
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EFFICIENT GRADIENT CLIPPING METHODS IN DP-
SGD FOR CONVOLUTION MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Differentially private stochastic gradient descent (DP-SGD) is a well-known
method for training machine learning models with a specified level of privacy.
However, its basic implementation is generally bottlenecked by the computation of
the gradient norm (gradient clipping) for each example in an input batch. While
various techniques have been developed to mitigate this issue, there are only a
handful of methods pertaining to convolution models, e.g., vision models. In this
work, we present three methods for performing gradient clipping that improve
upon previous state-of-art methods. Two of these methods use in-place operations
to reduce memory overhead, while the third one leverages a relationship between
Fourier transforms and convolution layers. To demonstrate the numerical efficiency
of our methods, we also present several benchmark experiments that compare
against other algorithms.

1 INTRODUCTION

Differentially-private stochastic gradient descent (DP-SGD) is a common tool used to train machine
learning models to protect sensitive information contained within individual training records (Abadi
et al., 2016). However, general implementations of DP-SGD are bottlenecked by their gradient
clipping step, whose runtime and memory costs scale linearly with the batch size times the number
of model parameters. Our goal in this work is to develop three improved variants of the gradient
clipping step that are substantially more efficient when applied to models with convolution layers.

DP-SGD details. The DP-SGD algorithm (Chaudhuri et al., 2011; Bassily et al., 2014) relies on
the Gaussian mechanism and composition of differential privacy (Dwork et al., 2006; 2014) across
iterations to privately compute the average of per-example gradients in a batch. At each iteration
it operates by (i) bounding the sensitivity of each record within a batch to control and quantify the
impact of any single record on the final model weights, and (ii) adding Gaussian noise proportional to
the inverse of the batch size times the bound in (i). In particular, sensitivity is controlled by bounding
per-example gradient norms so that the privatized gradients lie in a compact set. This approach
is crucial for reducing noise growth, which scales as O(

√
d/[εb]) (Bassily et al., 2014), where d

is the number of model parameters, ε the privacy budget, and b the number of records in a batch.
Alternatively, one can clip the overall average gradient at each step, but this increases noise by a
factor of the batch size to O(

√
d/ε).

Naive per-example clipping requires computing the norm of all per-example gradients. Specifically,
this methods requires storing at least a matrix of size Θ(bd) that contains per-example gradients.
Given the importance of model utility within this privacy-preserving context, there have been several
developments on improving this step (with a focus on models with fully-connected or embedding
layers). For example, techniques like ghost-clipping (Goodfellow, 2015) have been leveraged to
improve both the runtime and storage complexity in certain settings. However, similar savings for
convolution layers remain elusive (Rochette et al., 2019; Lee & Kifer, 2021a).

Contributions. This work introduces three novel gradient clipping methods that outperform prior
methods for convolution methods in certain regimes. More specifically,

• the first two methods use in-place calculations and obtain O(1) per-example storage com-
plexities;

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

• the first method directly computes the squared norm, while the second leverages the ghost-
clipping trick for fully-connected layers;

• the third method uses a relationship between convolution operators and fast Fourier trans-
forms (FFTs) to obtain a scheme that scales well in the high-dimensional setting.

It is worth mentioning that the analysis for the third method (in the context of gradient clipping
methods) appears to be new. In particular, this analysis exploits properties of circulant matrices to
derive an algorithm that runs efficiently in terms of the number of model parameters d, and the batch
size b.

To verify the practical efficiency of our methods, we also provide several benchmark experiments
that demonstrate the numerical efficiency of our proposed methods.

Related work. The vast literature on DP-SGD (Chaudhuri et al., 2011; Bassily et al., 2014; Abadi
et al., 2016; Ponomareva et al., 2023; Bu et al., 2023a) highlights the challenge of bounding individual
record sensitivity, a crucial aspect often addressed through clipping1. While alternative approaches
exist, such as modifying model architectures to enable Lipschitz constant computation (Béthune et al.,
2023), their broader applicability remains uncertain.

To the best of our knowledge, the state-of-the-art performance in the setting of convolution models
is achieved by Bu et al. (2023b). Specifically, that work builds on the approach of Bu et al. (2022);
Lee & Kifer (2021a) and combines it with a careful book-keeping scheme that avoids a second back-
propagation step. The main observation of Bu et al. (2022) is that the straightforward implementation
of DP-SGD can be faster or more memory-efficient than ghost-clipping in certain regimes. While
Rochette et al. (2019); Lee & Kifer (2021a) rely on instantiating per-example gradients, Bu et al.
(2022) take advantage of the underlying network structure and choose which of of two different
approaches to run; this selection step drives the bulk of their speed-up. In a follow-up work (Bu et al.,
2023b), the authors use the previous observation and the idea that the second back-propagation step
can be avoided using caching techniques.

Fourier transforms have first been used to improve the efficiency of training convolution neural
networks (CNNs) by Mathieu et al. (2013), who build upon related work by Ben-Yacoub et al.
(1999) for small-scale fully-connected models. Additional improvements to the approach have been
developed, for example, by Pratt et al. (2017); Vasilache et al. (2014); Abtahi et al. (2017); Rippel
et al. (2015). However, the development of similar techniques for the purpose of gradient clipping
(this work) appears to be new.

For convenience, we compare in Table 1.1 the asymptotic time runtime and storage complexities of
the methods by Bu et al. (2022), Lee & Kifer (2021a), and our proposed methods.

Table 1.1: Asymptotic time and space complexities of various gradient clipping methods for a
single example. The scalars nin, nout, dk, din, and dout denote the number of input channels, output
channels, kernel size, input dimension, and output dimension, respectively. Direct methods materialize
the unaltered gradients, ghost-clipping methods apply the trick from Goodfellow (2015), and FFT
methods utilize a novel relationship between convolution layers and FFTs proposed in this work.

Method Type Runtime Storage
Lee & Kifer (2021b) direct ninnoutdoutdk noutdout + nindoutdk
Bu et al. (2022) ghost-clipping d2

out(nindk + nout) d2
out + noutdout +
nindindk

Algorithm 3.1 [ours] direct ninnoutdoutdk O(1)

Algorithm 3.2 [ours] ghost-clipping d2
out(nindk + nout) O(1)

Algorithm 3.3 [ours] FFT ninnoutdin log(din) din

1See Pichapati et al. (2019); Chen et al. (2020) for examples or Ponomareva et al. (2023) for a recent
overview.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Notation. For a matrices A and B we let ‖A‖ denote the Frobenius norm of A and 〈A,B〉 denote
the (Frobenius) inner product. Let (W, 〈·, ·〉) and (Y, 〈·, ·〉) denote two Hilbert spaces with common
induced norm ‖ · ‖. We denote linear operators between them by italicized letters A : W → Y and
denote A∗ : Y → W to be the adjoint of A. That is, A∗ is the unique linear operator that satisfies

〈y,Aw〉 = 〈A∗y, w〉 ∀w ∈ W, ∀y ∈ Y . (1)

Let ψ : W → Y be an arbitrary function. The Fréchet derivative of ψ at w0 ∈ W is given by the
unique bounded linear operator Dψ(w0) : W → Y satisfying

lim
δ→0

‖ψ(w0 + δ)− ψ(w0)−Dψ(w0)δ‖
‖δ‖

= 0 .

We say ψ is differentiable if its Fréchet derivative exists for all w0 ∈ W . Throughout this paper we
will use two special properties of the Fréchet derivative: the chain rule and the existence of gradients.
Let (Z, 〈·, ·〉) be another Hilbert space and φ : Y → Z be given. The chain rule provides us with a
simple way to calculate the derivative of the function φ ◦ ψ : W → Z , namely,

D(φ ◦ ψ)(w0) = Dφ(ψ(w0))Dψ(w0) .

The Fréchet derivative of ψ at w0 with respect to a subset of variables u is denoted by Duφ(w0).
Finally, ∇ψ(w0) ∈ W denotes the (unique) gradient of a function ψ at w0, which satisfies

Dψ(w0)δ = 〈∇ψ(w0), δ〉W ∀δ ∈ W . (2)

The existence of the gradient is guaranteed by the well-known Riesz-Fréchet Representation Theorem
(Rudin et al., 1976). The gradient of ψ at w0 with respect to a set of variables u is denoted by
∇uψ(w0).

Organization. Section 2 presents some necessary background material on representing gradient
norms in convolution models. Section 3 presents the proposed clipping methods and discusses
their properties and algorithm complexities under different regimes. Finally, Section 4 gives several
numerical experiments and benchmarks.

2 BACKGROUND

To simplify our presentation, we focus on a single convolution layer and a single example x ∈
Rnin×din from the batch of inputs. For the case of multiple convolution layers and multiple examples,
it is straightforward to see that our complexity results scale linearly with the number of layers times
the number of examples. Moreover, we present our results for one-dimensional inputs; in Section 3.3
we discuss generalizations of our approaches to higher-dimensional inputs.

Given a stride length s ≥ 1, let dk ∈ N, din ∈ N, dout = 1 + (din − dk)/s be the size2 of the kernel,
inputs, and outputs, respectively, let nin ∈ N and nout ∈ N be the number of input, output channels,
respectively, and let w ∈ Rnin×nout×dk be the kernel weights. Moreover, for fixed output channel j,
let (i) wi,j ∈ Rdk be the kernel vector corresponding to the i-th input channel, (ii) bj ∈ Rnout×dout

be the bias offset, (iii) α be a general activation function, and (iv) U ix ∈ Rdout×dk be a matrix whose
`-th row consists of the entries in the i-th input channel of x that are being multiplied with wi,j .

The output for the j-th output channel of a convolution layer is given by

[φx(w, b)]j = φjx(w, b) := α

bj +
∑
i∈[nin]

U ixw
i,j

 . (3)

Numerically efficient schemes for computing ‖∇bφjx(w, b)‖2 (the bias weights’ gradient norm),
have been previously developed by Kong & Munoz Medina (2024). Consequently, our focus is on
analyzing the kernel weights’ gradient norm ‖∇wφjx(w, b)‖2. Following similar analyses as Kong &
Munoz Medina (2024), we first write

φjx = `x ◦ ψjx ◦ Zx where ψjx(z) := α(z + bj), Zjx(w) :=
∑
i∈[nin]

U ixw
i,j . (4)

2To avoid clutter, we assume these are all integers. In the implementation of our approach, we handle the
general case.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Then, if we denote

A = Ax(w) := DZjx(w), gj = gjx(w) := ∇(`x ◦ ψjx)(Zjx(w)) , (5)

it follows from the chain rule that

‖∇wφjx(w, b)‖2 = Ωx(gj) :=
∥∥A∗gj∥∥2

. (6)

To avoid the notational clutter, we denote the adjoint operator of DZjx(w) by DZj∗x (w). Using the
fact that∇wφx(w, b) = [∇wφ1

x(w, b), . . . ,∇wφnout
x (w, b)], we have that

‖∇wφx(w, b)‖2 =

nout∑
j=1

‖∇wφjx(w, b)‖2 =

nout∑
j=1

∥∥A∗gj∥∥2
,

and, hence, it suffices to restrict our presentation to a fixed output channel j where applicable. Kong
& Munoz Medina (2024) established efficient representations of Ωx(g) for the case of embedding
and fully-connected layers. Similarly, our task will be to find an efficient representation of Ωx(g) for
convolution layers.

3 ALGORITHMS AND DISCUSSION

This section contains three subsection that present the main algorithms and technical discussion
of our work. The first subsection presents the in-place algorithms and their properties, the second
one presents the Fourier-based algorithm and its properties, and the last section compares various
methods across different regimes, considering the number of input-output channels and input-output
dimensions.

Before proceeding, we describe some common notation and a basic result about the function Zx(·) in
(5). Given a 4D array M ∈ Rnin×nout×dk×dout , we denote M i,j

m,` to be the value in the corresponding
to the i-th input channel, j-th output channel, m-th input dimension, and `-th output dimension of
M . We give similar definitions for the arrays/scalars M i,j , M i

m, M j
` , M i, and M j , keeping the

convention that superscripts (resp. subscripts) contain indices for the input/output channels (resp.
dimensions). The straightforward representation of the operators we have discussed so far requires
defining and handling fourth-order tensors, which can vastly complicate the analysis. However, we
are able to decompose various operations across different channels and dimensions, which allows us
to only use two-dimensional matrices to represent all the operators we use.

The result below provides some convenient representations of the Fréchet derivative of Zjx(w) and
Zj∗x (w). Its proof is postponed to Appendix A.

Lemma 3.1. LetU ix ∈ Rdout×dk be as in (4) for some input channel i ∈ [nin], let ∆ ∈ Rnin×nout×dk ,
and τ j ∈ Rdout be arbitrary. If ∆i,j ∈ Rdk is the displacement vector corresponding to input-output
channel pair (i, j) ∈ [nin]× [nout], then

(a) DZjx(w)[∆] =
∑
i∈[nin] U

i
x∆i,j ∈ Rdout ;

(b) {DZj∗x (w)[τ j ]}i,j = [U ix]∗τ j ∈ Rdk ;

(c) DZjx(w) ◦DZj∗x (w)[τ j ] =
∑
i∈[nin] U

i
x[U ix]j∗τ j ∈ Rdout .

Since the elements of U ix are the values of x, the identity in (6) and Lemma 3.1(b) imply that the
squared norm of ∇wφjx(w, b) can be expressed solely in terms of x and the downstream gradient gj
in (5). In the next two subsections, we give two different expressions for ‖∇wφjx(w, b)‖ and present
their corresponding algorithms.

3.1 MEMORY-EFFICIENT NORM COMPUTATION

This subsection presents two in-place algorithms for computing the desired squared gradient norm.

We first present a “direct” expression for ∇wφjx(w, b) in terms of x and gj using (6). The proof is
postponed to Appendix A.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Lemma 3.2. Let gj ∈ Rnout×dout be as in (6) and s ≥ 1 be given. Then, it holds that the value of
the gradient ∇wφjx(w, b) at the i-th input channel, j-th output channel, and m-th output dimension
is given by

[∇wφjx(w, b)]i,jm =
∑

`∈[dout]

(xi[`−1]s+m)(gj` ). (7)

The above result shows that when we are given x and g, we can compute ‖∇wφx(w, b)‖2 by
performing a sequence of in-place operations. For ease of reference, we present one variant of these
operations in Algorithm 3.1, which can be viewed as an in-place modification of the FastGradClip
algorithm in Lee & Kifer (2021b). It is immediate that Algorithm 3.1 requires

Tdirect := ninnoutdkdout (8)

floating-point operations (FLOPS), but only O(1) additional storage.

Algorithm 3.1 Direct squared norm computation with in-place operations

1: Input: stride length s ≥ 1, layer input x ∈ Rnin×din , and gradient g ∈ Rnout×dout ;
2: Output: value of ‖∇wφx(w, b)‖2;
3: Define Jm := {([`− 1]s+m, `) : ` ∈ [dout]} for m ∈ [dk]

4: return
∑
i∈[nin]

∑
j∈[nout]

∑
m∈[dk]

(∑
(p,q)∈Jm

xipg
j
q

)2

We now present a special expression for ‖∇wφx(w, b)‖2 that is reminiscent of a similar expression
in the “Ghost Clipping” algorithm from Bu et al. (2022). The proof is postponed to Appendix A.

Lemma 3.3. Let gj ∈ Rdout be as in (6), let s ≥ 1 be given, and define

X`,`′ :=
∑
i∈[nin]

∑
m∈[dk]

(xi[`−1]s+m])(x
i
[`′−1]s+m]), G`,`′ :=

∑
j∈[nout]

gj`g
j
`′

where `, `′ ∈ [dout] are indices over the output dimension. Then, it holds that

‖∇wφx(w, b)‖2 =
∑

j∈[nout]

〈
AxA∗x, [gj ][gj ]∗

〉
= 2

∑
1≤`<`′≤dout

X`,`′G`,`′ +
∑

`∈[dout]

X`,`G`,`, (9)

where Ax is the matrix in Rdout×dk corresponding the operator of the same name in (5).

Similar to Lemma 3.2, the above result also yields a sequence of in-place operations for computing
‖∇wφx(w, b)‖2. As before, for ease of reference, we present one variant of these operations in
Algorithm 3.2. It is straightforward to see that, for a fixed outer index pair (`, `′) in the expression
for P , the computation of the inner sum involving x (resp. g) requires nindk FLOPS (resp. nout).
Consequently, computing P and Q in Algorithm 3.2 requires

Tghost :=

[
dout +

dout(dout − 1)

2

]
(nindk + nout) = Θ(d2

out[nindk + nout]) (10)

total FLOPS but also only O(1) additinal storage.

Algorithm 3.2 Ghost Clipping-based squared norm computation with in-place operations

1: Input: layer input x ∈ Rnin×din and gradient g ∈ Rnout×dout ;
2: Output: value of ‖∇wφx(w, b)‖2;
3: Define J`,`′ := {([`− 1]s+m, [`′ − 1]s+m) : m ∈ [dk]} for `, `′ ∈ [dout]

4: Compute P ←
∑

1≤`<`′≤dout

(∑
i∈[nin]

∑
(p,q)∈J`,`′

xipx
i
q

)(∑
j∈[nout]

gj`g
j
`′

)
5: Compute Q←

∑
`∈[dout]

(∑
i∈[nin]

∑
(p,q)∈J`,`

xipx
i
q

)(∑
j∈[nout]

gj`g
j
`

)
6: return 2P +Q

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.2 FOURIER-BASED NORM COMPUTATION

This subsection presents an algorithm based on the discrete Fourier transform (DFT) for computing
the desired squared gradient norm.

We first define rev : Rn 7→ Rn (resp. diag : Rn 7→ Rn×n) to be the linear operator that reverses the
order of its input (resp. diagonalizes its input). Explicitly, these operators are given by

rev([x1, x2, . . . , xn]) = [xn, . . . , x2, x1], [diag(x)]i,j =

{
xi, if i = j

0, otherwise
, ∀i, j ∈ [n] , (11)

for every x ∈ Rn. Now, let us recall the notion of a circulant matrix and its relationship to the
DFT. A circulant matrix C ∈ Rn×n (resp. an anti-circulant matrix ζ ∈ Rn×n) is a Toeplitz (resp.
anti-Toeplitz) matrix of the form

C =


c0 cn−1 · · · c1
c1 c0 · · · c2
...

...
. . .

...
cn−1 cn−2 · · · c0

 , ζ =


c1 · · · cn−1 c0
c2 · · · c0 c1
... . .

. ...
...

c0 · · · cn−2 cn−1

 , (12)

for some c ∈ Rn. Notice that consecutive rows of a circulant (resp. anti-circulant) matrix contain the
same entries of c but are cyclically shifted from left to right (resp. right to left).

The next result relates circulant matrices in Rn×n with the n-th order DFT, and its proof can be found,
for example, in (Gray et al., 2006).
Lemma 3.4. IfC ∈ Rn×n is a circulant matrix and c is its first column, thenC = F−1

n diag(Fnc)Fn,
where Fn is the n-th order DFT.

Using the above result, it is straightforward to see that if ζ ∈ Rn×n is an anti-circulant matrix whose
first row is rev(c)

ζτ = rev(F−1
n diag[Fnrev(c)]Fnτ), ∀τ ∈ Rn . (13)

Returning to our main goal, the primary insight of this section is that we can express ∇wφjx(w, b)
(and, consequently, ∇wφx(w, b)) as an application of an anti-circulant matrix with some auxiliary
(but simple) linear transforms. The details of this perspective, and its computational implications, are
given in the following result, whose proof is postponed to Appendix A.
Proposition 3.5. Let ζix ∈ Rdin×din denote the anti-circulant matrix whose first row is xi. Moreover,
define the block matrices Q ∈ Rdin×dk and R ∈ Rdout×din by

Q :=

[
Idk

0(din−dk)×dk

]
, [R]n,m =

{
1, if m = s(n− 1) + 1

0, otherwise ,
∀(n,m) ∈ [din]× [dout] ,

(14)
where In (resp. 0n×m) denotes the identity matrix in Rn×n (resp. zero matrix in Rn×m). Then, it
holds that

(a) for every i ∈ [nin], we have U ix = RζixQ;

(b) if gj ∈ Rdout is as in (5), then[
∇wφjx(w, b)

]i
= Q∗ ◦ rev ◦ F−1

din

(
[Fdin ◦ rev(xi)] � [FdinR∗gj ]

)
∀i ∈ [nin] , (15)

where � denotes the Hadamard product.

Before proceeding, let us give a few remarks. First, for y ∈ Rdin and z ∈ Rdout , we have that Q∗y
returns the first dk rows of y and R∗z returns a padded version of z in which [R∗z]s(i−1)+1 = zi
for i ∈ [dout] and [R∗z]j is zero at all other indices j. Second, in view of the first remark, we have
that for any y ∈ Rdin , both of the quantities (Q∗ ◦ rev)(y) and R∗gj can be computed using Θ(din)
FLOPS.

We now present a general algorithm in Algorithm 3.3 that leverages (15) to calculate ‖∇wφx(w, b)‖2.
Notice, in particular, that it can be specialized to different choices of the DFT oracle Fdin .

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 3.3 DFT-based squared norm computation

1: Input: layer input x ∈ Rnin×din , gradient g ∈ Rnout×dout , and oracle Fdin that performs the
(din)-th order DFT;

2: Output: value of ‖∇wφx(w, b)‖2;
3: Define rev(·) and (Q,R) to be as in (11) and (14), respectively
4: for i, j ∈ [nin]× [nout] do
5: vi,j ← Q∗ ◦ rev ◦ F−1

din
([Fdin ◦ rev(xi)] � [FdinR∗gj ])

6: ri,j ←
∑dk
`=1(vi,j` )2

7: end for
8: return

∑
(i,j)∈[nin]×[nout]

ri,j

The next result presents the runtime and storage complexity of a specialization of Algorithm 3.3,
where we use a fast (discrete) Fourier transform oracle. Specifically, it is well-known that DFT can
be implemented in time O(d log d) using the FFT method (Duhamel & Vetterli, 1990). The proof can
be found in Appendix A.
Theorem 3.6. Let F̄din be an FFT oracle which, for any v ∈ Rdin , computes F̄dinv in Θ(din log din)
FLOPS. Then, there is an implementation of Algorithm 3.3 with Fdin = F̄din that consumes at most

Tfft = Θ(ninnoutdin log din) (16)
total FLOPS and Θ(din) additional storage.

3.3 TECHNICAL DISCUSSION

This subsection discusses two topics, namely, (i) how the runtime and storage costs from the previous
subsections compare under different settings and (ii) how our results generalize to higher-dimensional
inputs.

We start by comparing how the runtime complexities Tdirect, Tghost, and Tfft in (8), (10), and (16),
respectively. For simplicity, let us assume that the stride length is s = 1 and let d ≥ 1 and n ≥ 1 be
arbitrary. First, when din, dout, dk = Θ(d) and nin, nout = O(1), we have that

Tfft = Θ(d log d) � Tdirect = Θ(d2) � Tghost = Θ(d3) .

where A � B means that A is asymptotically more efficient than B in terms of runtime. Second,
when din, dout = Θ(d), dk = O(1), and nin, nout = Θ(1), we have that

Tdirect = Θ(d) � Tfft = Θ(d log d) � Tghost = Θ(d2) .

Finally, when din, dk = Θ(d), dout = O(1), nin, nout = Θ(n), we have that

Tghost = Θ(nd) � Tdirect = Θ(n2d) � Tfft = Θ(n2d log d) .

From the above comparisons, we can see that each of our proposed methods outperforms the others
in certain regimes, so there is not a method that performs universally better across different choices
of nin, nout, dk, din, and dout.

We next remark that our results are formally presented for the case of multiple input-output channels
and one-dimensional (per-example) inputs. When x is an d-dimensional input, it is straightforward to
develop analogous version for Algorithms 3.1–3.2. However, the analogous version of Algorithm 3.3
requires more care. In particular, we would need to develop higher-order versions of (12), replace the
one-dimensional Fourier transform in Algorithm 3.3 with its d-dimensional variant, and replace the
operators (Q,R) in Algorithm 3.3 with higher-order variants.

In the special case of the two-dimensional DFT, which is useful when the inputs are images, it
is known (Azimi-Sadjadi & King, 1987) that a version of Lemma 3.4 holds where C is replaced
by a block-circulant matrix, i.e., where each ci in (12) is replaced by a matrix. Consequently, the
version of Algorithm 3.3 for a two-dimensional (per-example) input array x directly follows from
this result by replacing (i) Fdin by its analogous two-dimensional DFT, (ii) rev(·) by the operator
that reverses a two-dimensional input array lexicographically, and (iii) Q and R by their block
two-dimensional variants. We posit that the d-dimensional version of Algorithm 3.3 is one where
changes (i)–(iii) are applied in the d-dimensional setting, i.e., with blocks of d-dimensional arrays
instead of two-dimensional matrices.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4 NUMERICAL RESULTS

In this section we perform an empirical evaluation of the algorithms we proposed in our work and
compare their performance to the algorithms proposed by Bu et al. (2022). Since the only part of
the DP-SGD training pipeline we modified is the norm computation step, to make the comparison
across our algorithms and the algorithms from prior work (Bu et al., 2022) more precise, this section
is devoted solely to this part of the training; in other words, we do not perform full training of CNNs
using DP-SGD, but we rather evaluate the gradient norm computation functions for various types of
layers and input examples. The settings we consider are motivated by our discussion in Section 3.3.
In particular, we focus on three different regimes. Firstly, we consider families of layers where the
input, output dimensions and kernel size scale as Θ(d), and the number of input, output channels
are small constants Subsequently, we focus on families of layers where the input, output dimensions
scale as Θ(d), the kernel size is Θ(1), and the number of input, output channels is also Θ(1). Finally,
we consider the setting where the input, outputs dimensions, and kernel size scale are Θ(1), and the
number of input, output channels scale as Θ(n). For all the experiments, we initialize random inputs
to a particular layer of the CNN that is configured according to the underlying setting, and for every
configuration we repeat the experiment 5 times to reduce the variance. Moreover, to give a more
detailed comparison of the difference of the running time and memory consumption the y-axis of
these plots is in log-scale. In all the experiments the stride of the kernel is 1. All the experiments
were executed in Python on a standard laptop.

Setting #1: din, dout, dk = Θ(d), nin, nout = O(1). As we alluded to before, we first consider
the setting where the input dimension, output dimension and kernel size are of the same order of
magnitude and they are all much larger than number of input, output channels. The runtime and
memory consumption comparisons are depicted in Figure 4.1. For this setting, our in-place ghost-
norm algorithm was performing significantly worse than the rest of the methods and was increasing
the computation time of the experiment significantly, so we have not displayed it. We can see that as d
increases, the advantage of the FFT-based method becomes increasingly more significant. Moving on
to the comparison of the memory consumption, this experiment illustrates that our approaches have
significantly lower memory requirements than those from prior work, as the memory consumption
remains constant as d increases.

Figure 4.1: Runtime and peak memory consumption: din = d, dk, dout = d/2, nin, nout = 5

Setting #2: din, dout = Θ(d), dk = O(1), nin, nout = O(1). Next, we consider the setting where
the input, output dimension scale as Θ(d), and the kernel size, input channels, and output channels are
small constants. The runtime, memory consumption comparison are depicted in Figure 4.2. For this
setting, our in-place direct norm computation algorithm outperforms all other methods, verifying our
theoretical analysis. Turning our attention to the memory comparison, we observe that the ghost-norm
computation algorithm from Bu et al. (2022) has the largest memory requirement, whereas all three
of our algorithms require the least amount of memory.

Setting #3: din, dout, dk = O(1), nin, nout = Θ(n). Finally, we consider the setting where the
input dimension, output dimension, and kernel size are small constants and we let the number of input,
output channels be Θ(n). The runtime, memory consumption comparison are depicted in Figure 4.3.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 4.2: Runtime and peak memory consumption: din = d, dk = d−14, dout = 13, nin, nout = 3

In this setting, we observe that for large enough n our in-place ghost-norm computation and the
ghost-norm computation of Bu et al. (2022) outperform all other methods, verifying our theoretical
analysis. Interestingly, the direct gradient computation method of Bu et al. (2022) is also performing
very well; this is due to Python implementation features, since matrix multiplication, which is used
for the direct gradient computation of Bu et al. (2022) speeds up the computation. Moreover, we
observe that our approach is significantly more memory-efficient than Bu et al. (2022).

Figure 4.3: Runtime and peak memory consumption: din = 10, dk = 10, dout = 1, nin, nout = n

5 CONCLUSION

In this work we have proposed three new methods for gradient norm computation which can sig-
nificantly improve the runtime and memory efficiency of DP-SGD over prior work for certain
architectures of CNNs. We have rigorously analyzed the theoretical improvements of our algorithms,
which are also supported by numerical experiments.

REFERENCES

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. In Conference on Computer and Communications
Security (SIGSAC), 2016.

Tahmid Abtahi, Amey Kulkarni, and Tinoosh Mohsenin. Accelerating convolutional neural network
with fft on tiny cores. In 2017 IEEE International Symposium on Circuits and Systems (ISCAS),
pp. 1–4. IEEE, 2017.

M Azimi-Sadjadi and Robert King. Two-dimensional block transforms and their properties. IEEE
transactions on acoustics, speech, and signal processing, 35(1):112–114, 1987.

Raef Bassily, Adam Smith, and Abhradeep Thakurta. Private empirical risk minimization: Efficient
algorithms and tight error bounds. In Symposium on foundations of computer science, 2014.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Souheil Ben-Yacoub, B Fasel, and Juergen Luettin. Fast face detection using mlp and fft. In Proc.
Second International Conference on Audio and Video-based Biometric Person Authentication
(AVBPA’99), pp. 31–36, 1999.

Louis Béthune, Thomas Masséna, Thibaut Boissin, Yannick Prudent, Corentin Friedrich, Franck
Mamalet, Aurélien Bellet, Mathieu Serrurier, and David Vigouroux. DP-SGD without clipping:
The lipschitz neural network way. International Conference on Learning Representations (ICLR),
2023.

Zhiqi Bu, Jialin Mao, and Shiyun Xu. Scalable and efficient training of large convolutional neural
networks with differential privacy. Advances in Neural Information Processing Systems, 2022.

Zhiqi Bu, Yu-Xiang Wang, Sheng Zha, and George Karypis. Automatic clipping: Differentially
private deep learning made easier and stronger. In Advances in Neural Information Processing
Systems, 2023a.

Zhiqi Bu, Yu-Xiang Wang, Sheng Zha, and George Karypis. Differentially private optimization on
large model at small cost. In International Conference on Machine Learning, pp. 3192–3218.
PMLR, 2023b.

Kamalika Chaudhuri, Claire Monteleoni, and Anand D Sarwate. Differentially private empirical risk
minimization. Journal of Machine Learning Research, 2011.

Xiangyi Chen, Steven Z Wu, and Mingyi Hong. Understanding gradient clipping in private sgd: A
geometric perspective. Advances in Neural Information Processing Systems (NeurIPS), 2020.

Pierre Duhamel and Martin Vetterli. Fast fourier transforms: a tutorial review and a state of the art.
Signal processing, 19(4):259–299, 1990.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in
private data analysis. In Theory of cryptography conference, 2006.

Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Foundations
and Trends R© in Theoretical Computer Science, 2014.

Ian Goodfellow. Efficient per-example gradient computations. arXiv preprint arXiv:1510.01799,
2015.

Robert M Gray et al. Toeplitz and circulant matrices: A review. Foundations and Trends R© in
Communications and Information Theory, 2(3):155–239, 2006.

Weiwei Kong and Andres Munoz Medina. A unified fast gradient clipping framework for dp-sgd.
Advances in Neural Information Processing Systems, 36, 2024.

Jaewoo Lee and Daniel Kifer. Scaling up differentially private deep learning with fast per-example
gradient clipping. Proceedings on Privacy Enhancing Technologies, 2021a.

Jaewoo Lee and Daniel Kifer. Scaling up differentially private deep learning with fast per-example
gradient clipping. Proceedings on Privacy Enhancing Technologies, 2021b.

Michael Mathieu, Mikael Henaff, and Yann LeCun. Fast training of convolutional networks through
ffts. arXiv preprint arXiv:1312.5851, 2013.

Venkatadheeraj Pichapati, Ananda Theertha Suresh, Felix X Yu, Sashank J Reddi, and Sanjiv Kumar.
Adaclip: Adaptive clipping for private sgd. arXiv preprint arXiv:1908.07643, 2019.

Natalia Ponomareva, Hussein Hazimeh, Alex Kurakin, Zheng Xu, Carson Denison, H Brendan
McMahan, Sergei Vassilvitskii, Steve Chien, and Abhradeep Guha Thakurta. How to dp-fy ml:
A practical guide to machine learning with differential privacy. Journal of Artificial Intelligence
Research, 2023.

Harry Pratt, Bryan Williams, Frans Coenen, and Yalin Zheng. Fcnn: Fourier convolutional neural
networks. In Machine Learning and Knowledge Discovery in Databases: European Conference,
ECML PKDD 2017, Skopje, Macedonia, September 18–22, 2017, Proceedings, Part I 17, pp.
786–798. Springer, 2017.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Oren Rippel, Jasper Snoek, and Ryan P Adams. Spectral representations for convolutional neural
networks. Advances in neural information processing systems, 28, 2015.

Gaspar Rochette, Andre Manoel, and Eric W Tramel. Efficient per-example gradient computations in
convolutional neural networks. arXiv preprint arXiv:1912.06015, 2019.

Walter Rudin et al. Principles of mathematical analysis, volume 3. McGraw-hill New York, 1976.

Nicolas Vasilache, Jeff Johnson, Michael Mathieu, Soumith Chintala, Serkan Piantino, and Yann
LeCun. Fast convolutional nets with fbfft: A gpu performance evaluation. arXiv preprint
arXiv:1412.7580, 2014.

A TECHNICAL PROOFS

This appendix gives the proofs of the manuscript’s main results.

Proof of Lemma 3.1. For simplicity, denote U i = U ix and Dx := DZx(w).

(a) This is immediate from the linearity of Dx.

(b) From part (a) and the definition of the adjoint, we have

〈Dx∆, τ〉 =
∑

i∈[nin]

〈
τ, U i∆i,j

〉
=

∑
i∈[nin]

〈
[U i]∗τ,∆i,j

〉
= 〈D∗xτ,∆〉 .

(c) Using parts (a) and (b), we have DxD∗xτ =
∑
i∈[nin] U

i [D∗xτ ]
i,j

=
∑
i∈[nin] U

i
[
U i
]∗
τ .

Proof of Lemma 3.2. In view of Lemma 3.1(b) and (6) it suffices to show that the m-th column of
U ix is the vector Colim := [xim, x

i
s+m, . . . , x

i
(dout−1)s+m] ∈ Rdout . Indeed, recall that the `-th row of

U ix is the `-th window of the input x and is given by Rowi
k := [xi(`−1)s+1, . . . , x

i
(`−1)s+dk

] ∈ Rdk .

Fixing a column index m, it is clear that the values in the m-th index of Colik for k ∈ [dk] form the
elements of Colim.

Proof of Lemma 3.3. The first identity in (9) is immediate from (6) and the definition of the adjoint
of a linear operator. For the second identity, note that (4), (5), and Lemma 3.1(c) imply that
Ax =

∑
i∈[nin] U

i
x[U ix]∗. Hence, in view of the definition of X`,`′ and G`,`′ , it suffices to show that

the entry in the `-th row and `′-th column of U ix[U ix]∗ is given by[
U ix{U ix}∗

]
`,`′

=
∑

m∈[dk]

(xi[`−1]s+m)(xi[`′−1]s+m).

Indeed, recall that the k-th row of U ix, say Rowi
k, contains the `-th window of the input array x. For a

given stride s and kernel size dk, clearly we have Rowi
k = [xi(`−1)s+1, . . . , x

i
(`−1)s+dk

].

Proof of Proposition 3.5. (a) Observe that for any matrix M ∈ Rdin×din , we have that MQ returns
the first dk columns of M and RM returns rows 1, s+ 1, . . . , dout − 1 + s of M . The conclusion
now follows from the previous observation and the fact that the rows of U ix contain the windows of x
of size dk and stride s.

(b) Using part (a) and (13) with ζ = ζix, we have that, for any τ ∈ Rdk ,

[U ix]∗τ = Q∗[ζix]∗R∗τ = Q∗ ◦ rev
(
F−1
din

diag
[
Fdinrev(xi)

]
FdinR∗τ

)
= Q∗ ◦ rev ◦ F−1

din

([
Fdinrev(xi)

]
� [FdinR∗τ ]

)
Consequently, using the above identity with τ = gj and Lemma 3.1(b) we have that

[∇wφjx(w, b)]i = [U ix]∗gj = Q∗ ◦ rev ◦ F−1
din

([
Fdinrev(xi)

]
�
[
FdinR∗gj

])
.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Proof of Theorem 3.6. It suffices to describe the costs of computing vi,j and ri,j for i ∈ [nin] and
j ∈ [nout].

For fixed (i, j), computing vi,j can be done by: (i) computing a = R∗gj in a Θ(din) runtime
and storage cost (see the remarks following Proposition 3.5), (ii) computing â = Fdina and ĉ =
Fdin ◦ rev(xi) in a Θ(din log din) runtime cost, (iii) computing ê = ĉ� â in a Θ(din) runtime and
storage cost, (iv) computing e = F−1

din
ê in a Θ(din log din) runtime cost, and (v) computingQ∗◦rev(e)

in a Θ(din) runtime and storage cost (see the remarks following Proposition 3.5). Summing the
previous terms results in a Θ(din log din) runtime cost and Θ(din) storage cost. For fixed (i, j),
computing ri,j , given vi,j , can be done by an accumulating sum in a runtime and storage cost of
Θ(dk) and O(1), respectively.

Summing all the above costs over i ∈ [nin] and j ∈ [nout] (new temporary variables for the
computations of vi,j and ri,j) yields a storage cost of Θ(din) and a runtime cost of Θ(T ), where

T = ninnout

din log din︸ ︷︷ ︸
vi,j

+ dk︸︷︷︸
ri,j

 = Θ(ninnout[din log din]),

where the last identity follows from the fact that dk ≤ din.

12


	Introduction
	Background
	Algorithms and discussion
	Memory-efficient norm computation
	Fourier-based norm computation
	Technical Discussion

	Numerical Results
	Conclusion
	Technical proofs

