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Abstract

Randomized response and label aggregation are two common ways of sharing
sensitive label information in a private way. In spite of their popularity in the
privacy literature, there is a lack of consensus on how to compare the privacy
properties of these two different mechanisms. In this work, we investigate the
privacy risk of sharing label information for these privacy enhancing technologies
through the lens of label reconstruction advantage measures. A reconstruction
advantage measure quantifies the increase in an attacker’s ability to infer the true
label of an unlabeled example when provided with a private version of the labels
in a dataset (e.g., averages of labels from different users or noisy labels output
by randomized response), compared to an attacker that only observes the feature
vectors, but may have prior knowledge of the correlation between features and
labels. We extend the Expected Attack Utility (EAU) and Advantage of previous
work to mechanisms that involve aggregation of labels across different examples.
We theoretically quantify this measure for Randomized Response and random
aggregates under various correlation assumptions with public features, and then
empirically corroborate these findings by quantifying EAU on real-world data.
To the best of our knowledge, these are the first experiments where randomized
response and label proportions are placed on the same privacy footing. We finally
point out that simple modifications to the random aggregate approach can provide
extra DP-like protection.

1 Introduction

With the ubiquity of data collection, processing and sharing, users, companies, and regulators are
becoming increasingly aware of the privacy risks associated with information sharing. This has
led companies and governments to restrict and regulate sharing of user information across different
entities. Some examples of these initiatives are the Digital Markets Act (DMA) [1], third-party cookie
deprecation in Chrome [2] and intelligent tracking protection (ITP) in Safari. On the other hand,
data sharing provides an undeniable utility to individuals and society at large. Indeed, it allows for
faster advances in science and improves the economy and individuals’ daily life through automation
driven by machine learning models trained on (potentially sensitive) data. For this reason, most
privacy initiatives do not fully disallow the sharing of information, but instead allow disclosure of
user information as long as it is processed using a so-called Privacy Enhancing Technology (PET).
While the technical specification of privacy is usually application dependent, the large majority of
PETs are powered by two simple data processing techniques: data aggregation and data noising.
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One of the key factors in choosing which PET to use is the privacy-accuracy trade-off: What accuracy
does one get for a given level of privacy protection? While these curves can be parameterized for
each individual PET (ϵ for differential privacy, k for k-anonymity), seldom do people consider a
metric that can put the privacy-utility trade-off of different PETs under the same footing. The lack of
comparison metrics across PETs makes it hard for regulators and decision makers to evaluate the
protections of different proposals for information sharing. Recent work in the privacy community has
tried to solve this issue by considering empirical metrics such as inference attacks [12], reconstruction
attacks [4], re-identification attacks [8] and label inference attacks [7, 14]. However the majority of
this work, with the exception of [8] has focused on providing a better understanding of the protections
provided by differential privacy only.

In this work, we extend results from [14] to quantify risks associated with PETs based on aggregation.
While it is intuitive that data aggregation should provide some form of privacy protection, there has
been very little work to try to understand how this protection compares to that provided by PETs such
as differential privacy. Our work allows for such comparison and therefore provides decision makers
with actionable tools for selecting the optimal privacy-utility trade-off.

We will focus on the simplest possible scenario for information sharing: the case where a user
wishes to disclose a single bit of information (for instance a binary label in a classification problem).
While this problem is extremely simple to present, we shall see that it already highlights a lot of the
difficulties in providing a measure of privacy that is meaningful for both noise-based and aggregate-
based tools. Moreover, understanding this simple version of the problem already has regulatory
implications for industry. For example, for the design of conversion reporting APIs by Apple’s
Safari and Google’s Chrome browsers, which can share conversion information by using randomized
response or by aggregating conversions across random sets of users.

We show that the complexity of understanding the potential for privacy leaks requires also handling
the more complicated scenario of known attributes that can be correlated with unknown sensitive
labels. Similar to [14], we deal with this problem by measuring the advantage an attacker may have
in reconstructing sensitive information after observing the output of a PET, compared to an attacker
that knows these correlations only.

This privacy scenario is commonly observed in practice. For instance, with Chrome’s proposed
conversion reporting API, the event of a user converting after clicking on an online ad — buying
a product, signing up for a newsletter, installing an app, etc. — or not is considered sensitive and
therefore is reported only with some noise. However, once reported, ad tech providers can use features
associated with an ad click (impression information, publisher information, ...) to train models that
can predict future conversions.

As [14] shows, having a baseline is important for this setting: for example, if the labels are perfectly
correlated with the features, and the features are public, then reconstruction need not indicate a
failure of the PET we use to protect the labels. On the other hand, if the labels are independent of the
features, a successful reconstruction reveals much more about the strength of this PET.

Our paper is organized as follows:

1. We introduce our setup and define the privacy problem that we are trying to solve.

2. We discuss the methods we consider for sharing user information: randomized response and
aggregates on random partitions of data.

3. We introduce the attack advantage measure as a way to quantify the amount of leakage
associated with these mechanisms. This is an extension of the Expected Attack Utility
(EAU) and advantage of [14] to handle aggregate information as well.

4. We calculate the Advantage Measure of randomized response and random aggregates under
different correlation assumptions with public data.

5. We conduct experiments that measure both the advantage measure and the utility of learning
a model through either aggregate or noisy data. By using our measure, we present the first
comparison of utility at the same privacy level for two previously incomparable PETs.

6. Finally, we discuss limitations of the framework and show that there are particular attacks
that differential privacy can protect against that aggregates may not. On the other hand, we
show that a very simple modification to the aggregate method can provide these protection
as well.
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2 Preliminaries

Let X denote a feature (or instance) space and Y = {0, 1} be a binary2 label space. We assume the
existence of a joint distribution D on X ×Y , encoding the correlation between the input features and
the labels. We denote by p = Pr(x,y)∼D(y = 1) the probability of drawing a sample (x, y) ∈ X ×Y
from D with label y = 1. For a natural number n, let [n] = {i ∈ N : i ≤ n}.

We define a dataset S = ⟨(x1, y1), . . . , (xm, ym)⟩ as a sequence of pairs (xi, yi), each one drawn
i.i.d. from D. We use x = (x1, . . . , xm) to denote the features in S and y = (y1, . . . , ym) to denote
the labels.

Definition 2.1. Given ϵ, δ ≥ 0, We say that a (randomized) algorithm A that takes as input S is
(ϵ, δ)-Label Differentially Private (Label DP) if for any two datasets S and S′ that differ in the label
of a single sample we have Pr(A(S) ∈ B) ≤ eϵ Pr(A(S′) ∈ B) + δ , where B is any subset of the
output space of A. When δ = 0 the algorithm A is said to be ϵ-Label DP.

Randomized Response (RR) is a classical [13] way of achieving ϵ-Label DP. In the binary classifica-
tion case, RR with privacy parameter π = 1/(1 + eϵ) simply works by randomly flipping each label
yj in the dataset with independent probability π before revealing it to the learning algorithm. RR
is especially appealing from practical point of view, since privatized data with label flipping can be
handled by many prominent learning algorithms as is, with some tuning of their hyper-parameters.
Often the theoretical guarantees of these learners in terms of sample complexity are only deteriorated
by some constant that depends on the label noise level, see, for example [11].

A completely different label privacy criterion is one based on (random) label aggregation, sometimes
called Learning from Label Proportions (LLP), whereby the dataset S gets organized in (i.i.d. random)
bags of a given size k, S = ⟨(x11, y11), . . . , (x1k, y1k), . . . , (xn1, yn1), . . . , (xnk, ynk)⟩ , where
examples are grouped together in groups of k, and only the fraction of positive labels in each group
are revealed to the learning algorithm. In other words, the learning algorithm has access to S via a
collection {(Bi, αi), i ∈ [n]} of n labeled bags of size k, with m = nk, where Bi = {xij : j ∈ [k]},
αi =

1
k

∑k
j=1 yij is the label proportion of the i-th bag, and all the involved samples (xij , yij) are

drawn i.i.d. from D. Thus, the learner receives information about the m labels yij of the m instances
xij from dataset S only in the aggregate form determined by the n label proportions αi associated
with the n labeled bags (Bi, αi). Note, however, that the feature vectors xij are individually observed.

A simple and very well known method for learning from aggregate labels is the one the authors
of [15] call Empirical Proportion Risk Minimization. In fact, different versions of this algorithm are
discussed in the literature without a clear reference to its origin. In [6], the authors simply call this
algorithm the Proportion Matching algorithm (PROPMATCH), and we shall adopt their terminology
here.

Given a loss function ℓ : R × R → R+, a hypothesis set of functions H ⊂ RX , mapping X to
a (convex) prediction space Ŷ ⊆ R, and a collection {(Bi, αi), i ∈ [n]} of n labeled bags of size
k, PROPMATCH minimizes the empirical proportion matching loss, i.e., it solves the following
optimization problem: minh∈H

∑n
i=1 ℓ

(
1
k

∑k
j=1 h(xij), αi

)
.

3 Quantifying Privacy Loss via Reconstruction Advantage

In this section, we extend the advantage definition introduced by Wu et al. [14] to the aggregate
setting and give analytical bounds on the reconstruction advantage for this setting.

The reconstruction advantage is grounded in the following natural privacy question: How much does
releasing the output of a PET increase the risk of label reconstruction compared to not releasing any
private data? In particular, we are interested in the reconstruction risk to an average user.

In order to unify the study of aggregation and noise-based PETs, for the rest of the section we fix
k > 0 and model PETs as (possibly randomized) functions M : (X × Y)k → Z . These functions

2For ease of presentation, we restrict here to binary classification tasks, but the material contained in this
paper can readily be lifted to more general classification or regression settings.
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map a collection of k labeled examples to a privacy protected representation in the domain Z .3 The
domain Z depends on the PET but, throughout the paper, the domain will be clear from context. For
example, LLP corresponds to the function MLLP(x,y) = α, where x ∈ X k represents the known
feature vectors and α = 1

k

∑k
i=1 yi is the proportion of positive examples in the bag. Similarly, for

a fixed ϵ > 0, RR corresponds to the function MRR(x,y) = ỹ where ỹi = 1− yi with probability
π = 1/(1 + eϵ) and equal to yi with probability 1− π independently for each i ∈ [k]. Finally, it will
be helpful to consider a PET that reveals no label information at all: M⊥(x,y) = ⊥.

The goal of the PETs we are considering is to hide individual’s labels. To measure how well they
preserve this privacy, we consider a label inference adversary whose goal is to predict the labels y
given access to the features, x, together with the output of a PET, M(x,y). We model adversaries as
functions A : X k ×Z → Yk that map the features and the output of a PET to a vector of predicted
labels, one for each example. To measure the efficacy of an adversary, we define the expected attack
utility of adversary A using information from PET M on a collection of k examples drawn iid from
a distribution D as follows:

EAUk(A,M,D) = P
(x,y)∼Dk

i∼Uniform([k])

(
A(x,M(x,y))i = yi

)
.

In other words, the expected attack utility of the adversary is the probability that they correctly guess
the label of a random chosen example when provided the features and the output of M. Equivalently,
this is the expected fraction of the k examples that the adversary predicts the correct label for. The
adversary’s success rate may depend on the distribution over features and labels. For example, if
labels are entirely determined by features, then our metric should reflect that privatized labels (for
any mechanism) reveal no additional information about the true labels. To control for the information
that features inherently reveal about labels, we always assume that the adversary has knowledge of
the data distribution D over X × Y .

In order to measure the increase in risk incurred by releasing the output of a PET, we consider the
expected attack utility of an optimal adversary in two scenarios: one in which the adversary gets
the features, x, together with the output of the PET, M(x,y), and an alternate setting where the
adversary gets only the features (which is equivalent to using M⊥). We call the difference in expected
attack utility between the informed and uninformed adversary the attack advantage. Intuitively, the
attack advantage measures the label reidentification risk that can be attributed to the PET rather than
to correlations between the features x and labels y which are inherent in the distribution D. While
having a low reconstruction advantage does not necessarily guarantee that the mechanism poses no
risks at all, having a high advantage is a clear sign that the published information increases the risk of
reconstruction.
Definition 3.1. The attack advantage of a PET M for a set of k examples drawn from a data
distribution D is defined by

Advk(M,D) = sup
Ainformed

EAUk(Ainformed,M,D)− sup
Auninformed

EAUk(Auninformed,M⊥,D) . (1)

Note that this definition is slightly unusual for RR, since RR is generally described in terms of its
behavior on a single example (x, y), rather than a collection of k i.i.d. samples. This “type mismatch”
seems unavoidable for any privacy measure that is applicable both to aggregation- and local DP-based
PETs. However, in Section 3.2 we will see that for RR the attack advantage is independent of the
number of examples k, confirming our intuition that the aggregation size k should play no role in the
risk posed by RR.

First, we bound the EAUk achievable by any adversary for a given PET M, data distribution D, and
number of examples, k. The bound is tight and we derive the prediction rule for an optimal attacker
that achieves the bound with equality.
Lemma 3.2. The following expected attack utility bound holds for any PET M, data distribution D,
number of examples k and adversary A that observes the output of M
EAUk(A,M,D) ≤ 1− E

(x,y)∼Dk

i∼Uniform([k])

[
min{P(yi = 1 | x,M(x,y)),P(yi = 0 | x,M(x,y))}

]
.

3Note that we allow the PET to have access to the features x in addition to the labels y. None of the PETs
we study use x, but this would allow PETs that, for example, output multiple aggregations on subsets of the k
examples. All of our general theory can handle PETs that also depend on the features.
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Moreover, the following optimal adversary A∗ achieves this upper bound with equality:

A∗(x,M(x,y))i :=

{
1 if P(yi = 1 | x,M(x,y)) ≥ 1/2

0 otherwise.

The proof of the previous lemma can be found in Appendix A.1.

Next, we leverage Lemma 3.2 to bound the advantage for any PET M, data distribution D, and
number of examples k.

Theorem 3.3. For any PET M, any data distribution D, and number of examples k, the attack
advantage is given by

Advk(M,D) = E
x∼DX

[
min{η(x), 1− η(x)}

]
− E

(x,y)∼Dk

i∼Uniform([k])

[
min

{
P(yi = 1 | x,M(x,y)),P(yi = 0 | x,M(x,y))

}]

where η : x 7→ P(y = 1 | x) is the Bayes optimal predictor.

The proof of Theorem 3.3 is in Appendix A.2.

In the following sections, we prove bounds on the attack advantage for LLP and RR that are more
directly interpretable than Theorem 3.3.

3.1 Bounding Attack Advantage for Learning from Label Proportions

In this section we provide explicit bounds on the attack advantage for LLP. Recall that LLP corre-
sponds to the function MLLP(x,y) = α := 1

k

∑k
i=1 yi.

We begin by studying the attack advantage for LLP when the labels are independent of the features.

Theorem 3.4. Fix a data distribution D, let p = P(x,y)∼D(y = 1), and fix an arbitrary threshold
β ∈ [0, 1/2]. If labels are independent of features (i.e., D is a product of distributions over X and Y),
then for all bag sizes k ≥ 1 we have:

Advk(MLLP,D) = min{p, 1− p} − E
α
[min{α, 1− α}] ≤

{√
p(1−p)

k if p ∈ [0, 1]

e−Ω(β2k) if |p− 1/2| ≥ β,

where the Ω notation hides constants independent of β and k.

A couple of remarks are in order. First, observe that the advantage Advk(MLLP,D) is always
non-negative, as can be easily derived by noting that E[α] = p and then applying Jensen’s inequality
to the concave function x 7→ min{x, 1 − x}, for x ∈ [0, 1]. Second, despite being non-negative,
Theorem 6.4 also proves the desirable property that Adv(MLLP,D) goes to zero as the bag size k

increases. The convergence rate is in general of the form 1/
√
k, but it becomes negative exponential

in k when p is bounded away from 1/2.

We now again consider the more general scenario and obtain a more concise bound for Theorem 3.3
when M is MLLP. Let then D be an arbitrary distribution over X × Y . Recall that, in this more
general case, the distribution of random variable kα =

∑k
j=1 yj conditioned on x = (x1, . . . , xk)

is Poisson Binomial (PBin) with parameters {η(xj)}kj=1, that is, the distribution of the sum of k
independent Bernoulli random variables yj , each with its own bias η(xj).

Theorem 3.5. Let D an arbitrary distribution on X ×Y and let p = E[η(x)]. Then, for all bag sizes
k ≥ 2 we have:

Adv(MLLP,D) = Õ

(
E[η(x)(1− η(x)]1/4(p(1− p))1/4√

k
+

E[η(x)(1− η(x))]1/4

k

)
,

where Õ hides logarithmic factors in k.
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Hence, also in this more general case of the label proportion privacy mechanism, the advantage
converges to zero as the bag size k grows large. Compared to the rate in Theorem 6.4, we are only
losing the log k factors implicit in the Õ notation. This is because, when applied to the scenario where
labels and features are independent, η(x) = p is constant with x, so that E[η(x)(1−η(x))] = p(1−p),

and the first term becomes
√

p(1−p)
k , while the second one reads (p(1−p))1/4

k , which is lower order
when k is large. We do not know whether the tighter gap-dependent analysis we carried out for
Theorem 6.4 extends to the more general scenario of Theorem 3.5.

3.2 Bounding Attack Advantage for Randomized Response

In this section we provide explicit bounds on the attack advantage for RR. Recall that RR corresponds
to the function

MRR(x,y) = ỹ where ỹi =

{
yi with probability eϵ/(1 + eϵ)

1− yi with probability 1/(1 + eϵ),

where the labels are flipped independently. For simplicity, we let π = 1/(1 + eϵ) denote the label
flipping probability used by RR.

The results of Wu et al. [14] imply that every ϵ-label-DP PET M has advantage bounded by
Advk(M,D) ≤ 1− 2

1+eϵ . However, one drawback of this bound is that it is distribution independent,
yet the attack advantage depends heavily on the data distribution D. For an extreme example, if we
have P(x,y)∼D(y = 1) = 1, the attack advantage is zero for every PET, which is not captured by the
bound derived using only properties of differential privacy.

In the remainder of this section, we derive an exact expression for the advantage of MRR which we
use to estimate the attack advantage of RR for various values of ϵ in our experiments in Section 5. Our
exact expression is distribution dependent and leads to much tighter bounds on the attack advantage.
For example at ϵ = 1, the bound from Wu et al. [14] is 1 − 2

1+ϵ ≈ 0.46. However, for the dataset
used in our experiments, we estimate the attack advantage for RR with ϵ = 1 to be only 0.00095.

We first show that, since randomized response operates on each example independently4, the advan-
tage is independent of the number of examples k.
Lemma 3.6. For all data distributions D and all k, Advk(MRR,D) = Adv1(MRR,D).

Next we derive a specialized version of Theorem 3.3 tailored to the case of RR and derive an
expression for the optimal adversary under RR. Due to Lemma 3.6 we only need to consider the
special case where k = 1.
Theorem 3.7. For any data distribution D, the attack advantage for randomized response with
privacy parameter π = 1

1+eε is

Adv1(MRR,D) = Ex

[(
min{η(x), 1− η(x)} − π

)
·I{η(x) ∈ [π, 1− π]}

]
.

The optimal adversary that maximizes EAU1(·,MRR,D) is given below:

A∗(x, ỹ) =


1, if η(x) > 1− π

0, if η(x) < π

ỹ, otherwise
.

4 Utility

Thus far we have focused on the privacy component of the privacy-utility trade-off. We now discuss
our definition of utility which will be focused on the problem of learning a labeling hypothesis h∗.

Given a dataset S = (x1, . . . , xnk) let xi = (xi1, ..., xik) and yi = (yi1, . . . , yik). Finally, let
S̃ =

((
x1,M(x1,y1)

)
, . . . ,

(
xn,M(xn,yn)

))
be a privatized dataset. We define L to be a learning

algorithm that takes as input S̃ and returns a hypothesis ĥ := L(S̃) ∈ H.
4More generally, any PET M : (X × Y)k → Zk where M(x,y)i is a function of (xi, yi) and noise

independent from the other examples has this property. In other words, if the PET does not do any aggregation
across the examples, then the attack advantage is the same for all values of k.
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Figure 1: Privacy vs utility tradeoff curves for RR and LLP. Each point corresponds to a setting of the
privacy parameter for the PET (i.e., ϵ for RR and k for LLP). The x coordinate is the reconstruction
advantage for that PET, while the y coordinate is the utility of a model trained from the output of that
PET (measured via AUC in the left figure, and binary cross-entropy in the right figure).

Given a loss function ℓ : R× Ŷ → R (for instance, binary cross-entropy), our definition of utility is
given by the expected loss of ĥ over the data distribution E(x,y)∼D[ℓ(ĥ(x), y)], where smaller loss
implies better utility. PROPMATCH is an instance of such a learning algorithm L.

5 Experiments

In this section we compare the privacy vs utility trade-off for RR and LLP in the context of training
machine learning models for a click prediction task. At a high level, we train click prediction models
from data that has been protected by either RR or LLP for various values of their privacy parameters.
For each PET and privacy parameter, we measure the performance of the trained model via either
the area under the receiver operating characteristic curve (AUC) or the binary cross-entropy loss and
estimate the Attack Advantage bound provided by the PET. The curves relating Attack Advantage
(privacy risk) to AUC (data utility) for RR and LLP are shown in Figure 1. We find that LLP provides
a better Utility vs Attack Advantage tradeoff.

Dataset. We run our experiment on the click prediction data from the KDD Cup 2012, Track
2 [3] with the feature processing performed by Juan et al. [10]. The learning task for this data
is to predict the click through rate for an advertisement based on a number of features related to
the advertisement, the page that it appears on, and the user viewing it. There are 11 categorical
features that are each one-hot encoded, resulting in a sparse feature vector with 11 non-zero entries in
54,686,452 dimensions. The label for the example is 1 if the ad was clicked, and 0 otherwise.

Model description and training setup. For both RR and LLP we train a deep embedding network
using gradient descent. For RR, we perform regular stochastic gradient descent on a dataset obtained
by flipping each label with probability 1/(1 + eϵ) together with a debaising procedure that produces
unbiased estimates of the gradient of the model’s loss w.r.t. its parameters. For LLP, we use stochastic
gradient descent to optimize the Empirical Proportion Risk defined in Section 2.

The model architecture in both cases is as follows: First, we reduce the dimension of each example
from 54,686,452 dimensions to 100,000 dimensions by hashing feature indices. Each hashed feature
index is associated with a learned embedding vector in R50, and the representation vector for an
example is the sum of the learned embeddings for each of its non-zero hashed feature indices. This
representation vector is passed through two dense layers with 100 and 50 units, respectively, and
ReLU activation functions. The final output is a single unit with sigmoid activation that is interpreted
as the click probability for each example.

Experimental Setup. For RR and LLP, we train the above model using the Adam optimizer to
minimize the binary cross-entropy loss. For RR, we use privacy parameters ϵ in {2−4, 2−3, . . . , 25}
and for LLP we use bag sizes k in {20, 21, . . . , 29}. For both RR and LLP, for every value of the
privacy parameter, we train the model with each learning rate in {10−6, 5 · 10−6, 10−5, 10−4, 5 ·
10−4, 10−3, 5 ·10−3, 10−2}. Finally, for each combination of privacy parameter and learning rate, we
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train the model 10 times (each trial corresponds to different model initialization and data shuffling).
For each privacy parameter, we report the mean AUC of the learning rate with the highest mean AUC.

Estimating Attack Advantage. The attack advantage of the optimal attacker is estimated and
reported for every PET with various parameters. The optimal attacker and its advantage have been
characterized for RR as well as for LLP, in Theorem 3.3 and 3.7, respectively. Crucially, notice
that the advantage can be easily calculated with knowledge of the parameters of each PET (label
flipping probability or the bag size), and the class conditional distribution η(x) — or at least an
accurate estimate of it. We considered two estimates of the class conditionals: one based on Deep
Neural Networks (DNN) as described above, and one based of k-Nearest Neighbors (kNN). The
kNN estimator can produce accurate estimates for class conditional in the large-scale data regime,
due to its strong consistency properties that has been studied in the 70s and 80s and became the part
of machine learning folklore. DNN can also produce accurate estimates if the training process and
architecture is tuned carefully enough. We found that these two approaches result in very similar
results on our large scale benchmark datasets, therefore we relied on the estimate provided by DNN,
and we estimated the attack advantage of the optimal attacker based on the output score of DNN.

Results. Figure 1 shows the utility vs advantage tradeoff for RR and LLP. We find that across the
advantage spectrum, LLP provides a slightly higher utility than RR when measured either by AUC or
by the binary cross-entropy loss.

6 Protecting data with DP and Aggregation

Thus far we have focused on understanding the privacy risks through the average notion of attack
advantage. It is worth mentioning that this notion does not take into account potential side information
from an attacker in addition to feature vectors and knowledge of the distribution D. In particular, the
distributional assumption may be broken if the attacker has knowledge of some of the true labels in
the dataset.

In order to provide more extensive privacy protection, one could combine both LLP and Differential
Privacy. One way to achieve this is to design a PET that releases a differentially private estimate
of the label proportion. For example, we can provide ϵ-label-DP by adding Laplace( 1

kϵ ) noise to
the true label proportion [9]. Formally, after fixing the privacy parameter ϵ, this corresponds to the
following PET: MLap-LLP(x,y) = α̃ := 1

k

∑y
i=1 +Z, where Z ∼ Laplace

(
1
kϵ

)
.

From a privacy perspective, MLap-LLP is ϵ-label-DP and enjoys the full suite of formal guarantees that
this implies. At the same time, for a fixed value of k, the attack advantage of MLap-LLP is never larger
than that of MLLP, since adding noise to the label proportion cannot increase advantage. Next, since
MLLP is a special case of MLap-LLP (where ϵ = ∞), the utility-vs-advantage trade-off for MLap-LLP
cannot be worse than that of MLLP.

In the remainder of the section we argue that PROPMATCH is still an effective learning algorithm
for the PET MLap-LLP. Recall that PROPMATCH generally learns by using stochastic gradient
descent (SGD) to minimize the empirical proportion matching loss. Our first result shows that the
expected value of the gradient of proportion matching loss is the same whether Laplace noise is
added to the label proportion or not. In other words, this implies that the expected trajectory of
SGD for PROPMATCH when using MLap-LLP is the same for all values of ϵ, including ϵ = ∞ which
corresponds to the speical case of MLLP.

Theorem 6.1. Let ℓ : Y × Y → R be a loss function, and let α̃ = α+ Z where Z is unbiased and
independent of the data. Then, for the square loss function defined by ℓ(p,X) = (p−X)2 and the
binary cross entropy loss function defined by ℓ(p,X) = −X log(p)− (1−X) log(1− p), we have
E [∇θℓ (q, α̃)] = E [∇θℓ (q, α)] .

The main way that decreasing the value of ϵ (resulting in stronger differential privacy guarantees)
affects utility is that the variance of the gradients increases. The following result characterizes
how much the variance increases compared to the case where ϵ = ∞ (or equivalently, compared to
PROPMATCH run with MLLP).

Theorem 6.2. Let ℓ : Y × Y → R be the binary cross entropy loss function defined by ℓ(p,X) =

−X log(p)− (1−X) log(1−p), and let α̃ = 1
k

∑k
i=1 yi+Z, where Z ∼ Laplace( 1

kϵ ) is the output

8



Figure 2: This plot depicts the AUC for PROPMATCH when run with PET MLap-LLP as a function of
the privacy parameters ϵ and k. Note that the utility gap between ϵ = 0.5 and ϵ = 8 shrinks as the
bag size grows, which is what we would expect given the variance decomposition of Theorem 6.2.

of MLap-LLP. Then,

E
[
∥∇θℓ (q, α̃) ∥22

]
= E

[
∥∇θℓ(q, α)∥2

]
+

2

k2ε2
· E
[
∥∇θ log (q/(1− q))∥2

]
where q = 1

k

∑
x∈B hθ(x) is the average prediction.

Intuitively, Theorem 6.2 demonstrates that when the bag size k is large, adding differential privacy
has a smaller impact than when the bag size k is small. Figure 2 plots the AUC for the same dataset
and model as in Section 5 when training PROPMATCH using MLap-LLP. It shows that the decrease in
AUC due to decreasing ϵ shrinks as k grows.

Furthermore, we characterize the optimal attacker for MLap-LLP and we bound the advantage.
Theorem 6.3. For any privacy parameters k ≥ 1, ε > 0, and any data distribution D,
Advk(MLap-LLP,D) is maximized by the following adversary:

A∗(x,MLap-LLP(x,y))i :=

{
1 if η(xi)

1−η(xi)
·
∑k

b=1 P(PBin({η(xj)}i̸=j)=b−1)·e−kε|α̃−b/k|∑k−1
b=0 P(PBin({η(xj)}i̸=j)=b)·e−kε|α̃−b/k| ≥ 1

0 otherwise.

Alternatively, using properties of the Laplace distribution, this adversary is approximately equivalent
to the following for small ε

A∗∗(x,MLap-LLP(x,y))i :=


1 if η(xi)

1−η(xi)
< e−ε

0 if η(xi)
1−η(xi)

> eε

yi otherwise

.

Theorem 6.4. Let D an arbitrary distribution on X × Y and let p = E[η(x)]. Then for all bag sizes
k ≥ 1 we have:

Advk(MLap-LLP,D)

≤ min

{
2(1− e−ϵ)E[η(x)(1− η(x)], Õ

(
E[η(x)(1− η(x)]1/4(p(1− p))1/4√

k
+

E[η(x)(1− η(x))]1/4

k

)}
.

7 Conclusion

We have extended the notion of expected attach utility of [14]. This extension allowed us, for the
first time, to compare two commonly used PETs: randomzied response and LLP. We show that in
some scenarios LLP provides a better privacy-utility tradeoff and that the protections to LLP can
also be extended to the more common scenario of differential privacy while preserving most of its
algorithmic properties. Our intention is that regulators and decision makers can make more informed
selections of PETs to preserve user privacy while maintaining the high utility of their products.
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A Proofs for Section 3

A.1 Proof of Lemma 3.2

Lemma 3.2. The following expected attack utility bound holds for any PET M, data distribution D,
number of examples k and adversary A that observes the output of M
EAUk(A,M,D) ≤ 1− E

(x,y)∼Dk

i∼Uniform([k])

[
min{P(yi = 1 | x,M(x,y)),P(yi = 0 | x,M(x,y))}

]
.

Moreover, the following optimal adversary A∗ achieves this upper bound with equality:

A∗(x,M(x,y))i :=

{
1 if P(yi = 1 | x,M(x,y)) ≥ 1/2

0 otherwise.

Proof. Fix any adversary A. We begin by lower bounding the probability that the adversary makes a
mistake on a fixed example j. Let (x,y) ∼ Dk be an i.i.d. sample of labeled examples, z = M(x,y)
be the output of the PET, and (ŷ1, . . . , ŷk) = A(x, z) be the output of the adversary. Since ŷj is
(x, z)-measurable, we have that

P(ŷj ̸= yj | x, z) = P(ŷj = 0 | yj = 1,x, z)P(yj = 1 | x, z)
+ P(ŷj = 1 | yj = 0,x, z)P(yj = 0 | x, z)

= 1{ŷj = 0}P(yj = 1 | x, z) + 1{ŷj = 1}P(yj = 0 | x, z).

Next, let i be an index drawn uniformly at random from [k]. Then we can write the expected attack
utility as follows (where the randomness is over the variables (x,y), z = M(x,y), and i):

EAUk(A,M,D) = 1− P(ŷi ̸= yi)

= 1− E[1{ŷi ̸= yi}]
= 1− E

[
E[1{ŷi ̸= yi} | x, z, i]

]
= 1− E[1{ŷi = 0}P(yi = 1 | x, z) + 1{ŷi = 1}P(yi = 0 | x, z)]
≤ 1− E

[
min{P(yi = 1 | x, z),P(yi = 0 | x, z)}

]
where the inequality holds because the minimum probability term never exceeds the probability term
selected by the indicator variables. Finally, to show that A∗ is the optimal adversary, observe that the
value of ŷi chosen by A∗ “selects” the smaller of the two probability terms with probability one. It
follows that for A∗, the inequality above holds with equality.

A.2 Proof of Theorem 3.3

Theorem 3.3. For any PET M, any data distribution D, and number of examples k, the attack
advantage is given by

Advk(M,D) = E
x∼DX

[
min{η(x), 1− η(x)}

]
− E

(x,y)∼Dk

i∼Uniform([k])

[
min

{
P(yi = 1 | x,M(x,y)),P(yi = 0 | x,M(x,y))

}]
where η : x 7→ P(y = 1 | x) is the Bayes optimal predictor.

Proof. Recall that the advantage is the difference in expected attack utility for an optimal attacker
having access to M compared to M⊥. This theorem follows from Lemma 3.2 together with a
simplification of the optimal expected uninformed attack utility.

Since M⊥ outputs a constant and the (xi, yi) pairs for i ∈ [k] are independent, we have that

P(yi = 1 | x, z) = P(yi = 1 | xi) = η(xi).

It follows that the expected attack utility of the optimal uninformed adversary is given by

1− E
(x,y)∼Dk

i∼Uniform([k])

[
min{η(xi), 1− η(xi)}

]
= 1− E

x∼DX

[
min{η(x), 1− η(x)}

]
,
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where the equality follows from the fact that x1, . . . , xk are i.i.d.

The proof is completed by taking the difference of the optimal expected attack utilities for the
informed and uninformed adversaries.

A.3 Proof of Theorem 6.4

Theorem 3.4. Fix a data distribution D, let p = P(x,y)∼D(y = 1), and fix an arbitrary threshold
β ∈ [0, 1/2]. If labels are independent of features (i.e., D is a product of distributions over X and Y),
then for all bag sizes k ≥ 1 we have:

Advk(MLLP,D) = min{p, 1− p} − E
α
[min{α, 1− α}] ≤

{√
p(1−p)

k if p ∈ [0, 1]

e−Ω(β2k) if |p− 1/2| ≥ β,

where the Ω notation hides constants independent of β and k.

Proof. As in the proof of Theorem 3.3, we have that

max
A

EAUk(A,M⊥,D) = E
x
[min{η(x), 1− η(x)}].

Further, since this theorem studies the case where labels are independent of features, we have that
η(x) = P(y = 1 | x) = P(y = 1) = p, which implies that

max
A

EAUk(A,M⊥,D) = min{p, 1− p}.

As for EAUk(A∗,MLLP,D), set for brevity Σ = kα =
∑k

i=1 yi and let ŷ1, . . . , ŷk be the predictions
of the optimal adversary. We can write

E[I{ŷi ̸= yi}] = EΣ E[I{ŷi ̸= yi} |Σ]
= EΣ E[I{ŷi = 0, yi = 1} |Σ] + EΣ E[I{ŷi = 1, yi = 0} |Σ]
= EΣ[I{ŷi = 0}E[I{yi = 1} |Σ]] + EΣ[I{ŷi = 1}E[I{yi = 0} |Σ]]

which is minimized when

ŷi =

{
1 if E[I{yi = 1} |Σ] ≥ 1/2

0 otherwise.
(2)

Since E[I{yi = 1} |Σ] = α independent of i and p, the minimum value is thus

Eα[min{α, 1− α}],
so that EAUk(A∗,MLLP,D) = 1 − Eα[min{α, 1 − α}], and the claimed equality for
Advk(MLLP,D) follows.

As for the inequality with general p ∈ [0, 1], note that, when a, b ∈ [0, 1],

min{a, 1− a} −min{b, 1− b} ≤ |a− b| . (3)

If applied to the expression

min{p, 1− p} − Eα[min{α, 1− α}]
this gives

Advk(MLLP,D) ≤ Eα[|α− p|] ≤
√
Eα[(α− p)2] =

√
p(1− p)

k
,

where the second inequality is Jensen’s.

Finally, in the case where |p− 1/2| ≥ β, for some gap β > 0, we can proceed through a more direct
analysis. Assume p ≤ 1/2− β. We can write

min{α, 1− α} = min{α, 1− α}I{α ≤ 1/2}+min{α, 1− α}I{α > 1/2}
+ αI{α > 1/2} − αI{α > 1/2}

= αI{α ≤ 1/2}+ (1− α)I{α > 1/2}+ αI{α > 1/2} − αI{α > 1/2}
= α− (2α− 1)I{α > 1/2}
≥ α− I{α > 1/2} .
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Hence
Eα[min{α, 1− α}] ≥ p− Pr(α > 1/2) .

Now, p < 1/2 implies min{p, 1− p} = p, which leads us to

min{p, 1− p} − Eα[min{α, 1− α}] ≤ Pr(α > 1/2) .

Finally, by the standard Bernstein inequality we have

P(α > 1/2) ≤ exp

(
− k(1/2− p)2

2p(1− p) + (1− 2p)/3

)
= e−Ω(kβ2) ,

which gives the second inequality.

A similar argument holds if we reverse the assumption on p to p ≥ 1/2 + β.

A.4 Proof of Theorem 3.5

Notation. For simplicity of notation we let ηi = η(xi) be the conditional positive probability of a
label given feature vector x and let p = E[ηi]. For fixed feature vectors x = (x1, . . . , xk, xk+1), let
Ai denote a Bernoulli random variable with mean ηi, and let Zk =

∑k
j=1 Aj

We recall the statement of the theorem we want to prove.

Theorem 3.5. Let D an arbitrary distribution on X ×Y and let p = E[η(x)]. Then, for all bag sizes
k ≥ 2 we have:

Adv(MLLP,D) = Õ

(
E[η(x)(1− η(x)]1/4(p(1− p))1/4√

k
+

E[η(x)(1− η(x))]1/4

k

)
,

where Õ hides logarithmic factors in k.

The above theorem is a direct consequence of the following Lemma.

Lemma A.1. Let B denote a bag with k + 1 elements. Let

ck =
1√
k

(
1

3
log 8k +

1

6

√
2 log 8k + 12kp(1− p) log 8k

)
= Õ

(√
p(1− p) +

1√
k

)
.

Then

Advk+1(MLLP,D) ≤ k1/4
√
2ck

√(
1

e3/2
+

π

4
+

π

e

)
E[η1(1− η1)]1/2

k3/2
+

E[η1(1− η1)]

k
.

Proof. Set for brevity M = MLLP(x,y). By definition of Advk+1 we have

Advk+1(MLLP,D)

= E
xk+1

[min{η(xk+1), 1− η(xk+1)}]− E
(x,y)

[min {P(yk+1 = 1|x,M),P(yk+1 = 0|x,M)}]

≤ E
(x,y)

[|η(xk+1)− P(yk+1 = 1|x,M)|] ,

where we have used the fact that min(a, 1 − a) − min(b, 1 − b) ≤ |a − b| for any real numbers
a, b. We now focus on calculating P(yk+1 = 1|x,M). Let Σ =

∑k+1
j=1 yj . Note that for a given

realization of feature vector x, yk+1 is distributed like Ak+1 and the output M is distributed like
Zk+1. Therefore:

P(yk+1 = 1 |x,M) = P(Ak+1 = 1 |x, Zk+1 = Σ)

=
P(Ak+1 = 1, Zk+1 = Σ |x)

P(Zk+1 = Σ |x)

= ηk+1
P(Zk = Σ− 1 |x)
P(Zk+1 = Σ |x)

.
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Using this expression in the original expectation we see that we can bound the advantage as

E(x,y)

[
ηk+1

∣∣∣∣1− P(Zk = Σ− 1 |x)
P(Zk+1 = Σ |x)

∣∣∣∣]
Again, note that for a fixed x, the variable Σ is distributed like Zk+1. Therefore. taking expectation
over y the above expression can be rewritten as

Ex

[
ηk+1

k+1∑
s=0

∣∣∣∣1− P(Zk = s− 1 |x)
P(Zk+1 = s)

∣∣∣∣P(Zk+1 = s |x)

]
= Ex

[
ηk+1

k+1∑
s=0

∣∣∣P(Zk+1 = s |x)− P(Zk = s− 1 |x)
∣∣∣]

Finally, note that since Zk+1 = Zk +Ak+1 we also have

P(Zk+1 = s |x) = P(Ak+1 = 1 |x)P(Zk = s− 1 |x) + P(Ak+1 = 0 |x)P(Zk = s |x)
= ηk+1 P(Zk = s− 1 |x) + (1− ηk+1)P(Zk = s |x) .

Therefore, we conclude that the advantage can be bounded by

Ex

[
ηk+1(1− ηk+1)

k+1∑
s=0

∣∣∣P(Zk = s |x)− P(Zk = s− 1 |x)
∣∣∣] =

Ex [ηk+1(1− ηk+1)] E

[
k+1∑
s=0

∣∣∣P(Zk = s |x)− P(Zk = s− 1 |x)
∣∣∣] ,

where we have used the fact that the random variables ηi are independent from each other. Using also
the fact that ηk+1 has the same distribution as η1 combined with Lemma A.2 below, we have that the
above quantity is bounded by:

k1/4
√
2ck

√
E[η1(1− η1)]2 E[η21 + (1− η1)2]k +

π E[η1(1− η1)]1/2

4k3/2
+

π E[η1(1− η1)]

ek2

+
E[η1(1− η1)]

k
. (4)

Moreover, notice that E[η21 + (1 − η1)
2] + 2E[η1(1 − η1)] = 1. Therefore E[η21 + (1 − η1)

2] =
1− 2E[η1(1− η1), and using the fact that η1(1− η1) ≤ 1

4 we have

E[η1(1− η1)]
2 E[η21 + (1− η1)

2]k = E[η1(1− η1)]
2(1− 2E[η1(1− η1)])

k

≤ max
1
4≥x≥0

x2(1− 2x)k .

But a simple calculation shows that the above function is maximized at x⋆
k = min{ 1

k+2 , 1/4}, thus
we must have

E[η1(1− η1)]
2 E[η21 + (1− η1)

2]k ≤ (x⋆
k)

2(1− 2x⋆
k)

k ≤ 1

(ek)2

the last inequality holding for all k ≥ 1. In addition, we have the trivial bound E[η1(1− η1)]
2 E[η21 +

(1− η1)
2] ≤ E[η1(1− η1)]

2, so that

E[η1(1− η1)]
2 E[η21 + (1− η1)

2]k ≤ min

{
E[η1(1− η1)]

2,
1

e2k2

}
≤ E[η1(1− η1)]

2

E[η1(1− η1)]2 e2 k2 + 1

(using min{a, b} ≤ ab
a+b , with a = E[η1(1− η1)]

2 and b = 1
e2k2 )

≤
√
E[η1(1− η1)]

e3/2k3/2

(using x2 − x3/2 + 1 ≥ 0, with x = ekE[η1(1− η1)]) .
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Replacing this bound in (4) we obtain the following upper bound on the advantage:

k1/4
√
2ck

√(
1

e3/2
+

π

4

)
E[η1(1− η1)]1/2

k3/2
+

π E[η1(1− η1)]

ek2
+

E[η1(1− η1)]

k

≤ k1/4
√
2ck

√(
1

e3/2
+

π

4
+

π

e

)
E[η1(1− η1)]1/2

k3/2
+

E[η1(1− η1)]

k
,

as claimed.

Lemma A.2. Let ck be as in Lemma A.1. Then the following bound holds:

Ex

[
k+1∑
s=0

|P(Zk = s |x)− P(Zk = s− 1 |x)|

]
≤

1

k
+ k1/4

√
2ck

√
E[η21 + (1− η1)2]k +

π

(4E[η1(1− η)1)k)3/2
+

π

eE[η1(1− η1)]k2

Proof. Let a > 0 and b < k, and let [a, b] = {j ∈ N|a ≤ j ≤ b}. For any x we then have
k+1∑
s=0

|P(Zk = s |x)− P(Zk = s− 1 |x)|

=
∑

s∈[a,b]

|P(Zk = s |x)− P(Zk = s− 1 |x)|+
∑

s/∈[a,b]

|P(Zk = s |x)− P(Zk = s− 1)|

≤
∑

s∈[a,b]

|P(Zk = s |x)− P(Zk = s− 1 |x)|+
∑

s/∈[a,b]

P(Zk = s |x) + P(Zk = s− 1 |x)

≤
∑

s∈[a,b]

|P(Zk = s |x)− P(Zk = s− 1 |x)|+ 2P(Zk /∈ [a, b] |x)

Taking expectation over both sides with respect to x we have

Ex

[
k+1∑
s=0

|P(Zk = s |x)− P(Zk = s− 1 |x)|

]

≤ Ex

 ∑
s∈[a,b]

|P(Zk = s |x)− P(Zk = s− 1 |x)|

+ 2Ex[P(Zk /∈ [a, b] |x)] (5)

Let now Qk denote the probability measure associated with a binomial random variable with parame-
ters (k, p). Since Zk is a Poisson-Binomial random variable with parameters η1, . . . , ηk, the prob-
ability P(Zk /∈ [a, b] |x) is a linear function in each individual ηi, so that Ex[P(Zk /∈ [a, b] |x)] =
Qk([a, b]

c). We now proceed to bound the first expectation in (5). By Cauchy-Schwartz inequality
we have

Ex

 ∑
s∈[a,b]

|P(Zk = s |x)− P(Zk = s− 1 |x)|


≤ Ex

√(b− a)
∑

s∈[a,b]

(P(Zk = s |x)− P(Zk = s− 1 |x))2


≤ Ex


√√√√(b− a)

k+1∑
s=0

(P(Zk = s |x)− P(Zk = s− 1 |x))2


≤

√√√√Ex

[
(b− a)

k+1∑
s=0

(P(Zk = s |x)− P(Zk = s− 1 |x))2
]
,
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where the last inequality holds by Jensen’s inequality. Let

A = E[η21 + (1− η1)
2] and B = 2E[η1(1− η1)] .

By Lemma A.3 below we have that the above term is bounded by√
(b− a)

(
Ak +

π

(4Bk)3/2
+

π

eBk2

)
,

so that (5) gives

Ex

[
k+1∑
s=0

|P(Zk = s |x)− P(Zk = s− 1 |x)|

]
≤ 2Qk([a, b]

c)+

√
(b− a)

(
Ak +

π

(4Bk)3/2
+

π

eBk2

)
.

Let a = max{kp −
√
kck, 0} and b = min{kp +

√
kck, 1}. By Bernstein’s inequality applied to

binomial random variables we have that Qk([a, b]
c) = 1

2k . Hence, with this choice of a and b we
obtain

Ex

[
k+1∑
s=0

|P(Zk = s |x)− P(Zk = s− 1 |x)|

]
≤ 1

k
+

√
2
√
kck

√
Ak +

π

(4Bk)3/2
+

π

eBk2
.

The lemma follows by replacing the values of A and B.

Lemma A.3. The following inequality holds

Ex

[
k+1∑
s=0

(P(Zk = s |x)− P(Zk = s− 1 |x))2
]

≤ E[η21 + (1− η1)
2]k +

π

(8E[η1(1− η1)]k)3/2
+

π

2eE[η1(1− η1)]k2
.

Proof. Let ps(x) = P(Zk = s |x) − P(Zk = s − 1 |x), for s = 0, . . . , k + 1. Further, for
k + 1 ≥ u ≥ 0 let gu(x) = 1√

k+2

∑k+1
s=0 ps(x)e

2πi us
k+2 denote the discrete Fourier transform. Since,

for any x, the mapping

p(x) := (p0(x), . . . , pk+1(x)) 7→ (g1(x), . . . , gk+1(x) := g(x)

is a unitary linear transformation [5] we can write:
k+1∑
s=0

(P(Zk = s |x)− P(Zk = s− 1 |x))2 = ∥p(x)∥2 = ∥g(x)∥2 =

k+1∑
u=0

|gu(x)|2.

Moreover, by Lemma A.4 below we have that

gu(x) = (1− e
2πiu
k+2 )

1√
k + 2

k∏
j=1

(1− ηj + ηje
2πiu
k+2 )

and therefore

|gu(x)|2 = gu(x)gu(x) =
1

k + 2

(
1− cos

2πu

k + 2

) k∏
j=1

(
(1− ηj)

2 + η2j + 2ηj(1− ηj) cos
2πu

k + 2

)
.

Therefore we can write

Ex

[
k+1∑
s=0

(P(Zk = s |x)− P(Zk = s− 1 |x))2
]

=
1

k + 2
Ex

k+1∑
u=0

(
1− cos

2πu

k + 2

) k∏
j=1

(
(1− ηj)

2 + η2j + 2ηj(1− ηj) cos
2πu

k + 2

)
=

1

k + 2

k+1∑
u=0

(
1− cos

2πu

k + 2

) k∏
j=1

Ex

[(
(1− ηj)

2 + η2j + 2ηj(1− ηj) cos
2πu

k + 2

)]
, (6)

16



Where we have used the fact that the random variables ηj are independent. Finally by linearity of
expectation and the fact that ηj is distributed as η1 for all j, we have

Ex

[
k+1∑
s=0

(P(Zk = s |x)− P(Zk = s− 1 |x))2
]

1

k + 2

k+1∑
u=0

(
1− cos

2πu

k + 2

)(
E[η21 + (1− η1)

2] + 2E[η1(1− η1)] cos
2πu

k + 2

)k

. (7)

Applying Proposition A.5 below with a = E[η21 + (1− η1)
2] and b = 2E[η1(1− η1)] we have that

the above expression is bounded by

E[η21 + (1− η1)
2]k +

π

(8E[η1(1− η1)]k)3/2
+

π

2eE[η1(1− η1)]k2

which gives the claimed result.

Lemma A.4. Let ps(x) = P(Zk = s |x) − P(Zk = s − 1 |x) and let gu(x) =
1√
k+2

∑k+1
s=0 ps(x)e

2πius
k+2 denote the discrete Fourier transform of p(x) = (p1(x), . . . , ps(x)). Then

gu(x) =
1√
k + 2

(1− e
2πiu
k+2 )

k∏
j=1

(1− ηj + ηje
2πiu
k+2 )

Proof. By definition of gu(x) we have:

1√
k + 2

(
k+1∑
s=0

e
2πius
k+2 P(Zk = s |x)−

k+1∑
s=0

e
2πius
k+2 P(Zk = s− 1 |x)

)

=
1√
k + 2

(
k+1∑
s=0

e
2πius
k+2 P(Zk = s |x)− e

2πiu
k+2

k+1∑
s=0

e
2πiu(s−1)

k+2 P(Zk = s− 1 |x)

)

=
1√
k + 2

(1− e
2πiu
k+2 )EZk

[e
2πiu
k+2 Zk |x]

=
1√
k + 2

(1− e
2πiu
k+2 )ϕZk |x

(
2πu

k + 2

)
where ϕZk |x denotes the characteristic function of Zk conditioned on x. Using the fact that Zk =∑k

j=1 Aj and that A1, . . . , Ak are independent given x, we have ϕZk |x =
∏k

j=1 ϕAj | xj
. The

result follows from the fact that Aj is a Bernoulli random variable and therefore ϕAj | xj
(z) =

(1− ηj + ηje
iz).

Proposition A.5. For any a, b, k > 0 such that a+ b = 1 we have

1

k + 2

k+1∑
u=0

(
1− cos

2πu

k + 2

)(
a+ b cos

2πu

k + 2

)k

≤ ak +
π

(4kb)3/2
+

π

ebk2

17



Proof. Using the fact that cos 2πu
k+2 ≤ 0 for u ∈ [(k + 2)/4, 3(k + 2)/4] we have that

k+1∑
u=0

(
1− cos

2πu

k + 2

)(
a+ b cos

2πu

k + 2

)k

=

k+2/4∑
u=0

(
1− cos

2πu

k + 2

)(
a+ b cos

2πu

k + 2

)k

+

3(k+2)/4∑
u=(k+2)/4+1

(
1− cos

2πu

k + 2

)(
a+ b cos

2πu

k + 2

)k

+

k+1∑
u=3(k+2)/4+1

(
1− cos

2πu

k + 2

)(
a+ b cos

2πu

k + 2

)k

≤ (k + 2)ak +

(k+2)/4∑
u=0

(
1− cos

2πu

k + 2

)(
a+ b cos

2πu

k + 2

)k

+

k+1∑
u=3(k+2)/4+1

(
1− cos

2πu

k + 2

)(
a+ b cos

2πu

k + 2

)k

= (k + 2)ak + 2

(k+2)/4∑
u=0

(
1− cos

2πu

k + 2

)(
a+ b cos

2πu

k + 2

)k

,

where we used the fact that (1− cos t) ≤ 2 for the first inequality and the symmetry of the cosine
function for the last equality. We now apply the result of Proposition A.7 to the above expression to
see that

(k+2)/4∑
u=0

(
1− cos

2πu

k + 2

)(
a+ b cos

2πu

k + 2

)k

≤ 2π2

(k+2)/4∑
u=0

u2

(k + 2)2

(
1− 4πb

u2

(k + 2)2
)

)k

≤ 2π2

(k+2)/4∑
u=0

u2

(k + 2)2
e
−4πkb u2

(k+2)2

Therefore we conclude that

1

k + 2

k+1∑
u=0

(
1− cos

2πu

k + 2

)(
a+ b cos

2πu

k + 2

)k

≤ ak+4π2

(k+2)/4∑
u=0

u2

(k + 2)2
e
−4πkb u2

(k+2)2
1

k + 2
.

Finally, applying Proposition A.6 with m = k + 2 and α = 4πkb we can upper bound the above
quantity by:

ak + 4π2

( √
π

4(4πkb)3/2
+

1

4eπbk(k + 2)

)
≤ ak +

π

(4kb)3/2
+

π

ebk2
,

which concludes the proof.

Proposition A.6. Let m > 0 and α > 0. Then

m/4∑
u=0

u2

m2
e−α u2

m2
1

m
≤

√
π

4α3/2
+

1

eαm

Proof. Let f : R → R be given by x 7→ x2e−αx2

. Note that the sum we are attempting to bound is
then given by:

m/4∑
u=0

f
( u

m

) 1

m

18



Note also that f has a maximum at x0 = 1√
α

. Thus f is increasing for x < x0 and decreasing
otherwise. In particular if

m/4∑
u=0

f
( u

m

) 1

m
=

⌊x0⌋∑
u=0

f
( u

m

) 1

m
+

m/4∑
u=⌈x0⌉

f
( u

m

) 1

m
:= L+ U,

then L corresponds to a lower Riemman sum for f and L ≤
∫ ⌊x0⌋+1

m

0
f(x)dx. Similarly U is an

upper Riemman sum for f and U ≤
∫ 1/4− 1

m
⌈x0⌉−1

m

f(x)dx. Therefore we have

m/4∑
u=0

f
( u

m

) 1

m
≤
∫ 1/4−1/m

0

x2e−αx2

dx+

∫ ⌊x0⌋+1
m

⌈x0⌉−1
m

f(x)dx

≤
∫ ∞

0

x2e−αx2

+
1

m
max

x
f(x)

=

√
π

4α3/2
+

1

eαm
,

as claimed.

Proposition A.7. The following inequality holds for any t ∈ [0, 1/4]:

1− 2(πt)2 ≤ cos 2πt ≤ 1− 4πt2

Proof. For the lower bound we start from the fact that for any x ≥ 0 it is well known that

sin 2πx ≤ 2πx.

Integrating this inequality from [0, t] we have that
∫ t

0
sin 2πx ≤ πt2. Since

∫ t

0
sin 2πx = 1

2π (1 −
cos 2πt) the lower bound follows.

For the upper bound we proceed in a similar fashion. By the fact that sin 2πx is concave for
x ∈ [0, 1/4] we have that

sin 2πx = sin 2π((1− 4x) · 0 + 4x · 1
4
) ≥ (1− 4x) sin 0 + 4x sin

π

2
= 4x.

Again integrating the above inequality from 0 to t we have 1−cos 2πt
2π ≥ 2t2.

A.5 Proof of Lemma 3.6

Lemma 3.6. For all data distributions D and all k, Advk(MRR,D) = Adv1(MRR,D).

Proof. Fix any k and any data distribution D. Then,

Advk(MRR,D) = E
(x,y)∼Dk

i∼Uniform([k])

[
max

{
P(yi = 1 | x,MRR(x,y)),P(yi = 0 | x,MRR(x,y))

}]
(8)

− E
x∼DX

[
max{η(x), 1− η(x)}

]
The second term already has no dependence on k. We focus on the first term.

The key to this proof is that a noisy label RR(yi) = ỹi is independent of the other true labels yj , j ̸= i.
Thus, we have

Pr(yi = 1 | x,MRR(x,y)) = Pr(yi = 1 | x,MRR(x,y)i) = Pr(yi = 1 | xi,MRR(xi, yi)).
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Applying this to (8), we have

E
(x,y)∼Dk

i∼Uniform([k])

[
max

{
P(yi = 1 | x,MRR(x,y)),P(yi = 0 | x,MRR(x,y))

}]

= E
(x,y)∼Dk

i∼Uniform([k])

[
max

{
P(yi = 1 | xi,MRR(xi, yi)),P(yi = 0 | xi,MRR(xi, yi))

}]

=
1

k

k∑
i=1

E
(x,y)∼Dk

[
max

{
P(yi = 1 | xi,MRR(xi, yi)),P(yi = 0 | xi,MRR(xi, yi))

}]
= E

(x,y)∼D

[
max

{
P(y1 = 1 | x1,MRR(x1, y1)),P(y1 = 0 | x1,MRR(x1, y1))

}]
,

where the final equality holds because the k features and labels are identically distributed. Plugging
this back into (8) gives us Adv1(MRR,D) as desired.

A.6 Proof of Theorem 3.7

Theorem 3.7. For any data distribution D, the attack advantage for randomized response with
privacy parameter π = 1

1+eε is

Adv1(MRR,D) = Ex

[(
min{η(x), 1− η(x)} − π

)
·I{η(x) ∈ [π, 1− π]}

]
.

The optimal adversary that maximizes EAU1(·,MRR,D) is given below:

A∗(x, ỹ) =


1, if η(x) > 1− π

0, if η(x) < π

ỹ, otherwise
.

Proof. First we characterize the optimal attacker for which the advantage is maximal. The Bayes
optimal decision which minimizes the loss I{A(x, ỹ) ̸= y} conditioned on x and ỹ is

A′(x, ỹ) = I{Pr(y = 1|x, ỹ) > Pr(y = 0|x, ỹ)}
which can be written as

1 <
Pr(y = 1|x, ỹ)
Pr(y = 0|x, ỹ)

=
Pr(ỹ|y = 1)Pr(y = 1|x)
Pr(ỹ|y = 0)Pr(y = 0|x)

(9)

Assume that ỹ = 1, in which case (9) becomes

π

1− π
<

η(x)

1− η(x)
(10)

which is true whenever η(x) > π, and on the other hand, if η(x) < π then (10) does not hold
anymore, thus A′(x, ỹ) = 0. The same argument holds for ỹ = 0 which implies that the optimal
attack is.

A′(x, ỹ) =


1, if η(x) > 1− π

0, if η(x) < π

ỹ, otherwise

To compute the reconstruction advantage of optimal attacker A′, we may decompose the feature set
into parts as

G(π) = {x : η(x) ∈ [π, 1− π]}
and its complement set GC(π). It is clear the advantage of the optimal attacker A′ restricted to
GC(π) is 0 since A′(x) = A∗(x) if x ∈ GC(π). The advantage of A′ for any x ∈ G(π) is

(1− π)− 1 + min{η(x), 1− η(x)} = min{η(x), 1− η(x)} − π

which concludes the proof.
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B Proofs for Section 6

B.1 Proof of Theorem 6.1

Proof. We begin with the square loss ℓ(p,X) = (p − X)2. The proof follows from linearity of
expectation and that Z is independent of x and y with expectation 0.

E

[
∇θℓ

(
1

k

∑
x∈B

hθ(x), α̃

)]
= E

∇θ

(
1

k

∑
x∈B

hθ(x)− α− Z

)2


= E

∇θ

(
1

k

∑
x∈B

hθ(x)− α

)2

−∇θ2Z

(
1

k

∑
x∈B

hθ(x) + α

)
+∇θZ

2


= E

[
∇θℓ

(
1

k

∑
x∈B

hθ(x), α

)]
+∇θ E[−2Z] · E

[
1

k

∑
x∈B

hθ(x) + α

]
+∇θ E[Z2]

= E

[
∇θℓ

(
1

k

∑
x∈B

hθ(x), α

)]
.

Now, consider the binary cross entropy loss ℓ(p,X) = −X log(p)− (1−X) log(1− p). Using the
fact that E[Z] = 0 and Z is independent of x, α,B, we have the following

E

[
∇θℓ

(
1

k

∑
x∈B

hθ(x), α̃

)]

= E

[
∇θ − α̃ · log

(
1

k

∑
x∈B

hθ(x)

)
− (1− α̃) log

(
1− 1

k

∑
x∈B

hθ(x)

)]

= E

[
∇θ − (α+ Z) · log

(
1

k

∑
x∈B

hθ(x)

)
− (1− α− Z) · log

(
1− 1

k

∑
x∈B

hθ(x)

)]

= E

[
∇θ − α · log

(
1

k

∑
x∈B

hθ(x)

)
− (1− α) · log

(
1− 1

k

∑
x∈B

hθ(x)

)]

+ E

[
∇θ − Z · log

(
1

k

∑
x∈B

hθ(x)

)
+ Z · log

(
1− 1

k

∑
x∈B

hθ(x)

)]

= E

[
∇θℓ

(
1

k

∑
x∈B

hθ(x), α

)]
+ E

[
∇θ − Z · log

(
1

k

∑
x∈B

hθ(x)

)
+ Z · log

(
1− 1

k

∑
x∈B

hθ(x)

)]

= E

[
∇θℓ

(
1

k

∑
x∈B

hθ(x), α

)]
.

B.2 Proof of Theorem 6.2

Proof. Let ℓ(q,X) = −X log(q) − (1 − X) log(1 − q) be the binary cross entropy loss, and let
q = 1

k

∑
x∈B hθ(x), and since α̃ is an unbiased estimate of α generated using a noise-addition

mechanism, α̃ = α+ Z for some unbiased Z.

Notice that ℓ(q, α̃) = ℓ(q, α)− Z log
(

q
1−q

)
. Thus,
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E
[
∥∇θℓ (q, α̃) ∥22

]
= E

[∥∥∥∥∇θℓ(q, α)−∇θZ log

(
q

1− q

)∥∥∥∥2
]

= E
[
∥∇θℓ(q, α)∥2

]
+ E

[∥∥∥∥∇θZ log

(
q

1− q

)∥∥∥∥2
]
− E

[
2Z

〈
∇θℓ(q, α),∇θ log

(
q

1− q

)〉]

= E
[
∥∇θℓ(q, α)∥2

]
+Var[Z] · E

[∥∥∥∥∇θ log

(
q

1− q

)∥∥∥∥2
]
.

where we have used the fact that E[Z] = 0 and Z is independent of q and α.

Taking Z ∼ Lap(1/kε) gives the desired upper bound.

C Computing Advantage for DP + LLP

In this section, we derive the optimal LIA attacker for a PET MLap-LLP that computes label proportions
for groups examples in bags of size k (as in MLLP) and adds Laplace noise with scale 1/kε to the true
binary label proportion. For a given bag, MLap-LLP(x,y) = Z + 1

k

∑k
i=1 yi where Z ∼ Lap(1/kε).

Theorem 6.3. For any privacy parameters k ≥ 1, ε > 0, and any data distribution D,
Advk(MLap-LLP,D) is maximized by the following adversary:

A∗(x,MLap-LLP(x,y))i :=

{
1 if η(xi)

1−η(xi)
·
∑k

b=1 P(PBin({η(xj)}i̸=j)=b−1)·e−kε|α̃−b/k|∑k−1
b=0 P(PBin({η(xj)}i̸=j)=b)·e−kε|α̃−b/k| ≥ 1

0 otherwise.

Alternatively, using properties of the Laplace distribution, this adversary is approximately equivalent
to the following for small ε

A∗∗(x,MLap-LLP(x,y))i :=


1 if η(xi)

1−η(xi)
< e−ε

0 if η(xi)
1−η(xi)

> eε

yi otherwise

.

Proof. Fix any k, any ε > 0, and any data distribution D. By Lemma 3.2, the
EAUk(Ainformed,MLap-LLP,D) is maximized by the following adversary

A∗(x,M(x,y))i :=

{
1 if P(yi = 1 | x,MLap-LLP(x,y)) ≥ 1/2

0 otherwise.

In particular, we denote the output MLap-LLP(x,y) as α̃ = α+ Z where Z ∼ Lap(1/kε). We now
characterize the conditional distribution that the attacker computes. Let c ∈ {0, 1}.

P(yi = c | x,MLap-LLP(x,y)) = P(yi = c | x, α̃) (11)

=
P(α̃ | x, yi = c)P(yi = c | x)

P(α̃ | x)
(12)

Now, when we take the ratio for c = 1 and c = 0, the term P(α̃ | x) cancels, so we do not need to
compute it.

First, observe that

P(yi = c | x) = P(yi = c | xi) = c · η(xi) + (1− c) · (1− η(xi)).
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Now, let’s analyze P(α̃ | x, yi = c). Fix any a. We will use the fact that Z is independent of α,x,
and y and apply the density function of the Laplace distribution.

P(α̃ = a | x, yi = c) = P(α+ Z = a | x, yi = c) (13)

=

k−1+c∑
b=c

P
(
α =

b

k
, Z = a− b

k
| x, yi = c

)
(14)

=

k−1+c∑
b=c

P
(
α =

b

k
| x, yi = c

)
· P
(
Z = a− b

k

)
(15)

=

k−1+c∑
b=c

P
(
α =

b

k
| x, yi = c

)
· kε
2
e−kε|a−b/k| (16)

(17)

Now, we will analyze the first part of the summation.

P
(
α =

b

k
| x, yi = c

)
= P

∑
j∈[k]

yj = b | x, yi = c


= P

 ∑
j∈[k],j ̸=i

yj = b− c | x


= P(PBin({η(xj)}i ̸=j) = b− c)

Plugging this back into (16), we have

P(α̃ = a | x, yi = c) =

k−1+c∑
b=c

P(PBin({η(xj)}i̸=j) = b− c) · kε
2
e−kε|a−b/k| (18)

For simplicity of notation, let f(b) = P(PBin({η(xj)}i ̸=j) = b) and let g(b) = kε
2 e−kε|a−b/k|. Note

that because g is the density function for Lap(1/kε), we have that g(b) ≤ eε · g(b+ 1) for all b ∈ R.

Then,

P(α̃ = a | x, yi = 0) =

k−1∑
b=0

f(b) · g(b) ≤
k−1∑
b=0

f(b) · eε · g(b+ 1)

= eε ·
k∑

b=1

f(b− 1) · g(b)

= eε · P(α̃ = a | x, yi = 1).

Similarly,

P(α̃ = a | x, yi = 1) ≤ eε · P(α̃ = a | x, yi = 0).

Now, plugging everything back into (12), and computing the proportion between yi = 0 and yi = 1,
we have

P(yi = 0 | x,MLap-LLP(x,y))

P(yi = 1 | x,MLap-LLP(x,y))
=

P(α̃ | x, yi = 0)

P(α̃ | x, yi = 1)
· P(yi = 0 | x)
P(yi = 1 | x)

≤ eε · η(xi)

1− η(xi)
(19)

Similarly,

e−ε · η(xi)

1− η(xi)
≤

P(yi = 0 | x,MLap-LLP(x,y))

P(yi = 1 | x,MLap-LLP(x,y))
≤ eε · η(xi)

1− η(xi)
(20)

23



Thus, if η(xi)
1−η(xi)

< e−ε, then the ratio is greater than 1 and the algorithm outputs ŷi = 0. On the

other hand, if η(xi)
1−η(xi)

> eε, then the ratio is less than 1 and the algorithm outputs ŷi = 1. When

e−ε ≤ η(xi)
1−η(xi)

≤ eε, the bounds are not tight enough to determine whether the ratio is greater than
or less than 1.

Plugging (18) into (20) gives the optimal adversary.

C.1 Bound on Adv

Theorem 6.4. Let D an arbitrary distribution on X × Y and let p = E[η(x)]. Then for all bag sizes
k ≥ 1 we have:

Advk(MLap-LLP,D)

≤ min

{
2(1− e−ϵ)E[η(x)(1− η(x)], Õ

(
E[η(x)(1− η(x)]1/4(p(1− p))1/4√

k
+

E[η(x)(1− η(x))]1/4

k

)}
.

Proof. With the optimal adversary, Advk(MLap-LLP,D) can be upper bounded via (3) as

Advk(MLap-LLP,D) ≤ E[|η(x1)− P(y1 = 1 | x, α̃)|] .
We can write

Pr(y1 = 1 |x, α̃ = a) =
Pr(y1 = 1, α̃ = a |x)

Pr(α̃ = a |x)

=
η(x1) Pr(α̃ = a | y1 = 1,x)

η(x1) Pr(α̃ = a | y1 = 1,x) + (1− η(x1)) Pr(α̃ = a | y1 = 0,x)

so that

Advk(MLap-LLP,D) ≤ E
[
η(x1)(1− η(x1))

|Pr(α̃ = a | y1 = 0,x)− Pr(α̃ = a | y1 = 1,x)|
η(x1) Pr(α̃ = a | y1 = 1,x) + (1− η(x1)) Pr(α̃ = a | y1 = 0,x)

]
= E

[
η(x1)(1− η(x1))

|Pr(α̃ = a | y1 = 0,x)− Pr(α̃ = a | y1 = 1,x)|
Pr(α̃ |x)

]
.

Now, conditioned on x, let Bk−1(x) the Poisson-Binomial random variable with parameters
{η(x2), . . . , η(xk)}. Also, denote by fZ(z) = ϵk

2 e
−ϵk|z| the (Laplace) density of Z. We can

write

Pr(α̃ = a | y1 = 1,x) =

k∑
b=0

Pr(α = b/k | y1 = 1,x) Pr(Z = a− b/k)

=

k−1∑
b=0

Pr(Bk−1(x) = b |x) Pr(Z = a− (b+ 1)/k)

= EBk−1(x)

[
fZ

(
a− Bk−1(x) + 1

k

)]
And similarly,

Pr(α̃ = a | y1 = 0,x) = EBk−1(x)

[
fZ

(
a− Bk−1(x)

k

)]
.

Thus

Advk(MLap-LLP,D) ≤ Eα̃,x

η(x1)(1− η(x1))

∣∣∣EBk−1(x)

[
fZ

(
α̃− Bk−1(x)

k

)]
− EBk−1(x)

[
fZ

(
α̃− Bk−1(x)+1

k

)] ∣∣∣
Pr(α̃ |x)


= E[η(x)(1− η(x))]

× Ex

[∫ +∞

−∞

∣∣∣EBk−1(x)

[
fZ

(
α̃− Bk−1(x)

k

)
− fZ

(
α̃− Bk−1(x) + 1

k

)] ∣∣∣dα̃ ∣∣∣x]
(21)
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In the case where the features x are absent, the above can be simplified as

Advk(MLap-LLP,D) ≤ p(1− p)

∫ +∞

−∞

∣∣∣EBk−1

[
fZ

(
α̃− Bk−1

k

)
− fZ

(
α̃− Bk−1 + 1

k

)] ∣∣∣dα̃ ,

where Bk−1 is a binomial random variable with parameters p and k − 1.

We consider two ways of upper bounding (21). First, observe that

|fZ(z)− fZ(z − 1/k)|
max{fZ(z), fZ(z − 1/k)}

≤ 1− e−ϵ

holds for every k ≥ 1, ϵ ≥ 0, and z ∈ R. Hence, for all x,∫ +∞

−∞

∣∣∣EBk−1(x)

[
fZ

(
α̃− Bk−1(x)

k

)
− fZ

(
α̃− Bk−1(x) + 1

k

)] ∣∣∣dα̃
≤
∫ +∞

−∞
EBk−1(x)

[∣∣∣fZ (α̃− Bk−1(x)

k

)
− fZ

(
α̃− Bk−1(x) + 1

k

) ∣∣∣] dα̃
= EBk−1(x)

[∫ +∞

−∞

∣∣∣fZ (α̃− Bk−1(x)

k

)
− fZ

(
α̃− Bk−1(x) + 1

k

) ∣∣∣dα̃]
≤ (1− e−ϵ)EBk−1(x)

[∫ +∞

−∞
max

{
fZ

(
α̃− Bk−1(x)

k

)
, fZ

(
α̃− Bk−1(x) + 1

k

)}
dα̃

]
= (1− e−ϵ)

∫ +∞

−∞
max

{
fZ (α̃) , fZ

(
α̃− 1

k

)}
dα̃

≤ (1− e−ϵ)

∫ +∞

−∞

(
fZ (α̃) + fZ

(
α̃− 1

k

))
dα̃

= 2(1− e−ϵ) .

Plugging back into (21), this allows us to conclude that

Advk(MLap-LLP,D) ≤ 2(1− e−ϵ)E[η(x)(1− η(x))] .

Next, we argue that the advantage of MLap-LLP never exceeds that of MLLP (with the same value of k,
the bag size). This is because given the output of MLLP, we can simulate the output of MLap-LLP by
adding Lap( 1

kϵ ) noise. In particular, any adversary that uses the output of MLap-LLP can be converted
into one that uses the output of MLLP (by noising the label proportion), and this new adversary
has exactly the same attack utility. This implies that the advantage of MLap-LLP with parameters
(ϵ, k) is at most the advantage of MLLP with parameter k, for any ϵ ≥ 0. Combined with the above
calculations, this gives

Advk(MLap-LLP,D)

≤ min

{
2(1− e−ϵ)E[η(x)(1− η(x)], Õ

(
E[η(x)(1− η(x)]1/4(p(1− p))1/4√

k
+

E[η(x)(1− η(x))]1/4

k

)}
,

which concludes the proof.
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