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ABSTRACT
Diffusion models have emerged as a powerful tool for image generation and denoising. Typi-
cally, generative models learn a trajectory between the starting noise distribution and the target
data distribution. Recently (Liu et al., 2023b) proposed Rectified Flow (RF), a generative model
that aims to learn straight flow trajectories from noise to data using a sequence of convex opti-
mization problems with close ties to optimal transport. If the trajectory is curved, one must use
many Euler discretization steps or novel strategies, such as exponential integrators, to achieve
a satisfactory generation quality. In contrast, RF has been shown to theoretically straighten the
trajectory through successive rectifications, reducing the number of function evaluations (NFEs)
while sampling. It has also been shown empirically that RF may improve the straightness in two
rectifications if one can solve the underlying optimization problem within a sufficiently small
error. In this paper, we make two key theoretical contributions: 1) we provide the first theoreti-
cal analysis of the Wasserstein distance between the sampling distribution of RF and the target
distribution. Our error rate is characterized by the number of discretization steps and a new
formulation of straightness stronger than that in the original work. 2) under a mild regularity
assumption, we show that for a rectified flow from a Gaussian to any general target distribution
with finite first moment (e.g. mixture of Gaussians), two rectifications are sufficient to achieve a
straight flow, which is in line with the previous empirical findings. Additionally, we also present
empirical results on both simulated and real datasets to validate our theoretical findings. The
codes are available at https://github.com/bansal-vansh/rectified-flow.

1 INTRODUCTION

In recent years, diffusion models have achieved impressive performance across different multi-modal tasks includ-
ing image (Ho et al., 2022b; Balaji et al., 2022; Rombach et al., 2022), video (Ho et al., 2022a;c; Luo et al., 2023;
Wang et al., 2024; Zhou et al., 2022), and audio (Huang et al., 2023; Kong et al., 2020; Liu et al., 2023a; Ruan et al.,
2023) generation that leverages the score-based generative model (SGM) framework (Sohl-Dickstein et al., 2015;
Ho et al., 2020), which is a key component of large-scale generative models such as DALL-E 2 (Ramesh et al.,
2022). The main idea in this framework is to gradually perturb the data according to a pre-defined diffusion pro-
cess, and then to learn the reverse process for sample generation. Despite its success, the SGM framework incurs
significant computational costs because it requires numerous inference steps to generate high-quality samples. The
primary reason is that SGM generates sub-optimal or complicated flow trajectories that make the sampling step
expensive. An alternative approach to sampling in diffusion models involves solving the corresponding probability-
flow ordinary differential equations (ODEs) (Song et al., 2020b; 2023). This has led to the development of faster
samplers, such as DDIM (Song et al., 2020a), DPM solvers (Lu et al., 2022; Zheng et al., 2023), DEIS (Zhang &
Chen, 2022), and Genie (Dockhorn et al., 2022). However, these methods still require dozens of inference steps to
produce satisfactory results.

To alleviate this computational bottleneck in the sampling stage, (Liu et al., 2023b) recently proposed rectified
flow, which aims to efficiently sample from the target distribution by iteratively learning the straight flow trajecto-
ries. To elucidate further, rectified flow starts from a potentially curved flow model, similar to DDIM (Song et al.,
2020a) or other flow-based models (Lipman et al., 2022; Albergo & Vanden-Eijnden, 2022; Albergo et al., 2023),
that transports the noise distribution to the target distribution, and then applies the reflow procedure to straighten
the trajectories of the flow, thereby reducing the transport cost (Liu, 2022; Shaul et al., 2023b). Recent experi-
mental studies in (Liu et al., 2024; 2023b) have demonstrated that rectified flow can achieve high-quality image
generation within one or two steps just after 2-rectification procedures. (Lee et al., 2024) recently proposed an im-
proved training routine for rectified flow and also achieved impressive results just after 2-rectification procedures.
However, despite the computational advancements, a theoretical understanding of the convergence rate of rectified
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flow to the true data distribution and the effect of straightness on its computational complexity remains elusive. In
this paper, we investigate these issues and make the following contributions.

• Wasserstein convergence and effect of straightness: We establish a new bound for the squared 2-
Wasserstein distance between the sampled data distribution in rectified flow and the true target distribution
that mainly depends on the estimation error of the velocity (or drift) function and the discretization error
induced by the Euler discretization scheme. Our upper bound is characterized by a novel straightness
parameters of the flow that takes small values for near straight flows. Therefore, our result explains the
rationale behind the sufficiency of fewer discretization steps in the sampling stage under near-straight
flows with rigorous theoretical underpinning.

• Straightness of 2-rectified flow: We establish the first theoretical result to show that straight flows are
provably achievable within only two rectification steps under mild regularity conditions. This result pro-
vides theoretical justification to the empirical finding, commonly encountered both in simulations and
real-world data, that only two iterations of the RF procedure are often sufficient to produce straight flows.
We also study the geometry of the flow when the source and target distributions are Gaussians and simple
mixtures of Gaussians, respectively.

The rest of the paper is organized as follows: Section 2 provides some background on optimal transport and its
connection with rectified flow. In Section 3, we present the main convergence results for the continuous time and
discretized rectified flow under the 2-Wasserstein metric. We also introduce novel straightness parameters and
study their effect on the convergence rate. Section 4 focuses on establishing a general straightness result for 2-RF
under a very general setting and building geometric intuition for rectified flow under simpler but rather instructive
examples. In particular, Section 4.1 provides a general result that shows the straightness of 2-RF between standard
Gaussian and a target distribution within a fairly general class of distributions that also includes a general mixture
of Gaussian distributions. Section 4.2 focuses on the geometry of 1-RF for some simpler Gaussian mixture models
that also help to build a geometric intuition for the straightness phenomenon in 2-RF. In these special cases, we
show that two rectifications are sufficient to obtain a straight flow. Finally, we present supporting simulated and
real data experiments in Section 5 to empirically validate our theoretical findings.

Notation. Let R denote the set of real numbers. We denote by Rd the d-dimensional Euclidean space, and for a
vector x ∈ Rd, we denote by ∥x∥2 the ℓ2-norm of x. We use Id to denote the d-dimensional identity matrix. For a
positive integer K, denote by [K] the set {1, 2, . . . ,K}.

For a random variable X we denote by Law(X) the probability distribution (or measure) of X . We write X ∼ ρ
to denote ρ = Law(X). Moreover, for an absolutely continuous probability distribution ρ with respect to the
Lebesgue measure λ over Rd, we denote by dρ

dλ the Radon-Nikodym derivative of ρ with respect to λ, i.e., the
density of X with respect to λ is ξ := dρ

dλ . For two distributions ρ1 and ρ2, we use W2(ρ1, ρ2) to denote the
2-Wasserstein distance between ρ1 and ρ2. N(0, Id) denotes the standard gaussian distribution in Rd.

For a continuous and differentiable path {xt}t∈[0,1] ⊂ Rd and time varying functions ft : Rd → Rm, we denote

by ḟt(xt) the time derivative of ft(xt), i.e., ḟt(xt) = dft(xt)
dt . Similarly, we use f̈t(xt) to denote d2ft(xt)

dt2 . For a
vector field v : Rd → Rd, we let ∇ · v be its divergence.

Throughout the paper, we will use standard big-Oh (respectively big-Omega) notation. In detail, for a sequence
{an} of real numbers and a sequence {bn} of positive numbers, an = O(bn) (respectively an = Ω(bn)) signifies
that there exists a universal constant C > 0, such that |an| ≤ Cbn (respectively |an| ≥ Cbn) for all n ∈ N.

2 BACKGROUND AND PRELIMINARIES

2.1 OPTIMAL TRANSPORT

The optimal transport (OT) problem in its original formulation as the Monge problem (Monge, 1781) is given by

inf
T

E [c(T (X0)−X0)] s.t. Law(T (X0)) = ρ1, Law(X0) = ρ0,

where the the infimum is taken over deterministic couplings (X0, X1) where X1 = T (X0) for T : Rd → Rd to
minimize the c-transport cost. See, e.g., Villani (2009). The Monge problem was relaxed by Kantorovich (Kan-
torovich, 1958) and the Monge-Kantorovich (MK) problem allowed for all (deterministic and stochastic) couplings
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(X0, X1) with marginal laws ρ0 and ρ1 respectively. However, it is well-known that if ρ0 is an absolutely continu-
ous probability measure on Rd, both problems have the same optimal coupling that is deterministic, and hence, the
optimization could be restricted only to the set of deterministic mappings T . We consider an equivalent dynamic
formulation of the Monge and MK problems as finding a continuous-time process {Xt}t∈[0,1] from the collection
of all smooth interpolants X such that X0 ∼ ρ0 and X1 ∼ ρ1. For convex cost functions c, Jensen’s inequality
gives that

E [c(X1 −X0)] = E
[
c

(∫ 1

0

Ẋtdt

)]
= inf

{Xt}t∈[0,1]∈X
E
[∫ 1

0

c
(
Ẋt

)
dt

]
where the infimum is indeed achieved when Xt = tX1 + (1− t)X0, also known as the displacement interpolant,
which forms a geodesic in the Wasserstein space (McCann, 1997). When we restrict the processes to those induced
by the ODEs of the form dXt = vt(Xt)dt, the Lebesgue density of Xt, denoted by ξt, satisfies the continuity
equation (also known as the Fokker-Planck equation) given by ∂ξt

∂t +∇ · (vtξt) = 0, and the Monge problem can
be recast as

inf
{vt}t∈[0,1],{Xt}t∈[0,1]

E
[∫ 1

0

c (vt(Xt)) dt

]
, s.t.

∂ξt
∂t

+∇ · (vtξt) = 0, ξ0 =
dρ0
dλ

and ξ1 =
dρ1
dλ

.

However, the dynamic formulation outlined above is challenging to solve in practice. When the cost function
c = ∥ · ∥2, this corresponds exactly to the kinetic energy objective introduced by (Shaul et al., 2023a), who
demonstrate that the displacement interpolant minimizes the kinetic energy of the flow, resulting in straight-line
flow paths. Additionally, (Liu, 2022) show that Rectified Flow, which iteratively learns the drift function vt for the
displacement interpolant, simplifies this complex problem into a series of least-squares optimization tasks. With
each iteration of Rectified Flow, the transport cost is reduced for all convex cost functions c.

2.2 RECTIFIED FLOW

In this section, we briefly introduce the basics of Rectified flow (Liu et al., 2023b; Liu, 2022), a generative model
that transitions between two distributions ρ0 and ρ1 by solving ordinary differential equations (ODEs). Let ρdata :=
ρ1 = Law(X1) be the target data distribution on Rd and the linear-interpolation process be given by

Xt = tX1 + (1− t)X0, 0 ≤ t ≤ 1

where ρt = Law(Xt) and the starting distribution ρ0 is typically a standard Gaussian or any other distribution that
is easy to sample from. In the training phase, the procedure first learns the drift function v : Rd × [0, 1] → Rd as
the solution to the optimization problem

v = argminf

∫
E
[
∥Ẋt − f(Xt, t)∥22

]
dt = argminf

∫
E
[
∥(X1 −X0)− f(Xt, t)∥22

]
dt, (1)

where the minimization is over all functions f : Rd × [0, 1] → Rd. In practice, the initial coupling is usually an
independent coupling, i.e., (X0, X1) ∼ ρ0 × ρ1. The MMSE objective in (1) is minimized at

vt(x) := v(x, t) = E
[
Ẋt | Xt = x

]
= E [X1 −X0 | Xt = x] for t ∈ (0, 1). (2)

For sampling, (Liu et al., 2023b) show that the ODE
dZt = vt(Zt) dt, where Z0 ∼ ρ0 (3)

yields the same marginal distribution as Xt for any t, i.e., Law(Zt) = Law(Xt) = ρt, owing to the identical
Fokker-Planck equations. We call Z = {Zt}t∈[0,1] the rectified flow of the coupling (X0, X1), denoted as Z =

Rectflow ((X0, X1)), and (Z0, Z1) the rectified coupling, denoted as (Z0, Z1) = Rectify ((X0, X1)).

The uniform Lipschitzness of the drift function vt for all t ∈ [0, 1] is a sufficient condition for the rectified flow Z
to be unique (Murray & Miller, 2013, Theorem 1). Hence, the Rectflow procedure rewires the trajectories of
the linear interpolation process such that no two paths, corresponding to different initial conditions, intersect at the
same time. After solving the ODE (3), one can also apply another Rectflow procedure, also called Reflow or
the 2-Rectified flow, to the coupling (Z0, Z1) by learning the drift function

v
(2)
t (Z

(2)
t ) = E

[
Z1 − Z0 | tZ1 + (1− t)Z0 = Z

(2)
t

]
.

This procedure can be done recursively, say K times, resulting the K-Rectified Flow procedure. Liu et al. (2023b)
shows that K-Rectified Flow couplings are straight in the limit of K → ∞. We give the formal definition of
straightness below.
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Definition 2.1. (Straight coupling and flow) A coupling (X0, X1) is called straight or fully rectified when
E [X1 −X0 | tX1 + (1− t)X0] = X1 −X0 almost surely in t ∼ Unif([0, 1]).

Moreover, for a straight coupling (X0, X1), the corresponding rectified flow Z = Rectflow ((X0, X1)) has

straight line trajectories, and (X0, X1)
d
= (Z0, Z1) = Rectify ((X0, X1)), i.e., they both have the same joint

distribution. A flow that satisfies these properties is called a straight flow.

Straight flows are especially appealing because, in practice, solving the ODE (3) analytically is rarely feasible,
necessitating the use of discretization schemes for numerical solutions. However, for straight flows, the trajectories
follow straight lines, allowing for closed-form solutions without the need for iterative numerical solvers, which
significantly accelerates the sampling process.

Moreover, in practice, one is usually given samples from ρdata, and the drift function is estimated by empirically
minimizing the objective in (1) over a large and expressive function class F (for example, the class of neural
networks). Subsequently, the estimate v̂t is used to obtain the sampling ODE

dỸt = v̂t(Ỹt) dt, where Ỹ0 ∼ N(0, Id). (4)

Because the solution to the ODE (4) is typically not analytically available, one must rely on discretization schemes.
As proposed in Liu et al. (2023b), we apply the Euler discretization of the ODE to obtain our final sample estimates
as mentioned below:

Ŷti = Ŷti−1
+ v̂ti−1

(Ŷti−1
)(ti − ti−1), for i ∈ [T ], (5)

where the ODE is discretized into T uniformly spaced steps, with ti = i/T . The final sample estimate, Ŷ1, follows
the distribution ρ̂data := Law(Ŷ1).

3 MAIN RESULTS ON WASSERSTEIN CONVERGENCE

3.1 CONTINUOUS TIME WASSERSTEIN CONVERGENCE

In this section, we study the convergence error rate of the final estimated distribution of the rectified flow. In
particular, we establish error rates in the 2-Wasserstein distance for the estimated distributions procured through
the approximate ODE flow (4). To this end, we make some useful assumptions on the drift function and its estimate
that are necessary for establishing error bounds:
Assumption 3.1. Assume that

(a) (Estimation error) There exists an εvl ≥ 0 such that max
0≤i≤T

EXti
∼ρti

∥vti(Xti)− v̂ti(Xti)∥
2
2 ≤ ε2vl.

(b) (Lipschitz condition) The drift function v̂t satisfies ∥v̂t(x)− v̂t(y)∥2 ≤ L̂ ∥x− y∥2 almost surely, for
some L̂ > 0.

Assumption 3.1(a) requires v̂t to be an accurate approximation of the original drift function vt for all the time
points t ∈ {ti}i∈[T ]. Assumptions of this nature are standard in diffusion model literature (Gupta et al., 2024; Li
et al., 2024b;a; Chen et al., 2023), and they are indeed necessary to establish a reasonable bound on the error rate.
Assumption 3.1(b) is a standard Lipschitz assumption on the estimated drift function v̂t. In the literature concern-
ing the score-based diffusion models and flow-based models, similar Lipschitzness (and one-sided Lipschitzness)
assumptions on the estimated score functions of {Xti}i∈[T ] are common (Chen et al., 2023; Kwon et al., 2022; Li
et al., 2024b; Pedrotti et al., 2024; Boffi et al., 2024) requirement for theoretical analysis. In fact, v̂ is typically
given by a neural network, which corresponds to a Lipschitz function for most practical activations. Moreover, in
the context of rectified flow or flow-based generative models, the Lipschitzness condition on the true drift function
vt is particularly an important requirement for the existence and uniqueness of the solution of the ODE (3) (Liu
et al., 2023b; Boffi et al., 2024). Therefore, it is only natural to consider a class of neural networks that satisfies
the Lipschitzness property for the training procedure.

Below, we present our first theorem, which bounds the error between the actual data distribution ρ1 and the esti-
mated distribution by following the exact ODE (4).
Theorem 3.2. Let the condition of Assumption 3.1(b) hold, and also assume that ρ1 is absolutely continuous with
respect to the Lebesgue measure in Rd. Also, write b(t) = EXt∼ρt∥vt(Xt) − v̂t(Xt)∥22 for t ∈ [0, 1], and ρ̃1 be
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the distribution of Ỹ1. Then, almost surely,

W 2
2 (ρ̃1, ρ1) ≤ e1+2L̂

∫ 1

0

b(t) dt.

The bound displayed in Theorem 3.2 is indeed very similar to the bounds obtained in Kwon et al. (2022); Pedrotti
et al. (2024); Boffi et al. (2024), i.e., the bound essentially depends on the estimation error b(t) for all t ∈ [0, 1]. If
there exists and ε > 0 such that supt∈[0,1] b(t) ≤ ε2, then we have the bound on the squared 2-Wasserstein to be of
the order O(ε2). However, the requirement on b(t) is much more stringent than Assumption 3.1(a) which amounts
to bound on estimation error at the discrete time points {ti}Ti=0. The detailed proof is deferred to Appendix
A.2.1. It is also worth mentioning that the Lipschitz assumption on v̂ can be relaxed to the one-sided Lipschitzness
condition: if

⟨v̂t(x)− v̂t(y), x− y⟩ ≤ L̂ ∥x− y∥22 for all t ∈ [0, 1],

almost surely, then the conclusions of Theorem 3.2 also hold true. Moreover, in this case, L̂ needs not be non-
negative, as required in Assumption 3.1(b). Finally, unlike Chen et al. (2023); Gupta et al. (2024), we do not
require any second-moment or sub-Gaussian assumption on Xt.

Remark 1. The absolute continuity requirement in Theorem 3.2 can be relaxed. If the density of ρ1 does not exist,
then one can convolve X1 with an independent noise Wη ∼ N(0, ηId) for a very small η > 0, and consider the
mollified distribution ρη1 := Law(X +Wη) as the target distribution. Note that ρη1 is absolutely continuous and
satisfies W 2

2 (ρ
η
1 , ρ1) ≤ η2d. Therefore, under the condition of Theorem 3.2, and using triangle inequality we have

W 2
2 (ρ̃1, ρ1) ≲ η2d+ e1+2L̂

∫ 1

0
b(t) dt.

3.2 STRAIGHTNESS AND WASSERSTEIN CONVERGENCE OF DISCRETIZED FLOW

In this section, we introduce a notion of straightness of the discretized flow (5), and study its effect on the Wasser-
stein convergence error rate between true data distribution ρ1 and the sampled data distribution ρ̂data. As we will
see in the subsequent discussion, the straightness parameter of the ODE flow (3) plays an imperative role in the er-
ror rate, and our analysis shows that a more straight flow requires fewer discretization steps to achieve a reasonable
error bound.

New quantifiers for straightness of the flow. We focus the ODE flow (3) assuming a standard Gaussian initial
distribution, i.e.

dZt = vt(Zt)dt, Z0 ∼ N(0, Id).

Consider the random curve {α(t)}t∈[0,1] ⊂ [0, 1] × Rd, where α(t) := (t, Zt). The straightness of a twice-
differential parametric curve determined by its curvature at each time point t, measured by the rate of change of
the tangent vector α̇(t) = (1, vt(Zt)), which is essentially the acceleration of the particle at time t. To illustrate,
consider the curve α(t) = (t, t), for 0 ≤ t ≤ 1. The magnitude of the instantaneous acceleration is ∥α̈(t)∥2 = 0.
That is, α(t) has no curvature, i.e., it is straight. On the other hand, the curve given by α(t) = (sin t, cos t), for
0 ≤ t ≤ 1, has (constant) curvature. Indeed the magnitude of the instantaneous acceleration is ∥α̈(t)∥2 = 1 for all
t.

The above discussion motivates us to define two key quantities to measure the straightness of the flow Z:

Definition 3.3. Let Z = {Zt}t∈[0,1] be twice-differentiable flow following the ODE (3).

1. The average straightness (AS) parameter of Z is defined as

γ1(Z) :=

∫ 1

0

E ∥v̇t(Zt)∥22 dt.

2. Let 0 = t0 < t1 < . . . < tT = 1 be a partition of [0, 1] into T intervals of equal length. The piece-wise
straightness (PWS) parameter of the flow Z is defined as

γ2,T (Z) := max
i∈[T ]

1

ti − ti−1

∫ ti

ti−1

E ∥v̇t(Zt)∥22 dt.
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(a) N = 5 (b) N = 10

Figure 1: Flow of Zt = Z0 + (t, 50N−2 sin(2πNt))⊤

for different choices of N .

The quantity γ1(Z) essentially captures the average
straightness of the flow along the time t ∈ [0, 1].
On the other hand, γ2,T (Z) captures the degree of
straightness of Z for every interval [ti−1, tt] for all
i ∈ [T ]. Therefore, γ2,T (Z) captures a somewhat
more stringent notion of straightness. In addition, a
small value of γ1(Z) or γ2,T (Z) indicates that the flow
is close to perfect straightness. In fact, γ1(Z) = 0 or
γ2,T (Z) = 0 implies that the flow Z is a straight flow
in the sense of Definition 2.1. To formally state the
claim, let

S(Z) :=

∫ 1

0

E ∥Z1 − Z0 − vt(Zt)∥22 dt.

This quantity was introduced in Liu et al. (2023b) to
quantify the degree of straightness of the flow Z . Specifically, Liu et al. (2023b) showed that S(Z) = 0 if and
only if Z is a straight flow. The next lemma compares the above notions of straightness.
Lemma 3.4. The AS and PWS parameters satisfy γ2,T (Z) ≥ γ1(Z) ≥ S(Z). Moreover, S(Z) = 0 if and only if
γ1(Z) = γ2,T (Z) = 0.

The above lemma tells that a flow which is a near-straight flow in the notion of AS or PWS (i.e. γ1(Z) and γ2,T (Z)
are small), is also near-straight flow in terms of S(Z). Moreover, the second part of the above lemma shows that
γ1(Z) = 0 iff Z is straight, i.e, the notion of a perfectly straight flow in terms of AS aligns with that of a straight
flow of Liu et al. (2023b).

However, we argue that S(Z) could lead to a misleading notion of near-straightness that may conflict with our
intuitive perception of a near-straight flow. To elaborate, a flow Z could exist such that S(Z) could be close to
zero but γ1(Z) is well bounded away from 0. We illustrate this phenomenon through the following examples.
Example 1. Consider the velocity function vt(Zt) =

1
2πN (sin(2πNt), cos(2πNt))⊤, whereN ∈ N and t ∈ [0, 1].

The path of the flow is a circle. In this case, S(Z) = O(N−2) → 0 as N → ∞. Therefore, S(Z) clearly fails to
capture the degree of curvature of Z for large N . However, γ2,T (Z) = γ1(Z) = 1, i.e., AS and PWS are able to
capture the departure of Z from straightness.
Example 2. LetN ∈ N and consider the ODE flow (3) with vt(Zt) = (1, 100πN−1 cos(2πNt))⊤. In this case, we
have Zt = Z0 + (t, 50N−2 sin(2πNt))⊤ and v̇t(Zt) = −(0, 200π2 sin(2πNt))⊤. Straightforward calculations
show that S(Z) = O(N−2), while γ2,T (Z) ≥ γ1(Z) = 2 × 104π4. Therefore, S(Z) can be arbitrarily close to
0 as N → ∞, whereas γ1(Z) and γ2,T (Z) remain bounded away from zero. We also observe in Figure1 that the
undulation of the flow is greater for N = 10 compared to N = 5, i.e. the curvature increase with N .

We are now ready to state our main result about Wasserstein convergence for the discretized ODE (5).
Theorem 3.5. Let Assumption 3.1 hold for the flow Z := {Zt}0≤t≤1 determined by the ODE (3), assuming a
differentiable velocity field v : Rd × [0, 1] → Rd. Then the estimate of the distribution ρ̂data obtained through the
ODE (5) satisfies the following almost sure inequality:

W 2
2 (ρ̂data, ρ1) ≤

27e4L̂

max{L̂2, 1}

(
γ2,T (Z)

T 2
+ ε2vl

)
,

The term involving the PWS parameters could be referred to as an error term due to discretization. More impor-
tantly, the above Wasserstein error bound shows that T = Ω

(√
γ2,T (Z)/ϵ

)
is sufficient to achieve a discretization

error of the orderO(ϵ). Therefore, Theorem 3.5 indicates that if the flow is a near-straight flow (i.e., γ2,T (Z) ≈ 0),
then accurate estimation of the data distribution can be achieved with a very few discretization steps. This phe-
nomenon indeed aligns with the empirical findings in Liu et al. (2023b); Lee et al. (2024); Liu et al. (2024) related
to the rectified flow. To further elaborate, Theorem 3.5 shows that if a flow enjoys better piece-wise straightness
in each partitioning interval, we need fewer discretization steps to achieve desirable accuracy compared to the
case of a flow that deviates from straightness. This is also consistent with the empirical behavior of Perflow (Yan
et al., 2024), a methodology that has achieved state-of-the-art performance by further straightening the rectified
flow in each interval [ti−1, ti] for all i ∈ [T ]. The proof of the theorem can be found in Appendix A.2.3. It is also
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worthwhile to point out that one can obtain a Wasserstein error bound using the AS parameter since this relates the
error rate to the average notion of straightness that could be useful for practical purposes as it does not depend on
the coarseness of the partition. To this end, we have the elementary inequality γ2,T (Z) ≤ Tγ1(Z) (see Appendix
A.2.2) which immediately leads to the following corollary.
Corollary 3.6. Under the same conditions of Theorem 3.5, we have the following almost sure inequality:

W 2
2 (ρ̂data, ρ1) ≤

27e4L̂

max{L̂2, 1}

(
γ1(Z)

T
+ ε2vl

)
.

4 ONE RECTIFICATION LEADS TO STRAIGHT COUPLING IN MOST CASES

Although the trajectories of 1-Rectified flow are non-intersecting (because the drift function is Lipschitz continu-
ous), the algorithm is not guaranteed to return a straight flow, potentially requiring a large number of discretization
steps (or drift function evaluations) to generate high-quality samples. Liu et al. (2023b) show that repeatedly apply-
ing the Rectified Flow procedure progressiveness reduces the curvature of the flow, producing a straight flow in the
limit as the number K of iteration in K-Rectified Flow increases. Liu (2022); Liu et al. (2024) empirically show
that one needs at least three applications of the rectified flow for a fair one-step generation quality. On the other
hand, (Lee et al., 2024) heuristically suggests that no more than two applications are required, though a formal the-
oretical justification remains unproven. In this section, we will show that, under some mild regularity conditions,
1-Rectified Flow (1-RF) yields straight coupling (or 2-RF generates straight flow) between the standard Gaussian
distribution and a fairly broad class of target distributions that also includes general mixtures of Gaussians, thus
providing theoretical underpinning to the numerical findings in prior literature.

4.1 A GENERAL RESULT FOR STRAIGHTNESS

In Section 3, we assumed that the learned velocities v̂t are Lipschitz functions, and argued that global Lipschitzness
is sufficient for the existence of a unique solution to ODE (3). However, such conditions might be a bit too strong,
even in some simple cases. In fact, when X1 follows a general mixture of Gaussian distribution, the global
Lipschitz condition may not hold or hold with a very large constant. In this section, we will work with somewhat
more pragmatic conditions on the true velocity functions vt. Consider the non-stochastic version of ODE (3), i.e.,

dZt = vt(Zt) dt, Z0 = z0. (6)

For clarity, we denote the solution of the above ODE as Zt(z0) in contrast to the solution Zt of the ODE (3), which
has a random starting point.
Definition 4.1. For a positive integer k, a function f : Rd → Rd is said to be Ck if it is k-times continuously
differentiable. Additionally, f is called a C1,1 function if f is a C1 function and its Jacobian is locally Lipschitz,
i.e., for every x ∈ Rd, there exists δ > 0 and Lloc > 0 (which may depend on x) such that

max{∥x− x1∥2 , ∥x− x2∥2} ≤ δ ⇒ ∥∇xf(x1)−∇xf(x2)∥op ≤ Lloc ∥x1 − x2∥2 .

Assumption 4.2. We assume that the velocity function vt(·) is a C1,1 function for all t ∈ [0, 1].

Note that, if vt(·) is a C2 function, then it automatically satisfies Assumption 4.2. Therefore, global Lipschitzness
is not required for the above assumption. However, Assumption 4.2 is not necessarily a weaker assumption as a
Lipschitz function might not be a C1,1 function. Now we present a general result on the straightness of Rectified
Flow.
Theorem 4.3. Let E ∥X1∥2 < ∞ and the Assumption 4.2 hold. Also, assume that the solution to the ODE (6)
satisfies the non-explosive condition

sup
t∈[0,1]

∥Zt(z0)∥2 <∞ for all initial values z0 ∈ Rd. (7)

Then the rectified coupling (Z0, Z1) := Rectify(X0, X1) is a straight coupling.

Proof sketch. The main step in the proof is to show that the map Ht(z0) := (1 − t)z0 + tZ1(z0) is almost
everywhere locally invertible: this will lead to the straightness condition in Definition 2.1. Toward that goal, we
deploy the inverse function theorem (IVT). First, borrowing tools from (Kunita, 1984), we establish the existence
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and uniqueness of ∇z0Z1(z0) under Assumption 4.2 and Condition (7). Finally, we show that ∇z0Ht(z0) is
invertible for all t outside a countable subset of [0, 1], i.e., ∇z0Ht(z0) is invertible almost surely in t ∼ Unif([0, 1]).
This allows us to apply the IVT along with a careful covering argument for almost all t (see Appendix A.3.1) and
establish our claim.

Non-explosivity. Now, we provide a sufficient condition for non-explosivity that is easier to check so that Theorem
4.3 can be of practical use.
Assumption 4.4 (Osgood type criterion (Osgood, 1898; Groisman & Rossi, 2007)). Let Zt(z0) ∈ Rd be the
solution of the ODE (6), where (z0, t) ∈ Rd × [0, 1]. There exists a non-negative locally-Lipschitz (or strictly
increasing) function h : R+ → R+ such that∫ ∞

u0

1

h(u)
du > 1, for all u0 > 0, (8)

and ⟨Zt(z0), vt(Zt(z0))⟩ ≤ h(∥Zt(z0)∥22), for all (z0, t) ∈ Rd × [0, 1].

One sufficient condition is that supt∈[0,1] ⟨x, vt(x)⟩ ≤ h(∥x∥22) for all x ∈ Rd and for a positive locally-Lipschitz
(or strictly increasing) function h satisfying (8). The above criterion ensures that ∥Zt(z0)∥2 is always finite for
all t ∈ [0, 1] (Groisman & Rossi, 2007), i.e., the solutions does not explode. To be precise, the integral in (8)
quantizes the explosion time of ∥Zt(z0)∥2, and it ensures that the explosion time falls outside [0, 1]. Moreover,
as opposed to condition (7), this can be easily checked for a large class of target distributions, e.g., a general
mixture of Gaussians. For example, for (X0, X1) ∼ N(0, Id)× ρ1 with ρ1 =

∑J
j=1 πjN(µj ,Σj), it follows that

supt∈[0,1] ⟨x, vt(x)⟩ ≤ A ∥x∥22+B ∥x∥2 for someA,B > 0 (see Appendix A.3.3). Therefore, h(u) = Au+B
√
u

is a valid choice and it also satisfies Assumption 4.4, as
∫∞
u0

(Au+B
√
u)−1 du = ∞ for all u0 > 0.

We are now ready to state the main result of this section.
Theorem 4.5. Let (X0, X1) ∼ N(0, Id)× ρ1 such that E ∥X1∥2 < ∞. Also, let the condition in Assumption 4.4
hold for ODE (6). Then, the resulting rectified coupling (Z0, Z1) := Rectify(X0, X1) is a straight coupling.

The above theorem gives a fairly general straightness guarantee for Rectified Flow starting from an independent
coupling that covers a large class of target distributions. Essentially, the first moment ensures that Assumption
4.2 is satisfied. Therefore, coupled with Assumption 4.4, the conditions of Theorem 4.3 are satisfied, and hence,
straightness follows. As a result, when ρ1 is a general mixture of Gaussian, 1-RF yields straight coupling. The
complete proof is deferred to Appendix A.3.2. To the best of our knowledge, Theorem 4.5 is the first result
demonstrating that 1-RF produces a straight coupling with mild regularity assumptions. This provides concrete
theoretical support for empirical findings in the prior works.

4.2 EXAMPLES WITH SIMPLE GAUSSIAN MIXTURES

Although Theorem 4.5 is a quite strong result, it does not shed any light on the exact form or the geometry of the
rectified flow. Therefore, in this section, we provide simple examples of RF for mixtures of Gaussians to elucidate
its geometrical aspects. While simple, these examples provide intuition and further insights into understanding the
straightness of rectified flow. We begin with the case of ρ0 = N(0, Id) and ρ1 = N(µ,Σ). We show that the
1-Rectified flow obtains the optimal transport mapping (with respect to the squared distance cost function) and is
straight. The proof is deferred to Appendix A.3.4.
Theorem 4.6. Let (X0, X1) ∼ ρ0 × ρ1 be an independent coupling where ρ0 = N(0, Id) and ρ1 = N(µ,Σ)
where µ ∈ Rd, and Σ is a d × d positive semi-definite matrix. The associated rectified coupling (Z0, Z1) =
Rectify ((X0, X1)) is an optimal solution to the Monge problem, i.e., it minimizes E [c(Z0 − T (Z0))] where
T (Z0) = Z1 amongst all deterministic couplings T , for c = ∥·∥22 . Moreover, the coupling is given by Z1 =

Σ1/2Z0 + µ.

The above theorem shows that for a simple Gaussian to Gaussian case, 1-RF generates a straight coupling and
solves the Monge problem. Moreover, it provides the exact form of the coupling. The rest of the section considers
target distributions that are multimodal. Consider a simple case of ρ0 = N(0, 1) and ρ1 = .5N(y, 1)+.5N(−y, 1).
It turns out that in this case, the flow induced by vt has an interesting geometric structure (see, for example,
Figure A.1 (b)). In particular, if z0 is positive (negative), then zt := Zt(z0) is also positive (negative) for all t.
This follows from a very fundamental fact. First, note that 1-RF generates a straight coupling (Theorem 4.5) in
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this case which is also monotonically increasing, i.e., for (z0, z1) and (z′0, z
′
1) such that z0 < z′0, we must have that

z1 < z′1. We formalize this idea in the following lemma borrowed from (Liu et al., 2023b).
Lemma 4.7 (Lemma D.9; (Liu et al., 2023b)). A rectified coupling in R is straight iff it is deterministic and
monotonic.

In fact, the vt function is Lipschitz in this case which further ensures that the solution to ODE (6) is unique.
This actually ensures that order is preserved for all {zt}t∈[0,1] in the aforementioned example. This is a simple
consequence of the Picard-Lindelof theorem, and the detailed proof is given in Appendix A.3.6 (Lemma A.2). We
generalize this phenomenon in Lemma 4.8, which shows that in one dimension, the map z0 7→ zt preserves the
quantiles for all t ∈ [0, 1].
Lemma 4.8. Let z0 ∈ R and write zt := Zt(z0). If the drift function vt(x) in ODE (3) is Lipschitz, then P(Zt ≤ zt)
is a constant depending on z0 for all t.

The detailed proof is deferred to Appendix A.3.5, and additional experiments can be found in Appendix A.1.1.
This now paves the way for our next results.
Proposition 4.9. Consider (X0, X1) ∼ ρ0× ρ1, where ρ1 = πN(µ1, Id)+ (1−π)N(µ2, Id) where µ1, µ2 ∈ Rd,
and ρ0 = N(0, Id). Then, 1-RF yields a straight coupling.

Proof sketch: The result is a direct consequence of Theorem 4.5. However, we present a more intuitive and
instructive proof sketch here. Our proof (Appendix A.3.7) proceeds by using a rotation to reduce the d dimensional
target distribution into another where the means of the two components of the Gaussian mixture are sparse with
two non-zero coefficients, one of which is equal (lets say coordinate 1). We then show that the ODE decouples the
flow and it can be analyzed coordinate-wise. Then we use Lemma 4.7 for the coordinates to prove straightness.

Finally, we come to the Gaussian mixture to Gaussian mixture setting.
Proposition 4.10. Consider µ01 = (0, a)⊤, µ02 = (0,−a)⊤ and µ11 = (a, a)⊤, µ12 = (a,−a)⊤ for some a > 0.
Let X0 ∼ 0.5N(µ01, I2) + 0.5N(µ02, I2) and X1 ∼ 0.5N(µ11, I2) + 0.5N(µ12, I2). Also, assume that X0, X1

are independent. Then 1-RF yields a straight coupling.

The intuitive explanation is that even in this case, the flows along each coordinate decouples. The x−coordinate
goes through a translation, whereas the y−coordinate’s velocity function is uniformly Lipschitz, leading to a
monotonic coupling along y−direction. This, along with Lemma 4.7, shows that the flow along the y−axis is also
monotonic; hence, one rectification gives a straight coupling. The proof is deferred to the Appendix A.3.8.

5 EXPERIMENTS

In this section, we present numerical experiments for both synthetic and real data. We primarily explore the effect
of the number of discretization steps T and the straightness parameter γ2,T (Z) on the W2 distance between the
target distribution and the distribution of the generated samples after 1-rectification. Additional experiments can
be found in Appendix A.1.

Synthetic data. For simulated data, we consider the following two examples: 1) Flow from standard Gaussian to
a balanced mixture of Gaussian distributions in R2 with varying components, and 2) Flow from standard Gaussian
to a checker-board distribution (see Figure A.2) with varying components. We detail our findings for the Gaussian
mixture below and defer the Checkerboard example to Appendix A.1.2.

We choose the target distribution to be mixture of Gaussians with equal cluster probability and unit variance, where
the number of componentsK varies within {1, 2, 3, 4}. In all the cases, we show that the actual Wasserstein error is
closely characterized by γ2,T . To this end, we choose the all the means to have equal norm and similar separation
as they both affect the Lipschitz constant of the drift function1, which directly impacts the Wasserstein error as
shown in our analysis (see Theorem 3.5.) For K = 1, we set mean of the target distribution to be µ1 = (5, 0)⊤;
for K = 2: µ1 = (5, 0)⊤, µ2 = (0, 5)⊤; for K = 3: µ1 = (5, 0)⊤, µ2 = (0, 5)⊤, µ3 = (−5, 0)⊤; for K = 4:
µ1 = (− 5√

2
, 5√

2
)⊤, µ2 = (5/

√
2,−5/

√
2)⊤, µ3 = (−5/

√
2,−5/

√
2)⊤, µ4 = (5/

√
2, 5/

√
2)⊤.

We start with the independent coupling in each of the four cases and and train a feed-forward neural network to
estimate the drift function and generate the 1-rectified flow. Figure 2(a) shows that W2(ρ̂data, ρ1) decreases with

1An upper bound on the Lipschitz constant for a Gaussian mixture is given by L ≤ 2(1 +D×R), where D = maxi ∥µi∥
and R = maxi,j ∥µi − µj∥.
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(a) (b) (c) (d)

Figure 2: (a) W 2
2 (ρ̂data, ρ1) vs T (in log-log scale) for mixtures of Gaussians with varying components. (b) The

straightness parameter γ2,T (Z) vs T (in log-log scale) for the same respective distributions. (c) W 2
2 (ρ̂data, ρ1) vs

T (in log-log scale) for the second rectification on the Gaussian mixtures (d) shows the W 2
2 (ρ̂data, ρ1) vs T for

the FashionMNIST dataset with varying components. We observe that the straightness of the flow decreases with
increasing number of mixture components.

increasing number of discretization steps T , and the slope of the curve is approximately 2 (before it stabilizes),
which indeed validates the 1/T 2 dependence that we show in Theorem 3.5. Moreover, W2 distance is consistently
larger for the flow corresponding to a larger number of components, owing to a larger value of the straightness
parameter γ2,T (Z) as shown in Figure 2(b). Moreover, Figure 2(c), further validates our claim that the second
rectified flow for Gaussian mixtures produces a straight flow– the Wasserstein error even with a single discretization
step is close to 0.

Real data. For the real data experiments, we consider the MNIST and FashionMNIST datasets. In both examples,
we train a UNet architecture-based network on training data to estimate the drift function and then evaluate the
Wasserstein distance of the generated samples from the test split of the data. We give details for the FashionMNIST
dataset here and defer MNIST to Appendix A.1.3. To emulate the behavior of having different number of modes,
we consider three subsets of the FashionMNIST dataset consisting of the first 3 labels, the first 7 labels, and all 10
labels. We observe in Figure 2(d) that similar to the Gaussian mixture example, the presence of a higher number of
components negatively affects the Wasserstein distance, again indicating that the flow becomes less straight with
the increasing number of modes.

6 DISCUSSION AND FUTURE WORKS

Rectified Flow, a newly introduced alternative to diffusion models, is known to enjoy a fast generation time due to
its ability to learn straight flow trajectories from noise to data. Existing works have empirically shown that 1-RF
produces a straight coupling for many target distributions. To our knowledge, this paper is the first to show that this
is indeed true for a large class of source and target distributions that are “nice”. We also provide the first analysis
of the Wasserstein distance between the sampling distribution of RF and the target distribution that connects the
error rate with the straightness of the flow along with supporting experiments on real and simulated datasets.

Our analysis poses the natural question: are there source and target distributions where 1-RF does not give a
straight coupling? The simple examples we came up with are those for which the Monge map (or any determin-
istic coupling) does not exist. However, under the knowledge of Theorem 4.3, we conjecture that an even more
general version of Theorem 4.5 is possible. We suspect that if (X0, X1) is rectifiable for some initial choices of
distributions, then the 1-RF flow will result in a straight coupling under very mild regularity conditions. In fact,
we conjecture that 1-RF (under certain regularity conditions) will result in the optimal coupling induced by the
Monge map (if it exists), as it is known that RF iteratively solves the OT problem (Liu, 2022). Although this is an
interesting research direction, we defer it to future research. Another direction of research could be to improve the
dependence of the Lipschitz constant L̂ in Theorem 3.5, or theoretically explore the generalization error described
in Assumption 3.1(a).
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APPENDIX

A.1 MORE EXPERIMENTS

A.1.1 EXPERIMENTS RELATED TO LEMMA 4.8

In Figure A.1 (a) we show the trajectories (t, Zt) of n = 101 data points generated from source distribution
ρ0 = N(0, 1) and target distribution ρ1 = .5N(4, 1) + .5N(−10, 1). The blue, red, and black lines indicate the
trajectory of the maximum, median, and minimum of the source samples, and the triangles indicate the maximum,
median, and minimum of n data points over time. One can see that the image of the same point at time t continues
to preserve the quantiles for all t ∈ [0, 1]. This phenomenon also leads to interesting geometrical phenomena.
For example, Figure A.1 (b) shows that for transforming a Gaussian to a symmetric two-component mixture of
Gaussians .5N(10, 1) + .5N(−10, 1), all points above (below) the Zt = 0 line stay above (below).

0.0 0.2 0.4 0.6 0.8 1.0
t

8

6

4

2

0

2

4

Z t

= 0.5, 1 = 4, 2 = -10

Median
Maximum
Minimum
Quantiles at time t

(a) ρ1 = .5N(4, 1) + .5N(−10, 1)

0.0 0.2 0.4 0.6 0.8 1.0
t

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

Z t

= 0.5, 1 = 10, 2 = -10

(b) ρ1 = .5N(10, 1) + .5N(−10, 1)

Figure A.1: (a) shows the flow of the minimum, median, and maximum values of a set of points, initially distributed
according to a standard Gaussian. (b) shows the flow of points from a standard Gaussian to a symmetric mixture
of two Gaussians and the black line represents y = 0.

A.1.2 CHECKCER BOARD EXAMPLE

We consider the checker-board distribution with 2, 5 and 8 components. We use training datasets of size 10,000 to
train a feed-forward neural network in order to learn the velocity drift function and evaluate W 2

2 (ρ̂data, ρ1) using
POT (Feydy et al., 2019) for different levels of discretization T over test data of size 5000. Figure A.2(d) also
shows that larger component size has a negative effect on the Wasserstein distance, which stems from the fact that
a larger number of components typically pushes the flow away from straightness.

(a) (b) (c) (d)

Figure A.2: (a) Checker-board distribution with 2 components. (b) Checker-board distribution with 5 components.
(c) Checker-board distribution with 8 components. (d) shows the W 2

2 (ρ̂data, ρ1) vs T (on log-log scale) for the
FashionMNIST dataset with varying components..
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Figure A.3: shows the plot of squared Wasserstein distance W 2
2 (ρ̂data, ρ1) vs T for the MNIST dataset with a

varying numbers of labels, and hence, conditional modes.

A.1.3 MNIST DATASET EXPERIMENT

For MNIST data, we construct 3-different datasets. The first one only contains the digits {0, 1, 2}, the second
one only contains {0, 1, 2, . . . , 6} and the final one contains {0, 1, 2, . . . , 9}. Essentially, these datasets contain
multiple modes which resembles the nature of the synthetic dataset examples discussed in the previous section.
Figure A.3(a) shows that the Wasserstein distance is larger when there is more number of components in the
dataset. Essentially, more components make the flow more non-straight, and hence convergence in Wasserstein is
affected.

A.2 PROOFS OF SECTION 3

A.2.1 PROOF OF THEOREM 3.2

Let {ρt}t∈[0,1] and {ρ̃t}t∈[0,1] be distribution of the solution of (3) and (4) respectively. Let πt be the optimal
coupling between ρt and ρ̃t. Therefore, using Corollary 5.25 of Santambrogio (2015), we have

1

2

dW 2
2 (ρt, ρ̃t)

dt
=

∫
⟨x− y, vt(x)− v̂t(y)⟩ dπt(x, y)

=

∫
⟨x− y, vt(x)− v̂t(x)⟩ dπt(x, y) +

∫
⟨x− y, v̂t(x)− v̂t(y)⟩ dπt(x, y)

≤ 1

2

∫
∥x− y∥22 dπt(x, y) +

1

2

∫
∥vt(x)− v̂t(x)∥22 dπt(x, y) + L̂

∫
∥x− y∥22 dπt(x, y)

= (1/2 + L̂)W 2
2 (ρt, ρ̃t) +

b(t)

2
.

Solving the above differential inequality leads to the following inequality

W 2
2 (ρτ , ρ̃τ ) ≤W 2

2 (ρ0, ρ̃0) + e1+2L̂

∫ τ

0

b(t) dt.

The result follows by noting that W 2
2 (ρ0, ρ̃0) = 0 and setting τ = 1.
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A.2.2 PROOF OF LEMMA 3.4

Recall that S(Z) =
∫ 1

0
E ∥Z1 − Z0 − vt(Zt)∥22 dt. Also, note that Z1−Z0 =

∫ 1

0
vu(Zu) du. Therefore, we have

S(Z) =

∫ 1

0

E
∥∥∥∥∫ 1

0

[vu(Zu)− vt(Zt)] du

∥∥∥∥2
2

dt

=

∫ 1

0

E
∥∥∥∥∫ 1

0

∫ u

t

v̇τ (Zτ ) dτ du

∥∥∥∥2
2

dt

≤
∫ 1

0

E
[∫ 1

0

|t− u|
∫ t∨u

t∧u

∥v̇τ (Zτ )∥22 dτ du
]
dt

≤
∫ 1

0

E
∫ 1

0

∫ 1

0

∥v̇τ (Zτ )∥22 dτ du

≤
∫ 1

0

E ∥v̇τ (Zτ )∥22 dτ = γ1(Z).

Moreover, note that

γ1(Z) =

T∑
i=1

(ti − ti−1).
1

ti − ti−1

∫ ti

ti−1

E ∥v̇τ (Zτ )∥22 dτ ≤ γ2,T (Z). (A.9)

This shows the desired inequality.

For the second part, first note that the ti − ti−1 = 1/T . Therefore,

γ1(Z) =
1

T

T∑
i=1

1

ti − ti−1

∫ ti

ti−1

E ∥v̇τ (Zτ )∥22 dτ ≥ γ2,T (Z)

T
.

The above inequality along with (A.9) tells that γ1(Z) = 0 iff γ2,T (Z) = 0.

Now, due to the inequality S(Z) ≤ γ1(Z), we have S(Z) = 0 if γ1(Z) = 0. For the other direction, let us assume
S(Z) = 0. This shows that vt(Zt) = Z1 −Z0 almost surely in t and (Z0, Z1). This shows that v̇t(Zt) = 0 almost
surely. Hence the result follows.

A.2.3 PROOF OF THEOREM 3.5

Recall that for a given partition 0 = t0 < t1 < . . . < tT = 1 of the interval [0, 1] of equidistant points {ti}0≤i≤T

with h := T−1, we follow the Euler discretized version of the of ODE (4) to obtain the sample estimates:

Ŷti = Ŷti−1
+ hv̂ti(Ŷti), Ŷ0 = Z0.

Before analyzing the discretization error, we introduce the following interpolation process for t ∈ [ti, ti+1] and
each i ∈ {0, . . . , T}:

d

dt
Ȳt = v̂ti(Ȳti), Ȳti = Ŷti . (A.10)

The above ODE flow gives us a continuous interpolation between Ŷti and Ŷti+1
. Coupled with the above flow

equation and the ODE flow (5), we have the following almost sure differential inequality for t ∈ [ti, ti+1]:

d

dt
∥Zt − Ȳt∥22 = 2

〈
Zt − Ȳt,

d

dt
Zt −

d

dt
Ȳt

〉
= 2

〈
Zt − Ȳt, vt(Zt)− v̂ti(Ȳti)

〉
≤ L̂∥Zt − Ȳt∥22 + ∥vt(Zt)− v̂ti(Ȳti)∥22/L̂

(A.11)

Multiplying e−L̂(t−ti) on both sides of the above inequality and rearranging the terms leads to
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e−L̂(t−ti)
d

dt
∥Zt − Ȳt∥22 − e−L̂(t−ti)L̂∥Zt − Ȳt∥22 ≤ e−L̂(t−ti)∥vt(Zt)− v̂ti(Ȳti)∥22/L̂.

⇔ d

dt
{e−L̂(t−ti)∥Zt − Ȳt∥22} ≤ e−L̂(t−ti)∥vt(Zt)− v̂ti(Ȳti)∥22/L̂ ≤ ∥vt(Zt)− v̂ti(Ȳti)∥22/L̂.

⇔ ∥Zti+1 − Ŷti+1∥22 ≤ eL̂(ti+1−ti)∥Zti − Ŷti∥22 +
eL̂(ti+1−ti)

L̂

∫ ti+1

ti

∥vt(Zt)− v̂ti(Ȳti)∥22 dt.

Define ∆i := E∥Zti − Ŷti∥22. Using the above inequality we have

∆i+1

≤ eL̂h∆i +
eL̂h

L̂

∫ ti+1

ti

E∥vt(Zt)− v̂ti(Ŷti)∥22 dt

≤ eL̂h∆i +
3eL̂h

L̂


∫ ti+1

ti

E∥vt(Zt)− vti(Zti)∥22 dt︸ ︷︷ ︸
T1

+

∫ ti+1

ti

E∥vti(Zti)− v̂ti(Zti)∥22 dt︸ ︷︷ ︸
T2

+

∫ ti+1

ti

E∥v̂ti(Zti)− v̂ti(Ŷti)∥22 dt︸ ︷︷ ︸
T3

 .

(A.12)
Now we will bound each of the last three terms on the right-hand side of the above inequality.

Bounding T1. For the first term, we have

E∥vt(Zt)− vti(Zti)∥22 = E
∥∥∥∥∫ t

ti

d

dτ
vτ (Zτ ) dτ

∥∥∥∥2
2

≤ (t− ti)

∫ t

ti

E
∥∥∥∥ d

dτ
vτ (Zτ )

∥∥∥∥2
2

dτ

≤ h2γi,

(A.13)

where γi = 1
ti+1−ti

∫ ti+1

ti
E∥ d

dτ vτ (Zτ )∥22 dτ . This shows that T1 ≤ h3γi.

Bounding T2. The term T2 is bounded by hε2vl as E∥vti(Zti)− v̂ti(Zti)∥22 ≤ ε2vl (Assumption 3.1(a)).

Bounding T3. For the final term we will use that v̂ti is L̂-Lipschitz. This entails that T3 ≤ L̂2h∆i. Plugging these
bounds in the recursion formula (A.12), we get

∆i+1 ≤ eL̂h(1 + 3L̂h)∆i + 3eL̂h(h3γi + hε2vl)/L̂.

Solving the recursion yields

∆T ≤ eTL̂h(1 + 3L̂h)T∆0 +
3h3

L̂

{
T∑

k=1

ekL̂h(1 + 3L̂h)k−1γT−k

}
+

3h

L̂

{
T∑

k=1

ekL̂h(1 + 3L̂h)k−1

}
ε2vl.

Recall that γ2,T (Z) := maxk γk. Note that ∆0 = 0 as Z0 = Ŷ0. Therefore, we have

∆T ≤ e4L̂

L̂2

(
γ2,T (Z)

T 2
+ ε2vl

)
.

Here we used the fact that
T∑

k=1

ekL̂h(1 + 3L̂h)k−1 ≤ e4L̂ − 1

1 + 3L̂h− e−L̂h
≤ e4L̂

3L̂h
.

Therefore, we have

W 2
2 (ρ̂data, ρ1) ≤ ∆T ≤ e4L̂

L̂2

(
γ2,T (Z)

T 2
+ ε2vl

)
.
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However, the above upper bound explodes for L̂ → 0. Therefore, we handle the case L̂ < 1 in a slightly different
manner.

Separately handling L̂ < 1 case: We recall the decomposition (A.11). We will only change the last inequality in
that decomposition, i.e., for α > 0 we get

d

dt
∥Zt − Ȳt∥22 = 2

〈
Zt − Ȳt,

d

dt
Zt −

d

dt
Ȳt

〉
= 2

〈
Zt − Ȳt, vt(Zt)− v̂ti(Ȳti)

〉
≤ α∥Zt − Ȳt∥22 + ∥vt(Zt)− v̂ti(Ȳti)∥22/α

(A.14)

Therefore, following exactly similar steps as before, we arrive at the following recursion:

∆i+1 ≤ eαh

(
1 +

3L̂2h

α

)
∆i +

3eαh

α
(h3γi + hε2vl).

Solving this yields

∆T ≤ eα+3L̂2/α − 1

1 + 3L̂2h/α− e−αh

(
3h3

α
.γ2,T (Z) +

3h

α
.ε2vl

)
Note that eα+3L̂2/α − 1 ≤ eα+3L̂/α − 1 as L̂ < 1. Additionally,

1 + 3L̂2h/α− e−αh ≥ 1− e−αh ≥ αhe−αh.

Setting α = 1, and using the above inequalities along with the fact that h ≤ 1, we get

eα+3L̂2/α − 1

1 + 3L̂2h/α− e−αh
≤ e2+4L̂

h
.

Finally, using the above inequality we have

W 2
2 (ρ̂data, ρ1) ≤ ∆T ≤ 27e4L̂

(
γ2,T (Z)

T 2
+ ε2vl

)
.

Combining this with previous upper bound we finally get the result.

A.3 PROOFS OF SECTION 4

A.3.1 PROOF OF THEOREM 4.3

If Assumption 4.2 holds, then by Theorem 5.2 of Kunita (1984), we know the solution Zt(z0) exists uniquely for
every z0 ∈ Rd. Next, Condition (7) ensures that the ODE is non-explosive (Kunita, 1984, Definiton 5.1, 5.5)
within t ∈ [0, 1]. Therefore, by Theorem 5.4 in Kunita (1984), we have z0 7→ Zt(z0) to be a C1 function for all
t ∈ (0, 1], i.e., Jz0

1 := ∇z0Z1(z0) exists. However, Jz0
1 might not be invertible. However, this is not a problem as

we only need almost sure invertibility of Ht(Z0) in (Z0, t) ∼ N(0, Id) × Unif([0, 1]) which we will show in the
subsequent discussion.

Showing straightness of 1-RF is equivalent to showing

E[Z1 − Z0 | tZ1 + (1− t)Z0]
a.s.
= Z1 − Z0.

Recall that, showing the above ultimately hinges on showing that the map

Ht(z0) := tZ1(z0) + (1− t)z0

is a 1-to-1 map for all t ∈ [0, 1], where the map Z1 : Rd → Rd is defined in (6).

We will leverage the well-known Inverse Function Theorem (Hörmander, 2003, Theorem 1.1.7) to show that
Ht is a 1-to-1 map. In particular, we will show that for any choice of z0 ∈ Rd, the Jacobian ∇z0Ht(z0) =
t∇z0Z1(z0) + (1− t)Id has full rank for all t < 1. Therefore, Ht is invertible locally around z0.
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Let Λz0
1 be the set of complex eigenvalues of Jz0

1 . The only cases when ∇z0Ht(z0) is singular is when

t ∈
{

1

1− λ
| λ ∈ Λz0

1

}
∩ [0, 1].

Therefore, Pt∼Unif([0,1]) [det(∇z0Ht(z0)) = 0] = 0. Now, we need to incorporate randomness in Z0. Note that

P(Z0,t)∼N(0,Id)⊗Unif([0,1])

[
det(∇z0Ht(z0)|z0=Z0) = 0

]
=

∫
P (det(∇z0Ht(Z0)) = 0 | Z0 = z0) ρ0(z0) dz0

=

∫
P (det(∇z0Ht(z0)) = 0 | Z0 = z0) ρ0(z0) dz0

=

∫
Pt∼Unif([0,1]) (det(∇z0Ht(z0)) = 0) ρ0(z0) dz0

= 0.

By a similar argument, we can also conclude that

0 = P(Z0,t)∼N(0,Id)⊗Unif([0,1])

[
det(∇z0Ht(z0)|z0=Z0

) = 0
]

=

∫
P (det(∇z0Ht(Z0)) = 0 | t = t′) dt′

=

∫
PZ0∼N(0,Id) (det(∇z0Ht′(Z0)) = 0) dt′.

This shows that St := {z0 : det(∇z0Ht(z0)) = 0} is a measure-zero set almost everywhere in t ∼ Unif([0, 1]).
Therefore, the set T := {t ∈ [0, 1] : PZ0∼ρ0(St) = 0} is an almost sure set in t ∼ Unif([0, 1]).

Showing straightness: For a fix R > 0, we have

V (Z0, Z1) := EZ0,t ∥Z1 − Z0 − E{Z1 − Z0 | Ht(Z0)}∥2

=

∫ 1

0

EZ0
∥Z1 − Z0 − E{Z1 − Z0 | Ht(Z0)}∥2 dt

=

∫
T
EZ0

∥Z1 − Z0 − E{Z1 − Z0 | Ht(Z0)}∥2 dt

=

∫
T
EZ0

[
∥Z1 − Z0 − E{Z1 − Z0 | Ht(Z0)}∥2 1{∥Z0∥2 ≤ R}

]︸ ︷︷ ︸
V1,R(t)

dt

+

∫
T
EZ0

[
∥Z1 − Z0 − E{Z1 − Z0 | Ht(Z0)}∥2 1{∥Z0∥2 > R}

]︸ ︷︷ ︸
V2,R(t)

dt.

Analyzing V1,R(t): Note that St is a measure zero set under ρ0. Now, we will construct a finite open cover of

B(0, R) in a particular way. First, we focus on Sc
t ∩B(0, R). Note that for each z ∈ Sc

t ∩B(0, R) we can construct
an open set Uz,t ∋ z, such that Ht invertible in Uz,t. Secondly, note that St ∩ B(0, R) is a measure-zero set under
ρ0. As ρ0 is an outer regular measure, for a given η > 0, we can construct and open set Oη,t ⊇ St ∩ B(0, R) such
that P(Oη,t) ≤ P(St ∩ B(0, R)) + η = η. Therefore,

Ut :=
(
∪
z∈Sc

t∩B(0,R)
Uz,t

)
∪Oη,t

is open cover of B(0, R), and we can find a finite cover of B(0, R):

Ufinite
t :=

(
∪i∈[Mt]Uzi,t

)
∪Oη,t
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Let α(zi, t) = P(Z0 ∈ Uzi,t ∩ B(0, R)). Then, we have

V1,R(t) ≤ EZ0

[
∥Z1 − Z0 − E{Z1 − Z0 | Ht(Z0)}∥2 1{Z0 ∈ Ufinite

t }
]

≤
∑

i∈[Mt]

α(zi, t)EZ0|Z0∈Uzi,t
∩B(0,R)

[
∥Z1 − Z0 − E{Z1 − Z0 | Ht(Z0)}∥2

]︸ ︷︷ ︸
=0

+ EZ0

[
∥Z1 − Z0 − E{Z1 − Z0 | Ht(Z0)}∥2 1{Z0 ∈ Oη,t}

] (A.15)

The first term on the right-hand side is 0 (almost surely) because of the local invertability of Ht in Uzi,t ∩B(0, R).
For the second term, first note that EZ0

[
∥Z1 − Z0 − E{Z1 − Z0 | Ht(Z0)}∥2

]
≤ 2(E ∥Z0∥2 + E ∥Z1∥2) <

∞. Also, limη↓0 P(Oη,t) = 0. Therefore, we have limη↓0 EZ0

[
∥Z1 − Z0 − E{Z1 − Z0 | Ht(Z0)}∥2 1{Z0 ∈

Oη,t}
]
= 0. As the inequality in (A.15) holds for all η > 0, we have V1,R(t) = 0.

Analyzing V2,R(t): Lastly, for V2,R(t), we note that by a simple application of dominated convergence theorem
(as E ∥Z1∥2 <∞) one can conclude V2,R(t) → 0 as R ↑ ∞.

Therefore, taking R ↑ ∞, we can conclude that V (Z0, Z1) = 0, i.e., (Z0, Z1) is a straight coupling.

A.3.2 PROOF OF THEOREM 4.5

We start by analyzing the velocity function. Recall that

vt(x) =


x
t +

(
1−t
t

)
st(x) , 0 < t < 1

E(X1)− x , t = 0

x , t = 1.

where st(x) is the (data) score function of (1− t)X0 + tX1. Let ϕ denote the standard gaussian density function
in Rd.

Assumption 4.2: For t ∈ [0, 1) we have

st(x) = ∇x log

(∫ ∞

−∞
(1− t)−d/2ϕ

(
x− ty

1− t

)
ρ1(dy)

)

=

1
1−t

∫∞
−∞

(
ty−x
1−t

)
ϕ
(

x−ty
1−t

)
ρ1(dy)∫∞

−∞ ϕ
(

x−ty
1−t

)
ρ1(dy)

=
t

(1− t)2
.

∫∞
−∞ yϕ

(
x−ty
1−t

)
ρ1(dy)∫∞

−∞ ϕ
(

x−ty
1−t

)
ρ1(dy)

− x

(1− t)2
.

Therefore, vt(x) =
∫ ∞
−∞( y−x

1−t )ϕ(
x−ty
1−t ) ρ1(dy)∫ ∞

−∞ ϕ( x−ty
1−t ) ρ1(dy)

for t ∈ [0, 1).

It is quite clear that v0(x) and v1(x) are C2 functions. Moreover, one can show that vt(x) is also C2 function
for every t ∈ (0, 1) (∇x and

∫
are interchangeable due to moment condition). It suffices to show that Ψ1(x) :=∫∞

−∞ yϕ
(

x−ty
1−t

)
ρ1(dy) and Ψ2(x) :=

∫∞
−∞ ϕ

(
x−ty
1−t

)
ρ1(dy) are C2 functions and Ψ2 > 0. Note that, Ψ2(x) =

EX1∼ρ1ϕ
(

x−tX1

1−t

)
> 0. Now, we will show that Ψ1(x) is C1. One can similarly show that it is also C2 by

following a similar argument.

We define

D(x, y) := ∇x

[
yϕ

(
x− ty

1− t

)]
=

1

(1− t)2
y (ty − x)

⊤
exp

(
−
∥x− ty∥22
2(1− t)2

)
.

Note that if ∥y∥22 ≥ 4 ∥x∥22 /t2, we have ⟨u,D(x, y)u⟩ ≤ t∥y∥2
2+∥y∥2∥x∥2

(1−t)2 exp(−t ∥y∥22 /4) for all u ∈ Sd−1,

as ∥ty − x∥22 ≥ (t2/2) ∥y∥22 − ∥x∥22 ≥ (t2/4) ∥y∥22. In addition, the upper bound is integrable w.r.t ρ1(dy).
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For ∥y∥22 ≤ 4 ∥x∥22 /t2, we have ⟨u,D(x, y)u⟩ ≤ t∥y∥2
2+∥y∥2∥x∥2

(1−t)2 ≤ 6∥x∥2
2

t(1−t)2 , and the upper bound is obviously
integrabel w.r.t ρ1(dy). Therefore, we have

∇Ψ1(x) =

∫ ∞

−∞
D(x, y) ρ1(dy).

The continuity also follows from generalized DCT. One can take a further derivative to show that Ψ1 is C2 function,
and follow the similar argument for Ψ2(x).

Non-explosive: For notational brevity, we write Xt instead of Xt(z0). Note that

d

dt
∥Xt∥22 = ⟨Xt, vt(Xt)⟩ ≤ h(∥Xt∥22).

Write Ut := ∥Xt∥22. Let Vt be a sequence of maps such that

d

dt
Vt = h(Vt); V0 = U0.

Due to Condition (8), we have Vt <∞. Next, we claim that Ut ≤ Vt for all t ∈ [0, 1].

Under local-lipschitz property: If not, then there exist times t0, t1 such that

Ut0 = Vt0 , and Ut > Vt for all t0 < t ≤ t1.

Define ∆(t) := Ut − Vt. Therefore, we have ∆(t0) = 0 and ∆(t) > 0 for all t ∈ (t0, t1]. Let w = Ut0 = Vt0 .
Due to local-Lipschitz property of h, there exists δw > 0 and Lw > 0 such that

|w1 − w| ∨ |w2 − w| < δw ⇒ |h(w1)− h(w2)| ≤ Lw |w1 − w2| .

Due to continuity of Ut and Vt at t = t0, there exists η > 0 such that t + η < t1 and for all η′ ≤ η we have
|Ut0+η′ − w| ∨ |Vt0+η′ − w| < δw. For , t ∈ [t0, t0 + η], we consider the ODE

∆̇(t) = U̇t − V̇t

= h(Ut)− h(Vt)

≤ Lw |Ut − Vt| (local-Lipshcitzness)
= Lw∆(t) (as ∆(t) > 0).

Therefore, by Gronwall’s lemma we have ∆(t) ≤ ∆(t0) exp(Lwt). This implies that ∆(t) ≤ 0 for t ∈ (t0, t0+η],
which is a contradiction to the fact that ∆(t) > 0 for all t ∈ (t0, t1]. Hence, we have Ut ≤ Vt < ∞ for all
t ∈ [0, 1]. This establishes the non-explosive property (Condition (7)) of the ODE.

Under strictly increasing property: In this case, we will show a stronger result, i.e., Ut < Vt for all t ∈ (0, 1]. If
not, let τ := inf{t > 0 : Ut ≥ Vt}. By definition, we have τ > 0 and Uτ ≥ Vτ . This implies that∫ τ

0

h(Ut)− h(Vt) dt ≥ 0 ⇒ ∃s ∈ (0, τ) such that h(Us) ≥ h(Vs).

Therefore, we have Us ≥ Vs, which contradicts the definition of τ . Hence, we have Ut < Vt for all t ∈ (0, 1].

Now the result follows by applying Theorem 4.3.

A.3.3 1-RF YIELDS STRAIGHT COUPLING: GAUSSIAN TO A GENERAL MIXTURE OF GAUSSIAN

First, for notational brevity, we write ∥u∥Σ =
√
u⊤Σ−1u for a positive-definite matrix Σ. Let X0 ∼ N (0, Id) and

X1 ∼
∑K

i=1 πiN (µi,Σi). Let Xt = tX1 + (1− t)X0, then we have

vt(x) =
x

t
+

1− t

t
st(x) (A.16)

where, st(x) = ∇x log pt(x) is given by

st(x) =
∑
i

wi,t(x)Σ
−1
i,t (tµi − x) ,
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Σi,t = (1− t)2Id + t2Σi and

wi,t(x) =

πi exp

(
−∥x−tµi∥2

Σi

2

)
∑

j πj exp

(
−∥x−tµj∥2

Σi

2

) .
Therefore, we have

vt(x) =
∑
i

wi,t(x)
(
Id − (1− t)Σ−1

i,t

) x
t
+ (1− t)

∑
i

wi,t(x)Σ
−1
i,t µi

Note that, if λ is an eigenvalue of Σi, then the corresponding eigenvalue of 1
t (Id−(1−t)Σ−1

i,t ) is t2(1+λ)−1
(1−t)2+tλ2 ≤ (1+

λ−1). Therefore,
∥∥ 1

t (Id − (1− t)Σ−1
i,t )
∥∥
op

≤ 1 +
∥∥Σ−1

i

∥∥
op

=: Ai. Similar argument shows that
∥∥Σ−1

i,t

∥∥
op

≤ Ai.
Therefore, we have

⟨x, vt(x)⟩ ≤ (max
i
Ai)︸ ︷︷ ︸

A

∥x∥22 + (max
i
Ai ∥µi∥2)︸ ︷︷ ︸
B

∥x∥2 .

Therefore, Assumption 4.4 is satisfied with h(u) = Au+B
√
uwhich is strictly monotonic function and

∫∞
u0

(Au+

B
√
u)−1 du = ∞ for all u0 > 0. Moreover, we have E ∥X1∥2 < ∞. Therefore, by Theorem 4.5 we conclude

that 1-RF yields a straight coupling.

A.3.4 PROOF OF THEOREM 4.6

Let X0 ∼ N (0, I) and X1 ∼ N (µ,Σ). Let Σt = t2Σ + (1− t)2I . Then we have that Xt ∼ N (tµ,Σt),. Let the
density of Xt be ξt and the score st(x) = ∇x log ξt(x) = Σ−1

t (tµ − x). Therefore, by using (A.24), the drift is
given by:

v(x, t) =
x

t
+

1− t

t
Σ−1

t (tµ− x)

= (1− t)Σ−1
t µ+

1

t

(
I − (1− t)Σ−1

t

)
x

So the ODE we want to solve is given by:

dZt

dt
− 1

t

(
I − (1− t)Σ−1

t

)
Zt = (1− t)Σ−1

t µ (A.17)

Now we look at the structure of I − (1− t)Σ−1
t . Let the eigendecomposition of Σ = UΛU⊤. We will assume Σ

is full rank. So,

I − (1− t)Σ−1
t = UΛtU

⊤

where Λt

t = 1
t {I − (1− t)(t2Λ + (1− t)2I)−1}. This can also be written as:

λt,i =
1

t

{
1− 1− t

t2λi + (1− t)2

}
=

t(1 + λi)− 1

t2λi + (1− t)2
.

Substituting this into Equation (A.17), we have:

dZt

dt
− Udiag(λt,1, . . . , λt,d)U⊤Zt = (1− t)Σ−1

t µ.

So, we first get the integrating factors of each eigenvalue.

Ii(t) =
1√

(1 + λi)t2 − 2t+ 1
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So we have:
UΛ′

tU
⊤Zt = UΛ′′

t U
⊤µ+ constant

where λ′t,i =
1√

(1+λi)t2−2t+1
and λ′′t,i =

t√
(1+λi)t2−2t+1

This yields,

Σ−1/2Z1 − Z0 = Σ−1/2µ

Z1 = Σ1/2Z0 + µ (A.18)

A.3.5 PROOF OF LEMMA 4.8

We recall the ODE Żt = vt(Zt) with Z0 = z0. As x 7→ vt(x) is uniformly Lipschitz, there exists a unique solution
{Zt}t∈[0,1] such that Z0 = z0. Moreover, the map Ht : z0 7→ zt is monotonically increasing. To see this, let us
assume z0 > z̃0, but zt < z̃t. Note that G(τ) := Hτ (z0) − Hτ (z̃0) is continuous in τ . Also, G(0) > 0 and
G(t) < 0. By the intermediate value property, there exists a t0 ∈ [0, 1] such that G(t0) = 0, i.e., zt0 = z̃t0 . This
violates the uniqueness condition of the ODE solution. Hence, Ht is monotonically increasing. By monotonicity,
it follows that

P(Zt ≤ zt) = P(Ht(Z0) ≤ Ht(z0)) = P(Z0 ≤ z0).
This finishes the proof.

A.3.6 GAUSSIAN TO A MIXTURE OF TWO GAUSSIANS IN R2

Proposition A.1. Consider X̃0 ∼ N (0, I2) and X̃1 ∼ πN (µ̃1, Λ̃)+ (1−π)N (µ̃2, Λ̃) where Λ is a PSD diagonal

matrix in R2. Then, (Z̃0, Z̃1) = Rectify
(
X̃0, X̃1

)
is a straight coupling.

Proof. Let P be the ortho-normal matrix given by P =
[

µ̃2−µ̃1

∥µ̃2−µ̃1∥
R(µ̃2−µ̃1)
∥µ̃2−µ̃1∥

]
, where R =

[
0 −1
1 0

]
is the

skew-symmetric matrix for a 90-degree rotation. We rotate our space using the linear transformation P and obtain
the random variables X0 = PX̃0 ∼ N (0, I) and X1 = PX̃1 ∼ πN (µ1,Λ) + (1 − π)N (µ2,Λ), where µi =

[xi yi]
⊤
= Pµ̃i, Λ = P Λ̃P⊤. Also note that by the above construction of the transformation P , x1 = x2 := x.

We first show that (Z0, Z1) = Rectify(X0, X1) is straight and then argue that an invertible transformation does
not hamper straightness.
Let Λt = t2Λ+ (1− t)2I , then, Xt ∼ ρt = πN (tµ1,Λt) + (1− π)N (tµ2,Λt) and the score of ρt, denoted by st
is:

st(zt) =

2∑
i=1

wt,i(zt)Λ
−1
t (tµi − zt)

where the quantity wt,1(zt) :=
1

1+exp(gt(zt))
, wt,2(zt) = 1− wt,1(zt), and

gt(z) = log
1− π

π
− 1

2

(
(z − tµ2)

TΛ−1
t (z − tµ2)− (zt − tµ1)

TΛ−1
t (z − tµ1)

)
= log

1− π

π
− 1

2

(
t(µ1 − µ2)

TΛ−1
t z + t2(µT

2 Λ
−1
t µ2 − µT

1 Λ
−1
t µ1)

)
= log

1− π

π
− 1

2

(
t(y1 − y2)

t2λ2 + (1− t)2
z + t2(µT

2 Λ
−1
t µ2 − µT

1 Λ
−1
t µ1)

)
(A.19)

Then, using (A.24), the drift is given by

vt(zt) =
zt
t
+

1− t

t
st(zt) (A.20)

=
(I − (1− t)Λ−1

t )

t
zt + (1− t)Λ−1

t

2∑
i=1

wi,t(zt)µi (A.21)

=
1

t
Λ̃tzt + (1− t)Λ−1

t

(
x∑2

i=1 wi,t(zt)yi

)
(A.22)
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where we define Λ̃t := I − (1− t)Λ−1
t = I − (1− t)(t2Λ + (1− t)2I)−1.

Now we look at the structure of Λ̃t. We will assume Λ = diag(λi) is full rank, and Λt = diag(t2λi + (1− t)2).

The diagonal elements of Λ̃t

λ̃t,i =
1

t

(
1− 1− t

t2λi + (1− t)2

)
=

t(1 + λi)− 1

t2λi + (1− t)2

For now, we have:
dZt,1

dt
=

t(1 + λ1)− 1

t2λ1 + (1− t)2
Zt,1 +

1− t

t2λ1 + (1− t)2
x

Define the integrating factor I(t) = exp
(
−
∫ t

0
(1+λ1)u−1

(1+λ1)u2−2u+1

)
du = 1√

(1+λ1)t2−2t+1
.

Multiplying I(t) in both sides of the above ODE and integrating in t ∈ [0, 1] we get the following almost sure
inequality:

Z1,1√
λ1

− Z0,1 = x

∫ 1

0

1− t

((1 + λ1)t2 − 2t+ 1)3/2
dt = x

[
t√

(1 + λ1)t2 − 2t+ 1

]1
0

=
1√
λ1
x.

For the second coordinate, we have:

f(Zt,2) :=
dZt,2

dt
=

t(1 + λ2)− 1

t2λ2 + (1− t)2
Zt,2 +

1− t

t2λ2 + (1− t)2

2∑
i=1

wi,t(Zt,2)yi (A.23)

We check that |df(z)/dz| is bounded. Using the definition of gt in Equation (A.19)∣∣∣∣ ddz f(z)
∣∣∣∣ ≤ ∣∣∣∣ t(1 + λ2)− 1

t2λ2 + (1− t)2

∣∣∣∣+ |y1 − y2|
∣∣∣∣ 1− t

t2λ2 + (1− t)2
d

dz
(gt(z))

∣∣∣∣
≤ (1 + λ2) +

(1 + λ2)
2|y1 − y2|2

λ22
Therefore, z 7→ f(z) is uniformly Lipschitz, and henceforth, by Lemma A.2 the map ψ : Z0,2 7→ Z1,2 is mono-
tonically increasing.

The above discussion entails that 1-rectified flow essentially sends Z0 through a map T : R2 → R2 such that

Z1 = T (Z0) =

(√
λ1Z0,1 + x
ψ(Z0,2)

)
where ψ is only defined through the ODE (A.23). Therefore, for any t ∈ [0, 1] we have the function

ht(w) := (1− t)w + tT (w) =

(
(1− t)w1 + t(

√
λ1w1 + x)

(1− t)w2 + tψ(w2)

)
to be an invertible function, which essentially leads to the following relationship between the two σ-fields of
interest:

F (ht(Z0)) = F (Z0) (F (X) denotes the sigma-field generated by X)
for all t ∈ [0, 1]. Hence, we finally have

E[T (Z0)− Z0 | ht(Z0)] = E[T (Z0)− Z0 | Z0] = T (Z0)− Z0.

Now, since P is invertible,

vt(Z̃t) = E
[
X̃1 − X̃0 | tX̃1 + (1− t)X̃0 = Z̃t

]
= P−1E

[
PX̃1 − PX̃0 | tX̃1 + (1− t)X̃0 = Z̃t

]
= P−1E

[
PX̃1 − PX̃0 | tP X̃1 + (1− t)PX̃0 = PZ̃t

]
= P−1E [X1 −X0 | tX1 + (1− t)X0 = Zt] ∵ (Z0, Z1) is straight

= P−1 (X1 −X0)

= X̃1 − X̃0
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Hence, (Z̃0, Z̃1) is also straight. This finishes the proof.

Lemma A.2. Consider an ODE of the form

dxt
dt

= ct ft (xt)

for t ∈ [0, 1] where xt ∈ R and ct > 0 for all t ∈ (0, 1].

(a) If ∂ft(x)
∂x > 0, i.e., ft(x) is an increasing function of x, then x1 is a monotonically increasing function of

the initial condition x0.

(b) If ft(x) is a uniformly Lipschitz function for all t ∈ [0, 1], then x1 is a monotonically increasing function
of the initial condition x0.

Proof. Part (a): Let x1t and x2t be two solutions to the ODE:

dxt
dt

= ctft(xt), t ∈ [0, 1],

corresponding to the initial conditions x10 and x20, respectively, with x10 < x20. We want to show that x11 < x21.

Define the difference between the two solutions:

∆xt = x2t − x1t .

Taking the derivative, we get:

d

dt
∆xt =

d

dt
(x2t − x1t ) = ct

(
ft(x

2
t )− ft(x

1
t )
)
.

Since ∂ft(x)
∂x > 0, we have ft(x2t ) > ft(x

1
t ) for x2t > x1t , which implies:

d

dt
∆xt > 0, whenever ∆xt > 0.

Define t∗ := inf {t ∈ (0, 1] : ∆xt ≤ 0}. Due to inverse map theorem we have ∆xt∗ ≤ 0, and t∗ > 0 as ∆x0 > 0.
Also, note that ∫ t1

0

d

dt
∆xt dt = ∆xt∗ −∆x0 < 0.

The above inequality entails that there exists τ ∈ (0, t∗) such that d
dt∆xt < 0, which implies that

fτ (x
2
τ ) < fτ (x

1
τ )

=⇒ x2τ < x1τ
=⇒ ∆xτ < 0

This is again a contradiction to the definition of t∗ as τ < t∗. Therefore, we have ∆xt > 0 for all t ∈ [0, 1]. In
particular we have x21 > x11.

Part (b): If ft(x) is uniformly Lipschitz, then by Picard-Lindelof theorem, for any tuple (t0, x0), there exists only
solution {xt}t∈[0,1] passing through x0 at time t0.

Now, following the notation in part (a), let x1t ≤ x2t for some t. As Ht : x0 7→ xt is continuous, so is G(τ) :=
Hτ (x

2
0) − Hτ (x

1
0). However, G(0) > 0 and G(t) ≤ 0. By intermediate value property, there exists t0 ∈ (0, t],

such that G(t0) = 0 ⇒ x2t0 = x1t0 . This contradicts the uniqueness property of the ODE solution. therefore, we
have x2t > x1t for all t. Then the result follows by setting t = 1
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A.3.7 PROOF OF PROPOSITION 4.9

Proof. Let X̃0, X̃1 ∈ Rd for d ≥ 2, where X̃0 ∼ N (0, I) and X̃1 ∼
∑2

i=1 πi N (µ̃i, σ
2I) with σ2 = 1 (for

simplicity). We start with the matrix M̃ = [µ̃1 µ̃2] and perform a QR decomposition: M̃ = Q̃R̃, where
Q̃ ∈ Rd×2 is an orthonormal matrix that spans the subspace of µ̃1 and µ̃2.

Next, we extend Q̃ to a complete orthonormal basis for Rd using Q̃′ ∈ Rd×(d−2), which spans the orthogonal
complement of the column space of Q̃. We define Q =

[
Q̃ Q̃′

]⊤
. This projection guarantees that:

Qµ̃1 = (x1, y1, 0, . . . , 0)
⊤, Qµ̃2 = (x2, y2, 0, . . . , 0)

⊤

i.e., only the first two components are non-zero.

To equalize one of the components, we apply a rotation matrix R(θ) ∈ Rd×d, which rotates the first two compo-
nents while leaving the others unchanged:

R(θ) =

[
cos θ − sin θ 0
sin θ cos θ 0
0 0 Id−2

]

We set θ as:

θ = tan−1

(
y2 − y1
x1 − x2

)
This ensures that the second components of R(θ)Qµ̃1 and R(θ)Qµ̃2 are identical.

Finally, we define the overall transformation as P = R(θ)Q. This matrix P ∈ Rd×d is orthonormal (and hence,
invertible) since it is the product of two orthonormal matrices. The transformation P , not only makes the last d−1
coordinates of the means identical but also reduces the effective dimension of the flow to two.

Now, we rotate our space using the linear transformation P and obtain the distributionsX0 = PX̃0 ∼ N (0, I) and
X1 = PX̃1 ∼

∑2
i=1 πi N (µi,Σ), where µi = Pµ̃i, Σ = P Σ̃P⊤ = I . Also note that by the above construction

of the transformation P , µ1,k = µ2,k := ck. for all k ∈ [d]\ {1}. We first show that (Z0, Z1) = Rectify(X0, X1)
is straight and then argue that an invertible transformation does not hamper straightness.
To proceed, we apply the Rectify procedure on (X0, X1) and obtain the following ODE:

vt(Zt) =
dZt

dt
=

(2t− 1)Zt

σ2
t

+
1− t

σ2
t

2∑
i=1

wi(Zt)µi

For k ∈ [d]\ {1}, we have that

dZt,k

dt
=

(2t− 1)Zt,k

σ2
t

+ ck

Hence, using (A.18) the final mapping is just a translation given by Z1,k = Z0,k + ck. However, for the first

co-ordinate, for gt(Zt,1) = log
(

π2

π1

)
− 1

2σ2
t

(
(Zt,1 − tµ2,1)

2 − (Zt,1 − tµ1,1)
2
)

, we have

dZt,1

dt
=

(2t− 1)Zt,1

σ2
t

+
1− t

σ2
t

(
µ1,1 + µ2,1 exp (gt(Zt,1))

1 + exp (gt(Zt,1))

)
The reasoning used to demonstrate straightness from this point forward is identical to that of Proposition A.1.

A.3.8 PROOF OF PROPOSITION 4.10

Proof. Consider µ01 = (0, a)⊤,µ02 = (0,−a)⊤ and µ11 = (a, a)⊤,µ12 = (a,−a)⊤ for some a > 0. Let

X0 ∼ 0.5N (µ01, I) + 0.5N (µ02, I), X1 ∼ 0.5N (µ11, I) + 0.5N (µ12, I).
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Figure A.4: 1-rectified flow in y-direction for GMM

In this case, the velocity functions in x and y-direction for 1-rectification turns out to be

ut(x) =
(2t− 1)x

σ2
t

+
(1− t)a

σ2
t

,

vt(y) =
(2t− 1) y

σ2
t

+
a

σ2
t

·
exp

(
− (y−a)2

2σ2
t

)
(1− 2t)− exp

(
− (y+a)2

2σ2
t

)
(1− 2t) + exp

(
− (y − (2t−1)a)2

2σ2
t

)
− exp

(
− (y + (2t−1)a)2

2σ2
t

)
exp

(
− (y−a)2

2σ2
t

)
+ exp

(
− (y+a)2

2σ2
t

)
+ exp

(
− (y − (2t−1)a)2

2σ2
t

)
+ exp

(
− (y + (2t−1)a)2

2σ2
t

) .

Next, we will take the derivative of vt(y) with respect to y. For notational brevity, let us define

e1(y) = exp

(
− (y − a)

2

2σ2
t

)
(1− 2t),

e2(y) = exp

(
− (y + a)

2

2σ2
t

)
(1− 2t),

e3(y) = exp

(
− (y − a(2t− 1))

2

2σ2
t

)
,

e4(y) = exp

(
− (y + a(2t− 1))

2

2σ2
t

)
.

Then we have∣∣∣∣dvt(y)dy

∣∣∣∣ ≤ 2t− 1

σ2
t

+
a2

σ4
t

· 4{e1(y)e2(y) + e2(y)e3(y) + e3(y)e4(y) + e4(y)e1(y)}
(
∑4

j=1 ej(y))
2

≤ 2 + 4a2.

We used the basic inequalities 4(ab+ bc+ cd+ da) ≤ (a+ b+ c+ d)2 and σ2
t ≥ 1/2 in the last step of the above

display.

This shows that vt(y) is uniformly Lipschitz. This entails that the map T : R → R that sends y0 to a point y1 ∈ R,
and defined through the ODE

d

dt
Yt = vt(Yt); Y0 = y0,

is an injective map due to the uniqueness of the solution of the above ODE. Also, we denote by Y y0

t the solution
of the above ODE.

To show the strict increasing property of T , let us consider the same ODE with Y0 = ỹ0 < y0. We also consider
the solution Y ỹ0

t . Consider the function Lt := Y y0

t − Y ỹ0

t , which is also continuous in t ∈ [0, 1]. To prove
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increasing property, it is enough to show that L1 > 0. Let us assume that L1 ≤ 0. We already know L0 > 0, and
hence by Intermediate Value Property, we have there exists a τ ∈ (0, 1] such that Lτ = 0. This entails that there
exists yτ ∈ R such that Y y0

τ = Y ỹ0
τ = yτ . This shows that we have two different solutions of the ODE passing

through (τ, yτ ), which is a contradiction. This proves the coveted strict increasing property of T . Hence, we have
a straight coupling by similar argument as in previous section.

A.4 AUXILIARY RESULTS

A.4.1 CONNECTION BETWEEN SCORE AND DRIFT

Let X0 = Z ∼ N (0, I) and X1 = X ∼ ρdata. Let the density of Xt = tX + (1 − t)Z be ξt. Then Tweedie’s
formula (Robbins (1992)) gives that E [tX | Xt = x] = x+ (1− t)2st(x) where st(x) = ∇ log ξt(x)

We have that

vt(x) = E[X − Z | Xt = x]

= E[
X −Xt

1− t
| Xt = x]

=
x+ (1− t)2st(x)

t(1− t)
− x

(1− t)
(applying Tweedie’s formula)

=
x

t
+

(
1− t

t

)
st(x) (A.24)

A.4.2 AUXILIARY RESULTS FOR GAUSSIAN MIXTURE TO GAUSSIAN MIXTURE FLOW

In this section, we will procure a formula of the drift function for 1-rectified flow from a Gaussian mixture to
another Gaussian mixture. Let X0 ∼ 1

K0

∑K0

i=1 N (µ0i, σ
2I), X1 ∼ 1

K1

∑K1

i=1 N (µ1i, σ
2I), and Xt = tX1+(1−

t)X0.

vt(x) = E [X1 −X0 | Xt = x]

= E
[
X1 −Xt

1− t
| Xt = x

]
=

1

t(1− t)
(E [tX1 | Xt = x]− tx)

=
1

t(1− t)

(
1

K0

K0∑
i=1

p
(i)
t (x)

pt(x)
E
[
tX1 | X(i)

t = x
]
− tx

)

=
1

t(1− t)

(
1

K0

K0∑
i=1

p
(i)
t (x)

pt(x)

(
x− (1− t)µ0i + σ̃2

t s
(i)
t (x)

)
− tx

)
, where σ̃2

t = (1− t)2σ2

=
x

t
+

(1− t)σ2

t

(
1

K0

K0∑
i=1

p
(i)
t (x)

pt(x)

(
s
(i)
t (x)− µ0i

1− t

))

where p(i)t (x) = Law(tX1 + (1− t)N (µ0i, σ
2)) = 1

K1

∑K1

j=1 N (tµ1j + (1− t)µ0i︸ ︷︷ ︸
µ
(i)
tj

, σ2
t ), σ

2
t = (t2 + (1− t)2)σ2.

s
(i)
t (x) = ∇x log p

(i)
t (x) =

1

σ2
t

K1∑
j=1

w
(i)
j (x)µ

(i)
tj − x

 ,
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where

w
(i)
j (x) =

exp

(
−
∥∥∥x−µ

(i)
tj

∥∥∥2

2σ2
t

)
∑

j exp

(
−
∥∥∥x−µ

(i)
tj

∥∥∥2

2σ2
t

)

A.4.3 GAUSSIAN TO A MIXTURE OF GAUSSIAN CASE

Let X0 ∼ N (0, I) and X1 ∼
∑

i πiN
(
µi, σ

2
i I
)
. Let Xt = tX1 + (1− t)X0, then using (A.24), we have

vt(x) =
x

t
+

1− t

t
st(x) (A.25)

where, st(x) = ∇x log pt(x) is given by

st(x) =
∑
i

wi,t(x)

(
tµi − x

σ2
i,t

)
,

σ2
i,t = (1− t)2 + t2σ2

i and

wi,t(x) =
πi exp

(
−∥x−tµi∥2

2σ2
i,t

)
∑

j πj exp
(

−∥x−tµj∥2

2σ2
i,t

)
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