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1 Introduction001

The integration of AI into the classroom is in-002

evitable. Using AI chatbots in the classroom has003

the potential to assist students around-the-clock,004

making help more accessible. Chatbots and LLMs,005

though, require immense training. It may be easy006

to obtain some data for classes that already have007

QA forums, however not all courses have semesters008

of student data to lean on to train an LLM. More-009

over, gaps in data may lead to gaps in a chatbot’s010

knowledge. Just because a student hasn’t asked a011

specific type of question previously, doesn’t mean012

a future student won’t. The persistence of such013

knowledge gaps can lead to generation of halluci-014

native responses, as a result of an attempt to answer015

questions by an LLM with insufficient domain or016

contextual knowledge.017

Our project aims to improve the training of018

LLMs for CS courses that may not have sufficient019

data on their own. The main questions we are look-020

ing to answer are: Can we use an LLM to generate021

QA based on a given project/assignment specifi-022

cation? Is that generated QA sufficient to train an023

LLM that can answer student questions with high024

accuracy?025

2 Related Work026

Education is a space that could benefit tremen-027

dously from advanced AI tutoring software and028

is saturated with constant developments. While029

one-on-one tutoring is provably more effective for030

students than traditional, larger classroom settings,031

it can never be feasibly executed by humans alone.032

AI can be integrated into a number of educational033

environments, to provide students with personal-034

ized feedback and instructors with teaching materi-035

als.036

For example, some prior work surveys mech-037

anisms for QA systems that generate a variety038

of question types (ie. fill-in-the-blank, multiple-039

choice) (Virani et al., 2023; Basu et al., 2023; Riza 040

et al., 2023). Several works utilize the RAG frame- 041

work to improve the tendency of LLMs to hallu- 042

cinate information by grounding them in a speci- 043

fied knowledge base (Barron et al., 2024; Meyur 044

et al., 2024). Other work, specifically in the realm 045

of CS chat agents attempts tutoring with no-code 046

responses (Kazemitabaar et al., 2024). The discov- 047

eries of these earlier works will inform our project 048

as we base our exploration of the generative QA 049

space in CS course assignment specifications, and 050

tie QA to student questions and course projects. 051

3 Dataset 052

We are using Piazza data from previous semesters 053

of EECS courses, focusing on the questions and an- 054

swers exchanged. This data serves as our primary 055

dataset, capturing a variety of interactions that pro- 056

vide insight into student and instructor engagement, 057

and question types. We will use them for model 058

training and testing. 059

4 Proposed Approach 060

To provide robust, adaptive QA support for courses 061

with limited existing material, we propose a two- 062

step system. 063

4.1 LM for Project Specification to QA 064

Generation 065

This stage aims to develop an LM that generates 066

a comprehensive set of QA pairs from project 067

specifications. The synthetic data will provide a 068

foundation for training the answering model with 069

course-specific knowledge. 070

071

Step 1: Spec Parsing & Comprehension 072

The model parses the project specification docu- 073

ment to extract essential details (ie. requirements, 074

constraints). This ensures the dataset generated is 075

a solid reflection of assignment content. 076
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Step 2: Question Generation077

Leveraging NLP techniques such as question078

generation using T5 or other generative trans-079

formers, the model generates mock student080

questions. These questions will be both high-level081

conceptually-focused (ie. “What is the purpose082

of this assignment”) and low-level technically-083

oriented (ie. “How should I format the output?”)084

to reflect a range of student question types.085

Step 3: Answer Generation086

For each question, the model generates an087

answer based on information in the project spec.088

The model may employ rule-based methods or089

fine-tuned prompts to guarantee that the answers090

remain concise, contextually accurate, and directly091

relevant to the questions posed.092

Step 4: Evaluation and Filtering093

To maintain dataset quality, the generated QA094

pairs undergo an evaluation and filtering process095

to eliminate redundancy and irrelevance. This096

may involve human-in-the-loop assessments097

or automated consistency checks. The final098

dataset will consist of a curated set of QA pairs,099

reflective of common student questions and clear,100

assignment-specific answers.101

102

The synthetic QA dataset produced in this103

stage serves as the core material for training the104

answering model in Step 2.105

4.2 Language Model for Question Answering106

In Step 2, the synthetic QA dataset is utilized to107

develop a second system specifically for answering108

student questions. This model is intended to109

function as a virtual teaching assistant, providing110

accurate responses to student inquiries.111

112

Step 1: Fine-tune on RAG113

The QA model will be fine-tuned on the synthetic114

dataset produced in Step 1, allowing it to learn the115

language, context, and expectations specific to the116

course. This helps the model acquire the ability to117

accurately respond to questions relevant to course118

content, filling any gap in historical course data.119

Step 2: Adapt to Question Variability120

To handle variability in student phrasing, the121

model will be trained to recognize and respond to122

paraphrased questions that are conceptually similar123

to those in the dataset. We will use techniques such124

as paraphrasing recognition and embedding-based125

similarity, ensuring the model can interpret and126

accurately respond to different formulations of the127

same question. 128

Step 3: Evaluation & Iterative Refinement 129

The model’s efficacy will be evaluated using real 130

student questions sourced from platforms like 131

Piazza (e.g., EECS280 Piazza data). This will 132

provide a measure of the model’s accuracy, with 133

results informing further refinements to enhance 134

robustness. 135

Step 4: Performance Benchmarking 136

The model’s performance will be benchmarked 137

against a baseline (LM without synthetic data 138

training) to measure improvements in accuracy, 139

relevance, and response depth, validating the 140

QA data’s effectiveness. This approach equips 141

the answering model to handle diverse student 142

inquiries accurately, even in courses with limited 143

pre-existing QA data, providing a scalable solution 144

for enhancing AI-driven course support. 145

5 Project Plan and Work Division 146

5.1 Phase 1: Implementation (Nov. 4-16) 147

Goal: Develop LLM1 for QA generation and 148

LLM2 for student question answering. 149

Tasks: (1) Design and Architecture: Define key 150

modules, I/O formats, and model architecture for 151

each LLM. (2) Integration and Testing: Integrate 152

modules, conduct initial testing, and finalize imple- 153

mentations. 154

Sam and Ann will work on LLM1, while Yuxuan 155

and Boyuan will handle LLM2. 156

5.2 Phase 2: Training (Nov. 17-23) 157

Goal: Train and fine-tune both LLMs with Piazza 158

data. 159

Tasks: (1) Data Prep: Gather and process Piazza 160

data for training. (2) Model Training: Train both 161

LLMs, monitor, and fine-tune. 162

5.3 Phase 3: Testing & Finalization (Nov. 24 - 163

Dec. 1) 164

Goal: Comprehensive testing and reporting. 165

Tasks: (1) Testing: Evaluate models with real- 166

world scenarios. (2) Performance Analysis: Doc- 167

ument strengths and weaknesses. (3) Reporting: 168

Prepare a final report and poster. 169
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