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Abstract

In the field of Machine Learning Interatomic Potentials (MLIPs), understanding the
intricate relationship between data biases, specifically conformational and structural
diversity, and model generalization is critical in improving the quality of Quantum
Mechanics (QM) data generation efforts. We investigate these dynamics through
two distinct experiments: a fixed budget one, where the dataset size remains con-
stant, and a fixed molecular set one, which focuses on fixed structural diversity
while varying conformational diversity. Our results reveal nuanced patterns in
generalization metrics. Notably, for optimal structural and conformational general-
ization we need a careful balance between structural and conformational diversity
that existing QM datasets do not meet. Our results also highlight the limitation of
the MLIP models at generalizing beyond their training distribution, emphasizing
the importance of defining applicability domain during model deployment. These
findings provide valuable insights and guidelines for QM data generation efforts.

1 Introduction

Molecular Dynamics (MD) simulations are invaluable tools in the realm of drug and material
discoveries. They allow a deeper understanding of the dynamic behavior of biomolecules and
materials, shedding light on their structures, functions, and intricate interactions between them and
other molecules [18, 37]. For instance, in drug discovery, leveraging MD simulations can improve
the estimation of ligand-protein binding energies [19] and kinetics [33, 6, 7, 32]. MDs accuracy and
reliability are contingent on the precision of the force fields employed to calculate the changes in
energy and forces during the simulations. However, due to their inherent approximations, force fields
are not accurate enough and improving them requires a significant expertise and parametrization.
Consequently, Machine Learning Interatomic Potentials (MLIPs) trained on Quantum Mechanics
(QM) data have emerged as a promising solution to these problems.

MLIPs have gained popularity in the field of atomistic modeling and simulations over the past decade
[5, 38, 20, 43, 41, 22, 1, 40]. Their appeal lies in their trade-off between speed and accuracy, enabling
expedited calculations while maintaining comparable levels of precision compared to QM methods.
They are mainly enabled by the recent developments in ML modeling for physical systems and the
creation of large QM datasets that are made publicly available. The first is exemplified by the variety
of model architectures and descriptors allowing MLIPs to comprehend the inherent symmetries
and biases within atomistic systems and QM modeling [13, 14, 24, 34, 8, 35, 42, 30]. The latter is
underscored by the increasing number of efforts to generate and publicly release QM datasets, despite
the substantial costs associated with such endeavors [31, 28, 27, 29, 38, 39, 11, 44, 17, 16, 10].
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The landscape of MLIP models and their inherent biases, as well as their role in generalization, has
received some attention in the recent literature [3], whereas data biases, such as the QM level of theory,
the number of labeled molecules and conformers, and the diversity in chemical and conformational
aspects, have been comparatively under-explored. These data-specific factors significantly affect the
accuracy and generalization capabilities of MLIPs. Consequently, the primary focus of this work
is to shed light on the implications of data biases, with the goal of providing valuable insights and
guidelines for optimizing the trade-off between the cost of data generation and the value it brings to
modeling and generalization efforts.

Contributions: First, we designed and conduct experiments to understand the intricate relationship
between dataset size, structural diversity, conformational diversity and model generalization. Second,
our analysis of generalization is multifaceted allowing the readers to understand how the performance
of MLIPs changes within and outside the training distribution of both conformers and structures.

2 Related Works

QM Datasets Publicly available QM datasets exhibit a wide range of trade-offs between conforma-
tional and structural diversity. On one end of the spectrum, we have structurally diverse datasets with
no conformational diversity (i.e one conformer per molecule). For instance QM7, QM8, and QM9 [31]
respectively comprise 7.1K, 21K, and 133K molecules, each offering only a single energy-minimized
conformer per molecule. Larger scale efforts have yielded datasets such as PubchemQC-PM6 [29],
PubchemQC-B3LYP/6-31G*//PM6 [27], and Molecule3D [44] which provide a substantial number
of molecules—221M, 86M, and 4M, respectively—with a single optimized geometry per molecule
and QM properties calculated under various levels of theory.

Moving towards the other end of the spectrum, we have collections with a few molecules but hundreds
or thousands of conformers per molecule. For example, QM7X [16] extends the QM7 dataset to
encompass 4.2M off-equilibrium conformations for 6.9K molecules. Similarly, DES370K and
DES5M [10] consist respectively of 370K and 5M dimer conformations from 400 small molecules,
computed at various levels of theory.

In the middle ground, some data collections have both structural and conformational diversity. ANI
[38] and its extensions, ANI-1x and ANI-1ccx [39], offer a substantial dataset of 20M off-equilibrium
conformations for 57K unique yet diversified molecules, featuring various levels of theory. Likewise,
Spice [11] provides a collection of 1.1M conformers for 19K molecules, and GEOM [2], computed
using a semi-empirical method, offers 37M energy-optimized conformers for approximately 450K
molecules. Meanwhile, QMugs [17] limits itself to three conformers per molecule for 665K drug-like
molecules containing up to 100 atoms. Finally, OrbNet Denali [9] contributes 2.3 million equilibrium
and off-equilibrium conformers for 200K molecules.

Other aspects of variation among these diverse datasets are presented in Appendix A. Collectively,
they illustrate the multifaceted trade-offs, especially between conformational and structural diversity,
in the field of QM data generation. They emphasize the critical considerations researchers must make
when generating such data or selecting a dataset for training MLIPs.

Data bias and implications: Only a couple of studies have delved into the role of QM data biases
in model generalization. Glavatskikh et al. [15] contrasted QM9 and PC9 which is a subset of
PubChemQC [28], that mimics the size constraints and atom types of QM9 but has greater chemical
diversity (meaning herein, higher diversity of functional groups, wider bond length distributions and
species with multiplicity > 1). The superior generalization of PC9 models suggests that chemical
diversity plays a pivotal role in QM model generalization. Frey et al. [12] explored the impact of
dataset size on the scaling behavior of invariant GNNs (SchNet [36]) and equivariant GNNs (PaiNN
[35] and Allegro [26]). They observed power-law-like scaling behavior in relation to model size, with
distinct regimes based on dataset size. Their findings underscore the intricate relationship between
dataset size and model complexity in the context of MLIP performance.

Unlike the aforementioned works that concentrate on individual data biases, our study delves into
multiple biases, namely dataset size, conformational and structural diversity, and their relationships.
We also examine various forms of generalization to provide a comprehensive understanding of MLIP
capabilities in the face of changing data biases.
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3 Method

Let’s consider a QM dataset with N datapoints (conformers), encompassing ns unique molecular
structures, with fixed nc conformers per molecule (i.e N = ns × nc). Our investigation seeks to
analyze how generalization evolves when altering the dataset size (N ), the structural diversity (ns),
and the conformational diversity (nc). To give a comprehensive picture of MLIPs generalization,
we consider four facets of model performance. In the subsequent sections, we will delve deeper
into the methodological setup and elaborate on the chosen generalization metrics. It’s important
to mention that, for the present study, our definition of diversity is primarily based on the count
of unique molecules or conformations within a dataset. However, we intend to expand upon this
definition in the future to incorporate measures of (dis)similarity as well.

3.1 Setup

For our investigation, we run two pivotal experiments, each involving the training of MLIPs on
simulated QM datasets characterized by distinct values of N , ns, and nc. For a visual representation
of these experiments, please refer to Figure 1.
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Figure 1: Experimental setup: Left. (1) ns-Fixed: Keeping the number of molecules ns fixed at
12.5k, 25k, 50k and 100k, we increase the conformer per molecules nc. Right. (2) N -fixed: Keeping
the total number of conformers N fixed at 50k, 200k, 800k and 3.2M, we increase the conformer per
molecule nc while decreasing the number of molecules ns.

N -fixed experiment: Herein, we replicate a scenario where there is a fixed budget for data generation.
Our objective is to investigate the interplay between structural and conformational diversity and its
influence on MLIP generalization. By simulating the generation of QM datasets with a constant
number of conformers (N ), we concurrently vary the values of ns and nc. Specifically, as ns

decreases, we proportionally increase nc by the same factor. To illustrate, for N = 200K, we
generate datasets with (ns = 200K,nc = 1), (ns = 100K,nc = 2), (ns = 50K,nc = 4),
(ns = 25K,nc = 8), and (ns = 12.5K,nc = 16). This gradual transition spans from a setup
featuring low conformational diversity but high structural diversity (ns = 200K,nc = 1) to one
characterized by high conformational diversity and low structural diversity (ns = 12.5K,nc = 16).
By varying N ∈ (50K, 200K, 800K, 3.2M), our aim is to explore the intricate relationship between
this trade-off and the generated dataset size.

ns-fixed experiment: This experiment emulates a recent trend in QM data generation, wherein an
emphasis is placed on increasing conformational diversity due to its perceived importance in MLIP
generalization. Here, our goal is to evaluate the intrinsic impact of conformational diversity on MLIP
generalization. To achieve this, we simulate the creation of QM datasets where ns remains fixed,
with values set at 12.5K, 25K, 50K, and 100K, while we systematically increase the value of nc

from 1 to 16. The total number of conformers (N ) is defacto increasing with nc.

nc-fixed experiment: We do not conduct any additional experiments for this setting where nc is
fixed while N and ns increases. To observe the isolated impact of structural diversity on MLIP
generalization, we leverage the results from the N -fixed and ns-fixed experiments. For instance, for
nc = 2, we gather results from experiments where nc = 2 and N ∈ [25K, 50K, 100K, 200K] from
the previous experiments.
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3.2 Generalization metrics

The distinct aspects of MLIP model performance can be categorized along two axes of generalization.
The first axis focuses on the similarity between test samples and the training distribution, distin-
guishing between samples that are Independent and Identically Distributed (IID) and those that are
Out-of-Distribution (OOD). As data points can exhibit variations along both structural and conforma-
tional dimensions, the second axis pertains to differentiating chemical characteristics, encompassing
both structural and conformational aspects. Consequently, these axes yield four specific generalization
metrics for analysis: IID structural (IID-S), OOD structural (OOD-S), IID conformational (IID-C),
and OOD conformational (OOD-C).

To calculate the IID-S metric, the test set consists of molecules that share similar physicochemical
properties with those in the training set. Conversely, for OOD-S, the test molecules are drawn from a
chemical subspace that is distant from the training set. For IID-C and OOD-C metrics, the test sets
are composed of novel conformers belonging to molecules encountered during training. To determine
whether a conformer is IID-C or OOD-C, we simply compute its minimum Root Mean Square
Distance (RMSD) to the training conformers and consider where it falls on that RMSD spectrum.
We avoid choosing an arbitrary threshold herein because the spaces of conformers and RMSD are
continuous and what is IID or OOD might depend a lot on the molecular energy surface.

4 Results

4.1 Experimental details

Datasets: For our experiments, we use the GEOM dataset [2], a large collection comprising 37
million conformers covering 450K molecules. It has two subsets: GEOM-QM9 made of 133K small
molecules from the QM9 dataset [31], with up to 9 heavy atoms (C, N, O, F) and GEOM-Drugs
consisting of 317K larger and drug-like molecules. We simulate all our QM data generation by
sampling from GEOM-Drugs, and we consider GEOM-QM9 as structurally OOD from it. The
structural differences between GEOM-Drugs and GEOM-QM9 are illustrated in Appendix B.

Model Training: To train our MLIPs, we use the Equivariant Transformer, a component of the
TorchMD-NET models [41]. Our model has approximately 2 million parameters over num_layers=8
and hidden_channels=128. Other hyperparameters are left to their default values 1. We trained
with the L2 loss and the Adam optimizer with a cosine annealing scheduler for the learning rate
between 10−8 and 10−4.

Model Evaluation: We evaluate the models’ performance using the mean absolute error (MAE) on
the potential energy. The IID-S metric is computed using unseen molecules from GEOM-Drugs and
the OOD-S is computed using molecules from GEOM-QM9 as their chemical space is very different
from drug-like molecules. IID-C and OOD-C metrics are computed using molecules that have been
seen during training according to criteria described in subsection 3.2.

Our experiments are repeated three times using different random seeds, leading to varied data splits
and model initializations. For each result, we include error bars to illustrate the standard deviation
across these three splits.

4.2 Structural generalization

Figure 2 presents the structural generalization metrics for the N -fixed experiment, illustrating their
dependence on nc and, implicitly, on ns, as the two variables are inversely related in this setup.
Across different values of N , we observe a gradual increase in IID-S MAE as nc increases and ns

decreases. Although the rate of this increase is less pronounced for larger values of N , there remains
a notable two-fold increase in IID-S MAE when structural diversity decreases by a factor of four
and N = 3.2M . Conversely, OOD-S MAE also shows an increase with rising values of nc, but
these trends are less pronounced across all N values. This phenomenon can partly be attributed to
the inherently larger OOD-S MAEs when compared to IID-S MAEs. In fact, the best IID-S MAEs
remain in the low single digits, whereas the best OOD-S MAEs hover around 50kcal/mol.

1Implementation as provided in https://github.com/torchmd/torchmd-net
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Figure 2: N -fixed: Performance on IID-S and OOD-S as we increase the conformational diversity
(nc) and reduce structural diversity (ns), while keeping number of conformers (N ) fixed .

Collectively, these results underscore that within fixed budget constraints, the structural generaliza-
tion capabilities of MLIPs significantly deteriorate when prioritizing conformational diversity over
structural diversity. Consequently, one should exercise caution when opting to sacrifice structural
diversity in favor of conformational diversity.
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Figure 3: ns-fixed: Performance on IID-S and OOD-S as we increase the conformational diversity
(nc) while keeping structural diversity (ns) fixed .

Figure 3 shows the structural generalization metrics for the ns-fixed experiment, demonstrating their
dependency on nc and implicitly on N which are proportional in this setup. For lower values of
ns (i.e., ns ∈ [12K, 25K]), we observe a gradual reduction in both IID-S and OOD-S MAEs as
conformational diversity increases. Although the decrease in MAEs is less pronounced for OOD
generalization, it remains notably significant. On the other hand, in cases with higher values of ns

(i.e., ns ∈ [50K, 100K]), both IID-S and OOD-S MAEs decrease rapidly with small increase in
conformational diversity but when it increases further, IID-S MAE plateaus and OOD-S MAE begins
to increase. These findings suggest that when structural diversity is low, enhancing conformational
diversity can be beneficial. However, as structural diversity increases, the advantages of additional
conformational diversity diminish significantly.

Figure 4 shows the structural generalization for the nc-fixed experiment, highlighting the proportional
relationship with N and implicitly with ns. A clear trend is observed where increasing the total
number of conformers N helps with better IID-S and OOD-S generalization. Additionally, the
importance of structural diversity can be observed as experiments with lower nc or higher ns

generalizes better than the ones with higher nc or lower ns.

Across both experiments, irrespective of the particular values of N , nc, and ns, we consistently
observe that IID-S MAEs remain significantly lower than OOD-S MAEs. This emphasizes the
MLIP’s limited capacity to generalize beyond its training distribution. Therefore, it is imperative for
both experimenters and model users to clearly understand the model’s structural applicability domain.
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Figure 4: nc-fixed: Performance on IID-S and OOD-S as we increase the number of conformers (N )
while keeping conformational diversity (nc) fixed .
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Figure 5: N -fixed: Distribution of MAE performance for conformers from both IID-C and OOD-C
based on their RMSD from the training distribution. The four plots represent fixed N values (50k,
200k, 800k, and 3.2M) with varying nc and ns.

4.3 Conformational generalization

In Figure 5, we delve into conformational generalization in the N -fixed experiment, examining its
dependence on nc (implicitly ns). Across all N values, a consistent pattern emerges: the MAE
remains relatively stable when the RMSD to the training conformers is below 2 Å. However, beyond
this threshold, we observe an increase in MAE, followed by a return to near-initial values as RMSD
continues to increase. Specifically, the plots reveal a steep MAE increase when 3.5 Å≤ RMSD ≤
5 Å in scenarios with low conformational diversity (nc ≤ 4) but high structural diversity in the
training set. Conversely, less steep increases occur when MAE registers between 2.5 Å and 4 Å for
high conformational diversity (nc ≥ 32) in the training set. The flattest curves are evident when
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nc ∈ [8, 16], highlighting the need for a delicate trade-off between structural and conformational
diversity to achieve effective generalization to unseen conformers of seen molecules.
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Figure 6: ns-fixed: Distribution of MAE performance for conformers from both IID-C and OOD-C
based on their RMSD from the training distribution. The four plots represent fixed ns values (12k,
25k, 50k, and 100k) with varying nc and N .

In Figure 6, we explore conformational generalization in experiments where structural diversity is
fixed, and conformational diversity varies. Across all ns values, we observe consistent MAE values
for all RMSD when nc ∈ [8, 16]. However, in low conformational diversity settings (i.e., nc ≤ 4),
MAE remains steady when RMSD ≤ 3 Å, but as RMSD increases, so does MAE before gradually
decreasing. The steepness of these MAE increases and the maximum values reached are inversely
related to conformational diversity. This reaffirms the conclusions drawn from the fixed budget
experiments: the trade-off between conformational and structural diversity significantly impacts
conformational generalization.

In Figure 7, we observe that across all nc plots, increasing total number of conformers N , helps
improve conformational generalization across all RMSD values, however the performance gains
reduce every time we increase the value of N . Additionally, across the different nc plots, we observe
that the maximum MAE observed decreases as nc increases, suggesting that high nc is essential for
conformational generalization.

While our experiments indicate that the optimal number of conformers per molecule for effective
generalization across conformers in both IID and OOD, falls between 8 and 16, it’s important to
note that this may vary based on other experimental factors such as the network architecture and the
chemical space of the training set. Therefore, experimenters should determine the optimal level of
conformational diversity tailored to their specific chemical space and MLIP modeling approach.

5 Discussion

In the pursuit of developing MLIPs for atomistic modeling, our study delved into the intricate interplay
between conformational and structural diversity, data size and model generalization. Through

7



0 1 2 3 4 5
RMSD from Training Distribution

0

20

40

60

80

100

120

M
AE

 (k
ca

l/m
ol

)

nc: 1
N

12500
25000

50000
100000

0 1 2 3 4 5
RMSD from Training Distribution

0

20

40

60

80

100

M
AE

 (k
ca

l/m
ol

)

nc: 2
N

25000
50000

100000
200000

0 1 2 3 4 5
RMSD from Training Distribution

0

10

20

30

40

50

M
AE

 (k
ca

l/m
ol

)

nc: 4
N

50000
100000

200000
400000

0 1 2 3 4 5
RMSD from Training Distribution

0

5

10

15

20

25

M
AE

 (k
ca

l/m
ol

)

nc: 8
N

100000
200000

400000
800000

Figure 7: nc-fixed: Distribution of MAE performance for conformers from both IID-C and OOD-C
based on their RMSD from the training distribution. The four plots represent fixed nc values (1, 2, 4,
and 8) with varying ns and N .

comprehensive experiments, we unraveled key insights that hold significant implications for the
MLIP community.

In the N -fixed experiment, where the dataset size remained constant, we discerned that achieving
optimal structural generalization necessitates a delicate equilibrium between structural and conforma-
tional diversity. The steep rise in MAEs observed when increasing conformational diversity at the
expense of structural diversity highlights the need to strike this balance.

Conversely, in the ns-fixed experiment, where structural diversity was kept constant while confor-
mational diversity varied, we observed that the benefits of increased conformational diversity are
more pronounced when structural diversity was limited. However, as structural diversity expanded,
the advantages of additional conformational diversity diminished, reinforcing the importance of the
trade-off.

Throughout both experiments, a consistent pattern emerged: the model’s generalization capabilities
were constrained within its training distribution, as indicated by substantially lower in-distribution
MAEs compared to out-of-distribution MAEs. This underscores the crucial need for researchers and
model users to define and recognize the model’s applicability domain. Furthermore, the nuanced
relationships between conformational and structural diversity and their impact on generalization
provide a foundation for future advancements in the field, emphasizing the importance of finding the
optimal level of diversity tailored to the specific chemical space and MLIP modeling approach.

While our study has rigorously explored the influence of data biases on MLIP generalization, it
uses a specific architecture and dataset, so we acknowledge the need to enhance the validity of our
conclusions. Consequently, we intend to conduct a more extensive analysis that encompasses various
MLIP modeling biases and incorporates diverse QM datasets. Our plans involve the utilization of
alternative QM datasets, employing improved DFT theory levels, incorporating force labels, and
leveraging state-of-the-art MLIP architectures, such as Equiformer [23] and MACE [4]. This broader
experimentation will provide a comprehensive understanding of the impact of data biases on MLIP
generalization, contributing to the advancement of atomistic modeling in various scientific domains.
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A QM-Datasets

Following table lists down the various publicly available QM-Datasets.

Table 1: List of available QM-Datasets and their data generation characteristics

QM Dataset
Number
of Molecules
(ns)

Average
Conformers
per Molecule
(nc)

Total
Conformers
(N)

DFT Theory Level
Atom
Types

GEOM [2] 450,000 82 37,000,000 GFN2-xTB 18
PubchemQC-PM6 [27] 221,190,415 1 221,190,415 PM6 5
PubchemQC- [29] 85,938,443 1 85,938,443 B3LYP/6-31G*//PM6 5
Molecule3D [44] 3,899,647 1 3,899,647 B3LYP/6-31G* 5
NablaDFT [21] 1,000,000 5 5,000,000 ωB97X-D/def2-SVP 6
QMugs [17] 665,000 3 2,000,000 GFN2-xTB, ωB97X-D/def2-SVP 10
Spice [11] 19,238 59 1,132,808 ωB97M-D3(BJ)/def2-TZVPPD 15
ANI [38, 39] 57,462 348 20,000,000 ωB97x:6-31G(d) 4
DES370K [10] 3,700 100 370,000 CCSD(T) 20
DES5M [10] 3,700 1351 5,000,000 SNS-MP2 20
OrbNet Denali [9] 212,905 11 2,3000,000 GFN1-xTB 16
QM7-X [16] 6,970 604 4,200,000 PBE0+MBD 6

B Structural differences between GEOM-Drugs and GEOM-QM9
Distribution

To illustrate the structural differences between the drug-like molecules from GEOM-Drugs and the
small molecules from GEOM-QM9, we create fingerprints for each molecule using the fingerprint
function from the datamol library [25]. Subsequently, we extracted two principal components from
these fingerprints using Principal Component Analysis (PCA). The resulting principal components
were then plotted, revealing a noticeable separation between clusters representing GEOM-Drugs and
GEOM-QM9 molecules.
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Figure 8: Structural differences between GEOM-Drugs (IID-S set) and GEOM-QM9 (OOD-S set)
are evident from the distinct separation between the two clusters. Each point in the plot represents a
molecule.
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