
Autoformalizing Euclidean Geometry

Logan Murphy 1 * Kaiyu Yang 2 * Jialiang Sun 1 Zhaoyu Li 1 Anima Anandkumar 2 Xujie Si 1

Abstract
Autoformalization involves automatically trans-
lating informal math into formal theorems and
proofs that are machine-verifiable. Euclidean ge-
ometry provides an interesting and controllable
domain for studying autoformalization. In this
paper, we introduce a neuro-symbolic framework
for autoformalizing Euclidean geometry, which
combines domain knowledge, SMT solvers, and
large language models (LLMs). One challenge in
Euclidean geometry is that informal proofs rely
on diagrams, leaving gaps in texts that are hard to
formalize. To address this issue, we use theorem
provers to fill in such diagrammatic information
automatically, so that the LLM only needs to aut-
oformalize the explicit textual steps, making it
easier for the model. We also provide automatic
semantic evaluation for autoformalized theorem
statements. We construct LeanEuclid, an auto-
formalization benchmark consisting of problems
from Euclid’s Elements and the UniGeo dataset
formalized in the Lean proof assistant. Experi-
ments with GPT-4 and GPT-4V show the capa-
bility and limitations of state-of-the-art LLMs on
autoformalizing geometry problems. The data
and code are available at https://github.
com/loganrjmurphy/LeanEuclid.

1. Introduction
Euclidean geometry is one of the oldest branches of mathe-
matics. It has served as a test of human intelligence for more
than two millennia and has recently been used to test AI.
Substantial work has focused on solving geometry problems
automatically (Wu, 2008), e.g., AlphaGeometry (Trinh et al.,
2023) can solve some of the IMO geometry problems. These
methods consume problems and produce solutions in struc-
tured formats. In this work, we address a complementary
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task, autoformalization: Can AI understand human-written
problems/solutions and translate them automatically into for-
mal theorems/proofs? Specifically, we focus on the setting
where formal theorems/proofs can be verified by the Lean
proof assistant (de Moura & Ullrich, 2021). Lean provides
a language for writing formal proofs. It is popular among
mathematicians and has a growing ecosystem of integration
with large language models (LLMs), e.g., LeanDojo (Yang
et al., 2023) and Lean Copilot (Song et al., 2024).

We demonstrate that Euclidean geometry provides an inter-
esting and controllable domain for autoformalization. First,
an automatic evaluation of autoformalized theorems is diffi-
cult in general but feasible in Euclidean geometry. Second,
the logical gaps in informal proofs are well understood in
Euclidean geometry, making it easier to faithfully formalize
the proofs. Third, combining text-based and diagrammatic
reasoning makes Euclidean geometry a natural domain to
study multimodal reasoning models. Therefore, autoformal-
izing Euclidean geometry is an attractive target for AI.

Evaluating Autoformalized Theorem Statements. De-
spite the promise of machine learning and LLMs in autofor-
malizing theorems (Wu et al., 2022), a major roadblock is
the lack of reliable and automatic evaluation. Comparing
the model output verbatim with ground truth would be too
rigid since there are many valid ways to formalize a theorem.
Checking the logical equivalence between two theorems is
generally intractable. Researchers have resorted to proxy
metrics such as the BLEU score (Papineni et al., 2002).
However, LLMs can score high on such metrics without
generating correct formalization (Jiang et al., 2023b). Al-
ternatively, human evaluation is widely used as a last resort,
but it is costly, especially if we want to use the results to
improve the method iteratively.

Our Approach to Evaluating Autoformalization. To
overcome the evaluation bottleneck, we introduce a new
automatic approach for evaluating the semantics of auto-
formalized theorems. The key insight is that equivalence
checking can be made feasible in specific domains (such as
Euclidean geometry) by combining domain knowledge with
automated reasoning tools, such as satisfiability modulo
theories (SMT) solvers (Barrett & Tinelli, 2018).

To evaluate the autoformalized theorems, we develop a sym-
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Autoformalized theorem
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isCenter a BCD
onCircle b BCD
isCenter b ACE
onCircle a ACE
⊢ intersects BCD ACE

Diagrammatic reasoning gaps

…
⊢ …

…

SMT-based symbolic 
reasoning engine

…

Figure 1. Left: Proposition 1 in Euclid’s Elements (Book I). The orange text involves diagrammatic reasoning: Euclid did not explicitly
prove the two circles actually intersect, but the reader can use the diagram to implicitly fill in the logical gap. Top right: The model
autoformalizes the problem into a formal theorem (proposition 1’), which is evaluated by checking its logical equivalence with the
ground truth (proposition 1), leveraging domain knowledge and a symbolic automated reasoning engine based on SMT (satisfiability
modulo theories) solvers. Bottom right: A proof autoformalized by the model. Like Euclid’s proofs, it does not need to handle
diagrammatic reasoning explicitly. Lean can check the proof to identify a list of diagrammatic reasoning gaps, e.g., “intersects BCD
ACE”. Then, it attempts to fill in all gaps automatically using the symbolic reasoning engine based on SMT solvers.

bolic reasoning engine based on SMT solvers. As Fig. 1
(Top right) shows, given a ground-truth formal theorem Tgt

and the autoformalized theorem Tpred produced by a lan-
guage model, we use the symbolic engine to try to prove
their equivalence (Tgt ⇔ Tpred). If successful, their logi-
cal gap is small enough to conclude that Tpred is correct.
Even if the symbolic engine cannot prove Tgt ⇔ Tpred, it
can provide partial results useful for a more fine-grained
analysis. We validate this evaluation protocol by showing it
correlates well with human evaluation.

LeanEuclid: Formalizing Proofs and Diagrams. We
construct LeanEuclid, a benchmark for testing machine
learning on autoformalizing Euclidean geometry. As in Fig 1
(Left), each example in LeanEuclid has an informal theorem,
proof, and diagram in LATEX, as well as a formal theorem
and proof in Lean. Data examples in LeanEuclid are manu-
ally formalized into Lean from Euclid’s Elements (Heiberg,
2007) and the UniGeo dataset (Chen et al., 2022).

LeanEuclid serves as a benchmark for autoformalizing not
only theorems but also proofs. Geometric proofs are chal-
lenging to formalize faithfully. Humans (ancient or modern,
including Euclid himself) use diagrams to license proof
steps without making every detail explicit. Fig. 1 shows an
example of diagrammatic reasoning from Euclid’s Elements.

Euclid uses the intersection of two circles (C) without prov-
ing its existence. Most readers would not find the proof
problematic, as the two circles intersect in the diagram.
Such implicit diagrammatic reasoning is ubiquitous in in-
formal geometric proofs but needs to be handled explicitly
in formal proofs (Beeson et al., 2019). Therefore, a naive
attempt to autoformalize the proofs would be difficult, as it
requires the model to fill in many diagrammatic reasoning
gaps, with nothing to reference in the informal texts.

To mitigate diagrammatic gaps, LeanEuclid adopts a for-
mal system named E (Avigad et al., 2009), introduced by
philosophers for modeling diagrammatic reasoning in Eu-
clid’s Elements. It teases out a set of diagrammatic rules
so that diagrammatic reasoning can be modeled as logical
deductions. We implement E in Lean and provide proof
automation to fill in diagrammatic reasoning gaps, using the
same symbolic reasoning engine developed for equivalence
checking. Our system enables formalizing all 48 theorems
and proofs from Elements (Book I), following Euclid’s orig-
inal proofs as closely as possible, with diagrammatic reason-
ing carried out implicitly and automatically (see Fig. 1). The
data is included in LeanEuclid, making autoformalizing Eu-
clid’s proofs feasible. The language model now only needs
to autoformalize the explicit textual proof steps, leaving the
“obvious” implicit reasoning to the symbolic engine.
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LLMs for Autoformalization. Using LeanEuclid, we
experimentally investigate the capability of GPT-4 (Ope-
nAI, 2023) and GPT-4V (with vision) on autoformalizing
theorems and proofs in Euclidean geometry. With 5-shot
prompting, GPT-4 can autoformalize only 18.9% of the the-
orems correctly, demonstrating the difficulty of LeanEuclid.
GPT-4V performs slightly better (21.0%), showing the po-
tential benefit of multimodal models. Furthermore, GPT-4V
can autoformalize 23.1% of LeanEuclid proofs correctly,
generating the entire proof without searching the space of
individual steps. Finally, our study shows that imperfect
autoformalized proofs can often be manually repaired into
correct proofs through a few simple modifications.

Contributions. We make three main contributions: First,
we introduce an SMT-based symbolic engine for automat-
ically evaluating the semantics of theorem statements in
Euclidean geometry. Second, we demonstrate the feasibil-
ity of autoformalizing only explicit geometric proof steps,
relying on the symbolic engine for implicit diagrammatic
reasoning. Third, our experiments reveal the capability
and limitations of state-of-the-art LLMs on autoformalizing
Euclidean geometry. Overall, our approach demonstrates
Euclidean geometry as a promising target for autoformaliza-
tion. It may facilitate autoformalization research to move
from human inspection to automatic evaluation. Such a
transition is essential for accelerating the development of
machine learning methods on this task and ultimately easing
the human effort required by formalization.

2. Related Work
Neural Theorem Proving and Autoformalization. Ma-
chine learning and LLMs can prove theorems using proof
assistants (Polu & Sutskever, 2020; Yang & Deng, 2019;
Yang et al., 2023; First et al., 2023; Lample et al., 2022;
Han et al., 2022). In theorem proving, everything is formal:
The model generates a formal proof given a formal theorem.
In contrast, we focus on autoformalization, which aims to
translate informal math into formal theorems and proofs.
Li et al. (2024) provides a comprehensive survey on deep
learning for theorem proving and autoformalization.

Machine learning for autoformalization is strained by the
lack of informal-formal pairs for training. Manually an-
notating such a dataset would be prohibitively expensive.
Researchers have explored two approaches to overcome
data scarcity. First, we can generate synthetic training data
either procedurally (Wang et al., 2018; Cunningham et al.,
2023) or using LLMs (Chen et al., 2023; Jiang et al., 2023b).
Second, we can leverage the few-shot capability of LLMs
such as GPT-4 (OpenAI, 2023). We only need to annotate a
few examples for in-context demonstration and a relatively
small testing set (Wu et al., 2022; Agrawal et al., 2022;

Jiang et al., 2023a; Azerbayev et al., 2023). LeanEuclid
follows the latter approach and is intended as a benchmark
for testing only.

Autoformalized theorems are difficult to evaluate, so all
existing works have resorted to human evaluation. In ad-
dition, they have used proxy metrics such as compilation
rates (Jiang et al., 2023b; Azerbayev et al., 2023) and the
BLEU score (Wu et al., 2022; Azerbayev et al., 2023), none
of which is sufficiently accurate. In contrast, we are the
first to evaluate the semantics of autoformalized statements
reliably and automatically.

Formalizing Euclidean Geometry. To our knowledge,
no machine learning method has attempted to autoformalize
Euclidean geometry. Tarski’s (Schwabhäuser et al., 2013)
and Hilbert’s axioms (Hilbert, 2013) are two classical ax-
iomatic systems that put Euclidean geometry on a rigorous
foundation. Beeson et al. (2019) uses a variant of Tarski’s
system to manually formalize Euclid’s Elements (Book I)
in the Coq proof assistant (Barras et al., 1997). Hernandez-
Espiet (2023) is an ongoing work formalizing the book in
Lean. However, they require formal proofs to explicitly
handle all gaps left by diagrammatic reasoning. As a result,
formal proofs in their systems are much more verbose than
Euclid’s proofs (examples in Appendix C), making their
systems unsuitable for studying autoformalization.

Proofs in Euclidean geometry have gaps due to diagram-
matic reasoning. However, for more than two millen-
nia, they have seldom troubled Elements’ readers around
the world. Philosophers have posited many theories aim-
ing at a systematic understanding of diagrammatic reason-
ing (Miller, 2001; Mumma, 2010). In particular, we build
upon the formal system E (Avigad et al., 2009) and are the
first to turn this framework into a practical system that in-
cludes an automated procedure for diagrammatic reasoning.

Geometric Problem Solving. Automatic geometry prob-
lem solvers have been studied extensively (Nevins, 1975;
Zhang et al., 1995). Wu’s method (Wu, 2008) and Gröbner
bases method (Buchberger, 2005) transform geometric prob-
lems into algebraic equations. AlphaGeometry (Trinh et al.,
2023) is a concurrent work that successfully solves many
IMO geometry problems. Similar to us, it is a hybrid system
using neural networks for difficult proof steps (e.g., con-
structing new geometric objects) and a symbolic engine for
deducing simple facts. However, our method focuses on
autoformalizing human-written theorems/proofs instead of
finding new proofs. AlphaGeometry consumes problems
and produces solutions in structured representations, with-
out handling informal mathematical language. Furthermore,
they represent theorems and proofs in a domain-specific
language tailored for Euclidean geometry, whereas we use
Lean: a general-purpose proof assistant. Lean provides a
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highly trusted foundation for the soundness of our system,1

and it opens up opportunities to interoperate with other
branches of mathematics formalized in Lean’s mathematical
library (The mathlib Community, 2020).

Euclidean geometry has also served as benchmarks in ma-
chine learning and NLP for multimodal understanding of ge-
ometric problems and diagrams (Lu et al., 2021; Chen et al.,
2021a; Gao et al., 2023; Peng et al., 2023; Kazemi et al.,
2023; Liang et al., 2023). These methods produce informal
solutions given informal problem statements, whereas we
formalize both problems and solutions. UniGeo (Chen et al.,
2022) is a dataset consisting of 9,543 informal theorems and
proofs. We formalize 125 random examples from UniGeo
and include them in LeanEuclid, which shows the generality
of our formalization beyond Euclid’s Elements.

3. Formalizing Euclidean Geometry in Lean
To construct the LeanEuclid benchmark, we implement a
variant of system E (Avigad et al., 2009) in Lean and use
it to formalize Euclidean geometry problems. LeanEuclid
has two key features: First, it supports implicit diagram-
matic reasoning, which is critical to faithfully formalizing
geometric proofs. Second, it can check the logical equiva-
lence between theorems, which is essential for automatically
evaluating the autoformalized theorems.

3.1. The Lean Proof Assistant

Proof assistants, a.k.a. interactive theorem provers, are lan-
guages and IDEs for humans to write formal proofs that can
be checked by computers (Leroy et al., 2016; Hales et al.,
2017). Widely used proof assistants include Coq, Isabelle,
and Lean. They are similar from a machine learning perspec-
tive. Fig. 1 (Middle) shows examples of theorems and proofs
in Lean. Each theorem has a name and a theorem statement.
A proof consists of multiple steps, and each step is called
a “tactic”. For example, “use c” and “euclid apply
circle from points b a as ACE” are tactics.

Given a theorem and its proof, Lean can check the proof
and output an error message if it is incorrect. Lean can
also check if the theorem is well-formed. The percentage
of well-formed theorems autoformalized by the model is
widely used as a proxy metric in prior works (Jiang et al.,
2023b; Azerbayev et al., 2023). However, well-formedness
does not guarantee correctness, since a predicted theorem
statement can be well-formed but have a different meaning
from the ground truth.

1Our symbolic reasoning engine (Sec. 3.3) relies on SMT
solvers, whose results currently cannot be fully certified by Lean.

3.2. The Formal System E

E is a formal system for modeling theorems and proofs
in Euclidean geometry inspired by Euclid’s Elements. It
defines basic geometric objects (e.g., points and lines) and
relations between them (e.g., a point being on a line). It also
prescribes how to formally state and prove theorems. E is a
conceptual framework that can be implemented within any
proof assistant. We explain our Lean implementation using
proposition 1 in Fig. 1 as a running example. For a
complete specification of E, please refer to Appendix A and
E’s paper (Avigad et al., 2009).

Geometric Objects, Relations, and Theorems. E has six
types of objects: points, lines, segments, circles, angles, and
triangles. They can form various relations, e.g., “onLine
a AB” means the point a is on the line AB. Some rela-
tions are defined as syntactic sugar of more basic relations,
e.g., “distinctPointsOnLine a b AB” is the con-
junction of “onLine a AB”, “onLine b AB”, and “a
̸= b”. A segment (a--b) is specified by its two endpoints
a and b, and it has a length |(a--b)| ∈ R. Using these
concepts, it is straightforward to understand the theorem
statement of proposition 1:

theorem proposition_1 : ∀ (a b : Point) (AB
: Line), distinctPointsOnLine a b AB

→ ∃ c : Point, |(c--a)| = |(a--b)| ∧
|(c--b)| = |(a--b)|

Like above, most theorems in Euclidean geometry take the
form of given existing objects satisfying certain properties,
constructing new objects satisfying certain properties. Be-
low is the general form of theorems in E:

∀ (
−→
P : Point) (

−→
L : Line) (

−→
C : Circle),

m∧
i=1

ai →

∃ (
−→
P ′ : Point) (

−→
L′ : Line) (

−→
C ′ : Circle),

n∧
j=1

a′j

That is, given points
−→
P , lines

−→
L , and circles

−→
C satisfying∧m

i=1 ai, one can construct points
−→
P ′, lines

−→
L′, and circles

−→
C ′ satisfying

∧n
j=1 a

′
j . Each clause ai is called a “precondi-

tion”. Logically, it is a disjunction of literals with variables
from

−→
P ,

−→
L , and

−→
C . Each a′j is called a “postcondition”,

which is a disjunction of literals with variables from
−→
P ,

−→
L ,

−→
C ,

−→
P ′,

−→
L′, and

−→
C ′. Variable sets can be empty. For example,

in proposition 1, we have
−→
C =

−→
L′ =

−→
C ′ = ∅.

Axioms. Axioms take the same form as theorems, but
they are built into the system and do not need to be proved.
Appendix A contains the complete list of axioms in our
instantiation of the formal system E. They fall into two
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categories: construction rules and non-construction rules.2

Construction rules construct new objects, i.e., at least one
of

−→
P ′,

−→
L′, and

−→
C ′ must be non-empty. For example,

circle from points constructs a circle α given a point
a as its center and another point b on it:

axiom circle_from_points : ∀ (a b : Point),
a ̸= b → ∃ α : Circle, (isCenter a α)

∧ (onCircle b α)

Given two intersecting circles α and β,
intersection circles constructs their intersection:

axiom intersection_circles : ∀ (α β :
Circle), intersectsCircle α β → ∃ c :
Point, (onCircle c α) ∧ (onCircle c β)

Non-construction rules deduce properties of existing objects
without creating new objects. For examples:

axiom center_inside_circle : ∀ (a : Point)
(α : Circle), isCenter a α →
insideCircle a α

axiom intersection_circle_circle_2: ∀ (a b
: Point) (α β : Circle), (onCircle a α)
∧ (insideCircle b α) ∧ (insideCircle a
β) ∧ (onCircle b β) →
intersectsCircle α β

The distinction between construction and non-construction
rules is important for automated reasoning in Sec. 3.3.

Proofs. We implement the formal system E in Lean.
Therefore, a proof can be made of arbitrary tactics as long as
the entire proof can be checked by Lean. Nevertheless, we
provide several customized tactics that can cover most steps
used by Euclid (complete list in Appendix A). The most im-
portant tactic we provide is euclid apply, which applies
a rule (either an axiom or an existing theorem) in the for-
ward direction. Taking intersection circles as an
example, when using this rule, one should explicitly specify
two circles, say, BCD and ACE:

intersection_circles BCD ACE :
intersectsCircle BCD ACE → ∃ c : Point,
(onCircle c BCD) ∧ (onCircle c ACE)

“euclid apply intersection circles BCD
ACE as c” instructs Lean to check if the precondition
“intersectsCircle BCD ACE” is a known fact.
If so, it introduces a new point c and two new facts,
“onCircle c BCD” and “onCircle c ACE”. If
not, it triggers diagrammatic reasoning, trying to prove
“intersectsCircle BCD ACE” using a symbolic

2“Non-construction rules” include diagrammatic, metric, and
transfer rules in E’s original terminology (Avigad et al., 2009).

automated reasoning engine (Sec. 3.3). If successful, it
proceeds as normal. Otherwise, the tactic fails. Fig. 2 shows
three proof steps using euclid apply with different
rules. The last step triggers diagrammatic reasoning.

a : Point

b : Point

a ≠ b

ACE : Circle

isCenter b ACE

onCircle a ACE

BCD : Circle

isCenter a BCD

onCircle b BCD

intersects BCD ACE

circle_from_points a b

circle_from_points b a

intersection_circles BCD ACE

intersection_circle_circle_2 b a BCD ACE
insideCircle b ACE

insideCircle a BCD

center_inside_circle b ACE

center_inside_circle a BCD

c : Point

onCircle c BCD

onCircle c ACE

Figure 2. Three steps in the proof in Fig. 1. Left: Geometric
objects and facts. Right: Rules applied to construct new objects
and deduce new facts. Each rule has inbound arrows from its
preconditions and outbound arrows to its postconditions. Dashed
lines: When applying a rule with missing preconditions, we try
to fill the gap using a symbolic reasoning engine based on SMT
solvers. These implicit steps performed by the symbolic engine can
only use non-construction rules, whereas explicit steps performed
by humans (or machine learning models) can use any rules.

3.3. Symbolic Reasoning Engine Based on SMT

We introduce a symbolic reasoning engine for deducing “ob-
vious” facts from existing geometric objects and relations. It
has two important uses in LeanEuclid: (1) diagrammatic rea-
soning, as shown in the previous example, and (2) checking
the equivalence between theorems.

In Euclidean geometry, a natural way to measure obvious-
ness is whether construction rules are used. Applying con-
struction rules (e.g., drawing auxiliary lines) requires creativ-
ity, which is non-obvious and hard to automate. In contrast,
non-construction rules are mechanic and more amenable to
automated reasoning. Intuitively, they do not introduce new
objects and will not explode the search space. Therefore,
we design the symbolic engine to be an automated theorem
prover equipped with non-construction rules in E.

Instead of generic first-order provers (Schulz, 2013), our
symbolic engine builds on top of SMT solvers. They have
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efficient decision procedures for handling real numbers,
which is important for reasoning about geometric quantities
such as lengths, angles, and areas. Given a target conclusion
(e.g., “intersectsCircle BCD ACE” in Fig. 2), our
symbolic engine proves it by refutation: It generates a list of
SMT formulas, including all non-construction rules in E, all
existing objects/relations, and the negation of the conclusion.
Then, it runs off-the-shelf SMT solvers to check if the list of
formulas is satisfiable. The target conclusion is successfully
proved if the solver returns UNSAT (not satisfiable).

3.4. LeanEuclid: Overview and Dataset Statistics

In constructing LeanEuclid, we manually formalized 173
theorems/proofs in Lean. 48 examples are from Euclid’s El-
ements (Book I),3 and 125 are adapted from UniGeo (Chen
et al., 2022). Our formal proofs of Elements vindicate Eu-
clid’s use of diagrams, as they follow Euclid’s texts closely
and leave diagrammatic reasoning implicit. We identified
several small gaps in Elements. Euclid occasionally used a
stronger version of a theorem he had proved. Furthermore,
when there were multiple cases, Euclid would discuss only
one and omit others. Most omissions are acceptable in mod-
ern mathematics, e.g., when multiple cases are symmetric.
The only omission we find questionable is in the proof of
Proposition 24, where Euclid discussed only a simple case
but omitted a more challenging case (details in Appendix B).

UniGeo contains problems in five categories: triangle, con-
gruent, similarity, quadrilateral, and parallel. LeanEuclid
includes 25 random problems from each category. Problems
from UniGeo are generally easier than those from Elements.
Each problem comes with a diagram and a textual question.
Unlike Elements, UniGeo’s text does not include complete
information about the problem, so we manually add missing
diagrammatic details to the text.

4. Autoformalizing Euclidean Geometry with
Large Language Models

Next, we describe our approach to autoformalizing (and
evaluating) theorems and proofs targeting LeanEuclid.

4.1. Autoformalizing and Evaluating Theorems

Autoformalizing a theorem statement requires taking natu-
ral language input and generating the corresponding formal
theorem in Lean. We use LLMs’ in-context learning capa-
bility for autoformalization. Our prompt template contains
an overview of LeanEuclid syntax, some examples of well-
formed formulas, and various guidelines for the task. For
few-shot learning, we also include k examples of informal-

3We use an open-source version of Euclid’s Elements at
https://github.com/rfitzp/Elements.

formal pairs as in-context demonstrations. The complete
prompt template is in Appendix D.

When using our symbolic engine for checking the equiv-
alence between theorems, we call it E3 (Euclidean
Equivalence Engine). We also provide a Python wrapper
for E3, supporting various configuration options and easy
integration with different LLMs. We provide a high-level
overview of E3’s two primary evaluation procedures: logical
equivalence and approximate equivalence.

Logical Equivalence. The logical equivalence procedure
takes a predicted formula Tpred and ground truth formula
Tgt and attempts to prove Tpred ⇐⇒ Tgt using SMT
solvers. E3 performs a separate satisfiability check for each
direction, each of which can succeed or fail.4 Of course,
Tpred may actually be unsatisfiable (meaning it contains
a contradiction), in which case we will always be able to
prove Tpred =⇒ Tgt. As such, E3 also performs a separate
check to see whether a contradiction can be found in Tpred.

Approximate Equivalence. If logical equivalence cannot
be proven, we may still want to gauge whether Tpred is a se-
mantically “close” formalization of Tgt. For instance, Tpred

may differ from Tgt by only a single extra precondition or
postcondition. To this end, E3 also supports approximate
equivalence checking, which is a low-level semantic com-
parison between the two formulas. Specifically, E3 will
attempt to separately prove each of the preconditions and
the postconditions of each formula in a clause-by-clause
fashion. However, this requires choosing a unification of the
bound variables of the two formulas. Since trying each pos-
sible unification is infeasible, we instead choose the best n
unifications using a string similarity heuristic. For each can-
didate unification, we check how many pre/postconditions
can be proved from one proposition to the other. 5

4.2. Autoformalizing Proofs

To autoformalize proofs, we provide the LLM with a natural
language description of the proposition, its natural language
proof, and a formalization of the proposition in LeanEuclid.
Its task is to produce a formal proof consisting of a sequence
of tactics. We provide a prompt template similar to the one
used to autoformalize theorem statements. In addition to
a brief overview of system E, we describe the custom Lea-
nEuclid tactics (e.g., euclid apply), and provide a list of
axioms and theorems the model can use in its proof. Beyond
the core axioms of E, the list of helper theorems available
to the model depends on the proposition being proven. For

4E3 uses not only non-construction rules but also a handful of
construction rules (details in Appendix A).

5E3 currently only performs approximate equivalence check-
ing when the predicted formula has the same number of bound
variables as the ground truth formula.
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example, if we are formalizing the proof of Proposition 10
in Elements, then the set of available helper theorems will
include all versions of Propositions 1–9. Once the autofor-
malized proof is generated, we check its correctness using
Lean and attempt to fill in diagrammatic reasoning gaps
using the symbolic reasoning engine. The complete prompt
template is given in Appendix D.

5. Experiments
5.1. Autoformalizing Theorem Statements

Experimental Setup. We evaluated the efficacy of LLMs
on autoformalizing theorem statements using GPT-4 and
GPT-4V. The input modality for GPT-4 was restricted to
textual questions, while GPT-4V extended this by including
diagrams as well. To implement few-shot learning, we
randomly selected five propositions from Euclid’s Elements
and five problems from each category in the UniGeo dataset,
serving as in-context learning examples. We then use E3
to automatically evaluate the results of each round. To see
how well E3 correlates with human evaluation, we manually
evaluate a sample of formalized theorems from Elements to
identify any false negatives/positives.

GPT-4 GPT-4V
Dataset 0-shot 1-shot 5-shot 0-shot 1-shot 5-shot

Elements 2.3% 4.7% 16.3% 2.3% 4.7% 20.9%
UniGeo 3.0% 9.0% 20.0% 5.0% 10.0% 21.0%

Overall 2.8% 7.7% 18.9% 4.2% 8.4% 21.0%

Table 1. Percentage of proved semantic equivalences
from autoformalized theorem statements from Ele-
ments and UniGeo. Experiments were conducted in
January 2024 using gpt-4-1106-preview and
gpt-4-1106-vision-preview.

Results. Table 1 shows the accuracies of autoformaliz-
ing theorem statements, where correctness is measured by
using E3 to check logical equivalence. Results on the El-
ements and UniGeo parts of LeanEuclid are also shown
separately. Across both parts, few-shot learning with 5 shots
produces correct formalizations at a rate of 21%. We also
see a small improvement when visual inputs are included.
We emphasize that Table 1 was generated automatically by
E3. While some autoformalized theorem statements are
syntactic matches of their ground truth and, therefore, easily
identified as correct, others are not. Manual evaluation of
these instances is expensive and tedious, whereas E3 is able
to identify these cases easily.

For cases where equivalence fails, E3 reports whether either
of Tgt =⇒ Tpred or Tpred =⇒ Tgt can be proved,
allowing us to partition the failed cases into different classes.
For instance, two rounds of autoformalization with GPT-4

(1-shot) yielded 67 rejected predictions, for 31 of these we
could prove only Tgt =⇒ Tpred, for 15 we could prove
only Tpred =⇒ Tgt, and for 21 we could prove neither.

Given that only a minority of predictions are provably cor-
rect, we can send the remainder to E3’s approximate equiv-
alence checker to glean “close” formalizations. For brevity,
we only showcase this evaluation on the results of GPT-4 (5-
shot) on Euclid’s Elements. Of the 36 rejected predictions,
10 possess the correct quantity and type of bound variables,
and so are amenable to approximate analysis. The results
of this analysis are shown in Fig. 3. For each proposition,
we show the total number of clauses (preconditions and
postconditions of both formulas) and the number of clauses
that could be proved. We can see that, in addition to the 7
propositions that were provably equivalent, this round pro-
duced 5 propositions for which more than 90% of all proof
obligations can be resolved. Some interesting examples
produced during our experiments are in Appendix E.

Figure 3. Approximate equivalence checking results for theorems
from Elements formalized by GPT-4 (5-shots).

Comparison with Manual Evaluation. To compare the
accuracy of E3 to manual evaluation, we took a sample of
86 formalizations and investigated them for false negatives.
The examples were taken from the results of GPT-4 and
GPT-4V (both 5-shot). Among the 86 autoformalized the-
orem statements, 16 were proved equivalent to the ground
truth, and all 16 were judged to be correct by humans. The
remaining 70 could not be proved equivalent, but human
inspection revealed that 3 should be equivalent to the ground
truth. This gives us an estimated false negative rate of 15.8%.
These instances are shown in Appendix E.

With respect to false positives, we did not find indications
of soundness bugs in E3. However, a false positive can
occur when an autoformalized theorem happens to be prov-
ably equivalent to the ground truth, but is unlikely to be
identified by a human as a “faithful” formalization of the
given proposition. We identified only one such case from
our experiments, which is also shown in Appendix E.
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Why is Formalizing Theorem Statements Hard? Com-
pared to previous autoformalization results (Wu et al., 2022),
our experiments show that the models struggle to correctly
formalize most of the theorems in our dataset. We suspect
this is primarily a result of using the formal system E as a
specification language. E is designed primarily as a proof
system, and not as a specification language; as noted by
Avigad, many basic relation constructs in E (e.g., between,
sameSide) are almost never mentioned explicitly in Eu-
clid’s actual writing (Avigad et al., 2009). Furthermore,
the language can only refer to composite structures (angles,
triangles, etc.) in terms of their atomic components (points,
lines, etc.). This makes theorem statements in E relatively
verbose, and this verbosity introduces more room for the
model to make small mistakes.

In summary, while state-of-the-art models struggle to suc-
cessfully autoformalize many of the theorems in our dataset,
we see that E3 can successfully identify and quantify the
correctness of autoformalized theorem statements; in partic-
ular, despite being incomplete by design, E3 only produces
a small number of false negatives. We believe that E3 can
significantly facilitate the training and validation of autofor-
malization models targeting Euclidean geometry. Moreover,
we believe that similar tools can be developed for other
domains if an appropriate formal theory can be defined.

5.2. Autoformalizing Proofs

To check whether LeanEuclid is a suitable target for auto-
formalizing proofs, we attempted to autoformalize proofs
from Elements and UniGeo using GPT-4 and GPT-4V.

Experimental Setup. We tested each model against 43
proofs from Elements and 100 proofs from UniGeo. To
demonstrate concretely the capabilities and limitations of the
model in writing formal LeanEuclid proofs, we attempted
to formalize entire proofs from single queries, rather than
using an iterative or search-based autoformalization proce-
dure. We evaluated the formalized UniGeo proofs based
on whether it is verified by Lean as-is, and experimented
with 0-shot, 1-shot, and 5-shot prompts. The proofs from
Elements are more complex, so we did not anticipate many
proofs to be completely correct. Instead, we measured how
much effort is required to repair the autoformalized proofs
into proofs that are accepted by Lean.

We manually repaired each incorrectly autoformalized proof
from Elements, attempting to make as few alterations as re-
quired. Using our ground truth proof as a reference point,
we modified invalid tactics that could be repaired (e.g., by
rearranging the order of its arguments), added missing tac-
tics, and removed tactics that could not easily be repaired.
Unnecessary but valid tactics were left unchanged.

GPT-4 GPT-4V
Category 1-shot 5-shot 1-shot 5-shot

Triangle 35% 45% 45% 70%
Similarity 5% 15% 10% 15%
Congruent 5% 25% 15% 25%

Quadrilateral 35% 25% 20% 30%
Parallel 5% 15% 5% 15%

Overall 17% 25% 19% 31%

Table 2. Percentage of successfully autoformalized
proofs from UniGeo. Experiments were conducted
in January 2024 using gpt-4-1106-preview and
gpt-4-1106-vision-preview.

Results. Table 2 shows the results of autoformalizing
proofs from UniGeo proofs. Models with 0-shot prompts are
not included since they failed to autoformalize any proofs.
In general, the performance of the models significantly de-
pends on the type of geometry problems and the number of
few-shot demonstrations. Compared to theorem statements,
we see a more significant improvement in the success rate
when visual inputs are provided for autoformalizing proofs.

When autoformalizing proofs from Elements with 5-shot
prompts, we found that GPT-4 and GPT-4V were both only
able to completely formalize the same two proofs (Proposi-
tions 1 and Proposition 17). That is to say, when combined
with the UniGeo results, GPT-4 formalized correct proofs
at a rate of 18.8% on LeanEuclid, while GPT-4V achieved
a rate of 23.1%. The remaining 41 proofs from Elements
required some degree of repair to be accepted by Lean.

While it is difficult to precisely measure the quality of imper-
fect proofs, we can gain a rough approximation by comput-
ing the Levenshtein ratio between the original and repaired
proofs. Doing so reveals that, for GPT-4, the autoformalized
proofs had a median similarity ratio of 61.7% compared to
their repaired versions, with proofs in the 75th percentile
scoring at least 75.2%. For GPT-4V, the median similarity
ratio was 64.0%, and the proofs in the 75h percentile proofs
scored at least 72.9%. Moreover, we found that many of the
modifications required to repair the proofs are very simple,
such as strengthening a theorem slightly or rearranging tac-
tics arguments; in general, the models are good at choosing
relevant theorems, even if they do not invoke them correctly.
Additional data and examples are in Appendix F.

We believe that these results reflect well on LeanEuclid as
a target language for autoformalizing Euclidean proofs. In
particular, our tactic language and proof automation allow
the model to focus only on explicit reasoning steps in the
input text. This means the resulting proofs are much shorter
than they would be if all reasoning steps were made explicit
(and, as a result, they are easier to repair). Given that these
results were obtained from standalone queries, we expect
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that neural theorem provers or proof repair tools targeting
LeanEuclid could be used to successfully formalize a signif-
icant portion of the proofs in our dataset.

6. Conclusion
We have demonstrated Euclidean geometry as an attractive
target for autoformalization. With our SMT-based symbolic
engine, it is feasible to (1) automatically evaluate autofor-
malized theorems statements and (2) have the model auto-
formalize only explicit proof steps, leaving diagrammatic
reasoning implicit. We have constructed the LeanEuclid
benchmark to facilitate future research on autoformalizing
Euclidean geometry.

7. Limitations and Open Problems
LeanEuclid’s size (173 examples) is reasonable as a bench-
mark for testing, e.g., considering HumanEval (Chen et al.,
2021b), the most widely used benchmark for code genera-
tion, which has only 164 examples. Nevertheless, more data
examples are necessary for finetuning-based approaches. A
promising way of collecting examples inexpensively is to
automatically translate existing geometry datasets, e.g., the
synthetic dataset in AlphaGeometry, into our formalism.

Even though we use GPT-4 in experiments, data contami-
nation is unlikely since our test data, LeanEuclid, was not
publicly available during the experiments. GPT-4 may have
seen other formalizations of Elements on the Internet, but
they are fundamentally different from LeanEuclid (Sec. 2).

We focus on Euclidean geometry, but findings related to
LeanEuclid may be helpful to autoformalization in gen-
eral. First, LeanEuclid provides a benchmark for develop-
ing domain-agnostic ideas for autoformalization, e.g., visual
modality, retrieval, and learning from feedback. Second, we
choose Euclidean geometry because its domain knowledge
enables automated reasoning that can (1) check the equiv-
alence between theorems and (2) fill in implicit reasoning
gaps. Other domains with similar characteristics may also
benefit from our methodology for constructing LeanEuclid.

Our work focuses on constructing a benchmark for autofor-
malization rather than introducing a novel model. Neverthe-
less, the LeanEuclid benchmark paves the way for future
modeling efforts, such as having LLMs incorporate feed-
back from Lean to improve autoformalization.
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A. The Formal System E
We describe our variant of the formal system E in Lean-like pseudocode, including the complete list of axioms. Our design
mostly follows E’s original specification (Avigad et al., 2009) with a few minor deviations.

A.1. Geometry Objects

E has six types of geometric objects: points, lines, circles, segments, angles, and triangles.6 Points, lines, and circles are
basic types, whereas segments, angles, and triangles are parameterized by points. For example, points a, b, c can form
segment (a--b), angle ∠ a:b:c, and triangle △ a:b:c.

Point : Type
Line : Type
Circle : Type
Segment : Point → Point → Type
Angle : Point → Point → Point → Type
Triangle : Point → Point → Point → Type

A.2. Functions, Constants, and Relations

Segments, angles, and triangles are associated with metric properties such as length, degree, and size.

length : Segment → R
degree : Angle → R
size : Triangle → R

Right angle ( ) is a special constant, denoting 90 degrees.

: R

We have nine basic predicates denoting the geometric relations between points, lines, and circles. For example, “sameSide
a b L” means points a and b are on the same side of the line L. Also, “between a b c” means points a, b, and c are
collinear, and b lies between a and c.

onLine : Point → Line → Prop
sameSide : Point → Point → Line → Prop
between : Point → Point → Point → Prop
onCircle : Point → Circle → Prop
insideCircle : Point → Circle → Prop
isCentre : Point → Circle → Prop
intersectsLine : Line → Line → Prop
Line.intersectsCircle : Line → Circle → Prop
Circle.intersectsCircle : Circle → Circle → Prop

In addition to the basic predicates, we have four predicates defined as syntactic sugars. For example, “opposingSides
a b L” is the conjunction of “¬(onLine a L)”, “¬(onLine b L)”, and “¬(sameSide a b L)”.

opposingSides (a : Point) (b : Point) (l : Line) : Prop := ¬(onLine a l) ∧ ¬(onLine b l)
∧ ¬(sameSide a b l)

outsideCircle (p : Point) (c : Circle) : Prop := ¬(insideCircle p c) ∧ ¬(onCircle p c)

formTriangle (a b c : Point) (AB BC CA : Line) : Prop := (distinctPointsOnLine a b AB) ∧ (
onLine b BC) ∧ (onLine c BC) ∧ (onLine c CA) ∧ (onLine a CA) ∧ AB ̸= BC ∧ BC ̸= CA ∧ CA
̸= AB

formParallelogram (a b c d : Point) (AB CD AC BD : Line) : Prop := (onLine a AB) ∧ (onLine
b AB) ∧ (onLine c CD) ∧ (onLine d CD) ∧ (onLine a AC) ∧ (onLine c AC) ∧ (
distinctPointsOnLine b d BD) ∧ (sameSide a c BD) ∧ ¬(intersectsLine AB CD) ∧ ¬(
intersectsLine AC BD)

6Triangles are called “areas” in Avigad et al. (2009).
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A.3. Axioms

Axioms in E fall into five categories: construction rules, diagrammatic rules, metric rules, transfer rules, and superpo-
sition rules (the last four categories are collectively referred to as “non-construction rules” in this paper). Avigad et al.
(2009) has proved E’s axioms to be sound and complete through a bi-directional translation between E and Tarski’s
axioms (Schwabhäuser et al., 2013). E’s axioms may have redundancy, as Avigad et al. (2009) did not attempt to minimize
the number of axioms.

Construction Rules. We have 32 construction rules. Among them, two rules are not from E’s paper but convenient for
formalizing some proofs: point between points shorter than, extend point longer. One rule is stronger
than its original version: point on line same side.

arbitrary_point : ∃ a : Point, true

distinct_points : ∀ a : Point, ∃ b : Point, a ̸= b

line_nonempty : ∀ l : Line, ∃ p : Point, onLine p l

exists_distincts_points_on_line : ∀ l : Line, ∀ a : Point, ∃ b : Point, a ̸= b ∧ onLine b l

exists_point_between_points_on_line : ∀ (L : Line) (b c : Point), distinctPointsOnLine b c
L → ∃ a : Point, (onLine a L) ∧ (between b a c)

exists_point_between_points_not_on_line : ∀ (L M : Line) (b c : Point), (
distinctPointsOnLine b c L) ∧ L ̸= M → ∃ a : Point, (onLine a L) ∧ (between b a c) ∧
¬(onLine a M)

point_between_points_shorter_than : ∀ (L : Line) (b c : Point) (s : Segment),
distinctPointsOnLine b c L ∧ (|s| > 0) → ∃ a : Point, (onLine a L) ∧ (between b a c)
∧ (|b--a| < |s|)

extend_point : ∀ (L : Line) (b c : Point), distinctPointsOnLine b c L → ∃ a : Point, (
onLine a L) ∧ (between b c a)

extend_point_not_on_line : ∀ (L M : Line) (b c : Point), (distinctPointsOnLine b c L) ∧ L
̸= M → ∃ a : Point, (onLine a L) ∧ (between b c a) ∧ ¬(onLine a M)

extend_point_longer : ∀ (L : Line) (b c : Point) (s : Segment), distinctPointsOnLine b c L
→ ∃ a : Point, (onLine a L) ∧ (between b c a) ∧ (|c--a| > |s|)

point_same_side : ∀ (L : Line) (b : Point), ¬(onLine b L) → ∃ a : Point, sameSide a b L

distinct_point_same_side: ∀ (L : Line) (b c : Point), ¬(onLine b L) → ∃ a : Point, a ̸= c
∧ (sameSide a b L)

point_on_line_same_side : ∀ (L M : Line) (b : Point), ¬(onLine b L) ∧ (intersectsLine L M)
→ ∃ a : Point, (onLine a M) ∧ (sameSide a b L)

exists_point_opposite : ∀ (L : Line) (b : Point), ¬(onLine b L) → ∃ a : Point,
opposingSides a b L

exists_distinct_point_opposite_side : ∀ (L : Line) (b c : Point), ¬(onLine b L) → ∃ a :
Point, a ̸= c ∧ (opposingSides a b L)

exists_point_on_circle : ∀ (α : Circle), ∃ a : Point, onCircle a α

exists_distinct_point_on_circle : ∀ (α : Circle) (b : Point), ∃ a : Point, a ̸= b ∧ (
onCircle a α)

exists_point_inside_circle : ∀ (α : Circle), ∃ a : Point, insideCircle a α

exists_distinct_point_inside_circle : ∀ (α : Circle) (b : Point), ∃ a : Point, a ̸= b ∧ (
insideCircle a α)
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exists_point_outside_circle : ∀ (α : Circle), ∃ a : Point, outsideCircle a α

exists_distinct_point_outside_circle : ∀ (α : Circle) (b : Point), ∃ a : Point, a ̸= b ∧
(outsideCircle a α)

line_from_points : ∀ (a b : Point), a ̸= b → ∃ L : Line, (onLine a L) ∧ (onLine b L)

circle_from_points : ∀ (a b : Point), a ̸= b → ∃ α : Circle, (isCentre c α) ∧ (onCircle b
α)

intersection_lines : ∀ (L M : Line), intersectsLine L M → ∃ a : Point, (onLine a L) ∧ (
onLine a M)

intersection_circle_line : ∀ (α : Circle) (L : Line), intersectsCircle L α → ∃ a : Point,
(onCircle a α) ∧ (onLine a L)

intersections_circle_line : ∀ (α : Circle) (L : Line), intersectsCircle L α → ∃ (a b :
Point), (onCircle a α) ∧ (onLine a L) ∧ (onCircle b α) ∧ (onLine b L) ∧ a ̸= b

intersection_circle_line_between_points : ∀ (α : Circle) (L : Line) (b c :Point), (
insideCircle b α) ∧ (onLine b L) ∧ (outsideCircle c α) ∧ (onLine c L) → ∃ a : Point,
(onCircle a α) ∧ (onLine a L) ∧ (between b a c)

intersection_circle_line_extending_points : ∀ (α : Circle) (L : Line) (b c :Point), (
insideCircle b α) ∧ distinctPointsOnLine b c L → ∃ a : Point, (onCircle a α) ∧ (
onLine a L) ∧ (between a b c)

intersection_circles : ∀ (α β : Circle), intersectsCircle α β → ∃ a : Point, (onCircle a
α) ∧ (onCircle a β)

intersections_circles : ∀ (α β : Circle), intersectsCircle α β → ∃ (a b : Point), (
onCircle a α) ∧ (onCircle a β) ∧ (onCircle b α) ∧ (onCircle b β) ∧ a ̸= b

intersection_same_side : ∀ (α β : Circle) (b c d : Point) (L : Line), (intersectsCircle α
β) ∧ (isCentre c α) ∧ (isCentre d β) ∧ (onLine c L) ∧ (onLine d L) ∧ ¬(onLine b L)
→ ∃ a : Point, (onCircle a α) ∧ (onCircle a β) ∧ (sameSide a b L)

intersection_opposite_side : ∀ (α β : Circle) (b c d : Point) (L : Line), (
intersectsCircle α β) ∧ (isCentre c α) ∧ (isCentre d β) ∧ (onLine c L) ∧ (onLine d L)
∧ ¬(onLine b L) → ∃ a : Point, (onCircle a α) ∧ (onCircle a β) ∧ (opposingSides a b
L)

Diagrammatic Rules. We have 36 diagrammatic rules for deducing diagrammatic facts, i.e., relations among ob-
jects. They include four rules not in E’s paper: intersection lines common point, parallel line unique,
intersection symm, and parallelogram same side.

two_points_determine_line : ∀ (a b : Point) (L M : Line), distinctPointsOnLine a b L ∧ (
onLine a M) ∧ (onLine b M) → L = M

centre_unique : ∀ (a b : Point) (α : Circle), (isCentre c α) ∧ (isCentre b α) → a = b

center_inside_circle : ∀ (a : Point) (α : Circle), isCentre c α → insideCircle a α

inside_not_on_circle : ∀ (a : Point) (α : Circle), insideCircle a α → ¬(onCircle a α)

between_symm : ∀ (a b c : Point), between a b c → (between c b a) ∧ (a ̸= b) ∧ (a ̸= c) ∧
¬(between b a c)

between_same_line_out : ∀ (a b c : Point) (L : Line), (between a b c) ∧ (onLine a L) ∧ (
onLine b L) → onLine c L

between_same_line_in : ∀ (a b c : Point) (L : Line), (between a b c) ∧ (onLine a L) ∧ (
onLine c L) → onLine b L
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between_trans_in : ∀ (a b c d : Point), (between a b c) ∧ (between a d b) → between a d c

between_trans_out : ∀ (a b c d : Point), (between a b c) ∧ (between b c d) → between a b
d

between_points : ∀ (a b c : Point) (L : Line), (a ̸= b) ∧ (b ̸= c) ∧ (c ̸= a) ∧ (onLine a L
) ∧ (onLine b L) ∧ (onLine c L) → (between a b c) ∨ (between b a c) ∨ (between a c b)

between_not_trans : ∀ (a b c d : Point), (between a b c) ∧ (between a b d) → ¬(between c
b d)

same_side_rfl : ∀ (a : Point) (L : Line), ¬(onLine a L) → sameSide a a L

same_side_symm : ∀ (a b : Point) (L : Line), sameSide a b L → sameSide b a L

same_side_not_on_line : ∀ (a b : Point) (L : Line), sameSide a b L → ¬(onLine a L)

same_side_trans : ∀ (a b c : Point) (L : Line), (sameSide a b L) ∧ (sameSide a c L) →
sameSide b c L

same_side_pigeon_hole : ∀ (a b c : Point) (L : Line), ¬(onLine a L) ∧ ¬(onLine b L) ∧ ¬(
onLine c L) → (sameSide a b L) ∨ (sameSide a c L) ∨ (sameSide b c L)

pasch_1: ∀ (a b c : Point) (L : Line), (between a b c) ∧ (sameSide a c L) → sameSide a b
L

pasch_2: ∀ (a b c : Point) (L : Line), (between a b c) ∧ (onLine a L) ∧ ¬(onLine b L) →
sameSide b c L

pasch_3: ∀ (a b c : Point) (L : Line), (between a b c) ∧ (onLine b L) → ¬(sameSide a c L)

pasch_4: ∀ (a b c : Point) (L M : Line), (L ̸= M) ∧ (onLine b L) ∧ (onLine b M) ∧
distinctPointsOnLine a c M ∧ (a ̸= b) ∧ (c ̸= b) ∧ ¬(sameSide a c L) → between a b c

triple_incidence_1 : ∀ (L M N : Line) (a b c d : Point), (onLine a L) ∧ (onLine a M) ∧ (
onLine a N) ∧ (onLine b L) ∧ (onLine c M) ∧ (onLine d N) ∧ (sameSide c d L) ∧ (
sameSide b c N) → ¬(sameSide b d M)

triple_incidence_2 : ∀ (L M N : Line) (a b c d : Point), (onLine a L) ∧ (onLine a M) ∧ (
onLine a N) ∧ (onLine b L) ∧ (onLine c M) ∧ (onLine d N) ∧ (sameSide c d L) ∧ ¬(
sameSide b d M) ∧ ¬(onLine d M) ∧ (b ̸= a) → sameSide b c N

triple_incidence_3 : ∀ (L M N : Line) (a b c d e : Point), (onLine a L) ∧ (onLine a M) ∧ (
onLine a N) ∧ (onLine b L) ∧ (onLine c M) ∧ (onLine d N) ∧ (sameSide c d L) ∧ (
sameSide b c N) ∧ (sameSide d e M) ∧ (sameSide c e N) → sameSide c e L

circle_line_intersections : ∀ (a b c : Point) (L : Line) (α : Circle), (onLine a L) ∧ (
onLine b L) ∧ (onLine c L) ∧ (insideCircle a α) ∧ (onCircle b α) ∧ (onCircle c α) ∧ (
b ̸= c) → between b a c

circle_points_between : ∀ (a b c : Point) (α : Circle), ¬(outsideCircle a α) ∧ ¬(
outsideCircle b α) ∧ (between a c b) → insideCircle c α

circle_points_extend : ∀ (a b c : Point) (α : Circle), ¬(outsideCircle a α) ∧ ¬(
insideCircle c α) ∧ (between a c b) → (outsideCircle b α)

circles_intersections_diff_side : ∀ (a b c d : Point) (α β : Circle) (L : Line), (α ̸= β)
∧ (onCircle c α) ∧ (onCircle c β) ∧ (onCircle d α) ∧ (onCircle d β) ∧ (c ̸= d) ∧ (
isCentre c α) ∧ (isCentre b β) ∧ (onLine a L) ∧ (onLine b L) → ¬(sameSide c d L)

intersection_lines_opposing: ∀ (a b : Point) (L M : Line), (opposingSides a b L) ∧ (onLine
a M) ∧ (onLine b M) → intersectsLine L M

intersection_lines_common_point : ∀ (a : Point) (L M : Line), onLine a L ∧ (onLine a M) ∧
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(L ̸= M) → intersectsLine L M

parallel_line_unique : ∀ (a : Point) (L M N : Line), ¬(onLine a L) ∧ (onLine a M) ∧
onLine a N ∧ ¬(intersectsLine L M) ∧ ¬(intersectsLine L N) → M = N

intersection_symm : ∀ (L M : Line), intersectsLine L M → intersectsLine M L

intersection_circle_line_1: ∀ (a b : Point) (α : Circle) (L: Line), ¬(outsideCircle a α)
∧ ¬(outsideCircle b α) ∧ (opposingSides a b L) → intersectsCircle L α

intersection_circle_line_2: ∀ (a : Point) (α : Circle) (L: Line), (insideCircle a α) ∧ (
onLine a L) → intersectsCircle L α

intersection_circle_circle_1: ∀ (a b : Point) (α β : Circle), ¬(outsideCircle a α) ∧ ¬(
outsideCircle b α) ∧ (insideCircle a β) ∧ (outsideCircle b β) → intersectsCircle α β

intersection_circle_circle_2: ∀ (a b : Point) (α β : Circle), (onCircle a α) → (
insideCircle b α) → (insideCircle a β) → (onCircle b β) → intersectsCircle α β

parallelogram_same_side : ∀ (a b c d : Point) (AB CD AC BD : Line), formParallelogram a b
c d AB CD AC BD → sameSide b d AC ∧ sameSide c d AB ∧ sameSide a b CD

Metric Rules. We have 11 metric rules. Unlike diagrammatic rules, metric rules deduce metric facts, e.g., about lengths,
angles, and areas. In addition, since we use SMT solvers as the symbolic reasoning engine, their built-in theories on real
numbers are also included implicitly as metric rules.

zero_segment_if : ∀ (a b : Point), |(a--b)| = 0 → a = b

zero_segment_onlyif : ∀ (a b : Point), a = b → |(a--b)| = 0

segment_gte_zero : ∀ (s : Segment), 0 ≤ s.length

segment_symmetric : ∀ (a b : Point), |(a--b)| = |(b--a)|

angle_symm : ∀ (a b c : Point), (a ̸= b) ∧ (b ̸= c) → (∠ a:b:c = ∠ c:b:a)

angle_range : ∀ (ang : Angle), (0 : R) ≤ ang ∧ ang ≤ +

degenerated_area : ∀ (a b : Point), Triangle.area △ a:a:b = 0

area_gte_zero : ∀ (ar : Triangle), 0 ≤ Triangle.area ar

area_symm_1 : ∀ (a b c : Point), Triangle.area (△a:b:c) = Triangle.area(△c:a:b)

area_symm_2 : ∀ (a b c : Point), Triangle.area (△ a:b:c) = Triangle.area (△a:c:b)

area_congruence : ∀ (a b c a’ b’ c’ : Point), (a--b) = (a’--b’) ∧ (b--c) = (b’--c’) ∧ (c
--a) = (c’--a’) ∧ (∠ a:b:c) = (∠ a’:b’:c’) ∧ (∠ b:c:a) = (∠ b’:c’:a’) ∧ (∠ c:a:b) = (
∠ c’:a’:b’) → Triangle.area (△ a:b:c) = Triangle.area (△ a’:b’:c’)

Transfer Rules. We have 23 transfer rules acting as the bridge between diagrammatic facts and metric facts.
They include 5 rules not in E’s paper: flat angle if, flat angle onlyif, parallelogram area,
sum parallelograms area, and rectangle area.

between_if : ∀ (a b c : Point), between a b c → |(a--b)| + |(b--c)| = |(a--c)|

equal_circles : ∀ (a b c : Point) (α β : Circle), (isCentre c α) ∧ (isCentre c β) ∧ (
onCircle b α) ∧ (onCircle c β) ∧ |(a--b)| = |(a--c)| → α = β

point_on_circle_if : ∀ (a b c : Point) (α : Circle), (isCentre c α) ∧ (onCircle b α) ∧ |(
a--c)| = |(a--b)| → onCircle c α
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point_on_circle_onlyif : ∀ (a b c : Point) (α : Circle), (isCentre c α) ∧ (onCircle b α)
∧ (onCircle c α) → |(a--c)| = |(a--b)|

point_in_circle_if : ∀ (a b c : Point) (α : Circle), (isCentre c α) ∧ (onCircle b α) ∧
(|(a--c)| < |(a--b)|) → insideCircle c α

point_in_circle_onlyif : ∀ (a b c : Point) (α : Circle), (isCentre c α) ∧ (onCircle b α)
∧ (insideCircle c α) → |(a--c)| < |(a--b)|

degenerated_angle_if : ∀ (a b c : Point) (L : Line), (a ̸= b) ∧ (a ̸= c) ∧ (onLine a L) ∧ (
onLine b L) ∧ (onLine c L) ∧ ¬(between b a c) → ∠ b:a:c = 0

degenerated_angle_onlyif : ∀ (a b c : Point) (L : Line), (a ̸= b) ∧ (a ̸= c) ∧ (onLine a L)
∧ (onLine b L) ∧ (∠ b:a:c = 0) → (onLine c L) ∧ ¬(between b a c)

sum_angles_if : ∀ (a b c d : Point) (L M : Line), (onLine a L) ∧ (onLine a M) ∧ (onLine b
L) ∧ (onLine c M) ∧ (a ̸= b) ∧ (a ̸= c) ∧ ¬(onLine d L) ∧ ¬(onLine d M) ∧ (L ̸= M) ∧ (
∠ b:a:c) = (∠ b:a:d) + (∠ d:a:c) → (sameSide b d M) ∧ (sameSide c d L)

sum_angles_onlyif : ∀ (a b c d : Point) (L M : Line), (onLine a L) ∧ (onLine a M) ∧ (
onLine b L) ∧ (onLine c M) ∧ (a ̸= b) ∧ (a ̸= c) ∧ ¬(onLine d L) ∧ ¬(onLine d M) ∧ (L
̸= M) ∧ (sameSide b d M) ∧ (sameSide c d L) → (∠ b:a:c) = (∠ b:a:d) + (∠ d:a:c)

perpendicular_if : ∀ (a b c d : Point) (L : Line), (onLine a L) ∧ (onLine b L) ∧ (between
a c b) ∧ ¬(onLine d L) ∧ (∠ a:c:d = ∠ d:c:b) → ∠ a:c:d =

perpendicular_onlyif : ∀ (a b c d : Point) (L : Line), (onLine a L) ∧ (onLine b L) ∧ (
between a c b) ∧ ¬(onLine d L) ∧ (∠ a:c:d = ) → ∠ a:c:d = ∠ d:c:b

flat_angle_if : ∀ (a b c : Point), a ̸= b ∧ b ̸= c ∧ (∠ a:b:c = + ) → between a b c

flat_angle_onlyif : ∀ (a b c : Point), between a b c → ∠ a:b:c = +

equal_angles : ∀ (a b b’ c c’ : Point) (L M : Line), (onLine a L) ∧ (onLine b L) ∧ (onLine
b’ L) ∧ (onLine a M) ∧ (onLine c M) ∧ (onLine c’ M) ∧ (b ̸= a) ∧ (b’ ̸= a) ∧ (c ̸= a)

∧ (c’ ̸= a) ∧ ¬(between b a b’) ∧ ¬(between c a c’) → (∠ b:a:c = ∠ b’:a:c’)

lines_intersect : ∀ (a b c d : Point) (L M N : Line), (onLine a L) ∧ (onLine b L) ∧ (
onLine b M) ∧ (onLine c M) ∧ (onLine c N) ∧ (onLine d N) ∧ (b ̸= c) ∧ (sameSide a d M)
∧ (∠ a:b:c) + (∠ b:c:d) < + → ∃ e : Point, (onLine e L) ∧ (onLine e N) ∧ (
sameSide e a M)

degenerated_area_if : ∀ (a b c : Point) (L : Line), distinctPointsOnLine a b L ∧ (
Triangle.area △ a:b:c) = 0 → onLine c L

degenerated_area_onlyif : ∀ (a b c : Point) (L : Line), distinctPointsOnLine a b L ∧ (
onLine c L) → (Triangle.area △ a:b:c) = 0

sum_areas_if : ∀ (a b c d : Point) (L : Line), (onLine a L) ∧ (onLine b L) ∧ (onLine c L)
∧ (a ̸= b) ∧ (a ̸= c) ∧ (b ̸= c) ∧ ¬(onLine d L) ∧ (between a c b) → (Triangle.area

△ a:c:d + Triangle.area △ d:c:b = Triangle.area △ a:d:b)

sum_areas_onlyif : ∀ (a b c d : Point) (L : Line), (onLine a L) ∧ (onLine b L) ∧ (onLine c
L) ∧ (a ̸= b) ∧ (a ̸= c) ∧ (b ̸= c) ∧ ¬(onLine d L) ∧ (Triangle.area △ a:c:d +
Triangle.area △ d:c:b = Triangle.area △ a:d:b) → between a c b

parallelogram_area : ∀ (a b c d : Point) (AB CD AC BD : Line), (formParallelogram a b c d
AB CD AC BD) → Triangle.area △ a:c:d + Triangle.area △ a:d:b = Triangle.area △ b:a:c
+ Triangle.area △ b:c:d

sum_parallelograms_area : ∀ (a b c d e f : Point) (AB CD AC BD : Line), (formParallelogram
a b c d AB CD AC BD) ∧ (between a e b) ∧ (between c f d) → Triangle.area △ a:c:f +
Triangle.area △ a:f:e + Triangle.area △ e:f:d + Triangle.area △ e:d:b = Triangle.area
△ a:c:d + Triangle.area △ a:d:b
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rectangle_area : ∀ (a b c d : Point) (AB CD AC BD : Line), (formParallelogram a b c d AB
CD AC BD) ∧ (∠ a:c:d = ) → (Triangle.area △ a:c:d + Triangle.area △ a:b:d = |(a--b)
| * |(a--c)|) ∧ (Triangle.area △ b:a:c + Triangle.area △ b:d:c = |(a--b)| * |(a--c)|)

Superposition Rule. Finally, we have a superposition rule to handle Euclid’s method of superposition for proving
Proposition 4 and Proposition 8 in the first book of Elements. The rule follows the idea in Avigad.

superposition : ∀ (a b c d g h : Point) (AB BC AC L : Line), (formTriangle a b c AB BC AC)
∧ (distinctPointsOnLine d g L) ∧ ¬(onLine h L) → ∃ (b’ c’ : Point) (BC’ AC’ : Line),
(∠ b:a:c = ∠ b’:d:c’) ∧ (∠ a:c:b = ∠ d:c’:b’) ∧ (∠ c:b:a = ∠ c’:b’:d) ∧ |(a--b)| =
|(d--b’)| ∧ |(b--c)| = |(b’--c’)| ∧ |(c--a)| = |(c’--d)| ∧ (onLine b’ L) ∧ ¬(between
b’ d g) ∧ (sameSide c’ h L) ∧ (distinctPointsOnLine b’ c’ BC’) ∧ (distinctPointsOnLine
d c’ AC’)

Axioms Used by the Symbolic Engine. Our symbolic reasoning engine (Sec. 3.3) is based on SMT solvers. Therefore,
it always has access to all built-in theories in SMT, e.g., the theory of real numbers. When used for diagrammatic
reasoning, it can also use all diagrammatic rules, metric rules, and transfer rules. When used for equivalence checking, it
additionally has access to nine simple construction rules: arbitrary point, distinct points, line nonempty,
exists point between points on line, distinct point same side, exists point opposite,
exists point on circle, line from points, and intersection lines.

B. An Example of Logical Gaps in Euclid’s Proofs Found by Formalization
Below is Euclid’s proof of Proposition 24 from Heiberg (2007):

F

A

C

B

D

E

G

If two triangles have two sides equal to two sides, respectively, but (one) has the angle encompassed by the equal
straight-lines greater than the (corresponding) angle (in the other), then (the former triangle) will also have a base
greater than the base (of the latter).

Let ABC and DEF be two triangles having the two sides AB and AC equal to the two sides DE and DF ,
respectively. (That is), AB (equal) to DE, and AC to DF . Let them also have the angle at A greater than the
angle at D. I say that the base BC is also greater than the base EF .

For since angle BAC is greater than angle EDF , let (angle) EDG, equal to angle BAC, have been constructed
at the point D on the straight-line DE [Prop. 1.23]. And let DG be made equal to either of AC or DF [Prop. 1.3],
and let EG and FG have been joined.

Therefore, since AB is equal to DE and AC to DG, the two (straight-lines) BA, AC are equal to the two
(straight-lines) ED, DG, respectively. Also the angle BAC is equal to the angle EDG. Thus, the base BC is
equal to the base EG [Prop. 1.4]. Again, since DF is equal to DG, angle DGF is also equal to angle DFG
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[Prop. 1.5]. Thus, DFG (is) greater than EGF . Thus, EFG is much greater than EGF . And since triangle
EFG has angle EFG greater than EGF , and the greater angle is subtended by the greater side [Prop. 1.19], side
EG (is) thus also greater than EF . But EG (is) equal to BC. Thus, BC (is) also greater than EF .

Thus, if two triangles have two sides equal to two sides, respectively, but (one) has the angle encompassed by the
equal straight-lines greater than the (corresponding) angle (in the other), then (the former triangle) will also have a
base greater than the base (of the latter). (Which is) the very thing it was required to show.

Euclid did not cover the case where D and G are on different sides of EF (Fig. A). For this case, we come up with the
proof below, which is significantly more complicated than Euclid’s proof. Therefore, we argue that Euclid’s proof of
Proposition 24 has a logical gap.

Similar to what Euclid did, let’s construct △ EDG s.t., ∠ EDG = ∠ BAC, |DG| = |DF |, and |BC| = |EG|
(Fig. A). By Proposition 5, we have ∠ DGF = ∠ DFG; let’s denote it by α. To prove |BC| > |EF |, we only
need to prove |EG| > |EF |. By Proposition 19, this is further reduced to ∠ EFG > ∠ EGF . Let x = ∠ EFG
and y = ∠ EGF . We want to prove x > y.

Note that ∠ DGE = ∠ DGF + ∠ EGF = α + y. ∠ DFE = 2π − ∠ DFG − ∠ EFG = 2π − α − x.
Furthermore, Proposition 17 states that the sum of any two angles in a triangle must be smaller than π. Therefore,
any angle in a triangle must also be smaller than π, i.e.,

α+ y < π

2π − α− x < π

Simplifying these two inequalities leads to x > y. QED.

Figure A. The case in Proposition 24 missed by Euclid.

Below is our formal proof of Proposition 24, which explicitly handles the case in Fig. A following the informal proof above.

theorem proposition_24 : ∀ (a b c d e f : Point) (AB BC AC DE EF DF : Line),
formTriangle a b c AB BC AC ∧ formTriangle d e f DE EF DF ∧
(|(a--b)| = |(d--e)|) ∧ (|(a--c)| = |(d--f)|) ∧ (∠ b:a:c > ∠ e:d:f) →
|(b--c)| > |(e--f)| :=

by
euclid_intros
euclid_apply (proposition_23’ d e a b c f DE AB AC) as g’
euclid_apply (line_from_points d g’) as DG
euclid_apply (extend_point_longer DG d g’ (a--c)) as g’’
euclid_apply (proposition_3 d g’’ a c DG AC) as g
euclid_apply (line_from_points e g) as EG
euclid_apply (line_from_points f g) as FG
euclid_apply (proposition_4 a b c d e g AB BC AC DE EG DG)
euclid_apply (proposition_5’ d g f DG FG DF)
by_cases (d.sameSide g EF)
. euclid_assert (∠ d:f:g > ∠ e:g:f)

euclid_assert (∠ e:f:g > ∠ e:g:f)
euclid_apply (proposition_19 e f g EF FG EG)
euclid_finish
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. -- Omitted by Euclid.
by_cases g.onLine EF
. euclid_finish
. euclid_apply (extend_point FG g f) as h

euclid_assert ¬(g.onLine DF)
euclid_assert ¬(e.onLine DF)
euclid_assert (g.opposingSides e DF)
euclid_assert h.sameSide e DF
euclid_apply (proposition_13 d f g h DF FG)
euclid_apply (proposition_13 e f g h EF FG)
euclid_apply (proposition_17 d g e DG EG DE)
euclid_apply (proposition_17 d f e DF EF DE)
euclid_assert (∠ d:g:e < + )
euclid_assert (∠ d:f:e < + )
euclid_assert (∠ e:f:g + ∠ g:f:d + ∠ d:f:e = + + + )
euclid_assert (∠ e:f:g > ∠ e:g:f)
euclid_apply (proposition_19 e f g EF FG EG)
euclid_finish

C. Comparison to Existing Formalization of Elements

In this section, we compare our formalizations of Elements with existing formalizations, with the goal of demonstrating
how our proof automation enables formal proofs that are closer in nature to the original natural language proofs. However,
it is important to note that we are making a tradeoff between proof automation and end-to-end certification of proofs. As
mentioned in Sec. 2, the results of SMT solvers are not certified or reconstructed as Lean proofs; instead, we introduce an
unsound axiom that allows us to admit successful SMT queries to prove any proposition. In practical terms, this means that
our proofs are certified up to (i) the soundness of the proof assistant kernel, (ii) any errors in our translation from Lean proof
contexts to SMT-LIB queries, and (iii) the soundness of the SMT solvers themselves. By contrast, the other formalizations
discussed here only require trusting the proof assistant kernel.

We use Proposition 1 as an example to compare LeanEuclid with existing formalizations of Euclid’s Elements (Hernandez-
Espiet, 2023; Beeson et al., 2019). Below is Euclid’s proof of Proposition 1 from Heiberg (2007):

BA ED

C

To construct an equilateral triangle on a given finite straight-line.

Let AB be the given finite straight-line.

So it is required to construct an equilateral triangle on the straight-line AB.

Let the circle BCD with center A and radius AB have been drawn [Post.3], and again let the circle ACE with
center B and radius BA have been drawn [Post.3]. And let the straight-lines CA and CB have been joined from
the point C, where the circles cut one another, to the points A and B (respectively) [Post.1].

And since the point A is the center of the circle CDB, AC is equal to AB [Def.5]. Again, since the point B is the
center of the circle CAE, BC is equal to BA [Def.5]. But CA was also shown (to be) equal to AB. Thus, CA
and CB are each equal to AB. But things equal to the same thing are also equal to one another [C.N.1]. Thus,
CA is also equal to CB. Thus, the three (straight-lines) CA, AB, and BC are equal to one another.
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Thus, the triangle ABC is equilateral, and has been constructed on the given finite straight-line AB. (Which is)
the very thing it was required to do.

LeanEuclid. Below is our formalization of Proposition 1. Our proof is concise and follows Euclid’s proof closely. It is
straightforward to map the tactics in our proofs to sentences in Euclid’s proof.

theorem proposition_1 : ∀ (a b : Point) (AB : Line),
distinctPointsOnLine a b AB →
∃ c : Point, |(c--a)| = |(a--b)| ∧ |(c--b)| = |(a--b)| :=

by
euclid_intros
euclid_apply circle_from_points a b as BCD
euclid_apply circle_from_points b a as ACE
euclid_apply intersection_circles BCD ACE as c
euclid_apply point_on_circle_onlyif a b c BCD
euclid_apply point_on_circle_onlyif b a c ACE
use c
euclid_finish

Hernandez-Espiet (2023). Below is Hernandez-Espiet (2023)’s formalization. In this formalization, all diagrammatic in-
ferences must be handled explicitly. For instance, in the proof of Proposition 1 (iseqtri sameside of ne),
the proof that circles BCD and ACE intersect “(circlesInter of inside on circle bα aβ
(inside circle of center aα) (inside circle of center bβ))” must be supplied directly by
the proof author, even though this assertion is left implicit in the text. In contrast, we use the symbolic engine to prove it
automatically and implicitly.

theorem online_of_circlesinter (aα : CenterCircle a α) (bβ : CenterCircle b β)
(αβ : CirclesInter α β) : ∃ c L, OnLine a L ∧ OnLine b L ∧ OnCircle c α ∧
OnCircle c β ∧ ¬OnLine c L := by

rcases line_of_pts a b with ⟨L, aL, bL⟩; rcases not_online_of_line L with ⟨d, dL⟩;
rcases pt_sameSide_of_circlesInter aL bL dL aα bβ αβ with ⟨c, cdL, cα, cβ⟩;
exact ⟨c, L, aL, bL, cα, cβ, not_onLine_of_sameSide cdL⟩

theorem DiffSide_of_sameside_DiffSide (abL : SameSide a b L) (acL : DiffSide a c L) :
DiffSide b c L := by

by_contra h; unfold DiffSide at h; push_neg at h; exact acL.2.2
(sameSide_trans (sameSide_symm abL) (h (not_onLine_of_sameSide (sameSide_symm abL)) acL

.2.1))

theorem DiffSide_of_circlesinter (aα : CenterCircle a α) (bβ : CenterCircle b β)
(αβ : CirclesInter α β) : ∃ c d L, OnLine a L ∧ OnLine b L ∧ OnCircle c α ∧
OnCircle c β ∧ OnCircle d α ∧ OnCircle d β ∧ DiffSide c d L := by

rcases online_of_circlesinter aα bβ αβ with ⟨c, L, aL, bL, cα, cβ, cL⟩;
rcases diffSide_of_not_onLine cL with ⟨e, eL, ceL⟩; rcases pt_sameSide_of_circlesInter aL

bL eL
aα bβ αβ with ⟨d, deL, dα, dβ⟩; exact ⟨c, d, L, aL, bL, cα, cβ, dα, dβ, DiffSide_symm
(DiffSide_of_sameside_DiffSide (sameSide_symm deL) ⟨eL, cL, not_sameSide_symm ceL⟩)⟩

/-- Euclid I.1, construction of two equilateral Triangles -/
theorem iseqtri_iseqtri_DiffSide_of_ne (ab : a ̸= b) : ∃ c d L, OnLine a L ∧

OnLine b L ∧ DiffSide c d L ∧ EqTri a b c ∧ EqTri a b d := by
rcases circle_of_ne ab with ⟨α, aα, bα⟩
rcases circle_of_ne (Ne.symm ab) with ⟨β, bβ, aβ⟩
rcases DiffSide_of_circlesinter aα bβ (circlesInter_of_inside_on_circle bα aβ
(inside_circle_of_center aα) (inside_circle_of_center bβ)) with
⟨c, d, L, aL, bL, cα, cβ, dα, dβ, cdL⟩

have ab_ac := (on_circle_iff_length_eq aα bα).mpr cα
have bc_ba := (on_circle_iff_length_eq bβ cβ).mpr aβ
have ab_ad := (on_circle_iff_length_eq aα bα).mpr dα
have bd_ba := (on_circle_iff_length_eq bβ dβ).mpr aβ
exact ⟨c, d, L, aL, bL, cdL, EqTri_of_length_online ab aL bL cdL.1 ab_ac bc_ba,
EqTri_of_length_online ab aL bL cdL.2.1 ab_ad bd_ba⟩
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/-- Euclid I.1, construction of an equilateral Triangle on the sameside of a point -/
theorem iseqtri_sameside_of_ne (ab : a ̸= b) (aL : OnLine a L) (bL : OnLine b L) (dL : ¬

OnLine d L):
∃ c, ¬OnLine c L ∧ SameSide c d L ∧ EqTri a b c := by

rcases iseqtri_iseqtri_DiffSide_of_ne ab with ⟨c1, c2, M, aM, bM, c1c2M, eqtri1, eqtri2⟩
rcases sameSide_or_of_diffSide’ dL (by rwa [line_unique_of_pts ab aM bM aL bL] at c1c2M)

with c1dL | c2dL
refine ⟨c1, not_onLine_of_sameSide c1dL, c1dL, eqtri1⟩
refine ⟨c2, not_onLine_of_sameSide c2dL, c2dL, eqtri2⟩

/-- Euclid I.1, construction of a single equilateral Triangle -/
theorem iseqtri_of_ne (ab : a ̸= b) : ∃ c, EqTri a b c :=
by rcases iseqtri_iseqtri_DiffSide_of_ne ab with ⟨c, -, -, -, -, -, eqtri, -⟩; exact ⟨c,

eqtri⟩

Beeson et al. (2019). Below is Beeson et al. (2019)’s formalization in Coq. Similar to Hernandez-Espiet (2023), it
formalizes diagrammatic reasoning manually. As a result, their formal proofs tend to be longer than ours, and it is harder
discern the correspondence with Euclid’s proofs.

Lemma proposition_01 :
forall A B,
neq A B ->
exists X, equilateral A B X /\ Triangle A B X.

Proof.
intros.
let Tf:=fresh in
assert (Tf:exists J, CI J A A B) by (conclude postulate_Euclid3);destruct Tf as [J];

spliter.
assert (neq B A) by (conclude lemma_inequalitysymmetric).
let Tf:=fresh in
assert (Tf:exists K, CI K B B A) by (conclude postulate_Euclid3);destruct Tf as [K];

spliter.
let Tf:=fresh in
assert (Tf:exists D, (BetS B A D /\ Cong A D A B)) by (conclude lemma_localextension);

destruct Tf as [D];spliter.
assert (Cong B A B A) by (conclude cn_congruencereflexive).
assert (OutCirc D K) by (conclude_def OutCirc) .
assert (eq B B) by (conclude cn_equalityreflexive).
assert (InCirc B K) by (conclude_def InCirc ).
assert (Cong A B A B) by (conclude cn_congruencereflexive).
assert (OnCirc B J) by (conclude_def OnCirc ).
assert (OnCirc D J) by (conclude_def OnCirc ).
assert (eq A A) by (conclude cn_equalityreflexive).
assert (InCirc A J) by (conclude_def InCirc ).
let Tf:=fresh in
assert (Tf:exists C, (OnCirc C K /\ OnCirc C J)) by (conclude postulate_circle_circle);

destruct Tf as [C];spliter.
assert (Cong A C A B) by (conclude axiom_circle_center_radius).
assert (Cong A B A C) by (conclude lemma_congruencesymmetric).
assert (Cong B C B A) by (conclude axiom_circle_center_radius).
assert (Cong B C A B) by (forward_using lemma_congruenceflip).
assert (Cong B C A C) by (conclude lemma_congruencetransitive).
assert (Cong A B B C) by (conclude lemma_congruencesymmetric).
assert (Cong A C C A) by (conclude cn_equalityreverse).
assert (Cong B C C A) by (conclude lemma_congruencetransitive).
assert (equilateral A B C) by (conclude_def equilateral ).
assert (neq B C) by (conclude axiom_nocollapse).
assert (neq C A) by (conclude axiom_nocollapse).
assert (˜ BetS A C B).
{
intro.
assert (˜ Cong A C A B) by (conclude lemma_partnotequalwhole).
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assert (Cong C A A C) by (conclude cn_equalityreverse).
assert (Cong C A A B) by (conclude lemma_congruencetransitive).
assert (Cong A C C A) by (conclude cn_equalityreverse).
assert (Cong A C A B) by (conclude lemma_congruencetransitive).
contradict.
}

assert (˜ BetS A B C).
{
intro.
assert (˜ Cong A B A C) by (conclude lemma_partnotequalwhole).
assert (Cong A B C A) by (conclude lemma_congruencetransitive).
assert (Cong C A A C) by (conclude cn_equalityreverse).
assert (Cong A B A C) by (conclude lemma_congruencetransitive).
contradict.
}

assert (˜ BetS B A C).
{
intro.
assert (˜ Cong B A B C) by (conclude lemma_partnotequalwhole).
assert (Cong B A A B) by (conclude cn_equalityreverse).
assert (Cong B A B C) by (conclude lemma_congruencetransitive).
contradict.
}

assert (˜ Col A B C).
{
intro.
assert (neq A C) by (conclude lemma_inequalitysymmetric).
assert ((eq A B \/ eq A C \/ eq B C \/ BetS B A C \/ BetS A B C \/ BetS A C B)) by (

conclude_def Col ).
contradict.
}

assert (Triangle A B C) by (conclude_def Triangle ).
close.
Unshelve.
all: (exact A).
Qed.

D. Autoformalization Prompts
Here, we share the prompt templates used in our experiments.

D.1. Theorem Statement Formalization

To autoformalize theorem statements from Elements and UniGeo, we used the prompt shown below. We also prepend the
instructions with a header describing the task (i.e., “Your task is to take an English statement of a theorem from Euclidean
Geometry and formalize it using Lean 4 programming language, adhering to the following structures and guidelines”.

One additional intricacy in formalizing theorem statements from Elements is that, unlike in modern mathematics, Euclid
does not always state a complete logical theorem statement before beginning a proof. He often begins with an imperative
assertion (e.g., Proposition 9: “To cut a given rectilinear angle in half”) whose proper logical interpretation is clarified
at the conclusion of the proof (e.g., “Thus, angle DAF is equal to angle EAF. Thus, the given rectilinear angle BAC has
been cut in half by the straight-line AF”). In other words, to determine the proper logical statement of the theorem, both
the beginning and the end of the proof must sometimes be considered. During preliminary experiments, we attempted to
autoformalize theorem statements by giving the model the entire natural language proof, but we found that the resulting
theorem statements were often very poor. Instead, we manually removed the majority of the “proof” portion of the natural
language text, leaving only the portions required to obtain a reasonable formalization of the theorem statement. This context
was also included as part of the prompt header when formalizing theorems from Elements. These abbreviated versions of
Elements proofs are also available as part of LeanEuclid.

/- Basic Geometric Sorts -/
axiom Point : Type
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axiom Line : Type
axiom Circle : Type
/- Inductive Types for Geometric Entities -/
inductive Angle | right | ofPoints (A B C : Point)
inductive Segment | endpoints (a b : Point)
inductive Triangle | ofPoints (a b c : Point)
/- Notations and Macros for Geometric Entities -/
"|(a-- b)|" means the length of the line segment between point a and point b.
"∠ a:b:c" means the degree of the angle formed by three points a, b, and c.
" " means the right angle.
"△ a:b:c" means the triangle formed from points a, b and c.
"Triangle.area △ a:b:c" means the area of the triangle formed by points a, b and c.
/- Relations and Axioms for Geometric Sorts -/
namespace Point
def onLine (a : Point) (L : Line) -- point a is on line L.
def sameSide (a b : Point) (L : Line) -- point a and b are on the same side of line L.
def opposingSides (a b : Point) (L : Line) -- point a and b are on the opposite sides of

line L.
def collinear (a b c : Point) -- points a, b and c are collinear.
end Point
namespace Line
def intersectsLine (L M : Line) -- two lines L and M intersect at some point.
def intersectsCircle (L : Line) (C : Circle) -- line L and circle C intersect.
end Line
namespace Circle
def onCircle (a: Point) (C: Circle) -- point a is on circle C.
def insideCircle (a: Point) (C: Circle) -- point a is inside circle C.
def outsideCircle (a: Point) (C: Circle)-- point a is outside circle C.
def isCentre (a: Point) (C: Circle) -- point a is on the center circle C.
def intersectsCircle (C1 C2: Circle) -- circle C1 and C2 intersect.
end Circle
namespace Triangle
def congruent (T1 T2 : Triangle) -- triangle T1 and T2 are congruent.
def similar (T1 T2 : Triangle) -- triangle T1 and T2 are similar.
end Triangle
/- Geometric Relations -/
def distinctPointsOnLine (a b : Point) (L : Line) -- points a and b are distinct and on

line L.
def twoLinesIntersectAtPoint (AB BC : Line) (b : Point) -- line AB and BC intersect at

point b.
def between (a b c : Point) -- points a, b and c collinear and cyclically ordered.
def formTriangle (a b c : Point) (AB BC CA : Line) -- point a, b and c form a triangle,

where point a and b are on line AB, point b and c are on line BC, point a and c are on
line CA.

def formRectilinearAngle (a b c : Point) (AB BC : Line) -- point a, b and c form a
rectilinear angle where a ̸=b and b ̸=c.

def formParallelogram (a b c d : Point) (AB CD AC BD : Line) -- point a, b, d and c (in
clockwise/counterclockwise order) form a parallelogram, where point a and b are on
line AB, where point c and d are on line CD, where point a and c are on line AC,
where point b and d are on line BD.

def formQuadrilateral (a b c d : Point) (AB CD BC AD : Line) -- point a, b, c and d (in
clockwise/counterclockwise order) form a quadrilateral, where point a and b are on
line AB, where point c and d are on line CD, where point b and c are on line BC,
where point a and d are on line AD.

/- Guidelines: -/
1. Proposition Format: Your proposition must be of the form <<< ∀ (...) P_1 ∧ P_2 ... ∧

P_n → ∃ (...) Q_1 ∧ Q_2 ... ∧ Q_m >>> where where each P_i and Q_i is built from
the above building blocks using conjunction (∧) disjunction (∨) and negation (¬). Note
that there may be zero existentially quantified variables.

2. Implication: There can be only a single implication in the formula; either side of the
implication must be a conjunction of formulae.

3. Numeric Values Restrictions: Denote 90-degree angle by , 180-degree angle by + ,
etc. Also, when referring to segments, we always mean its length (i.e. |(a--b)|).

4. Quantified Variables: Your quantified variables must be limited to primitive geometric
types: points, lines, and circles. ALL bound variables must be mentioned at some point
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.
5. Intermediate Variables: You should never define an intermediate variable inside the

proposition. For example, "let X := (something);" is NOT allowed.
6. Axioms: You should only use the provided axioms. For example, Line L is parallel to

line M can be expressed as ¬(L.intersectsLine M). Do not use Line.Parallel L M.
7. Response Format: Present your formalized Lean expression within triple angle brackets

(<<< Lean expression here >>>). Do not add any annotations/explanations, or markdown
syntax.

D.2. Proof Formalization (Elements)

To formalize proofs from Elements, we included (1) all inference rules that were used in our manual formalization of
Elements and (2) all variations of all theorem statements that precede the target theorem. We also provided 5 hardcoded
examples (Propositions 2, 6, 12, 32, 42) which were chosen to showcase a variety of proof formats and tactic invocations.
The token {PRECEDING THMS} is substituted at formalization time by the list of visible theorems allowed for the target
proposition. For instance, when formalizing a proof of Proposition n in Elements, the model is allowed to use proofs of
Propositions 1 through n− 1, and all their variations.

/- Basic Geometric Sorts -/
axiom Point : Type
axiom Line : Type
axiom Circle : Type

/- Notations and Macros for Geometric Entities -/
"|(a--b)|" means the length of the line segment between point a and point b.
"∠ a:b:c" means the degree of the angle formed by points a, b, and c.
" " means the right angle.
"△ a:b:c" means the triangle formed from points a, b and c.
"Triangle.area △ a:b:c" means the area of the triangle formed by points a, b and c.
/- Relations and Axioms for Geometric Sorts -/
namespace Point
def onLine (a : Point) (L : Line) -- point a is on line L.
def sameSide (a b : Point) (L : Line) -- point a and b are on the same side of line L.
def opposingSides (a b : Point) (L : Line) -- point a and b are on the opposite sides of

line L.
def collinear : (a b c : Point) -- points a, b and c are collinear.
end Point
namespace Line
def intersectsLine (L M : Line) -- two lines L and M intersect at some point.
def intersectsCircle (L : Line) (C : Circle) -- line L and circle C intersect.
end Line
namespace Circle
def onCircle (a: Point) (C: Circle) -- point a is on circle C.
def insideCircle (a: Point) (C: Circle) -- point a is inside circle C.
def outsideCircle (a: Point) (C: Circle)-- point a is outside circle C.
def isCentre (a: Point) (C: Circle) -- point a is on the center circle C.
def intersectsCircle (C1 C2: Circle) -- circle C1 and C2 intersect.
end Circle

-- Abbreviations --
abbrev distinctPointsOnLine (p q : Point) (L : Line) :=

P.onLine L ∧ Q.onLine L ∧ P ̸= Q

abbrev Point.opposingSides (a b : Point) (l : Line) :=
¬ a.onLine l ∧ ¬ b.onLine l ∧ ¬ sameSide a b l

abbrev Point.outsideCircle (p c : Point) :=
¬ p.insideCircle c ∧ ¬ p.onCircle c

abbrev formTriangle (a b c : Point) (AB BC CA : Line) : Prop :=
distinctPointsOnLine a b AB ∧
b.onLine BC ∧ c.onLine BC ∧ c.onLine CA ∧ a.onLine CA ∧
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AB ̸= BC ∧ BC ̸= CA ∧ CA ̸= AB

abbrev formRectilinearAngle (a b c : Point) (AB BC : Line) :=
distinctPointsOnLine a b AB ∧ distinctPointsOnLine b c BC

abbrev formParallelogram (a b c d : Point) (AB CD AC BD : Line) : Prop :=
a.onLine AB ∧ b.onLine AB ∧ c.onLine CD ∧ d.onLine CD ∧ a.onLine AC ∧ c.onLine AC ∧

distinctPointsOnLine b d BD ∧
(a.sameSide c BD) ∧ ¬(AB.intersectsLine CD) ∧ ¬(AC.intersectsLine BD)

Your proofs can make use of the following construction rules and inference rules:
Construction Rules:
- Points -
axiom distinct_points : ∀ p : Point, ∃ q : Point, p ̸= q
axiom line_nonempty : ∀ l : Line, ∃ p : Point, p.onLine l
axiom exists_distincts_points_on_line : ∀ l : Line, ∀ p : Point, ∃ p’ : Point, p ̸= p’ ∧ p

’.onLine l
axiom exists_point_between_points_on_line : ∀ (L : Line) (b c : Point),

distinctPointsOnLine b c L → ∃ a : Point, (a.onLine L) ∧ (between b a c)
axiom point_between_points_shorter_than : ∀ (L : Line) (b c : Point) (s : Segment),

distinctPointsOnLine b c L ∧ (|s| > 0) → ∃ a : Point, (a.onLine L) ∧ (between b a c)
∧ (|(b--a)| < s)

axiom extend_point : ∀ (L : Line) (b c : Point), distinctPointsOnLine b c L → ∃ a : Point
, (a.onLine L) ∧ (between b c a)

axiom extend_point_not_on_line : ∀ (L M : Line) (b c : Point), distinctPointsOnLine b c L
∧ L ̸= M → ∃ a : Point, (a.onLine L) ∧ (between b c a) ∧ ¬(a.onLine M)

axiom extend_point_longer : ∀ (L : Line) (b c : Point) (s : Segment), distinctPointsOnLine
b c L → ∃ a : Point, (a.onLine L) ∧ (between b c a) ∧ (|(c--a)| > s)

axiom point_on_line_same_side : ∀ (L M : Line) (b : Point), ¬(b.onLine L) ∧ (L.
intersectsLine M) → ∃ a : Point, a.onLine M ∧ a.sameSide b L

axiom exists_point_opposite : ∀ (L : Line) (b : Point), ¬(b.onLine L) → ∃ a : Point, a.
opposingSides b L

- Lines and Circles -
axiom line_from_points : ∀ (a b : Point), a ̸= b → ∃ L : Line, (a.onLine L) ∧ (b.onLine L)
axiom circle_from_points : ∀ (a b : Point), a ̸= b → ∃ α : Circle, (a.isCentre α) ∧ (b.

onCircle α)
- Intersections -
axiom intersection_lines : ∀ (L M : Line), L.intersectsLine M → ∃ a : Point, (a.onLine L)

∧ (a.onLine M)
axiom intersection_circle_line : ∀ (α : Circle) (L : Line), L.intersectsCircle α → ∃ a :

Point, (a.onCircle α) ∧ (a.onLine L)
axiom intersections_circle_line : ∀ (α : Circle) (L : Line), L.intersectsCircle α → ∃ (a

b : Point), (a.onCircle α) ∧ (a.onLine L) ∧ (b.onCircle α) ∧ (b.onLine L) ∧ a ̸= b
axiom intersection_circle_line_between_points : ∀ (α : Circle) (L : Line) (b c :Point), (b

.insideCircle α) ∧ (b.onLine L) ∧ (c.outsideCircle α) ∧ (c.onLine L) → ∃ a : Point, (
a.onCircle α) ∧ (a.onLine L) ∧ (between b a c)

axiom intersection_circle_line_extending_points : ∀ (α : Circle) (L : Line) (b c :Point),
(b.insideCircle α) ∧ distinctPointsOnLine b c L → ∃ a : Point, (a.onCircle α) ∧ (a.
onLine L) ∧ (between a b c)

axiom intersection_circles : ∀ (α β : Circle), α.intersectsCircle β → ∃ a : Point, (a.
onCircle α) ∧ (a.onCircle β)

axiom intersection_same_side : ∀ (α β : Circle) (b c d : Point) (L : Line), (α.
intersectsCircle β) ∧ (c.isCentre α) ∧ (d.isCentre β) ∧ (c.onLine L) ∧ (d.onLine L)
∧ ¬(b.onLine L) → ∃ a : Point, (a.onCircle α) ∧ (a.onCircle β) ∧ (a.sameSide b L)

axiom intersection_opposite_side : ∀ (α β : Circle) (b c d : Point) (L : Line), (α.
intersectsCircle β) ∧ (c.isCentre α) ∧ (d.isCentre β) ∧ (c.onLine L) ∧ (d.onLine L)
∧ ¬(b.onLine L) → ∃ a : Point, (a.onCircle α) ∧ (a.onCircle β) ∧ a.opposingSides b L

--- Inference Rules ---
axiom two_points_determine_line : ∀ (a b : Point) (L M : Line),distinctPointsOnLine a b L

∧ (a.onLine M) ∧ (b.onLine M) → L = M
axiom superposition : ∀ (a b c d g h : Point) (AB BC AC L : Line), formTriangle a b c AB

BC AC ∧ distinctPointsOnLine d g L ∧ ¬(h.onLine L) → ∃ (b’ c’ : Point) (BC’ AC’ :
Line), (∠ b:a:c ) = (∠ b’:d:c’) ∧ (∠ a:c:b) = (∠ d:c’:b’) ∧ (∠ c:b:a) = (∠ c’:b’:d)
∧ |(a--b)| = |(d--b’)| ∧ |(b--c)| = |(b’--c’)| ∧ |(c--a)| = |(c’--d)| ∧ b’.onLine L
∧ ¬(between b’ d g) ∧ c’.sameSide h L ∧ distinctPointsOnLine b’ c’ BC’ ∧
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distinctPointsOnLine d c’ AC’
axiom between_if : ∀ (a b c : Point),between a b c → |(a--b)| + |(b--c)| = |(a--c)|
axiom equal_circles : ∀ (a b c : Point) (α β : Circle),(a.isCentre α) ∧ (a.isCentre β) ∧

(b.onCircle α) ∧ (c.onCircle β) ∧ |(a--b)| = |(a--c)| → α = β
axiom point_on_circle_if : ∀ (a b c : Point) (α : Circle),(a.isCentre α) ∧ (b.onCircle α)

∧ |(a--c)| = |(a--b)| → c.onCircle α
axiom point_on_circle_onlyif : ∀ (a b c : Point) (α : Circle),(a.isCentre α) ∧ (b.onCircle

α) ∧ (c.onCircle α) → |(a--c)| = |(a--b)|
axiom point_in_circle_if : ∀ (a b c : Point) (α : Circle),(a.isCentre α) ∧ (b.onCircle α)

∧ (a--c) < (a--b) → c.insideCircle α
axiom sum_angles_if : ∀ (a b c d : Point) (L M : Line),(a.onLine L) ∧ (a.onLine M) ∧ (b.

onLine L) ∧ (c.onLine M) ∧ (a ̸= b) ∧ (a ̸= c) ∧¬(d.onLine L) ∧ ¬(d.onLine M) ∧ (L ̸= M
) ∧ (∠ b:a:c) = (∠ b:a:d) + (∠ d:a:c) →(b.sameSide d M) ∧ (c.sameSide d L)

axiom sum_angles_onlyif : ∀ (a b c d : Point) (L M : Line), (a.onLine L) ∧ (a.onLine M) ∧
(b.onLine L) ∧ (c.onLine M) ∧ (a ̸= b) ∧ (a ̸= c) ∧ (d.onLine L) ∧ ¬(d.onLine M) ∧ (L
̸= M) ∧ (b.sameSide d M) ∧ (c.sameSide d L) → (∠ b:a:c) = (∠ b:a:d) + (∠ d:a:c)

axiom perpendicular_if : ∀ (a b c d : Point) (L : Line),(a.onLine L) ∧ (b.onLine L) ∧ (
between a c b) ∧ ¬(d.onLine L) ∧ (∠ a:c:d = ∠ d:c:b) →(∠ a:c:d) =

axiom sum_areas_if : ∀ (a b c d : Point) (L : Line), (a.onLine L) ∧ (b.onLine L) ∧ (c.
onLine L) ∧ (a ̸= b) ∧ (a ̸= c) ∧ (b ̸= c) ∧ ¬(d.onLine L) ∧ (between a c b) → (
Triangle.area △ a:c:d ) + (Triangle.area △ d:c:b) = (Triangle.area △ a:d:b)

axiom rectangle : (a b c d : Point) (AB CD AC BD : Line),
formParallelogram a b c d AB CD AC BD ∧ (∠ a:c:d = ) →
(Triangle.area △ a:c:d + Triangle.area △ a:b:d = |(a--b)| * |(a--c)|) ∧ (Triangle.area

△ b:a:c + Triangle.area △ b:d:c) = |(a--b)| * |(a--c)|
{PRECEDING_THMS}

--- Proof DSL ---
Your response must be a tactic proof in the LeanEuclid proof DSL. This DSL is built from

the following tactics (arguments shown in angle-brackets <> ):

* TACTIC: euclid_intros *
Introduces universally quantified variables and premises of the current goal into the

proof context. No names required.
* TACTIC: euclid_apply <rule> <args> *
where <rule> is either a construction rule, inference rule, or other theorem.
Given a rule <rule> with type of the form ∀ (<args> : Types) ... P -> Q, this tactic

instantiates <rule> with <args>, and attempts to prove premise P from the local proof
context using an SMT solver. If successful, propsition Q is added to the proof
context.

usage examples :
euclid_apply between_if a b c
eculid_apply same_side_rfl x y L

* TACTIC: euclid_apply <rule> <args> as X *
Given a rule <rule> with type of the form ∀ (<args> : Types) ... P -> ∃ x . Q(x), this

tactic instantiates <rule> with <args>, and attempts to prove premise P from the local
proof context using an SMT solver. If successful, object x and premise Q(x) are added
to the proof context.

usage examples:
euclid_apply point_same_side a L as b
euclid_apply line_from_points p1 p2 as M

NOTE: You can only use ‘euclid_apply <rule> <args> as <X>‘ if the rule produces an
existential. You should not name any propsotions introduced using ‘euclid_apply‘ e,g,
‘euclid_apply <rule> <args> as H1‘.

NOTE: It is very important that *all* non-propositional (i.e., universally quantified)
arguments are provided to the rule when invoking ‘euclid_apply‘.

* euclid_finish *
Attempts to resolve the proof goal using the current proof context using an SMT solver

.
* euclid_assert <P> *

Attempts to prove proposition <P> from the current proof context using an SMT solver.
Equivalent to "have : <P> := by euclid_finish"
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If you are proving an existentially quantified proposition, you can use the standard Lean
tactic

‘ use <X>‘
to provide the witness <X> for the quantifier. DO NOT use the tactic ‘use‘ if you are not

proving an existentially quantified proposition.

You can use standard Lean tactics such as <by_cases>, <cases>, <split_ands> and <
constructor> to structure your proof. But, you should not use imperative Lean tactics,
such as ‘rw‘ or ‘simp‘. You should only use the above declarative tactics.

Your response should be exactly of the following form:

<tac_1>
<tac_2>
...
<tac_n>

where each <tac_i> is a Lean tactic adhering to the above guidelines.

DO *NOT* wrap your answer in markdown syntax, e.g. ‘‘‘lean <contents> ‘‘‘. It must be
simply a Lean tactic script that can be inserted into a proof.

Here are some examples. NOTE: You may not necessarily use the propositoins shown in these
proofs, unless they are also listed above.

Input:
Informal Proof:
To place a straight-line equal to a given straight-line at a given point (as an

extremity). Let $A$ be the given point, and $BC$ the given straight-line. So it is
required to place a straight-line at point $A$ equal to the given straight-line $BC$
. For let the straight-line $AB$ have been joined from point $A$ to point $B$ [
Post.˜1], and let the equilateral triangle $DAB$ have been been constructed upon it
[Prop.˜1.1]. And let the straight-lines $AE$ and $BF$ have been produced in a
straight-line with $DA$ and $DB$ (respectively) [Post.˜2]. And let the circle $CGH$
with center $B$ and radius $BC$ have been drawn [Post.˜3], and again let the circle
$GKL$ with center $D$ and radius $DG$ have been drawn [Post.˜3]. Therefore,

since the point $B$ is the center of (the circle) $CGH$, $BC$ is equal to $BG$ [Def
.˜1.15]. Again, since the point $D$ is the center of the circle $GKL$, $DL$ is equal
to $DG$ [Def.˜1.15]. And within these, $DA$ is equal to $DB$. Thus, the remainder

$AL$ is equal to the remainder $BG$ [C.N.˜3]. But $BC$ was also shown (to be) equal
to $BG$. Thus, $AL$ and $BC$ are each equal to $BG$. But things equal to the same

thing are also equal to one another [C.N.˜1]. Thus, $AL$ is also equal to $BC$.
Thus, the straight-line $AL$, equal to the given straight-line $BC$, has been placed
at the given point $A$. (Which is) the very thing it was required to do

Proof Setup:
def example : ∀ (a b c : Point) (BC : Line), distinctPointsOnLine b c BC ∧ a ̸= b → ∃ l

: Point, |(a--l)| = |(b--c)| :=
by

Your Response:
euclid_intros
euclid_apply (line_from_points a b) as AB
euclid_apply (proposition_1 a b AB) as d
euclid_apply (line_from_points d a ) as AE
euclid_apply (line_from_points d b ) as BF
euclid_apply (circle_from_points b c) as CGH
euclid_apply (intersection_circle_line_extending_points CGH BF b d) as g
euclid_apply (circle_from_points d g) as GKL
euclid_apply (intersection_circle_line_extending_points GKL AE a d) as l
euclid_apply (point_on_circle_onlyif b c g CGH)
euclid_apply (point_on_circle_onlyif d l g GKL)
euclid_apply (between_if l a d )
euclid_apply (between_if g b d )
use l
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euclid_finish

Input:
Informal Proof:
To draw a straight-line perpendicular to a given infinite straight-line from a given

point which is not on it. Let $AB$ be the given infinite straight-line and $C$
the given point, which is not on ($AB$). So it is required to draw a straight-line
perpendicular to the given infinite straight-line $AB$ from the given point $C$,

which is not on ($AB$). For let point $D$ have been taken at random on the other
side (to $C$) of the straight-line $AB$, and let the circle $EFG$ have been drawn
with center $C$ and radius $CD$ [Post.˜3], and let the straight-line $EG$ have been
cut in half at (point) $H$ [Prop.˜1.10], and let the straight-lines $CG$, $CH$, and
$CE$ have been joined. I say that the (straight-line) $CH$ has been drawn
perpendicular to the given infinite straight-line $AB$ from the given point $C$,
which is not on ($AB$). For since $GH$ is equal to $HE$, and $HC$ (is) common, the
two (straight-lines) $GH$, $HC$ are equal to the two (straight-lines) $EH$, $HC$,
respectively, and the base $CG$ is equal to the base $CE$. Thus, the angle $CHG$ is
equal to the angle $EHC$ [Prop.˜1.8], and they are adjacent. But when a straight-
line stood on a(nother) straight-line makes the adjacent angles equal to one another
, each of the equal angles is a right-angle, and the former straight-line is called
a perpendicular to that upon which it stands [Def.˜1.10]. Thus, the (straight-line)
$CH$ has been drawn perpendicular to the given infinite straight-line $AB$ from the
given point $C$, which is not on ($AB$). (Which is) the very thing it was required
to do.

Proof Setup:
def example : ∀ (a b c : Point) (AB : Line), distinctPointsOnLine a b AB ∧ ¬(c.onLine AB

) → ∃ h : Point, h.onLine AB ∧ (∠ a:h:c) = ∨ (∠ b:h:c) = :=

Your Response:
euclid_intros
euclid_apply (exists_point_opposite AB c) as d
euclid_apply (circle_from_points c d) as EFG
euclid_apply (intersections_circle_line EFG AB) as (e, g)
euclid_apply (proposition_10 e g AB) as h
euclid_apply (line_from_points c g) as CG
euclid_apply (line_from_points c h) as CH
euclid_apply (line_from_points c e) as CE
use h
euclid_apply (proposition_8 h c g h c e CH CG AB CH CE AB)
euclid_finish

Input:
Informal Proof:
In any triangle, (if) one of the sides (is) produced (then) the external angle is equal

to the (sum of the) two internal and opposite (angles), and the (sum of the) three
internal angles of the triangle is equal to two right-angles. Let $ABC$ be a triangle
, and let one of its sides $BC$ have been produced to $D$. I say that the external
angle $ACD$ is equal to the (sum of the) two internal and opposite angles $CAB$ and
$ABC$, and the (sum of the) three internal angles of the triangle---$ABC$, $BCA$, and
$CAB$---is equal to two right-angles. For let $CE$ have been drawn through point
$C$ parallel to the straight-line $AB$ [Prop.˜1.31]. And since $AB$ is parallel to
$CE$, and $AC$ has fallen across them, the alternate angles $BAC$ and $ACE$ are equal
to one another [Prop.˜1.29]. Again, since $AB$ is parallel to $CE$, and the straight

-line $BD$ has fallen across them, the external angle $ECD$ is equal to the internal
and opposite (angle) $ABC$ [Prop.˜1.29]. But $ACE$ was also shown (to be) equal to
$BAC$. Thus, the whole angle $ACD$ is equal to the (sum of the) two internal and
opposite (angles) $BAC$ and $ABC$. Let $ACB$ have been added to both. Thus, (the sum
of) $ACD$ and $ACB$ is equal to the (sum of the) three (angles) $ABC$, $BCA$, and
$CAB$. But, (the sum of) $ACD$ and $ACB$ is equal to two right-angles [Prop.˜1.13].
Thus, (the sum of) $ACB$, $CBA$, and $CAB$ is also equal to two right-angles. Thus,
in any triangle, (if) one of the sides (is) produced (then) the external angle is
equal to the (sum of the) two internal and opposite (angles), and the (sum of the)
three internal angles of the triangle is equal to two right-angles. (Which is) the
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very thing it was required to show.

Proof Setup:
def example: ∀ (a b c d : Point) (AB BC AC : Line), formTriangle a b c AB BC AC ∧ (

between b c d) → ∠ a:c:d = ∠ c:a:b + ∠ a:b:c ∧ ∠ a:b:c + ∠ b:c:a + ∠ c:a:b = +
by

Your Response:
euclid_intros
have : (∠ a:c:d) = (∠ c:a:b) + (∠ a:b:c) := by

euclid_apply (proposition_31 c a b AB ) as CE
euclid_apply (point_on_line_same_side BC CE a ) as e
euclid_apply (proposition_29’’’ b e a c AB CE AC)
euclid_apply (proposition_29’’’’ e a d c b CE AB BC)
euclid_finish

constructor
. assumption
. euclid_apply (proposition_13 a c b d AC BC)

euclid_finish

Input:
Informal Proof:
To construct a parallelogram equal to a given triangle in a given rectilinear angle. Let

$ABC$ be the given triangle, and $D$ the given rectilinear angle. So it is required
to construct a parallelogram equal to triangle $ABC$ in the rectilinear angle $D$.

Let $BC$ have been cut in half at $E$ [Prop.˜1.10], and let $AE$ have been joined.
And let (angle) $CEF$, equal to angle $D$, have been constructed at the point $E$
on the straight-line $EC$ [Prop.˜1.23]. And let $AG$ have been drawn through $A$
parallel to $EC$ [Prop.˜1.31], and let $CG$ have been drawn through $C$ parallel to
$EF$ [Prop.˜1.31]. Thus, $FECG$ is a parallelogram. And since $BE$ is equal to $EC$,
triangle $ABE$ is also equal to triangle $AEC$. For they are on the equal bases,

$BE$ and $EC$, and between the same parallels, $BC$ and $AG$ [Prop.˜1.38]. Thus,
triangle $ABC$ is double (the area) of triangle $AEC$. And parallelogram $FECG$ is
also double (the area) of triangle $AEC$. For it has the same base as ($AEC$), and
is between the same parallels as ($AEC$) [Prop.˜1.41]. Thus, parallelogram $FECG$
is equal to triangle $ABC$. ($FECG$) also has the angle $CEF$ equal to the given (
angle) $D$. Thus, parallelogram $FECG$, equal to the given triangle $ABC$, has been
constructed in the angle $CEF$, which is equal to $D$. (Which is) the very thing it
was required to do.

Theorem Statement:
def example : ∀ (a b c d1 d2 d3 : Point) (AB BC AC D12 D23: Line), formTriangle a b c AB

BC AC ∧ formRectilinearAngle d1 d2 d3 D12 D23 ∧ (∠ d1:d2:d3) > 0 ∧ (∠ d1:d2:d3) <
+ → ∃ (f g e c’ : Point) (FG EC EF CG : Line), formParallelogram f g e c’ FG EC

EF CG ∧ (∠ c’:e:f = ∠ d1:d2:d3) ∧ (Triangle.area △ f:e:c’ + Triangle.area △ f:c’:g
= Triangle.area △ a:b:c) :=

by

Your Response:
euclid_intros
euclid_apply (proposition_10 b c BC) as e
euclid_apply (line_from_points a e) as AE
euclid_apply (proposition_23’’’ e c d2 d1 d3 a BC D12 D23) as f’
euclid_apply (line_from_points e f’) as EF
euclid_apply (proposition_31 a b c BC) as AG
euclid_apply (intersection_lines AG EF) as f
euclid_apply (proposition_31 c e f EF) as CG
euclid_apply (intersection_lines CG AG) as g
euclid_assert (formParallelogram f g e c AG BC EF CG)
euclid_apply (proposition_38 a b e a e c AG BC AB AE AE AC)
euclid_apply (proposition_41 f e c g a AG BC EF CG AE AC)
use f, g, e, c, AG, BC, EF, CG
euclid_finish
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**NOTICE: in the above example, there is exactly one argument to ‘use‘ for every
existentially quantified variables in the theoerem statement.**

Input :
Informal Proof:

If a triangle has two angles equal to one another then the sides subtending the equal
angles will also be equal to one another. Let $ABC$ be a triangle having the angle
$ABC$ equal to the angle $ACB$. I say that side $AB$ is also equal to side $AC$.
For if $AB$ is unequal to $AC$ then one of them is greater. Let $AB$ be greater.

And let $DB$, equal to the lesser $AC$, have been cut off from the greater $AB$ [
Prop.˜1.3]. And let $DC$ have been joined [Post.˜1]. Therefore, since $DB$ is
equal to $AC$, and $BC$ (is) common, the two sides $DB$, $BC$ are equal to the two
sides $AC$, $CB$, respectively, and the angle $DBC$ is equal to the angle $ACB$.

Thus, the base $DC$ is equal to the base $AB$, and the triangle $DBC$ will be
equal to the triangle $ACB$ [Prop.˜1.4], the lesser to the greater. The very
notion (is) absurd [C.N.˜5]. Thus, $AB$ is not unequal to $AC$. Thus, (it is)
equal. Thus, if a triangle has two angles equal to one another then the sides
subtending the equal angles will also be equal to one another. (Which is) the very
thing it was required to show.

Proof Setup:
theorem proposition_6 : ∀ (a b c : Point) (AB BC AC : Line), formTriangle a b c AB BC

AC ∧ (∠ a:b:c = ∠ a:c:b) →(|(a--b)| = |(a--c)|) :=
Your Response:

euclid_intros
by_contra
by_cases |(a--b)| > |(a--c)|
. euclid_apply (proposition_3 b a a c AB AC) as d

euclid_apply (line_from_points d c) as DC
euclid_apply proposition_4 b d c c a b AB DC BC AC AB BC
euclid_finish

. euclid_apply (proposition_3 c a a b AC AB) as d
euclid_apply (line_from_points d b) as DB
euclid_apply (proposition_4 c d b b a c AC DB BC AB AC BC)
euclid_finish

--- End of Instruction ---

D.3. Proof Formalization (UniGeo)

To formalize UniGeo proofs, we likewise include those inference rules which were used in our manual formalization, as
well as the relevant theorems from Elements . Unlike for proofs from Elements, we randomly select shots from a separate
test set of UniGeo proofs. The guidelines are slightly different from Elements, to accommodate the different style of input
for UniGeo proofs.

--- Definitions ---
- Basic Geometric Sorts -
axiom Point : Type
axiom Line : Type
axiom Circle : Type

- Inductive Types for Geometric Entities -
inductive Angle | right | ofPoints (A B C : Point)
inductive Segment | endpoints (a b : Point)
inductive Triangle | ofPoints (a b c : Point)

- Notations and Macros for Geometric Entities -
"|(a--b)|" means the length of the line segment between point a and point b.
"∠ a:b:c" means the degree of the angle formed by points a, b, and c.
" " means the right angle.
"△ a:b:c" means the triangle formed from points a, b and c.
"Triangle.area △ a:b:c" means the area of the triangle formed by points a, b and c.

- Relations and Axioms for Geometric Sorts -
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namespace Point
def onLine (a : Point) (L : Line) -- point a is on line L.
def sameSide (a b : Point) (L : Line) -- point a and b are on the same side of line L.
def opposingSides (a b : Point) (L : Line) -- point a and b are on the opposite sides of

line L.
def collinear : (a b c : Point) -- points a, b and c are collinear.
end Point

namespace Line
def intersectsLine (L M : Line) -- two lines L and M intersect at some point.
def intersectsCircle (L : Line) (C : Circle) -- line L and circle C intersect.
end Line

namespace Circle
def onCircle (a: Point) (C: Circle) -- point a is on circle C.
def insideCircle (a: Point) (C: Circle) -- point a is inside circle C.
def outsideCircle (a: Point) (C: Circle)-- point a is outside circle C.
def isCentre (a: Point) (C: Circle) -- point a is on the center circle C.
def intersectsCircle (C1 C2: Circle) -- circle C1 and C2 intersect.
end Circle

namespace Triangle
-- triangle T1 and T2 are congruent (i.e satisfies the SAS, AAS, ASA or SSS condition)
def congruent (T1 T2 : Triangle)

-- triangle T1 and T2 are similar.
def similar (T1 T2 : Triangle)

-- If T1 and T2 are congruent, then the corresponding angles and sides are equal.
theorem congruent_if (T1 T2: Triangle): congruent T1 T2 → match T1,T2 with
| (Triangle.ofPoints A B C) ,(Triangle.ofPoints D E F) =>

|(A--B)| = |(D--E)| ∧ |(B--C)| = |(E--F)| ∧ |(A--C)| = |(D--F)| ∧ ∠ A:B:C = ∠ D:E:F
∧ ∠ A:C:B = ∠ D:F:E ∧ ∠ B:A:C = ∠ E:D:F

-- If T1 and T2 are similar, then the corresponding angles and the ratio of corresponding
sides are equal.

theorem similar_if (T1 T2: Triangle): similar T1 T2 → match T1,T2 with
| (Triangle.ofPoints A B C) ,(Triangle.ofPoints D E F) =>

|(A--B)| / |(D--E)| = |(B--C)| / |(E--F)| ∧ |(A--B)| / |(D--E)| = |(B--C)| / |(E--F)|
∧ |(C--A)| / |(F--D)| = |(A--B)| / |(D--E)| ∧ ∠ A:B:C = ∠ D:E:F
∧ ∠ A:C:B = ∠ D:F:E ∧ ∠ B:A:C = ∠ E:D:F

- Geometric Relations -
-- points a and b are distinct and on line L.
def distinctPointsOnLine (a b : Point) (L : Line)

-- line AB and BC intersect at point b.
def twoLinesIntersectAtPoint (AB BC : Line) (b : Point)

-- points a, b and c collinear and cyclically ordered.
def between (a b c : Point)

-- point a, b and c form a triangle, where point a and b are on line AB, point b and c are
on line BC, point a and c are on line CA.

def formTriangle (a b c : Point) (AB BC CA : Line)

-- point a, b and c form a rectilinear angle where a ̸=b and b ̸=c.
def formRectilinearAngle (a b c : Point) (AB BC : Line)

-- point a, b, d, c (in clockwise/counterclockwise order) form a parallelogram, a and b
are on line AB, c and d are on line CD, a and c are on line AC, b and d are on line BD

def formParallelogram (a b c d : Point) (AB CD AC BD : Line)

-- point a, b, d, c (in clockwise/counterclockwise order) form a quadrilateral, a and b
are on line AB, c and d are on line CD, a and c are on line AC, b and d are on line BD
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def formQuadrilateral (a b c d : Point) (AB CD AC BD : Line)

--- Axioms ---
- Construction Rules-
axiom extend_point : ∀ (L : Line) (b c : Point), distinctPointsOnLine b c L → ∃ a : Point

, (a.onLine L) ∧ (between b c a)

- Useful Lemmas from Euclid’s Elements Book I-
-- In isosceles triangles the angles at the base equal one another, and, if the equal

straight lines are produced further, then the angles under the base equal one another.
theorem proposition_5 : ∀ (a b c d e : Point) (AB BC AC : Line), formTriangle a b c AB BC

AC ∧ (|(a--b)| = |(a--c)|) ∧ (between a b d) ∧ (between a c e) → (∠ a:b:c) = (∠ a:c:b
) ∧ (∠ c:b:d) = (∠ b:c:e)

theorem proposition_5’ : ∀ (a b c : Point) (AB BC AC : Line), formTriangle a b c AB BC AC
∧ (|(a--b)| = |(a--c)|) → ((∠ a:b:c ) = ∠ a:c:b)

-- If a straight line stands on a straight line, then it makes either two right angles or
angles whose sum equals two right angles.

theorem proposition_13 : ∀ (a b c d : Point) (AB CD : Line), AB ̸= CD ∧
distinctPointsOnLine a b AB ∧ distinctPointsOnLine c d CD ∧ between d b c → ∠ c:b:a +
∠ a:b:d = +

-- If two straight lines cut one another, then they make the vertical angles equal to one
another.

theorem proposition_15 : ∀ (a b c d e : Point) (AB CD : Line), distinctPointsOnLine a b AB
∧ distinctPointsOnLine c d CD ∧ e.onLine AB ∧ e.onLine CD ∧ CD ̸= AB ∧ (between d e c
) ∧ (between a e b) → (∠ a:e:c ) = (∠ d:e:b) ∧ (∠ c:e:b ) = (∠ a:e:d)

-- If a straight line falling on two straight lines makes the alternate angles equal to
one another, then the straight lines are parallel to one another.

theorem proposition_27 : ∀ (a b c d e f : Point) (AB CD EF : Line), distinctPointsOnLine a
b AB ∧ distinctPointsOnLine c d CD ∧ distinctPointsOnLine e f EF ∧ (between a e b) ∧
(between c f d) ∧ (b.sameSide d EF) ∧ ∠ a:e:f = (∠ e:f:d) → ¬(AB.intersectsLine CD)

theorem proposition_27’ : ∀ (a d e f : Point) (AB CD EF : Line), distinctPointsOnLine a e
AB ∧ distinctPointsOnLine f d CD ∧ distinctPointsOnLine e f EF ∧ a.opposingSides d EF
∧ ∠ a:e:f = (∠ e:f:d) → ¬(AB.intersectsLine CD)

-- If a straight line falling on two straight lines makes the exterior angle equal to the
interior and opposite angle on the same side, or the sum of the interior angles on the
same side equal to two right angles, then the straight lines are parallel to one

another.
theorem proposition_28 : ∀ (a b c d e f g h : Point) (AB CD EF : Line),

distinctPointsOnLine a b AB ∧ distinctPointsOnLine c d CD ∧ distinctPointsOnLine e f
EF ∧ (between a g b) ∧ (between c h d) ∧ (between e g h) ∧ (between g h f) ∧ (b.
sameSide d EF) ∧ (∠ e:g:b = ∠ g:h:d ∨ ∠ b:g:h + ∠ g:h:d = + ) → ¬(AB.
intersectsLine CD)

-- A straight line falling on parallel straight lines makes the alternate angles equal to
one another, the exterior angle equal to the interior and opposite angle, and the sum
of the interior angles on the same side equal to two right angles.

theorem proposition_29 : ∀ (a b c d e f g h : Point) (AB CD EF : Line),
distinctPointsOnLine a b AB ∧ distinctPointsOnLine c d CD ∧ distinctPointsOnLine e f
EF ∧ (between a g b) ∧ (between c h d) ∧ (between e g h) ∧ (between g h f) ∧ (b.
sameSide d EF) ∧ ¬(AB.intersectsLine CD) → ∠ a:g:h = ∠ g:h:d ∧ ∠ e:g:b = ∠ g:h:d ∧
∠ b:g:h + ∠ g:h:d = +

theorem proposition_29’ : ∀ (a b c d e g h : Point) (AB CD EF : Line),
distinctPointsOnLine a b AB ∧ distinctPointsOnLine c d CD ∧ distinctPointsOnLine g h
EF ∧ (between a g b) ∧ (between c h d) ∧ (between e g h) ∧ (b.sameSide d EF) ∧ ¬(AB.
intersectsLine CD) → ∠ a:g:h = ∠ g:h:d ∧ ∠ e:g:b = ∠ g:h:d ∧ ∠ b:g:h + ∠ g:h:d = +

theorem proposition_29’’ : ∀ (a b d g h : Point) (AB CD GH : Line), distinctPointsOnLine a
b AB ∧ distinctPointsOnLine h d CD ∧ distinctPointsOnLine g h GH ∧ (between a g b) ∧
(b.sameSide d GH) ∧ ¬(AB.intersectsLine CD) → ∠ a:g:h = ∠ g:h:d ∧ ∠ b:g:h + ∠ g:h:d
= +

theorem proposition_29’’’ : ∀ (a d g h : Point) (AB CD GH : Line),distinctPointsOnLine a g

33



Autoformalizing Euclidean Geometry

AB ∧ distinctPointsOnLine h d CD ∧ distinctPointsOnLine g h GH ∧a.opposingSides d GH
∧ ¬(AB.intersectsLine CD) → ∠ a:g:h = ∠ g:h:d

theorem proposition_29’’’’ : ∀ (b d e g h : Point) (AB CD EF : Line), distinctPointsOnLine
g b AB ∧ distinctPointsOnLine h d CD ∧ distinctPointsOnLine e h EF ∧ between e g h ∧
b.sameSide d EF ∧ ¬(AB.intersectsLine CD) → ∠ e:g:b = ∠ g:h:d

theorem proposition_29’’’’’ : ∀ (b d g h : Point) (AB CD EF : Line), distinctPointsOnLine
g b AB ∧ distinctPointsOnLine h d CD ∧ distinctPointsOnLine g h EF ∧ b.sameSide d EF
∧ ¬(AB.intersectsLine CD) → ∠ b:g:h + ∠ g:h:d = +

-- In any triangle, if one of the sides is produced, then the exterior angle equals the
sum of the two interior and opposite angles, and the sum of the three interior angles
of the triangle equals two right angles.

theorem proposition_32 : ∀ (a b c d : Point) (AB BC AC : Line), formTriangle a b c AB BC
AC ∧ (between b c d) → ∠ a:c:d = ∠ c:a:b + ∠ a:b:c ∧ ∠ a:b:c + ∠ b:c:a + ∠ c:a:b =
+

-- In parallelogrammic areas the opposite sides and angles equal one another, and the
diameter bisects the areas.

theorem proposition_34 : ∀ (a b c d : Point) (AB CD AC BD BC : Line), formParallelogram a
b c d AB CD AC BD ∧ distinctPointsOnLine b c BC → |(a--b)| = |(c--d)| ∧ |(a--c)| = |(
b--d)| ∧ ∠ a:b:d = ∠ a:c:d ∧ ∠ b:a:c = ∠ c:d:b ∧ Triangle.area △ a:b:c = Triangle.
area △ d:c:b

theorem proposition_34’ : ∀ (a b c d : Point) (AB CD AC BD : Line), formParallelogram a b
c d AB CD AC BD → |(a--b)| = |(c--d)| ∧ |(a--c)| = |(b--d)| ∧ ∠ a:b:d = ∠ a:c:d ∧ ∠
b:a:c = ∠ c:d:b

--- Proof DSL ---
Your response must be a tactic proof in the LeanEuclid proof DSL. This DSL is built from

the following tactics:
You need to formalize each key step (lemma) in the given proof and prove it by ’have <name

> : <claim> := by <proof>’

1. euclid_intros
It introduces universally quantified variables and premises of the current goal into the

proof context. No names required.

2. euclid_apply <rule> <args>
If <rule> has the form ∀ (<args> : Types) ... P -> Q, it instantiates <rule> with <args>,

and attempts to prove premise P from the local proof context using the above axioms.
If successful, propsition Q is added to the proof context.

usage examples :
euclid_apply proposition_13 A B C D AB CD -- This proves that ∠ C:B:A + ∠ A:B:D = +

If <rule> has the form ∀ (<args> : Types) ... P -> ∃ x . Q(x), this tactic instantiates <
rule> with <args>, and attempts to prove premise P from the local proof context using
the above axioms. If successful, object x and premise Q(x) are added to the proof
context.

usage examples:
euclid_apply extend_point L a b as c -- This creates a point c on line L such that b is

between a and c.

3. euclid_assert <P>
It attempts to prove proposition <P> from the current proof context and the above axioms.

4. euclid_finish
It attempts to resolve the proof goal using the current proof context and the above axioms

.

5. use <X>
This tactic proves an existentially quantified proposition by providing the witness <X>

for the quantifier.

6. have <name> : <claim> := by <proof>
This tactic proves a lemma <claim>. The <name> is optional, and you need to use

euclid_finish at the end of <proof>. If <claim> is already in premise, you can use
directly use.
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In case the <proof> only contains euclid_finish, you can directly use euclid_assert <claim
> for simplicity.

--- Guidelines ---
1. Response Format: Present your proof within THREE angle brackets by <<<Your Proof>>>. Do

not add any annotations/explanations in your proof. Do not use markdown syntax.
2. You should not use other imperative Lean tactics, such as ’rw’ or ’simp’. You should

only use the above declarative tactics.
--- End of Instruction ---

E. Theorem Statement Autoformalization
E.1. Successful Formalizations

As mentioned in the paper, some of the successful predictions proven correct by E3 were actually syntactic matches with
their ground truth formalizations; these cases are not interesting, since existing syntactic evaluation techniques can identify
these are correct. What is interesting are cases where the prediction is not a syntactic match with its ground truth. Even a
small deviation (e.g., writing ∠ABC rather than ∠BAC) may or may not affect the semantics of the result, depending on
the context. It is these cases for which E3 offers an improvement over syntactic or manual evaluation methods. We highlight
some such cases here.

Proposition 8, GPT-4V, 5-shot. Consider Proposition 8 of Elements, whose abridged version used for autoformalization
of theorem statements reads as follows:

If two triangles have two sides equal to two sides, respectively, and also have the base equal to the base, then they will also
have equal the angles encompassed by the equal straight-lines. Let ABC and DEF be two triangles having the two sides
AB and AC equal to the two sides DE and DF , respectively. (That is) AB to DE, and AC to DF . Let them also have the
base BC equal to the base EF . I say that the angle BAC is also equal to the angle EDF ... So the angle BAC will also

coincide with angle EDF , and will be equal to it [C.N. 4]. Thus, if two triangles have two sides equal to two side,
respectively, and have the base equal to the base, then they will also have equal the angles encompassed by the equal

straight-lines

The formalization generated by GPT-4 from this text is as follows, alongside our ground truth formalization:

prediction :
∀ (a b c d e f : Point) (AB AC BC DE DF EF : Line),
formTriangle a b c AB AC BC ∧ formTriangle d e f DE DF EF ∧
|(a--b)| = |(d--e)| ∧ |(a--c)| = |(d--f)| ∧ |(b--c)| = |(e--f)| →
(∠ a:b:c = ∠ d:e:f)

ground :
∀ (a b c d e f : Point) (AB BC AC DE EF DF : Line),
formTriangle a b c AB BC AC ∧ formTriangle d e f DE EF DF ∧
|(a--b)| = |(d--e)| ∧ |(a--c)| = |(d--f)| ∧ |(b--c)| = |(e--f)| →
(∠ b:a:c) = (∠ e:d:f)

Syntactically, there are four differences between the two propositions: in each of the formTriangle clauses, we have
swapped two sets of lines BC 7→ AC and EF 7→ DF , and in the postcondition, we have also swapped points b 7→ a and
e 7→ d. This is a good example of a set of simple perturbations whose validity may not be immediately obvious to a human
grader. However, E3 is easily able to prove that these propositions are indeed equivalent.

Proposition 10, GPT-4, 1-shot. Consider Proposition 10 of Elements:

“To cut a given finite straight-line in half. Let AB be the given finite straight-line. So it is required to cut the finite
straight-line AB in half... Thus, the base AD is equal to the base BD [Prop. 1.4]. Thus, the given finite straight-line AB

has been cut in half at (point) D.”

When formalizing this statement, one has to specify that point D lies halfway between A and B. Our ground truth
formalization formalizes this by asserting that D lies between A and B, and the length |AD| is equal to the length |BD|.
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ground :
∀ (a b : Point) (AB : Line),
distinctPointsOnLine a b AB →
∃ d : Point, between a d b ∧ |(a--d)| = |(d--b)|

However, there is another way to specify that D lies exactly halfway between A and B, as suggested by GPT-4 – namely, by
specifying that, in addition to |AD| = |BD|, we have |AD|+ |BD| = |AB|:

prediction:
∀ (a b : Point) (AB : Line),
distinctPointsOnLine a b AB →
∃ d : Point, |(a--d)| = |(b--d)| ∧ |(d--b)| + |(a--d)| = |(a--b|

E3 is able to fill the gap between the two formulations.

Proposition 20, GPT-4, 1-shot. Consider Proposition 20 of Elements:

In any triangle, (the sum of) two sides taken together in any (possible way) is greater than the remaining (side). For let
ABC be a triangle. I say that in triangle ABC (the sum of) two sides taken together in any (possible way) is greater than
the remaining (side)... (So), (the sum of) BA and AC (is greater) than BC, (the sum of) AB and BC than AC, and (the
sum of) BC and CA than AB. Thus, (the sum of) BA and AC is greater than BC. Similarly, we can show that (the sum
of) AB and BC is also greater than CA, and (the sum of) BC and CA than AB. Thus, in any triangle, (the sum of) two

sides taken together in any (possible way) is greater than the remaining (side)

In the text, Euclid explicitly mentions each combination of distinct line segments explicitly. However, when formalizing the
theorem statement, it is not necessary to do so. All combinations are covered by the following concise formulation:

ground :
∀ (a b c : Point) (AB BC AC : Line),
formTriangle a b c AB BC AC →
|(b--a)| + |(a--c)| > |(b--c)|)

Since this simplification is not obvious to the model, it will instead attempt to enumerate each for the combinations
mentioned:

prediction :
∀ (a b c : Point) (AB BC CA : Line),
formTriangle a b c AB BC CA →
(|(a--b)| + |(b--c)| > |(a--c)|) ∧
(|(a--b)| + |(a--c)| > |(b--c)|) ∧
(|(b--c)| + |(a--c)| > |(a--b)|)

Using only a syntactic similarity metric, one might judge the prediction poorly since it nearly doubles the character length
of the ground truth formalization. However, E3 correctly identifies them as semantically equivalent.

E.2. False Negatives

As mentioned in the paper, E3 is occasionally unable to verify reasonable predictions. Based on our sample size, we estimate
the false negative rate to be approximately 15%. Here, we share the false negatives we found while manually evaluating the
results from GPT-4 and GPT-4V (k = 5) in Experiment #1.

Proposition 1, Both Models, 5-shot. Two of our false negatives were the same formalization of Proposition 1, whose text
reads:

“To construct an equilateral triangle on a given finite straight-line. Let AB be the given finite straight-line... Thus, the three
(straight-lines) CA, AB, and BC are equal to one another. Thus, the triangle ABC is equilateral, and has been constructed

on the given finite straight-line AB”.
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Our ground truth formalization is as follows:

ground:
∀ (a b : Point) (AB : Line), distinctPointsOnLine a b AB →
∃ c : Point, |(c--a)| = |(a--b)| ∧ |(c--b)| = |(a--b)|

The prediction which E3 is unable to prove equivalent is

1 prediction:
2 ∀ (a b : Point) (AB : Line), distinctPointsOnLine a b AB →
3 ∃ (c : Point) (AC BC : Line), formTriangle a b c AB BC AC ∧
4 |(a-- b)| = |(b-- c)| ∧ |(a-- c)| = |(a-- b)|

During equivalence checking, E3 is unable to apply the construction rules required to form lines AC and BC.

Proposition 11, Text-based, 5-shot. Another false negative came from Proposition 11, which reads:

“To draw a straight-line at right-angles to a given straight-line from a given point on it. Let AB be the given straight-line,
and C the given point on it. So it is required to draw a straight-line from the point C at right-angles to the straight-line AB.

Thus, the straight-line CF has been drawn at right-angles to the given straight-line AB from the given point C on it.”

Our ground truth formalization is as follows:

ground :
∀ (a b c : Point) (AB : Line), distinctPointsOnLine a b AB ∧ between a c b →
∃ f : Point, ¬(f.onLine AB) ∧ ∠ a:c:f =

This formalization reflects the diagram in the souce material, in which the point C around which the right angle is constructed
indeed lies between A and B. However, the only real requirement in the formalization is to ensure that there is a right angle
against line AB.

The prediction which is rejected by E3 is as follows:

prediction:
∀ (a b c : Point) (AB : Line), distinctPointsOnLine a b AB ∧ c.onLine AB
→ ∃ (f : Point), (∠ a:c:f) = ∧ (∠ b:c:f) =

Which captures the essence of the theorem. Both theorems are actually true, and are each reasonable formalizations of the
given statement, but E3 is unable to prove their equivalence. In addition to revealing the limitations of the tool, this also
reflects the difficulty in building a dataset which can anticipate all possible ways of formalizing a natural language theorem.

E.3. False Positive

As mentioned in the paper, we did not encounter indications of soundness bugs in our experiment results. However, we did
encounter one instance of a proposition which was proven correct by E3, despite being an “incorrect” formalization of the
given proposition. The instance is from the UniGeo/Congruent dataset, which amounts to proving that, with respect to the
diagram in Fig. B, if |TU | = |VW | and TU is parallel to VW , then the triangles formed by points TUV and TVW are
congruent.

Our ground truth formalization is as follows:

ground :
∀ (T U V W : Point) (TU UV TV VW TW : Line),
formTriangle T U V TU UV TV ∧ formTriangle T V W TV VW TW ∧
U.opposingSides W TV ∧ |(T--U)| = |(V--W)| ∧¬ TU.intersectsLine VW →
△ T:U:V).congruent (△ V:W:T)

One of the predictions generated by GPT-4v is given as follows:

1 prediction :
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Figure B. Diagrammatic input for UniGeo proof/Congruent Thm02

2 ∀ (U V W T : Point) (UV VT TW WT : Line),
3 formQuadrilateral U V W T UV VT TW WT ∧
4 |(T--U)| = |(V--W)| ∧ ¬(UV.intersectsLine WT) →
5 (△ T:U:V).congruent (△ V:W:T)

In this case, the formalization does not quite line up with the text of the proposition; the statement assumes a quadrilateral
rather than two triangles, and the premises refer to UV and WT being parallel rather than TU and VW , despite still
assuming TU = VW . Of course, the statement is still true, and in fact E3 is able to prove they are equivalent; however, this
is not quite a “faithful” formalization of the text.

E.4. Unsatisfiable Statements

E3 did not identify any unsatisfiable predictions during our final rounds of experiments, but we did encounter a few such
cases during preliminary experiments and testing; we include them here for the interested reader, as well as to emphasize the
importance of rigorous semantic validation.

Proposition 11, GPT-4, 5-shot. Consider the following:

prediction :
∀ (a b c : Point) (AB : Line),
c.onLine AB →
∃ (CF : Line), c.onLine CF ∧ ¬ (AB.intersectsLine CF) ∧ ∠ a:c:b =

E3 correctly identifies this proposition as unsatisfiable, since, if c is on CF , and c is on AB, then obviously these lines must
intersect.

Proposition 46, GPT-4, 5-shot. Consider the following:

prediction:
∀ (a b : Point) (AB : Line), distinctPointsOnLine a b AB → ∃ (c d : Point) (AC BD :

Line), formQuadrilateral a d c b AB BD AC BD ∧ |(a-- b)| = |(b-- c)| ∧ |(c-- d)| = |(
d-- a)| ∧ ∠ a:b:c = ∧ ∠ b:c:d = ∧ ∠ c:d:a = ∧ ∠ d:a:b =

E3 correctly identifies this proposition as unsatisfiable. The cause is that, in the application of formQuadrilateral, the
line BD is given as an argument twice. However, formQuadrilateral requires that all its inputs are distinct objects.

Proposition 48, GPT-4, 5-shot. Consider the following prediction, which is stating the converse direction of the
Pythagorean theorem:

prediction:
∀ (a b c : Point) (AB AC BC : Line),
formTriangle a b c AB AC BC ∧
|(b--c)| * |(b--c)| = |(a--b)| * |(a--b)| + |(a--c)| * |(a--c)| →
∠ a:b:c =

Obviously, if |BC|2 = |AB|2 + |AC|2, then BC must be the hypotenuse of the triangle, so the right angle cannot be around
point B. E3 is able to identify this impossibility.
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E.5. The Approximate Logical Equivalence Procedure

As shown in Fig. 3, the approximate equivalence checker attempts to quantify how “semantically close” one theroem
statement is to another. The intention is to allow us to distinguish “close” formalizations from “junk” ones. We provide a
more detailed description of how this procedure works.

We assume we are given a ground truth formula Tgt and a prediction Tgt such that the two formulas agree on the quantity
and types of their bound variables. The goal is to find a unification ρ between bound variables in Tgt and Tgt with which we
can prove the equivalence of the preconditions and postconditions of the two formulae. Obviously, the number of potential
unifications is factorial in the number of variables, so we fix some upper bound n on the number of unifications we consider,
and rank candidates using a string similarity heuristic.

Having fixed a unification ρ of variables in Tpred with variables in Tgt, let T ′
pred be the result of renaming the variables in

Tpred with variables in Tgt according to ρ. Assuming T ′
pred and Tgt are both well-formed statements in E, we can extract

the sets {pi} and {qi} containing the pre/post-conditions of Tgt, respectively, and likewise the set {ri} and {si} containing
the pre/postconditions of T ′

pred. We then perform a four-step process: (1) Assuming
∧

i pi try to prove each rj (2) Assuming∧
i ri, try to prove each pj (3) Assuming

∧
i qi, try to prove each sj (4) Assuming

∧
i si, try to prove each qj .

If steps (1) and (2) are both successful (meaning that the preconditions of the formulae were proven equivalent), then the
preconditions are included as additional assumptions for steps (3) and (4). For each step, E3 records how many obligations
were able to be proved. The results are then aggregated for each of the n unifications of bound variables, which can then be
evaluated by any number of metrics. For instance, Fig. 3 compares the formalization instances using the ratio of clauses
solved across steps (1)–(4).

F. Proof Autoformalization
F.1. Quantitative Results

As mentioned in the paper, only two proofs from Elements were able to be formalized correctly out-of-the-box. For the
remaining 43 proofs, we wished to quantify how “good” the proofs are by computing the degree of modification introduced
during the repair process, as measured by the Levenshtein ratio. The results of this process for the (incomplete) proofs
autoformalized by GPT-4 and GPT-4V are shown in Fig. C and Fig. D, respectively. Obviously, this is not a perfect metric –
for instance, a tactic invoking proposition 6 may only differ in a single character with one invoking proposition 7.
However, we find that these kinds of major conceptual errors, where the model chooses an entirely irrelevant theorem or
rule, are quite rare. The majority of modifications necessary to repair proofs (as shown by the exemplars below) are simply
rearranging arguments to tactics or modifying one variant of a theorem for another (e.g., proposition 9 versus the variant
proposition 9′).

F.2. Correctly Formalized Proofs from Elements

The same two proofs – Proposition 1 and Proposition 17 – were correctly formalized out-of-the-box by GPT-4 and GPT4-V.
Both of these are relatively simple proofs. Nevertheless, they serve as good exemplars of how LeanEuclid’s proof language
supports simple, elegant and faithful formalizations of the natural language proof.

Proposition 1, GPT-4V. Natural language proof:

“To construct an equilateral triangle on a given finite straight-line. Let AB be the given finite straight-line. So it is required
to construct an equilateral triangle on the straight-line AB. Let the circle BCD with center A and radius AB have been

drawn [Post. 3], and again let the circle ACE with center B and radius BA have been drawn [Post. 3].And let the
straight-lines CA and CB have been joined from the point C, where the circles cut one another, to the points A and B

(respectively) [Post. 1].And since the point A is the center of the circle CDB, AC is equal to AB [Def. 1.15]. Again,since
the point B is the center of the circle CAE, BC is equal to BA [Def. 1.15]. But CA was also shown (to be) equal to AB.
Thus, CA and CB are each equal to AB. But things equal to the same thing are also equal to one another [C.N. 1]. Thus,
CA is also equal to CB. Thus, the three (straight-lines) CA, AB, and BC are equal to one another.Thus, the triangle ABC
is equilateral, and has been constructed on the given finite straight-line AB. (Which is) the very thing it was required to do.”

Autoformalized proof:
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Figure C. Levenshtein ratio between autoformalized and repaired Elements proofs generated by GPT-4 (5-shot).

theorem prop1_prediction : ∀ (a b : Point) (AB : Line), distinctPointsOnLine a b AB → ∃ c
: Point, |(c--a)| = |(a--b)| ∧ |(c--b)| = |(a--b)|:=

by euclid_intros
euclid_apply circle_from_points a b as BCD
euclid_apply circle_from_points b a as ACE
euclid_apply intersection_circles BCD ACE as c
euclid_apply line_from_points c a as CA
euclid_apply line_from_points c b as CB
euclid_apply point_on_circle_if a b c BCD
euclid_apply point_on_circle_if b a c ACE
use c
euclid_finish

Proposition 17, GPT-4V. Natural language proof:

“For any triangle, (the sum of) two angles taken together in any (possible way) is less than two right-angles. Let ABC be a
triangle. I say that (the sum of) two angles of triangle ABC taken together in any (possible way) is less than two

right-angles. For let BC have been produced to D. And since the angle ACD is external to triangle ABC, it is greater than
the internal and opposite angle ABC [Prop. 1.16].

Let ACB have been added to both. Thus, the (sum of the angles) ACD and ACB is greater than the (sum of the angles)
ABC and BCA. But, (the sum of) ACD and ACB is equal to two right-angles [Prop. 1.13]. Thus, (the sum of) ABC and

BCA is less than two right-angles. Similarly, we can show that (the sum of) BAC and ACB is also less than two
right-angles, and further (that the sum of) CAB and ABC (is less than two right-angles). Thus, for any triangle, (the sum
of) two angles taken together in any (possible way) is less than two right-angles. (Which is) the very thing it was required to

show.”

Autoformalized proof:

theorem prop_17_prediction : ∀ (a b c : Point) (AB BC AC : Line), formTriangle a b c AB BC
AC → (∠ a:b:c) + (∠ b:c:a) < + :=

by euclid_intros
euclid_apply extend_point BC b c as d
euclid_apply proposition_16 a b c d AB BC AC
euclid_apply proposition_13 a c b d AC BC
euclid_finish
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Figure D. Levenshtein ratio between autoformalized and repaired Elements proofs generated by GPT-4V (5-shot).

F.3. Partiallly Correct Autoformalized Proofs from Elements

Here, we showcase some attempts at autoformalizing proofs from Elements which, despite being incorrect, require only
minor modifications to be repaired. These exemplars demonstrate that, in many cases, the steps required to repair the proof
do not require creative insight. Moreover, we believe this process is quite amenable to automation.

Proposition 3, GPT-4. Natural language proof:

“For two given unequal straight-lines, to cut off from the greater a straight-line equal to the lesser. Let AB and C be the two
given unequal straight-lines, of which let the greater be AB. So it is required to cut off a straight-line equal to the lesser C

from the greater AB. Let the line AD, equal to the straight-line C, have been placed at point A [Prop. 1.2]. And let the
circle DEF have been drawn with center A and radius AD [Post. 3]. And since point A is the center of circle DEF , AE is
equal to AD [Def. 1.15]. But, C is also equal to AD. Thus, AE and C are each equal to AD. So AE is also equal to C

[C.N. 1]. Thus, for two given unequal straight-lines, AB and C, the (straight-line) AE, equal to the lesser C, has been cut
off from the greater AB. (Which is) the very thing it was required to do.”

Autoformalized Proof:

def prop3_prediction : ∀ (a b c0 c1 : Point) (AB C : Line),
distinctPointsOnLine a b AB ∧ distinctPointsOnLine c0 c0 C ∧ a ̸= c0 ∧
|(a--b)| > |(c0--c1)| →

∃ e, between a e b ∧ |(a--e)| = |(c0--c1)| :=
by

euclid_intros
euclid_apply (proposition_2 a c0 c1 C) as d
euclid_apply (circle_from_points a d) as DEF
euclid_apply (intersection_circle_line DEF AB) as (e, f)
euclid_apply (point_on_circle_onlyif a d e DEF)
euclid_apply between_if a e b
use e
euclid_finish

To prove the precondition for between if, we need the fact between a e b, which is not provable from the preceding
tactics. To repair this proof, we can use a stronger version of intersection circle line on Line 9.

Repaired Proof:

def prop3_repaired : ∀ (a b c0 c1 : Point) (AB C : Line),
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distinctPointsOnLine a b AB ∧ distinctPointsOnLine c0 c0 C ∧ a ̸= c0 ∧
|(a--b)| > |(c0--c1)| →

∃ e, between a e b ∧ |(a--e)| = |(c0--c1)| :=
by

euclid_intros
euclid_apply (proposition_2 a c0 c1 C) as d
euclid_apply (circle_from_points a d) as DEF
euclid_apply (intersection_circle_line_between_points DEF AB a b) as e
euclid_apply (point_on_circle_onlyif a d e DEF)
euclid_apply between_if a e b
use e
euclid_finish

Proposition 5, GPT-4. Natural language proof:

“For isosceles triangles, the angles at the base are equal to one another, and if the equal sides are produced then the angles
under the base will be equal to one another. Let ABC be an isosceles triangle having the side AB equal to the side AC, and
let the straight-lines BD and CE have been produced in a straight-line with AB and AC (respectively) [Post. 2]. I say that
the angle ABC is equal to ACB, and (angle) CBD to BCE. For let the point F have been taken at random on BD, and
let AG have been cut off from the greater AE, equal to the lesser AF [Prop. 1.3]. Also, let the straight-lines FC and GB
have been joined [Post. 1]. In fact, since AF is equal to AG, and AB to AC, the two (straight-lines) FA, AC are equal to
the two (straight-lines) GA, AB, respectively. They also encompass a common angle, FAG. Thus, the base FC is equal to
the base GB, and the triangle AFC will be equal to the triangle AGB, and the remaining angles subtended by the equal
sides will be equal to the corresponding remaining angles [Prop. 1.4]. (That is) ACF to ABG, and AFC to AGB. And
since the whole of AF is equal to the whole of AG, within which AB is equal to AC, the remainder BF is thus equal to
the remainder CG [C.N. 3]. But FC was also shown (to be) equal to GB. So the two (straight-lines) BF , FC are equal to

the two (straight-lines) CG, GB, respectively, and the angle BFC (is) equal to the angle CGB, and the base BC is
common to them. Thus, the triangle BFC will be equal to the triangle CGB, and the remaining angles subtended by the
equal sides will be equal to the corresponding remaining angles [Prop. 1.4]. Thus, FBC is equal to GCB, and BCF to
CBG. Therefore, since the whole angle ABG was shown (to be) equal to the whole angle ACF , within which CBG is
equal to BCF , the remainder ABC is thus equal to the remainder ACB [C.N. 3]. And they are at the base of triangle
ABC. And FBC was also shown (to be) equal to GCB. And they are under the base. Thus, for isosceles triangles, the

angles at the base are equal to one another, and if the equal sides are produced then the angles under the base will be equal
to one another. (Which is) the very thing it was required to show.”

Autoformalized Proof:

def prop5_prediction : ∀ (a b c d e : Point) (AB BC AC : Line), formTriangle a b c AB BC
AC ∧ |(a--b)| = |(a--c)| ∧ between a b d ∧ between a c e → ∠a:b:c = ∠a:c:b ∧ ∠c:b:d
= ∠b:c:e :=

by euclid_intros
euclid_apply (exists_point_between_points_on_line AB b d) as f
euclid_apply (proposition_3 e a a f AC AB) as g
euclid_apply (line_from_points f c) as FC
euclid_apply (line_from_points g b) as GB
euclid_apply proposition_4 f a c g a b FC AC GB AB AC AB
euclid_apply (between_if f b a)
euclid_apply (between_if g c a)
euclid_apply (proposition_4 b f c c g b AB FC BC GB BC AB)
use f, g, FC, GB
euclid_finish

In order to prove the preconditions for proposition 3, we need to know |ba| < |ce|, which can be obtained via a stronger
version of exists point between points on line on Line 2. We also need to rearrange some of the arguments on in
the invocations of proposition 3 and proposition 4. Finally, we can remove the invocation of tactic use entirely, since
it is inapplicable in this proof context.

Repaired Proof:
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def prop5_repaired : ∀ (a b c d e : Point) (AB BC AC : Line), formTriangle a b c AB BC AC
∧ |(a--b)| = |(a--c)| ∧ between a b d ∧ between a c e → ∠a:b:c = ∠a:c:b ∧ ∠c:b:d =
∠b:c:e :=

by euclid_intros
euclid_apply (point_between_points_shorter_than AB b d (c--e)) as f
euclid_apply (proposition_3 a e f a AC AB) as g
euclid_apply (line_from_points f c) as FC
euclid_apply (line_from_points b g) as GB
euclid_apply proposition_4 a f c a g b AB FC AC AC GB AB
euclid_apply (between_if f b a)
euclid_apply (between_if g c a)
euclid_apply (proposition_4 f b c g c b AB BC FC AC BC GB)
euclid_finish

Proposition 7, GPT-4. Natural language proof:

On the same straight-line, two other straight-lines equal, respectively, to two (given) straight-lines (which meet) cannot be
constructed (meeting) at a different point on the same side (of the straight-line), but having the same ends as the given

straight-lines. For, if possible, let the two straight-lines AC, CB, equal to two other straight-lines AD, DB, respectively,
have been constructed on the same straight-line AB, meeting at different points, C and D, on the same side (of AB), and
having the same ends (on AB). So CA is equal to DA, having the same end A as it, and CB is equal to DB, having the
same end B as it. And let CD have been joined [Post. 1]. Therefore, since AC is equal to AD, the angle ACD is also
equal to angle ADC [Prop. 1.5]. Thus, ADC (is) greater than DCB [C.N. 5]. Thus, CDB is much greater than DCB

[C.N. 5]. Again, since CB is equal to DB, the angle CDB is also equal to angle DCB [Prop. 1.5]. But it was shown that
the former (angle) is also much greater (than the latter). The very thing is impossible. Thus, on the same straight-line, two

other straight-lines equal, respectively, to two (given) straight-lines (which meet) cannot be constructed (meeting) at a
different point on the same side (of the straight-line), but having the same ends as the given straight-lines. (Which is) the

very thing it was required to show.

Autoformalized Proof:

def prop7_prediction : ∀ (a b c d : Point) (AB AC CB AD DB CD : Line),
distinctPointsOnLine a b AB ∧ distinctPointsOnLine a c AC ∧ distinctPointsOnLine c b
CB ∧ distinctPointsOnLine a d AD ∧ distinctPointsOnLine d b DB ∧ Point.sameSide c d AB
∧ distinctPointsOnLine c d CD ∧ Point.sameSide a b CD ∧ Point.sameSide d b AC ∧ |(a
--c)| = |(a--d)| ∧ |(c--b)| = |(d--b)| → False :=

by euclid_intros
euclid_apply (line_from_points c d) as CD
euclid_apply proposition_5 c a d AC AD CD
euclid_apply proposition_5 c b d CB DB CD
by_cases (∠c:a:d) > (∠ d:c:b)
. euclid_apply proposition_5’ c a d b AC AD CD AB

euclid_finish
. by_cases (∠ c:b:d) > (∠ d:c:b)

. euclid_apply proposition_5’ c b d a CB DB CD AB
euclid_finish

. euclid_finish

The rule proposition 5 takes five points and three lines as argument, whereas the variant proposition 5′ takes three of
each. It is easiest to fix the fourth and fifth tactics by instead invoking the latter theorem (and tweaking the arguments). The
euclid apply within the case analysis also need repairing, since they are using too many arguments. These tactics are
actually redundant, since euclid finish can complete the proof. Nevertheless, simply ommitting the last point and line
from each tactic is sufficient to make the proof go through.

Repaired Proof:

def prop7_repaired : ∀ (a b c d : Point) (AB AC CB AD DB CD : Line), distinctPointsOnLine
a b AB ∧ distinctPointsOnLine a c AC ∧ distinctPointsOnLine c b CB ∧
distinctPointsOnLine a d AD ∧ distinctPointsOnLine d b DB ∧ Point.sameSide c d AB ∧
distinctPointsOnLine c d CD ∧ Point.sameSide a b CD ∧ Point.sameSide d b AC ∧ |(a--c)|
= |(a--d)| ∧ |(c--b)| = |(d--b)| → False :=
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by
euclid_intros
euclid_apply line_from_points c d as CD’
euclid_apply proposition_5’ a c d AC CD AD
euclid_apply proposition_5’ b c d CB CD DB
by_cases (∠ c:a:d) > (∠ d:c:b)
. euclid_apply proposition_5’ c a d AC AD CD

euclid_finish
. by_cases (∠ c:b:d) > (∠ d:c:b)

. euclid_apply proposition_5’ c b d CB DB CD
euclid_finish

. euclid_finish

Proposition 18, GPT-4V. Natural language proof:

“In any triangle, the greater side subtends the greater angle. For let ABC be a triangle having side AC greater than AB. I
say that angle ABC is also greater than BCA. For since AC is greater than AB, let AD be made equal to AB [Prop. 1.3],

and let BD have been joined. And since angle ADB is external to triangle BCD, it is greater than the internal and
opposite (angle) DCB [Prop. 1.16]. But ADB (is) equal to ABD, since side AB is also equal to side AD [Prop. 1.5].
Thus, ABD is also greater than ACB. Thus, ABC is much greater than ACB. Thus, in any triangle, the greater side

subtends the greater angle. (Which is) the very thing it was required to show.”

Autoformalized Proof:

def prop18_prediction : ∀ (a b c : Point) (AB BC AC : Line), formTriangle a b c AB BC AC
∧ (|(a --c)| > |(a--b)|) → (∠ a:b:c > ∠ b:c:a):=

by euclid_intros
euclid_apply proposition_3 a c a b AC AB as d
euclid_apply line_from_points b d as BD
euclid_apply proposition_16 a b d c AB BD AC
euclid_apply proposition_5 a b d AB BD as H1
euclid_apply proposition_6 a b d AB BD AC
euclid_finish

The second tactic does not provide the right number of arguments to proposition 3, but it does for proposition 3′. The
preconditions of the invocation of proposition 16 are not provable from the preceding steps, but we can permute points
and a, b, c to recover a valid tactic. The invocation of proposition 5 has the same problem as proposition 3 , and is
replaced with proposition 5′. Also, the keyword “as” can only be used for constructive theorems, which proposition 5

is not. We can simply drop “as H1” and the proof goes through.

Repaired Proof:

def prop18_repaired : ∀ (a b c : Point) (AB BC AC : Line), formTriangle a b c AB BC AC ∧
(|(a --c)| > |(a--b)|) → ((∠ a:b:c) > ∠ b:c:a):=
euclid_intros
euclid_apply proposition_3’ a c a b AC AB as d
euclid_apply line_from_points b d as BD
euclid_apply proposition_16 b c d a BC AC BD
euclid_apply proposition_5’ a b d AB BD AC
euclid_apply proposition_6 a b d AB BD AC
euclid_finish

Proposition 34, GPT-4V. Natural language proof:

“In parallelogrammic figures the opposite sides and angles are equal to one another, and a diagonal cuts them in half. Let
ACDB be a parallelogrammic figure, and BC its diagonal. I say that for parallelogram ACDB, the opposite sides and

angles are equal to one another, and the diagonal BC cuts it in half. For since AB is parallel to CD, and the straight-line
BC has fallen across them, the alternate angles ABC and BCD are equal to one another [Prop. 1.29]. Again, since AC is
parallel to BD, and BC has fallen across them, the alternate angles ACB and CBD are equal to one another [Prop. 1.29].
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So ABC and BCD are two triangles having the two angles ABC and BCA equal to the two (angles) BCD and CBD,
respectively, and one side equal to one side—the (one) by the equal angles and common to them, (namely) BC. Thus, they

will also have the remaining sides equal to the corresponding remaining (sides), and the remaining angle (equal) to the
remaining angle [Prop. 1.26]. Thus, side AB is equal to CD, and AC to BD. Furthermore, angle BAC is equal to CDB.
And since angle ABC is equal to BCD, and CBD to ACB, the whole (angle) ABD is thus equal to the whole (angle)
ACD. And BAC was also shown (to be) equal to CDB. Thus, in parallelogrammic figures the opposite sides and angles

are equal to one another. And, I also say that a diagonal cuts them in half. For since AB is equal to CD, and BC (is)
common, the two (straight-lines) AB, BC are equal to the two (straight-lines) DC, CB, respectively. And angle ABC is
equal to angle BCD. Thus, the base AC (is) also equal to DB, and triangle ABC is equal to triangle BCD [Prop. 1.4].

Thus, the diagonal BC cuts the parallelogram ACDB in half. (Which is) the very thing it was required to show.”

Autoformalized Proof:

def prop34_prediction : ∀ (a b c d : Point) (AB CD AC BD BC : Line), formParallelogram a b
c d AB CD AC BD ∧ distinctPointsOnLine b c BC →
|(a--b)| = |(c--d)| ∧ |(a--c)| = |(b--d)| ∧
∠ a:b:d = ∠ a:c:d ∧ ∠ b:a:c = ∠ c:d:b ∧
Triangle.area △ a:b:c = Triangle.area △ d:c:b :=

by euclid_intros
euclid_apply proposition_29 a b c d AB CD AC BD
euclid_apply proposition_29 c d a b CD AB BD AC
euclid_apply proposition_26 a b c d a c b d AB BC AC BD AB CD
euclid_apply proposition_4 a b c d c b AB BC AC BD CD BC
euclid_finish

Similar to previous cases, the first invocation of proposition 29 on is not well-formed, since proposition 29 requires
more arguments than the model has supplied. However, the variant proposition 29′′′ accepts the number and quantity of
variables provided, so we can swap the rule and permute its arguments to make the tactic go through. The next invocation
is repaired in the same fashion. Too few arguments are given to proposition 265, but there are no variants of this
theorem, so we must infer which arguments can be supplied from the proof context. The preconditions of the tactic using
proposition 4 cannot be proved as-is. As a matter of fact, this tactic is unnecessary, since, the proof can be completed
already by euclid finish. However, if we want to repair it, we can simply permute a few of its arguments.

Repaired Proof:

def prop34_prediction : ∀ (a b c d : Point) (AB CD AC BD BC : Line), formParallelogram a
b c d AB CD AC BD ∧ distinctPointsOnLine b c BC →
|(a--b)| = |(c--d)| ∧ |(a--c)| = |(b--d)| ∧
∠ a:b:d = ∠ a:c:d ∧ ∠ b:a:c = ∠ c:d:b ∧
Triangle.area △ a:b:c = Triangle.area △ d:c:b :=

by
euclid_intros
euclid_apply proposition_29’’’ a d b c AB CD BC
euclid_apply proposition_29’’’ a d c b AC BD BC
euclid_apply proposition_26 a b c d c b AB BC AC CD BC BD
euclid_apply (proposition_4 b a c c d b AB AC BC CD BD BC)
euclid_finish

F.4. Autoformalized Proofs from UniGeo

Here, we showcase two examples of correctly autoformalized proofs from the UniGeo dataset.

Congruent/Thm07, GPT-4V, 5-shot. The diagrammatic input for this theorem is shown in Fig. E. The theorem asserts
that if |WX| = |ZY | and WX is parallel to ZY , then triangle WY Z is congruent to triangle YWX . The UniGeo proof
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makes the following inferences:

WX ∥ XY ∧ |WX| = |Y Z|
∴ ∠WY Z = ∠XWY

|WY | = |WY |
∴△WY Z ∼= △YWX

GPT-4V correctly translates this semiformal proof to LeanEuclid as follows:

Figure E. Diagrammatic input for UniGeo/Congruent/Thm07

theorem prediction_thm07:
∀ (W X Y Z : Point) (WX XY WY YZ WZ : Line),

formTriangle W X Y WX XY WY ∧
formTriangle W Y Z WY YZ WZ ∧
X.opposingSides Z WY ∧ |(W −−X)| = |(Y −−Z)| ∧
¬ WX.intersectsLine YZ → ( △ W:Y:Z).congruent ( △ Y:W:X):=

by
euclid_intros
have : ∠W:Y:Z = ∠X:W:Y := by

euclid_apply proposition_29’’’ X Z W Y WX YZ WY
euclid_finish

have : |(W −−Y)| = |(W −−Y)| := by euclid_finish
have : (△W:Y:Z).congruent △Y:W:X := by euclid_finish
euclid_finish

Parallel/Thm06, GPT-4V, 5-shot. The diagrammatic input for this proposition is shown in Fig. F. The theorem asserts that
if ∠STW and ∠TWV are supplementary, then SU is parallel to V X . The UniGeo proof makes the following inferences:

∠STW and ∠TWV are supplementary
∴ ∠STW + ∠TWV = 180◦

∴ ∠RTS + ∠STW = 180◦

∴ ∠STW + ∠TWV = ∠RTS + ∠STW

∴ ∠TWV = ∠RTS

∴ SU ∥ V X

GPT-4V correctly translates this semiformal proof to LeanEuclid as follows:

theorem prediction_thm06:
∀ (S U V X R Y T W : Point) (SU VX RY : Line), distinctPointsOnLine S U SU ∧

distinctPointsOnLine V X VX ∧
distinctPointsOnLine R Y RY ∧
twoLinesIntersectAtPoint SU RY T ∧
between S T U ∧ between R T W ∧
twoLinesIntersectAtPoint VX RY W ∧
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Figure F. Diagrammatic input for UniGeo/Parallel/Thm06

between V W X ∧ between T W Y ∧
V.sameSide S RY ∧ U.sameSide X RY ∧
∠ S:T:W + ∠ T:W:V = + → ¬ VX.intersectsLine SU:=

by
euclid_intros
have : ∠ R:T:S + ∠ S:T:W = + :=
by

euclid_apply proposition_13 S T R W SU RY
euclid_finish

have : ∠S:T:W + ∠T:W:V = ∠ R:T:S + ∠ S:T:W := by euclid_finish
have : ∠T:W:V = ∠ R:T:S := by euclid_finish
have : ¬ VX.intersectsLine SU := by

euclid_apply proposition_15 R W S U T RY SU
euclid_apply proposition_27’ U V T W SU VX RY
euclid_finish

euclid_finish
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