BASiL 20.04 1426 2427 70.62  54.55 55.72 30.72 60.06 5523 34.00 63.06  52.99
3BASiL-TM 18.66 13.19 2246 7209 5548 55.60 31.48 59.12 53.07 34.00 6346  53.04
0ATS | 4180 2845 4536 63.28  41.89 47.01 26.37 53.51  51.26 28.40 63.09  46.85
OATS-TM 23.89 17.04  27.99 68.23 4776 51.01 2713 55.64 5632 32.60 6232 50.20
Hassle-free-SparseGPT | 2725 19.45 32.63 67.63 4770 45.96 26.96 55.88  52.71 30.40 62.14  48.67
Hassle-free-SparseGPT-TM | , , <\ p 22.17 16.41 26.67 69.10  49.90 50.29 27.99 56.59 57.04 3340 6242 50.84
Hassle-free-ALPS : | 23.90 17.66  28.96 69.15  49.62 49.66 28.16 5777 5523 32.00 63.06  50.58
Hassle-free-ALPS-TM 20.93 1535 2515 7046  51.14 51.09 28.24 5833  57.04  34.60 6355 5181
3BASiL 23.16 1727 27.77 69.80 5174 51.35 27.82 5872 5487 33.40 62.84  51.32
3BASiL-TM 20.46 1523 24.60 70.18 5291 52.06 30.12 5896 5271 33.40 6239  51.59
Llama-3.2-1B Dense | 14.01 9.75 17.59 | 7459  63.66 60.48 36.26 60.69  56.68 37.20 6398  56.69

Table 7: One-shot (N:M Sparse + LR) decomposition performance for Llama-3.2-1B. For Perplexity,
(J) lower values are better. For zero-shot tasks, (1) higher values are better.

Method | Config | C4) WT2| PTB||PIQAT HS? ARC-Et ARC-CT WG?T RTET OQAT BoolQ? Avg
0ATS | 531.47 49431 674.71 5250  27.33 28.16 23.29 49.57 5271 26.60 39.60  37.47
OATS-TM 100.87  87.20  120.98 | 56.64  29.01 30.13 20.65 50.99 5271 26.00 62.11 41.03
Hassle-free-SparseGPT | 106.07 106.17 15192 | 54.62  29.67 29.92 21.67 5028  52.71 26.60 61.93 40.93
Hassle-free-SparseGPT-TM | , o /i p 61.50  56.02  90.37 58.98 3253 33.75 22.10 51.78  52.71 26.40 62.11 42.55
Hassle-free-ALPS - | 69.96 6534 108.68 | 57.34 3259 33.59 20.82 50.67 5271 27.00 6226  42.12
Hassle-free-ALPS-TM 46.12 4403  61.25 6126  36.36 36.83 23.12 5280 5271 25.00 62.51 43.82
3BASiL 73.00 7226 11010 | 5729  32.62 34.01 21.42 5114 5271 26.80 6220 4227
3BASiL-TM 4535 4238  68.29 61.10  36.90 38.17 2278 5312 53.07 26.00 62.66  44.23
0ATS | 65.08 4727  81.29 61.75  37.80 42.17 23.89 5288 5271 27.20 62.75 45.14
OATS-TM 27.09 2094 3021 67.68  47.26 51.26 28.41 5746 5271 29.20 64.65 49.83
Hassle-free-SparseGPT | 3466 2660 39.76 65.94  46.19 47.77 26.88 58.96  53.07 29.60 65.02  49.18
Hassle-free-SparseGPT-TM 3.8464LR 23.69 19.54 2745 69.70  51.64 52.78 29.35 6022 55.96 30.60 6272 51.62
Hassle-free-ALPS o | 2794 2277 3459 69.15  50.18 53.32 29.01 6148 5271 32.00 63.58 5143
Hassle-free-ALPS-TM 21.52 17.80  26.42 71.00 5445 57.37 30.80 59.75 5632 33.40 66.02  53.64
3BASiL 26.35 20.66  31.77 68.66  51.44 52.10 29.95 6125 5415 31.20 6832 5213
3BASiL-TM 20.89 17.18 2531 71.82 5535 SEL7 32.08 60.85  54.15 33.40 65.41 SEET
OATS | 1925 13.40  21.67 7247 61.10 60.82 35.15 66.30  57.40 34.00 7324 57.56
OATS-TM 15.92 11.00 17.82 74.21 63.46 65.61 37.80 66.14  64.62 36.80 7226 60.11
Hassle-free-SparseGPT | 17.09 12.30 19.19 73.83  63.01 64.23 36.52 65.59  58.12 37.80 72.08  58.90
Hassle-free-SparseGPT-TH | ;o o1 15.42 10.84 17.23 74.65 6522 64.94 38.14 65.19  58.84 40.40 69.69  59.63
Hassle-free-ALPS . | 16.04 1151 18.17 74.54  64.63 63.76 36.95 66.38  59.57 36.80 72.08 59.34
Hassle-free-ALPS-TM 15.07 10.54 16.84 75.19  65.93 66.84 40.02 67.40  60.65 40.00 74.01 61.25
3BASiL 15.65 10.97 17.39 75.68  65.87 66.46 39.42 67.25  59.93 38.80 73.52  60.87
3BASiL-TM 14.89 1029 1652 7579 66.46 67.05 38.82 66.06  59.93 39.20 7232 60.70
0ATS | 2518 17.41 28.60 70.89  54.76 57.74 32.76 61.17  53.07 32.80 7040  54.20
OATS-TM 18.08 1285  20.22 7242 59.46 62.79 35.24 6227 5884  34.60 70.21 56.98
Hassle-free-SparseGPT | 2038 1503 2323 71.55  58.62 59.93 32.94 63.85 5740 33.60 69.94 5598
Hassle-free-SparseGPT-TM | , , <\ p 17.24 12.66 19.41 73.78  61.50 61.66 34.64 63.69  58.48 37.20 68.62 5745
Hassle-free-ALPS . | 1845 1379  20.50 7378 60.82 63.30 35.49 64.56  57.40 35.80 7278 5799
Hassle-free-ALPS-TM 16.60 12.11 18.59 7421 6297 63.05 37.54 66.14  58.84 36.00 70.58  58.67
3BASiL 17.89 13.12  20.10 73.34  61.99 62.50 35.07 66.46  61.73 39.60 71.80  59.06
3BASiL-TM 16.37 1179  18.34 7378  63.38 63.05 38.05 6425 5957 36.80 71.13 58.75
Llama-3.2-3B Dense | 11.33 7.81 13.53 | 7748 7361 71.63 45.99 69.85 5451 43.00 7339 63.68

Table 8: One-shot (N:M Sparse + LR) decomposition performance for Llama-3.2-3B. For Perplexity,
(J) lower values are better. For zero-shot tasks, (1) higher values are better.
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Method | Config | C4, WT2| PTB| |PIQAT HS{ ARC-ET ARC-C? WGT RTET OQA?T BoolQ7 Avg

0ATS 42455 431.81 590.88 | 51.63  28.11 27.61 23.72 49.72 5271 27.00 3826  37.34
0ATS-TM 7342 6421 10059 5843  31.23 32.20 20.22 5138 52.71 26.00 6229  41.81
Hassle-free-SparseGPT 8839  96.61 109.71 | 5495  30.77 31.48 20.65 50.75 5271 26.20 61.59  41.14
Hassle-free-SparseGPT-TM | o <y p 4624 4275  71.66 6148  36.76 36.74 23.12 5351  52.71 27.60 63.15 4438
Hassle-free-ALPS . 60.16  56.03  77.11 | 5794 3492 34.64 21.67 5462 5271 27.80 56.12 4255
Hassle-free-ALPS-TM 36.50 3431  50.14 6491  41.18 40.28 24.40 56.99  52.71 28.20 59.60  46.03
3BASiL 56.99 5383 7248 59.25 3534 35.98 21.59 5406 52.71 27.40 64.62  43.87
3BASiL-TM 36.16  33.51 5287 63.60  41.47 39.81 2432 5841 52.71 26.80 63.67  46.35
0ATS 58.88 4076 6735 | 63.71  39.48 42.68 24.32 5391 5271 28.40 63.98  46.15
0ATS-TM 22.67 17.17 2446 7122 5429 54.88 3148 6322 54.15 32.80 7138  54.18
Hassle-free-SparseGPT 2932 2146 3206 | 68.66 51.99 50.97 30.38 63.85 53.07  32.00 71.31 52.78
Hassle-free-SparseGPT-TM | 3.0, <y p 19.97 1551 2228 7285  58.72 58.12 33.96 65.67 61.37  32.00 7492 57.20
Hassle-free-ALPS - 23.93 1820 2631 | 70.62 56.54 54.42 30.12 6472  55.23 32.80 7196  54.55
Hassle-free-ALPS-TM 18.38 1452 20.15 7448  61.56 59.01 3328 67.48 5740  35.20 75.11  57.94
3BASiL 23.07 18.03  24.84 71.06  56.96 57.70 32.59 66.69  54.51 33.00 66.70  54.90
3BASiL-TM 18.11 1426 2047 74.05  61.85 60.73 34.73 6598  54.51 34.80 7691  57.94
0ATS 16.38 10.88 1723 | 7584  67.60 67.09 41.21 70.88 6029  38.20 73.61 61.84
0ATS-TM 13.77 9.06 14.37 76.82  70.15 70.16 43.52 70.88 6570  40.20 7789  64.41
Hassle-free-SparseGPT 14.65 9.88 1521 | 77.09  69.95 69.32 41.81 7127  56.32  40.60 79.39  63.22
Hassle-free-SparseGPT-TM | 4o <y p 13.40 8.90 14.11 7158 7142 73.23 43.60 7040 64.98  41.40 7939 6525
Hassle-free-ALPS . 14.04 9.44 1445 | 7682  71.19 71.04 44.45 7277  56.68  40.20 78.13 6391
Hassle-free-ALPS-TM 13.21 8.71 13.85 7856  72.54 72.81 45.73 7143 6534 4140 79.88  65.96
3BASiL 13.74 9.21 14.24 76.88  72.05 70.16 44.80 72.14  61.01 41.40 80.89  64.92
3BASiL-TM 13.02 8.64 13.70 7824  72.59 73.11 47.35 7198  63.18  42.40 80.49  66.17
0ATS 21.59 1476 2341 | 7274  60.70 60.86 34.81 6551 5776 35.20 68.32 5699
0ATS-TM 15.49 10.61 16.11 76.01  65.66 67.00 40.61 68.59 56.68  36.60 75.69  60.86
Hassle-free-SparseGPT 17.77 12.38 18.71 | 74.81 65.04 66.16 38.57 70.09  54.87 38.40 71.71 60.71
Hassle-free-SparseGPT-TM | , 4 <o 14.95 10.28 15.97 76.88  68.18 67.21 41.81 69.46 6498 3820 78.81 63.19
Hassle-free-ALPS . 16.15 11.38 1671 | 7519  67.10 64.44 3891 69.53  59.93 39.40 78.38  61.61
Hassle-free-ALPS-TM 14.45 10.00  15.23 77.09  69.32 67.26 40.10 70.17  60.65 38.80 7575 62.39
3BASiL 1576 1123 16.25 76.50  67.61 67.21 40.10 7024 6426  38.20 78.29  62.80
3BASiL-TM 14.34 9.78 14.88 7748  69.58 67.21 40.53 7127 6137  39.80 7951  63.34
Meta-Llama-3-8B Dense | - | 944 6.14 11.18 80.79  79.17 77.69 5333 7285  69.68  45.00 81.44  69.99

Table 9: One-shot (N:M Sparse + LR) decomposition performance for Meta-Llama-3-8B. For Per-
plexity, ({) lower values are better. For zero-shot tasks, (1) higher values are better.

Method | Config | C4, WT2, PTB||PIQAT HST ARC-E! ARC-CT WG{T RTET OQAT BoolQi Avg
LFT-0ATS 71.41 63.58 95.05 56.58 29.22 30.72 22.10 5383 5271 23.00 61.10 41.16
LFT-0ATS-TM 53.01 47.68 68.98 59.09 31.07 36.15 21.84 5249 5271 24.60 62.14 4251
LFT-Hassle-free-SparseGPT 51.19  47.09 63.87 59.03 31.16 35.14 22.18 50.83  52.71 26.60 60.70 42.29
LFT-Hassle-free-SparseGPT-TM | » o </ o 4285 3946 5553 60.55  33.37 35.27 22.18 5036 5271  28.00 62.14  43.07
LFT-Hassle-free-ALPS } 44.15  41.02 5745 59.36  33.22 34.68 22.18 51.93 5271 26.60 60.95  42.70
LFT-Hassle-free-ALPS-TM 37.54 3550 50.15 60.28  35.80 37.50 23.63 55.09 5271  27.20 62.14 4429
LFT-3BASiL 36.09 3342 4513 60.55  35.52 37.71 23.21 5312 53.07 27.00 62.02  44.02
LFT-3BASiL-TM 36.03 3413 47.11 60.07  36.16 37.29 24.66 5541 53.07 2940 62.32  44.80
LFT-0ATS 3220 2547 4174 62.35 3971 44.36 25.68 5233 5379 29.20 62.14  46.20
LFT-0ATS-TM 27.05 21.14  34.83 6551  43.37 46.25 26.62 5493 5271 29.60 61.99  47.62
LFT-Hassle-free-SparseGPT 27.17 2196 3455 65.72  44.09 44.99 26.79 55.17 5271 30.60 61.59 47.71
LFT-Hassle-free-SparseGPT-TM 3.8464LR 24.74 2038  32.36 67.03 4571 48.36 26.62 55.01 5271 30.20 62.02  48.46
LFT-Hassle-free-ALPS o 2520  20.03 3226 65.61 46.19 45.12 28.16 54.85  55.96 32.00 62.63 48.81
LFT-Hassle-free-ALPS-TM 2342 1881 30.32 68.23  47.85 46.59 2722 5525 5451 31.20 62.23 49.14
LFT-3BASiL 2297 1823 29.74 67.36  48.30 48.36 29.52 5572 54.87 31.80 62.72 49.83
LFT-3BASiL-TM 2273 1829  29.94 68.01  49.22 48.86 29.35 56.83 5271 33.20 63.21  50.17
LFT-0ATS 28.06  19.69  32.90 67.30  49.07 48.48 27.65 56.20  52.71 30.20 62.45  49.26
LFT-0ATS-TM 1895 1377  23.65 70.73  54.25 56.36 32.51 5880 5487  33.60 62.72  52.98
LFT-Hassle-free-SparseGPT 1938 14.15 2474 7171 53.78 53.58 30.80 56.35 5776 33.20 60.67  52.23
LFT-Hassle-free-SparseGPT-TH | ,.o . o | 1845 1335 23.60 71.55 5521 56.02 32.94 56.43  53.07  36.00 6343 53.08
LFT-Hassle-free-ALPS . 18.77 1382 23.63 71.06  55.59 55.01 30.29 56.99 5379  33.80 62.91 52.43
LFT-Hassle-free-ALPS-TM 18.11 1328 2275 7193 56.97 56.99 32.00 59.43 5451 33.80 62.66  53.54
LFT-3BASiL 17.88 1299 2256 | 72.74 5691 56.86 31.66 60.62 5957  36.40 6239  54.64
LFT-3BASiL-TM 17.75 12.82  22.30 7252 56.81 56.44 32.94 59.51  51.62  35.20 63.61  53.58
LFT-0ATS 23.55 17.52 29.60 67.08 48.04 49.28 27.90 5533 5415 31.60 62.57 49.49
LFT-0ATS-TM 21.00 1540 25.71 69.80 50.92 5215 29.01 5596 55.23 33.00 62.63 51.09
LFT-Hassle-free-SparseGPT 21.56 1599  26.81 69.53  51.03 48.65 28.67 56.04  52.35 31.40 62.14  49.98
LFT-Hassle-free-SparseGPT-TM | » 4 </ o 20.16 1516 2523 71.11  53.40 52.86 29.69 5722  56.68  35.00 62.17 5227
LFT-Hassle-free-ALPS . 2038 1557 2547 71.16  52.53 53.41 29.69 56.99  54.87  33.60 62.84  51.89
LFT-Hassle-free-ALPS-TM 1942 1451 2431 71.16  54.01 53.16 28.92 58.01 5415  34.20 60.43 5175
LFT-3BASiL 1925 1460 2456 | 71.76  54.72 53.16 29.01 57.77 5343 34.00 63.15  52.12
LFT-3BASiL-TM 19.07 1437  23.88 71.44 5512 54.04 29.95 58.17 5343  33.60 62.69  52.30
Llama-3.2-1B Dense | - | 1401 975 1759 | 7459  63.66 60.48 36.26 60.69  56.68  37.20 63.98  56.69

Table 10: (N:M Sparse + LR) decomposition performance for Llama-3.2-1B after LoRa Fine-Tuning
(LFT). For Perplexity, ({.) lower values are better. For zero-shot tasks, (1) higher values are better.
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Method | Comfig | C4/ WT2| PTB||PIQAT HST ARC-E{ ARC-CT WGT RTET OQAT BoolQl Avg

LFT-0ATS 48.53 44.51 62.21 ‘ 58.27 32.84 36.95 22.78 5296 5271 25.60 61.44 42.94
LFT-0ATS-TM 100.87  87.20 120.98 56.64 29.01 30.13 20.65 5099 5271 26.00 62.11 41.03
LFT-Hassle-free-SparseGPT 3591 3344 4664 | 6148 3733 36.70 23.46 51.54 5235 2620 62.17  43.90
LFT-Hassle-free-SparseGPT-TH | , o« p | 3146 3077 42.12 62.79  40.19 38.76 23.63 5478  53.07  29.00 5832 45.07
LFT-Hassle-free-ALPS . 31.43 29.50 44.39 ‘ 63.38 40.65 39.73 23.46 5572 5271 28.40 46.06 43.76
LFT-Hassle-free-ALPS-TM 2822 26.81 36.23 65.02  43.69 40.78 23.46 5572 5271 28.40 60.46 46.28
LFT-3BASiL 30.58 2827  41.30 63.11  41.25 41.75 24.23 55.09 5271 2840 63.88 4630
LFT-3BASiL-TM 2748 2618 3835 6534 4437 43.18 26.54 57.46 5343 29.20 61.04 4757
LFT-0ATS 21.98 16.44 27.23 ‘ 69.59 52.26 52.78 29.44 5722 5921 31.00 64.07 51.95
LFT-0ATS-TM 27.09 2094 3021 67.68  47.26 51.26 28.41 5746 5271 2920 64.65  49.83
LFT-Hassle-free-SparseGPT 20.01 1572 2487 | 7046  56.25 54.59 30.72 60.22  58.12 3320 63.64  53.40
LFT-Hassle-free-SparseGPT-TM 3:8464LR 18.73 15.18 23.25 71.00 58.49 54.21 3251 61.72 59.21 35.40 53.00 53.19
LFT-Hassle-free-ALPS . 18.83 15.54 22.96 ‘ 71.60 58.27 57.15 32.51 63.22  54.87 33.80 66.64 54.76
LFT-Hassle-free-ALPS-TM 18.04  14.68  23.08 7291  60.26 60.23 34.22 61.09 62.82  36.00 58.90  55.80
LFT-3BASiL 1840  14.61 22.90 7220  59.70 57.83 32.17 62.67 5523 3520 68.47 5543
LFT-3BASiL-TM 17.69 14.38 22.42 7296  61.21 57.32 34.04 61.80  58.48 34.80 55.81 54.55
LFT-0ATS 1550 1077 1794 | 75.63 6547 65.24 38.65 6598 5740  37.80 65.69 5898
LFT-0ATS-TM 1592 11.00 17.82 7421  63.46 65.61 37.80 66.14  64.62  36.80 7226 60.11
LFT-Hassle-free-SparseGPT 14.97 10.62 17.48 ‘ 75.24 66.87 65.87 39.25 66.22  58.12 38.60 72.11 60.29
LFT-Hassle-free-SparseGPT-TM 4:8+64LR 14.47 10.25 16.92 75.68  67.79 66.37 39.76 66.54  55.96 42.80 67.86 60.35
LFT-Hassle-free-ALPS . 14.60  10.33 1673 | 7579 6742 64.27 37.63 6582  62.82 3820 5578 5847
LFT-Hassle-free-ALPS-TM 1430 10.11 16.50 75.63  68.18 66.75 41.21 67.88  59.21 40.00 69.39  61.03
LFT-3BASiL 14.38 10.10 16.56 76.77 68.06 67.26 40.70 67.48  59.57 39.60 68.35 60.97
LFT-3BASiL-TM 14.15 9.89 16.29 7126  68.44 66.20 39.59 66.69  62.82  39.80 7229  61.64
LFT-0ATS 25.18 1208 2026 | 7399 61.58 62.88 36.09 6346  61.73  36.60 62.63 5737
LFT-0ATS-TM 18.08 12.85 20.22 7242 59.46 62.79 35.24 6227  58.84 34.60 70.21 56.98
LFT-Hassle-free-SparseGPT 16.36 11.79 1943 | 7394 6371 63.51 35.07 64.01  51.62 36.80 68.99 57.21
LFT-Hassle-free-SparseGPT-TM | , , «n p | 1565 1137 1841 75.14  65.65 62.88 36.35 6433 5632 38.60 66.85 5827
LFT-Hassle-free-ALPS . 15.81 1157 1844 | 7459 6491 64.06 36.52 64.56 5451 37.80 68.69  58.20
LFT-Hassle-free-ALPS-TM 15.37 11.22 17.90 7470 6645 64.56 38.48 66.22  55.60 38.60 66.09 58.84
LFT-3BASiL 1552 1123 17.87 75.08  66.45 63.05 36.60 66.06 64.98  39.80 69.94  60.25
LFT-3BASiL-TM 1519 1096  17.59 7448 66.46 63.01 39.08 63.06 6137 3840 69.27  59.39
Llama-3.2-3B Dense | - | 1133 7.81 13.53 7148  73.61 71.63 45.99 69.85 5451  43.00 7339 63.68

Table 11: (N:M Sparse + LR) decomposition performance for Llama-3.2-3B after LoRa Fine-Tuning
(LFT). For Perplexity, (J) lower values are better. For zero-shot tasks, (1) higher values are better.

Method | Config | C4, WT2, PTB||PIQAT HST ARC-E{ ARC-CT WG{T RTET OQAT BoolQ7 Avg
LFT-0ATS 37.46 3149 49.71 62.24 36.88 38.72 24.23 5193 5271 27.20 62.02 44.49
LFT-0ATS-TM 2823 2386  36.25 65.61  43.81 42.09 25.26 52.64 5271 30.60 64.13  47.11
LFT-Hassle-free-SparseGPT 28.80 2447 3394 62.35  43.30 40.28 2491 54.85  53.07 29.40 6446  46.58
LFT-Hassle-free-SparseGPT-TM | » o </ o 2489 2214  31.65 66.00  48.49 43.77 26.37 58.25 5271 29.80 66.27  48.96
LFT-Hassle-free-ALPS : 2531 2197  31.99 66.38  48.42 43.73 26.62 59.43 5343 29.60 47.16  46.85
LFT-Hassle-free-ALPS-TM 22.85 2023  28.00 67.95  52.18 46.84 27.99 60.54 5343 31.20 61.44  50.20
LFT-3BASiL 2451 2143 30.05 66.81  49.63 44.02 26.37 60.06  55.60  30.60 68.10  50.15
LFT-3BASiL-TM 2245 2000 29.00 68.12  52.97 4592 26.96 60.69 5343 3220 70.34  51.33
LFT-0ATS 17.87  12.65  20.59 7236 61.20 57.45 35.58 63.93  53.07  35.00 70.58  56.15
LFT-0ATS-TM 16.18 1143  18.34 73.61 6543 60.65 37.46 66.54 5740  36.80 7572 59.20
LFT-Hassle-free-SparseGPT 16.65 12.07 18.84 73.94  64.77 58.00 37.20 66.69  61.01 35.00 69.79  58.30
LFT-Hassle-free-SparseGPT-TM 3.8464LR 15.68 11.51 18.08 75.68 66.50 62.04 37.54 67.25  70.40 35.20 76.79 61.42
LFT-Hassle-free-ALPS . 1592 11.77 17.89 74.59 66.86 60.35 36.43 68.67  65.34 37.20 74.71 60.52
LFT-Hassle-free-ALPS-TM 1529 1146 17.74 7590  68.34 61.66 37.03 6898 6245 36.20 69.33 59.99
LFT-3BASiL 1564 1179  17.85 7470  67.47 63.55 38.65 6748 5560  38.20 7327 59.87
LFT-3BASiL-TM 1511 1138 17.27 7541  68.15 63.17 39.08 68.03  62.09  37.60 7134 61.36
LFT-0ATS 13.09  8.67 14.64 77.80 7231 70.92 45.39 7072 60.65  40.40 75.60  64.22
LFT-Hassle-free-SparseGPT 1273 857 14.03 78.18  73.45 70.45 43.86 7135 6245 4140 78.81  64.99
LFT-Hassle-free-SparseGPT-TM 1238 832 13.71 78.78  74.29 74.12 45.65 70.48  66.79  40.80 79.24  66.27
LFT-Hassle-free-ALPS 4:8+464LR | 12.55  9.44 14.45 76.82  71.19 71.04 44.45 7277  56.68  40.20 78.13  63.91
LFT-Hassle-free-ALPS-TM 12.31 8.29 13.43 78.84  74.92 73.86 48.29 71.19 6859  40.80 79.51  67.00
LFT-3BASiL 1239 833 13.43 78.51  74.85 71.00 45.56 7245  61.73  43.40 7792  65.68
LFT-3BASiL-TM 1217 825 13.41 79.33 7440 73.23 48.72 71.90  61.73  41.60 78.90  66.23
LFT-0ATS 14.34 9.67 16.24 77.15 69.54 65.66 40.70 68.27 6643 38.80 73.73 62.54
LFT-0ATS-TM 13.46 9.09 14.81 77.69 71.25 69.99 44.28 69.77  58.84 40.60 78.07 63.81
LFT-Hassle-free-SparseGPT 13.83 9.50 15.35 77.04  71.62 68.86 41.72 70.01  61.37 39.40 76.02 63.25
LFT-Hassle-free-SparseGPT-TM | » 4 </ o 1335 9.5 14.84 | 79.00 7257 67.80 43.60 70.01 6390  40.40 75.69  64.12
LFT-Hassle-free-ALPS . 1349 929 14.61 7748 7240 67.09 4292 70.56  67.15  39.80 7713 64.32
LFT-Hassle-free-ALPS-TM 1320 9.12 14.34 7824 7251 67.38 41.89 70.88 6245 4040 75.63  63.67
LFT-3BASiL 1335  9.25 14.54 7137 72.90 69.19 43.52 7198 67.15 4120 76.24  64.94
LFT-3BASiL-TM 13.07  9.00 14.17 78.73 7317 68.14 41.89 7198 5957  39.20 7642 63.64
Meta-Llama-3-8B Dense | - | 944 6.14 1118 | 8079  79.17 77.69 53.33 72.85 69.68  45.00 81.44  69.99

Table 12: (N:M Sparse + LR) decomposition performance for Meta-Llama-3-8B after LoRa Fine-
Tuning (LFT). For Perplexity, (]) lower values are better. For zero-shot tasks, (1) higher values are
better.
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Method | Config | C4] WT2| PTB| |PIQAT HS| ARCE! ARC-C! WG! RTET OQAT BoolQl Awg
3BASIL 2531 2059 2833 7127 5556 5425 3080 6456 5343 3320 7291 5450
3BASIL+OWL 2321 1954 2709 7171 5790 5669 3353 6756 5415 3340 7786  56.60
3BASIL-TM T0%+64 Tl95s 1644 2164 7416 5976 5804 3328 6638 5812 3520 7315 5726
3BASIL-TM+OWL 1952 1622 2137 7356 5992 5888 3140 6433 5632 3540  70.80  56.33
3BASIL 6285 6108 7949 5952 3507 3540 2227 5422 5271  27.00 6095 4339
3BASIL+OWL 5051 5816 7909 6170 3942 37.63 2398 5935 5560 2800 6823  d6.74
3BASIL-TM 80%+64 T3651 3932 5794 6507 4205  39.94 2500 5880 5271 2600 6459 4677
3BASIL-TM+OWL 3632 3819 5605 6496 4192 4137 2543 5856 5271 2820 6346  47.08
Meta-Llama-3-8B Dense | — 944 614 IL18 8079 7917 7769 5333 7285 69.68 4500 8144  69.99

Table 13: Impact of OWL on 3BASiL for (Unstructured + 64) decompositions of Meta-Llama-3-8B.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We conclude the introduction with a paragraph that explicitly outlines the
paper’s contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitation of our work at the end of Section ??.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

e The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We clearly state all assumptions in Theorem [T] and provide a rigorous proof
in Appendix [A]

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theo-
rems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We present a detailed description of the proposed 3-Block ADMM algorithm,
including update rules and computational procedures, in Section[2} and describe the Trans-
former matching procedure in Section[3] Additional implementation details necessary for
reproducing our results are provided in Appendix [B]

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all sub-

missions to provide some reasonable avenue for reproducibility, which may depend

on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We will release the codes if the paper is accepted.
Guidelines:

e The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide detailed training and evaluation settings for both our proposed
pipeline and the baseline methods in Appendix [B]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer:

Justification: While we aimed to provide rigorous evaluation, we were constrained by com-
putational resources and thus could not include statistical significance measures. We have,
however, ensured consistent settings and fair comparisons across all baselines.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

¢ Itis OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% Cl, if the hypothesis of
Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide details of the computational resources used for our experiments
in Appendix
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have carefully reviewed the NeurIPS Code of Ethics and confirm that all
research presented in this paper adheres to its principles.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

 The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: To the best of our knowledge, our work has no societal impact.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: To the best of our knowledge, our work poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: At the start of Section[d] we reference all datasets and models involved in our
experiments. The sources of the code used are listed in Appendix [B]

Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]
Justification: Our paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: Although our work focuses on pruning LLMs, the core methods proposed

do not involve LLMs as important, original, or non-standard components of the algorithm
itself.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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