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ABSTRACT

Differentially private stochastic gradient descent (DP-SGD) is a well-known
method for training machine learning models with a specified level of privacy.
However, its basic implementation is generally bottlenecked by the computation of
the gradient norm (gradient clipping) for each example in an input batch. While
various techniques have been developed to mitigate this issue, there are only a
handful of methods pertaining to convolution models, e.g., vision models. In this
work, we present three methods for performing gradient clipping that improve
upon previous state-of-art methods. Two of these methods use in-place operations
to reduce memory overhead, while the third one leverages a relationship between
Fourier transforms and convolution layers. To demonstrate the numerical efficiency
of our methods, we also present several benchmark experiments that compare
against other algorithms.

1 INTRODUCTION

Differentially-private stochastic gradient descent (DP-SGD) is a common tool used to train machine
learning models to protect sensitive information contained within individual training records (Abadi
et al., 2016). However, general implementations of DP-SGD are bottlenecked by their gradient
clipping step, whose runtime and memory costs scale linearly with the batch size times the number
of model parameters. Our goal in this work is to develop three improved variants of the gradient
clipping step that are substantially more efficient when applied to models with convolution layers.

DP-SGD details. The DP-SGD algorithm (Chaudhuri et al., 2011; Bassily et al., 2014) relies on
the Gaussian mechanism and composition of differential privacy (Dwork et al., 2006; 2014) across
iterations to privately compute the average of per-example gradients in a batch. At each iteration
it operates by (i) bounding the sensitivity of each record within a batch to control and quantify the
impact of any single record on the final model weights, and (ii) adding Gaussian noise proportional to
the inverse of the batch size times the bound in (i). In particular, sensitivity is controlled by bounding
per-example gradient norms so that the privatized gradients lie in a compact set. This approach
is crucial for reducing noise growth, which scales as O(v/d/[eb]) (Bassily et al., 2014), where d
is the number of model parameters, e the privacy budget, and b the number of records in a batch.
Alternatively, one can clip the overall average gradient at each step, but this increases noise by a

factor of the batch size to O(V/d/¢).

Naive per-example clipping requires computing the norm of all per-example gradients. Specifically,
this methods requires storing at least a matrix of size ©(bd) that contains per-example gradients.
Given the importance of model utility within this privacy-preserving context, there have been several
developments on improving this step (with a focus on models with fully-connected or embedding
layers). For example, techniques like ghost-clipping (Goodfellow, 2015) have been leveraged to
improve both the runtime and storage complexity in certain settings. However, similar savings for
convolution layers remain elusive (Rochette et al., 2019; Lee & Kifer, 2021a).

Contributions. This work introduces three novel gradient clipping methods that outperform prior
methods for convolution methods in certain regimes. More specifically,

o the first two methods use in-place calculations and obtain O(1) per-example storage com-
plexities;
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o the first method directly computes the squared norm, while the second leverages the ghost-
clipping trick for fully-connected layers;

o the third method uses a relationship between convolution operators and fast Fourier trans-
forms (FFTs) to obtain a scheme that scales well in the high-dimensional setting.

It is worth mentioning that the analysis for the third method (in the context of gradient clipping
methods) appears to be new. In particular, this analysis exploits properties of circulant matrices to
derive an algorithm that runs efficiently in terms of the number of model parameters d, and the batch
size b.

To verify the practical efficiency of our methods, we also provide several benchmark experiments
that demonstrate the numerical efficiency of our proposed methods.

Related work. The vast literature on DP-SGD (Chaudhuri et al., 2011; Bassily et al., 2014; Abadi
et al., 2016; Ponomareva et al., 2023; Bu et al., 2023a) highlights the challenge of bounding individual
record sensitivity, a crucial aspect often addressed through clipping'. While alternative approaches
exist, such as modifying model architectures to enable Lipschitz constant computation (Béthune et al.,
2023), their broader applicability remains uncertain.

To the best of our knowledge, the state-of-the-art performance in the setting of convolution models
is achieved by Bu et al. (2023b). Specifically, that work builds on the approach of Bu et al. (2022);
Lee & Kifer (2021a) and combines it with a careful book-keeping scheme that avoids a second back-
propagation step. The main observation of Bu et al. (2022) is that the straightforward implementation
of DP-SGD can be faster or more memory-efficient than ghost-clipping in certain regimes. While
Rochette et al. (2019); Lee & Kifer (2021a) rely on instantiating per-example gradients, Bu et al.
(2022) take advantage of the underlying network structure and choose which of of two different
approaches to run; this selection step drives the bulk of their speed-up. In a follow-up work (Bu et al.,
2023b), the authors use the previous observation and the idea that the second back-propagation step
can be avoided using caching techniques.

Fourier transforms have first been used to improve the efficiency of training convolution neural
networks (CNNs) by Mathieu et al. (2013), who build upon related work by Ben-Yacoub et al.
(1999) for small-scale fully-connected models. Additional improvements to the approach have been
developed, for example, by Pratt et al. (2017); Vasilache et al. (2014); Abtahi et al. (2017); Rippel
et al. (2015). However, the development of similar techniques for the purpose of gradient clipping
(this work) appears to be new.

For convenience, we compare in Table 1.1 the asymptotic time runtime and storage complexities of
the methods by Bu et al. (2022), Lee & Kifer (2021a), and our proposed methods.

Table 1.1: Asymptotic time and space complexities of various gradient clipping methods for a
single example. The scalars niy, Nout, dk, din, and doyy denote the number of input channels, output
channels, kernel size, input dimension, and output dimension, respectively. Direct methods materialize
the unaltered gradients, ghost-clipping methods apply the trick from Goodfellow (2015), and FFT
methods utilize a novel relationship between convolution layers and FFTs proposed in this work.

Method Type Runtime Storage

Lee & Kifer (2021b)  direct NinNout dout Ak Noutdout + Mindoutdk

Bu et al. (2022) ghost-clipping d? . (Nindi + Nout) A% + Noutdouws +
Nindindy,

Algorithm 3.1 [ours]  direct NinNout out Ak O(1)

Algorithm 3.2 [ours]  ghost-clipping d2 s (nindk + Nout) O(1)

Algorithm 3.3 [ours]  FFT NinNout din 10g(din) din

'See Pichapati et al. (2019); Chen et al. (2020) for examples or Ponomareva et al. (2023) for a recent
overview.



Under review as a conference paper at ICLR 2025

Notation. For a matrices A and B we let || A|| denote the Frobenius norm of A and (A, B) denote
the (Frobenius) inner product. Let (W, (-, -}) and (), (-, -)) denote two Hilbert spaces with common

induced norm || - ||. We denote linear operators between them by italicized letters A: W — ) and
denote A* : ) — W to be the adjoint of A. That is, A* is the unique linear operator that satisfies
(y, Awy = (A"y,w) YweW, VYye). (1)

Let ¢) : W — Y be an arbitrary function. The Fréchet derivative of 1 at wg € W is given by the
unique bounded linear operator Dy (wq): W — ) satisfying

o 1820000+ 0) = (o) = D)ol _

0.
60 [19]]

We say v is differentiable if its Fréchet derivative exists for all wy € V. Throughout this paper we
will use two special properties of the Fréchet derivative: the chain rule and the existence of gradients.
Let (Z, (-, -)) be another Hilbert space and ¢: ) — Z be given. The chain rule provides us with a
simple way to calculate the derivative of the function ¢ o ¢): W — Z, namely,

D(¢ o) (wo) = Do(¢(wo))Dip(wo) -

The Fréchet derivative of 1 at w, with respect to a subset of variables u is denoted by D, ¢(wy).
Finally, Vi) (wg) € W denotes the (unique) gradient of a function 1) at wg, which satisfies

Dip(wo)d = (Vip(wo), 6)w V6 € W. 2)

The existence of the gradient is guaranteed by the well-known Riesz-Fréchet Representation Theorem
(Rudin et al., 1976). The gradient of ¢ at wy with respect to a set of variables u is denoted by

Organization. Section 2 presents some necessary background material on representing gradient
norms in convolution models. Section 3 presents the proposed clipping methods and discusses
their properties and algorithm complexities under different regimes. Finally, Section 4 gives several
numerical experiments and benchmarks.

2 BACKGROUND

To simplify our presentation, we focus on a single convolution layer and a single example x €
R™n*din from the batch of inputs. For the case of multiple convolution layers and multiple examples,
it is straightforward to see that our complexity results scale linearly with the number of layers times
the number of examples. Moreover, we present our results for one-dimensional inputs; in Section 3.3
we discuss generalizations of our approaches to higher-dimensional inputs.

Given a stride length s > 1, let dj, € N, dip, € N, dout = 1 + (din — di) /s be the size? of the kernel,
inputs, and outputs, respectively, let n;, € N and neyt € N be the number of input, output channels,
respectively, and let w € R™inX"ousXdr be the kernel weights. Moreover, for fixed output channel j,
let (i) w™/ € R be the kernel vector corresponding to the i-th input channel, (i) b7 € R™out* dout
be the bias offset, (iii) o be a general activation function, and (iv) U, i € Rut*dk be g matrix whose
{-th row consists of the entries in the i-th input channel of z that are being multiplied with w®7.

The output for the j-th output channel of a convolution layer is given by

(6o (w, D) = $l(w,b) :=a [V + Y Ujw™ | . 3)
iE[TLix)]
Numerically efficient schemes for computing ||V (w, b)||? (the bias weights’ gradient norm),
have been previously developed by Kong & Munoz Medina (2024). Consequently, our focus is on
analyzing the kernel weights’ gradient norm ||V, @7 (w, b)||?. Following similar analyses as Kong &
Munoz Medina (2024), we first write

¢l =Llyo0) 0o Z, where l(2):=alz+V), Zi(w):= Z Ulw™ . 4)

1€[Nnin]

2To avoid clutter, we assume these are all integers. In the implementation of our approach, we handle the
general case.
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Then, if we denote

A= Ap(w) == DZi(w), ¢’ =gl(w):=V(l, o) (Z](w)), S
it follows from the chain rule that
IVudi(w, B = () == A9 (©)

To avoid the notational clutter, we denote the adjoint operator of DZJ(w) by DZ3*(w). Using the
fact that V., ¢, (w, b) = [Vudl(w,b),. .., Voot (w,b)], we have that

Nout Nout

1V o (w, b)|[2 = Z IV (w, b)[[* = Z [

and, hence, it suffices to restrict our presentation to a fixed output channel ;7 where applicable. Kong
& Munoz Medina (2024) established efficient representations of €2, (g) for the case of embedding
and fully-connected layers. Similarly, our task will be to find an efficient representation of €2,.(g) for
convolution layers.

3 ALGORITHMS AND DISCUSSION

This section contains three subsection that present the main algorithms and technical discussion
of our work. The first subsection presents the in-place algorithms and their properties, the second
one presents the Fourier-based algorithm and its properties, and the last section compares various
methods across different regimes, considering the number of input-output channels and input-output
dimensions.

Before proceeding, we describe some common notation and a basic result about the function Z, () in
(5). Given a 4D array M € RinXnouXdixdout ' we denote M, ”, to be the value in the corresponding
to the i-th input channel, j-th output channel, m-th input dimension, and ¢-th output dimension of
M. We give similar definitions for the arrays/scalars M*J, M , M}, M*, and M7, keeping the
convention that superscripts (resp. subscripts) contain indices for the input/output channels (resp.
dimensions). The straightforward representation of the operators we have discussed so far requires
defining and handling fourth-order tensors, which can vastly complicate the analysis. However, we
are able to decompose various operations across different channels and dimensions, which allows us
to only use two-dimensional matrices to represent all the operators we use.

The result below provides some convenient representations of the Fréchet derivative of Z3(w) and
Z7*(w). Its proof is postponed to Appendix A.

Lemma 3.1. Let Ul € R%u*d% pe as in (4) for some input channel i € [niy), let A € RMinXMoue Xk
and 73 € Rt be arbitrary. If A% € R is the displacement vector corresponding to input-output
channel pair (i,j) € [nin] X [Nout), then

(a) DZJ(w)[A] = 3y, Ub AW € Rbowe;
(b) {DZJ*(w)[r9]} = [Ui]*rI € R
(¢) DZi(w) o DZJ*(w)[T7] = 3icippy UalUs) 7 € R,
Since the elements of Ul are the values of x, the identity in (6) and Lemma 3.1(b) imply that the
squared norm of V,,¢7 (w b) can be expressed solely in terms of 2 and the downstream gradient g’

in (5). In the next two subsections, we give two different expressions for ||V, @7 (w, b)|| and present
their corresponding algorithms.

3.1 MEMORY-EFFICIENT NORM COMPUTATION

This subsection presents two in-place algorithms for computing the desired squared gradient norm.

We first present a “direct” expression for V¢4 (w, b) in terms of  and g7 using (6). The proof is
postponed to Appendix A.
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Lemma 3.2. Let g-j € RneutXdout po gg in (6) and s > 1 be given. Then, it holds that the value of
the gradient ¥V, &%, (w, b) at the i-th input channel, j-th output channel, and m-th output dimension
is given by

L€ [dout)

The above result shows that when we are given = and g, we can compute |V, ¢.(w,b)||* by
performing a sequence of in-place operations. For ease of reference, we present one variant of these
operations in Algorithm 3.1, which can be viewed as an in-place modification of the FastGradClip
algorithm in Lee & Kifer (2021b). It is immediate that Algorithm 3.1 requires

Tdirect ‘= NinMout dk dout (8)

floating-point operations (FLOPS), but only O(1) additional storage.

Algorithm 3.1 Direct squared norm computation with in-place operations

Input: stride length s > 1, layer input 2 € R™n >4 and gradient g € R"outXdout;
Output: value of ||V, ¢, (w, b)||?;
Define Jp, := {([{ — 1]s + m, £) : £ € [dout]} for m € [dy]

2

return Zie[nin] Zjé[nout] ane[dk] (Z(p,q)ejm, I;gé)

L S e

We now present a special expression for ||V, ¢, (w, b)||? that is reminiscent of a similar expression

in the “Ghost Clipping” algorithm from Bu et al. (2022). The proof is postponed to Appendix A.
Lemma 3.3. Let g7 € R%v¢ be as in (6), let s > 1 be given, and define

X = Z Z letjsrm) @l 1joim)s - Gep = Z 949

1€[nin] mE[dg] J€[nout]

where U, 0" € [dout] are indices over the output dimension. Then, it holds that

|V (w, b)]|2 = Z (A A%, Iy =2 Z XeoGop + Z XeeGee, (9)

J€[nout] 1<8<l/ <dout L€[dout]
where A, is the matrix in R4w* % corresponding the operator of the same name in (5).

Similar to Lemma 3.2, the above result also yields a sequence of in-place operations for computing
| Vs (w,b)||2. As before, for ease of reference, we present one variant of these operations in
Algorithm 3.2. It is straightforward to see that, for a fixed outer index pair (¢, £') in the expression
for P, the computation of the inner sum involving x (resp. ¢) requires n;,d; FLOPS (resp. nout )
Consequently, computing P and () in Algorithm 3.2 requires

dout (dout - 1)

D) (nindk + nout) = ®(d§ut [nindk + nout]) (10)

Tghost = |dout

total FLOPS but also only O(1) additinal storage.

Algorithm 3.2 Ghost Clipping-based squared norm computation with in-place operations

Input: layer input = R7in X din and gradient ge R™out Xdout;
Output: value of ||V, ¢, (w,b)||%;
Define Jo,¢0 := {([¢{ — 1]s +m, [’ — 1]s +m) : m € [dy]} for £, 0" € [dout]

Compute P < 3"y pcqa.., (Zle[nm] Y (p)eT a?pxq) (Zje[nout] gegz/)

5 Compute Q — Zfe[dout] (Eie[nm] Z(p,q)e.ﬂ,e .’Ep.qu> (EjE[nout] gzge)
6: return 2P + Q)

Eal >
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3.2 FOURIER-BASED NORM COMPUTATION

This subsection presents an algorithm based on the discrete Fourier transform (DFT) for computing
the desired squared gradient norm.

We first define rev : R™ — R" (resp. diag : R™ — R™*"™) to be the linear operator that reverses the
order of its input (resp. diagonalizes its input). Explicitly, these operators are given by

0, otherwise’ Vi, j € [n], (11

rev([z1,29,...,2p]) = [@n, ..., 22, 21], [diag(x)];; = {
for every x € R™. Now, let us recall the notion of a circulant matrix and its relationship to the
DFT. A circulant matrix C' € R™*" (resp. an anti-circulant matrix ( € R™*"™) is a Toeplitz (resp.
anti-Toeplitz) matrix of the form

Co Cp—1 € Ct - Cp-1 Co
€1 Co ) C2 - Co C1
cC=1 . ) . s C=1. . A (12)
Cn—1 Cn—2 o Co Co crr Cp—2 Cp-—1

for some ¢ € R™. Notice that consecutive rows of a circulant (resp. anti-circulant) matrix contain the
same entries of ¢ but are cyclically shifted from left to right (resp. right to left).

The next result relates circulant matrices in R™*™ with the n-th order DFT, and its proof can be found,
for example, in (Gray et al., 2006).

Lemma 3.4. [fC € R™ " is a circulant matrix and c is its first column, then C' = F, Ldiag(F,c)Fy,
where F, is the n-th order DFT.

Using the above result, it is straightforward to see that if € R™*™ is an anti-circulant matrix whose
first row is rev(c)
(1 = rev(F, 'diag[F,rev(c)]|Fn1), V1 eR™. (13)

Returning to our main goal, the primary insight of this section is that we can express V., ¢ (w, b)
(and, consequently, V., ¢, (w, b)) as an application of an anti-circulant matrix with some auxiliary
(but simple) linear transforms. The details of this perspective, and its computational implications, are
given in the following result, whose proof is postponed to Appendix A.

Proposition 3.5. Let (! € R%*%in denote the anti-circulant matrix whose first row is x*. Moreover,
define the block matrices Q € R%n*% gnd R € R%utXdin py

I, 1, ifm=sn-1)+1 _
O(din—dy) xdy, } o [Blnm = {O, otherwise , ¥, m) € [din] X [dow]
(14)
where I,, (resp. 0,,%x.m) denotes the identity matrix in R™*" (resp. zero matrix in R™*"™). Then, it
holds that

o-|

(a) for every i € [niy), we have Ul = R(EQ;
(b) if g7 € Riw js as in (5), then
[quﬁf,;(w, b)]i =Q*orevo J’-"d_m1 ([]:d;n orev(z')] ® [.FdinR*gj]) Vi € [nin), (15)
where © denotes the Hadamard product.

Before proceeding, let us give a few remarks. First, for y € R%» and z € R%vt, we have that Q*y
returns the first dy, rows of y and R*z returns a padded version of z in which [R*2];_1)4+1 = i
for i € [doys] and [R*z]; is zero at all other indices j. Second, in view of the first remark, we have
that for any 3y € R%=, both of the quantities (Q* o rev)(y) and R*g’ can be computed using O (dj,)
FLOPS.

We now present a general algorithm in Algorithm 3.3 that leverages (15) to calculate ||V, ¢, (w, b)||?.

Notice, in particular, that it can be specialized to different choices of the DFT oracle Fy,,, .
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Algorithm 3.3 DFT-based squared norm computation

1: Input: layer input z € R™n*%n_ oradient g € R™out*dout and oracle Fy,, that performs the
(din )-th order DFT;
Output: value of ||V, ¢, (w, b)|?;
Define rev(-) and (@, R) to be as in (11) and (14), respectively
for i, j € [nin] X [nout) do

v = Q" orev o Fi ([Fa,, orev(a’)] © [Fa, R*g7])

4,5 dy ,J

T = ST ()
end for N
return > j)efnnlxfnoul "’

The next result presents the runtime and storage complexity of a specialization of Algorithm 3.3,
where we use a fast (discrete) Fourier transform oracle. Specifically, it is well-known that DFT can
be implemented in time O(d log d) using the FFT method (Duhamel & Vetterli, 1990). The proof can
be found in Appendix A.

Theorem 3.6. Let F,, be an FFT oracle which, for any v € R%», computes Fy,, v in ©(diy log diy )
FLOPS. Then, there is an implementation of Algorithm 3.3 with F4, = Fg,, that consumes at most

Tfft = @(ninnoutdin log din) (16)
total FLOPS and ©(dyy,) additional storage.

3.3 TECHNICAL DISCUSSION

This subsection discusses two topics, namely, (i) how the runtime and storage costs from the previous
subsections compare under different settings and (ii) how our results generalize to higher-dimensional
inputs.

We start by comparing how the runtime complexities Tqirect, L ghost» and Ty in (8), (10), and (16),
respectively. For simplicity, let us assume that the stride lengthis s = 1 and letd > 1 and n > 1 be
arbitrary. First, when diy,, dout, dp = ©(d) and nip, nouwt = O(1), we have that

Tfft = ®(d 1Og d) = Tdirect = @(dz) = Tghost = ®(d3) .

where A < B means that A is asymptotically more efficient than B in terms of runtime. Second,
when diy, dout = O(d), di, = O(1), and nip, nout = O(1), we have that

Tairect = O(d) =< Ty = O(dlog d) = Tynost = O(d?).
Finally, when di,, di, = O(d), dout = O(1), Nin, Nous = O(n), we have that
Tenost = O(nd) = Tairect = O(n*d) < T, = O(n’dlogd) .
From the above comparisons, we can see that each of our proposed methods outperforms the others

in certain regimes, so there is not a method that performs universally better across different choices
of Nin, Mout dk: diru and dout~

We next remark that our results are formally presented for the case of multiple input-output channels
and one-dimensional (per-example) inputs. When « is an d-dimensional input, it is straightforward to
develop analogous version for Algorithms 3.1-3.2. However, the analogous version of Algorithm 3.3
requires more care. In particular, we would need to develop higher-order versions of (12), replace the
one-dimensional Fourier transform in Algorithm 3.3 with its d-dimensional variant, and replace the
operators (@, R) in Algorithm 3.3 with higher-order variants.

In the special case of the two-dimensional DFT, which is useful when the inputs are images, it
is known (Azimi-Sadjadi & King, 1987) that a version of Lemma 3.4 holds where C' is replaced
by a block-circulant matrix, i.e., where each ¢; in (12) is replaced by a matrix. Consequently, the
version of Algorithm 3.3 for a two-dimensional (per-example) input array = directly follows from
this result by replacing (i) Fy,, by its analogous two-dimensional DFT, (ii) rev(-) by the operator
that reverses a two-dimensional input array lexicographically, and (iii) () and R by their block
two-dimensional variants. We posit that the d-dimensional version of Algorithm 3.3 is one where
changes (i)—(iii) are applied in the d-dimensional setting, i.e., with blocks of d-dimensional arrays
instead of two-dimensional matrices.
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4 NUMERICAL RESULTS

In this section we perform an empirical evaluation of the algorithms we proposed in our work and
compare their performance to the algorithms proposed by Bu et al. (2022). Since the only part of
the DP-SGD training pipeline we modified is the norm computation step, to make the comparison
across our algorithms and the algorithms from prior work (Bu et al., 2022) more precise, this section
is devoted solely to this part of the training; in other words, we do not perform full training of CNNs
using DP-SGD, but we rather evaluate the gradient norm computation functions for various types of
layers and input examples. The settings we consider are motivated by our discussion in Section 3.3.
In particular, we focus on three different regimes. Firstly, we consider families of layers where the
input, output dimensions and kernel size scale as ©(d), and the number of input, output channels
are small constants Subsequently, we focus on families of layers where the input, output dimensions
scale as ©(d), the kernel size is ©(1), and the number of input, output channels is also ©(1). Finally,
we consider the setting where the input, outputs dimensions, and kernel size scale are ©(1), and the
number of input, output channels scale as ©(n). For all the experiments, we initialize random inputs
to a particular layer of the CNN that is configured according to the underlying setting, and for every
configuration we repeat the experiment 5 times to reduce the variance. Moreover, to give a more
detailed comparison of the difference of the running time and memory consumption the y-axis of
these plots is in log-scale. In all the experiments the stride of the kernel is 1. All the experiments
were executed in Python on a standard laptop.

Setting #1: diy,, dout, dx = O(d), nin, Nout = O(1).  As we alluded to before, we first consider
the setting where the input dimension, output dimension and kernel size are of the same order of
magnitude and they are all much larger than number of input, output channels. The runtime and
memory consumption comparisons are depicted in Figure 4.1. For this setting, our in-place ghost-
norm algorithm was performing significantly worse than the rest of the methods and was increasing
the computation time of the experiment significantly, so we have not displayed it. We can see that as d
increases, the advantage of the FFT-based method becomes increasingly more significant. Moving on
to the comparison of the memory consumption, this experiment illustrates that our approaches have
significantly lower memory requirements than those from prior work, as the memory consumption
remains constant as d increases.

Running Time Analysis Memory Consumption Analysis
051 —— In-place fast grad 2.50| —— In-place fast grad
—— FFT grad _ —— FFT grad
= 99 —— Buetal. (2022) fast grad 2£2.25| —— Bu et al. (2022) fast grad
2 Bu et al. (2022) ghost grad > Bu et al. (2022) ghost grad
S -0.5 2 2.00
9 -
i IS
3—1.0 -%_1,75
. £
2-1s 2 1.50
[= s
220 C12s
£ 2
S £
2-25  1.00
=
-3.0 0.75

2000 4000 6000 8000 10000 2000 4000 6000 8000 10000
Parameter d Parameter d

Figure 4.1: Runtime and peak memory consumption: di,, = d, dg, dout = d/2, Nin, Nous =

Setting #2: d;,, dout = O(d), dr. = O(1), Nin, Nous = O(1).  Next, we consider the setting where
the input, output dimension scale as O(d), and the kernel size, input channels, and output channels are
small constants. The runtime, memory consumption comparison are depicted in Figure 4.2. For this
setting, our in-place direct norm computation algorithm outperforms all other methods, verifying our
theoretical analysis. Turning our attention to the memory comparison, we observe that the ghost-norm
computation algorithm from Bu et al. (2022) has the largest memory requirement, whereas all three
of our algorithms require the least amount of memory.

Setting #3: diy,, dout, dx = O(1), Nin, Nouwt = O(n). Finally, we consider the setting where the
input dimension, output dimension, and kernel size are small constants and we let the number of input,
output channels be ©(n). The runtime, memory consumption comparison are depicted in Figure 4.3.
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Running Time Analysis

Memory Consumption Analysis
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Figure 4.2: Runtime and peak memory consumption: di, = d,dy = d— 14, dout = 13, nin, Nout = 3

In this setting, we observe that for large enough n our in-place ghost-norm computation and the
ghost-norm computation of Bu et al. (2022) outperform all other methods, verifying our theoretical
analysis. Interestingly, the direct gradient computation method of Bu et al. (2022) is also performing
very well; this is due to Python implementation features, since matrix multiplication, which is used
for the direct gradient computation of Bu et al. (2022) speeds up the computation. Moreover, we
observe that our approach is significantly more memory-efficient than Bu et al. (2022).
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Figure 4.3: Runtime and peak memory consumption: dj, = 10, dx = 10, dout = 1, Nin, Nout = N

5 CONCLUSION

In this work we have proposed three new methods for gradient norm computation which can sig-
nificantly improve the runtime and memory efficiency of DP-SGD over prior work for certain
architectures of CNNs. We have rigorously analyzed the theoretical improvements of our algorithms,
which are also supported by numerical experiments.
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A TECHNICAL PROOFS
This appendix gives the proofs of the manuscript’s main results.

Proof of Lemma 3.1. For simplicity, denote U* = U! and D,, := DZ,(w).
(a) This is immediate from the linearity of D,..
(b) From part (a) and the definition of the adjoint, we have

(DoA )= Y (RUAY) = 3 ([UT7,A%) = (Dir, A).

16[77171] 76["”’]
(c) Using parts (a) and (b), we have D, D7 = 37, (.. | Ut [Dir]™ = D icnin] Ut vt T O

Proof of Lemma 3.2. In view of Lemma 3.1(b) and (6) it suffices to show that the m-th column of
U? is the vector Col!, = [zi 2% ... g e—1)stm) € R, Indeed, recall that the (-th row of
U! is the /-th window of the input z and is given by Row’}, := [I(£71)8+1, .. ’m(ffl)erdk] € R,
Fixing a column index m, it is clear that the values in the mn-th index of Colj, for k € [dy] form the
elements of Col,,. O

Proof of Lemma 3.3. The first identity in (9) is immediate from (6) and the definition of the adjoint
of a linear operator. For the second identity, note that (4), (5), and Lemma 3.1(c) imply that
Az =2 e Ua[Uz]". Hence, in view of the definition of X, and G, it suffices to show that

the entry in the ¢-th row and ¢'-th column of U [U?]* is given by

[U;{U;}*]Lg/ = Z (x/féfl]s+m)<xff’fl]s+m)'

mel[dy]

Indeed, recall that the k-th row of U, say Row};, contains the {-th window of the input array x. For a
given stride s and kernel size dy, clearly we have Row), = [x’@_l)sﬂ, ... ,xée_l)erdk]. O

Proof of Proposition 3.5. (a) Observe that for any matrix M € R%»*%nwe have that M () returns
the first dj, columns of M and RM returns rows 1,s + 1,...,dous — 1 + s of M. The conclusion
now follows from the previous observation and the fact that the rows of U? contain the windows of x
of size dj, and stride s.

(b) Using part (a) and (13) with ¢ = (¢, we have that, for any 7 € R,
U = Q*[C]*R*T = Q* orev (]—' !diag []-'dmrev( 1)] ]:dinR*T)

=Q*orev Of;nl ([Faarev(z )] [Fa,, R*7])

in

Consequently, using the above identity with 7 = ¢ and Lemma 3.1(b) we have that

[Vu¢(w,b)]" = [U3]*g" = Q" orev o Fy* ([Fa,rev(a’)] © [Fa, R*g’]) .
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Proof of Theorem 3.6. It suffices to describe the costs of computing v* and r®J for i € [n;,] and
j € [nout]'

For fixed (i,7), computing v*’ can be done by: (i) computing @ = R*g’ in a ©(d;,) runtime
and storage cost (see the remarks following Proposition 3.5), (ii) computing ¢ = Fy4,_ a and ¢ =
Fa,, orev(z?) in a ©(d;y, log diy, ) runtime cost, (iii) computing é = ¢ ® a in a ©(d;, ) runtime and
storage cost, (iv) computing e = F . jé in a ©(djy, log d;y, ) runtime cost, and (v) computing Q* orev(e)
in a O(d;,) runtime and storage cost (see the remarks following Proposition 3.5). Summing the
previous terms results in a ©(d;, log d;,,) runtime cost and ©(d;,) storage cost. For fixed (i, j),
computing 77, given v*/, can be done by an accumulating sum in a runtime and storage cost of
O(dy) and O(1), respectively.

Summing all the above costs over i € [niy] and j € [noyt] (new temporary variables for the
computations of v* and r*7) yields a storage cost of ©(d;,) and a runtime cost of ©(T"), where

T = NinMout din 10g din + dk = G(ninnout [din log dian
4 ]
where the last identity follows from the fact that dy, < d,. O
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