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Abstract
Entity-centric question answering (ECQA) is the problem of selecting which1

entities from a large, predefined set are most relevant to given observations. For2

example, given genes active in disease, scientists want to identify which biological3

processes are involved. This represents a fundamental challenge for LLM-based4

scientific discovery. While LLMs can process complex knowledge, obtaining5

reliable answers from long, heterogeneous inputs remains largely unattainable.6

Current approaches rely mostly on consensus aggregation or extensive validation,7

but these methods incur token costs that scale poorly with input complexity, leading8

to "token explosion."9

We introduce ARISE (Adaptive Residual Information Sampling Engine), a frame-10

work that reframes ECQA as a multi-armed bandit problem with side observations.11

Our key insight is that each query provides noisy side-observations about related en-12

tities, which can be recycled for statistically-grounded updates and a more efficient13

query policy. ARISE employs the DUETS Bandit, a novel online learning algorithm14

with dual expert advisors: a GraphExpert that leverages entity co-occurrence and a15

NoiseExpert that strategically selects queries to maximize expected observation16

quality. This process is supported by Confirmation Atoms, a set of commonly17

known validation processes designed for scientific knowledge validation, which18

assess outputs and update the system’s internal beliefs.19

Together, these components enable statistically rigorous hypothesis testing with20

formal p-values while dramatically reducing query complexity. For validating21

ARISE, we use the hallmark challenge of pathway enrichment analysis using 180+22

annotated gene expression datasets we collected from three common benchmarks.23

1 Introduction24

Large Language Model (LLM)-based question answering (QA) is a rapidly growing research area.25

A key sub-area is entity-centric question answering (ECQA), where LLMs extract concrete and26

factual results for a predefined set of target entities. For example, a clinician might ask for relevant27

conditions (entities) based on a patient’s symptoms (observables). We focus on a more constrained28

and challenging form, prompt-only ECQA, where the prompt itself serves as the knowledge base,29

framing the task as zero-shot classification. This does not prevent the LLM from query external30

sources but rather removes the requirement of referencing a singular, predefined knowledge base.31

Nonetheless, the inherent limitations of LLMs often impede their ability to provide high-confidence32

results due to issues like hallucination and factual inconsistency Huang et al. [2024], Wang et al.33

[2024b]. These limitations are most evident when factual queries require long, complex inputs or34

high confidence in the generated answers. In scientific question answering, queries often involve35
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multi-module and out-of-distribution reasoning. For example, a scientist may ask about novel lab36

results, where measurements combine signals from multiple phenomena and refer to knowledge not37

present in the LLM’s training data.38

A key example of this challenge is retrieving functional meaning in biology, known as Gene Set39

Enrichment Analysis (GSEA) or Pathway Enrichment Analysis (PEA). In this instance of ECQA, the40

target entities are known biological pathways, and the observables are gene lists, often distinguishing41

disease from control groups. Scientists ask: “Which pathways explain these differentially expressed42

genes?” This remains a central, largely unsolved problem in bioinformatics, which we use to43

demonstrate our framework’s power.44

Those limitations lead to a plethora of works aiming to overcome these limitations, primarily along45

three directions: 1) approaches utilizing partial queries combined with consensus aggregation have46

shown substantial improvements for long contexts [Singhal, 2025, Wang et al., 2023a, 2024a, Jiang47

et al., 2023] (see Chen et al. [2024] for overview and related scaling laws); 2) A growing body48

of literature focuses on assigning confidence scores to LLM answers, addressing both epistemic49

and aleatoric uncertainties Hüllermeier and Waegeman [2021], Zong and Huang [2025]; and 3)50

the emergence of agentic, web-enabled LLMs allows for querying external sources to mitigate51

out-of-distribution issues Gao et al. [2024], Xi et al. [2023].52

Despite these advancements, a significant challenge remains: the harsh trade-off between performance53

and computational cost. While combining these three directions can yield significantly improved54

results, the practical application of iterative query feedback loops on expensive models becomes55

infeasible for large sets of observables or hypotheses (target entities) Chen et al. [2024].56

Here we directly address this cost-performance trade-off by leveraging three key insights inherent to57

the iterative retrieval. First, each retrieval step, even if directed through assessing the relevance of a58

single target entity, can be seen as a partial and biased retrieval of all entities. Second, we can leverage59

known co-occurrence probabilities between entities for smart sampling of observables necessary for60

the partial querying. Third, the extensive validation associated with the retrieval process contains61

residual information that we can farther leverage.62

To this end, we introduce ARISE (Adaptive Residual Information Sampling Engine), a framework63

that facilitates a statistically-grounded orchestration of components that govern the dynamics of64

iterative retrieval. ARISE is built from two symbiotic yet deliberately separated parts. The first is a65

smart sampling policy of partial sets of observables, which leverages both prior and online knowledge.66

The second is a statistical engine that enables online validation of the consensus score through an67

explicit formulation of an appropriate null distribution. Although these parts are connected, they68

rely on different sources, prior knowledge versus LLM-retrieved knowledge, with the goal of finding69

enrichment of the LLM’s knowledge over the prior beliefs.70

The smart sampling policy at the heart of the ARISE framework is a novel multi-armed bandit71

algorithm, DUETS Bandit("DUal Experts for Turbid side-Observations with Stochastic feedback72

graph"), which is specifically designed to navigate this complex information landscape. The DUETS73

algorithm models the problem as a noisy full-information ("expert") setting, where each query74

provides a corrupted signal about all entities. However, it solves it with a unique dual-perspective75

approach. One component of the algorithm, the GraphExpert, treats the known entity co-occurrence76

data (the prior knowledge) as a stochastic feedback graph, adopting strategies from the foundational77

works of Mannor and Alon Mannor and Shamir [2011], Alon et al. [2017]. A parallel component,78

the NoiseExpert, focuses on strategically choosing queries to maximize the expected quality of the79

LLM-retrieved information. By adaptively mixing and weighting the advice from these two experts80

using a meta-policy, DUETS achieves a sampling scheme that greatly improves efficiency.81

The rest of the paper is structured as follows: Section 2 positions our work relative to the related82

fields of ECQA and online learning. Section 3 provides a detailed description of the core components83

of ARISE, including the generative models, the statistical engine, the DUETS bandit arm selection84

policy, and the confirmation atoms. Finally, Section 4 presents the current evaluation of our framework85

and discusses our work in progress.86

2 Related Works and Positioning87

Zero-Shot Entity-Centric Question Answering (which we refer here simply as ECQA) is characterized88

by several key exclusions. It operates without Retrieval-Augmented Generation (RAG) [Lewis et al.,89
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2020], fine-tuning, or access to the model’s output probabilities. Consequently, the model’s weights90

are frozen, its reasoning is confined to its in-context learning abilities (including MCP Hou et al.91

[2025]), and it is treated as a black box.92

A key feature of our ECQA setup is the complexity of the input, which directly challenges a core93

limitation of modern LLMs: using long, information-dense, and multimodal context effectively. While94

new models offer large context windows, research shows a clear gap between this theoretical capacity95

and practical reasoning ability, effects like "lost in the middle" [Liu et al., 2023], hallucinations96

[Huang et al., 2024] , or "long-tail knowledge collapse" Kandpal et al. [2023] , are well-documented97

and results in sharp performance decay. This performance decay is not merely theoretical, in tasks98

like PEA, a long gene list can cause a diagnostically important gene to be overlooked if it falls into the99

neglected middle section [Liu et al., 2023, Shi et al., 2024, Yuan et al., 2024]. The model’s reasoning100

is then based on a flawed, incomplete representation of the input, causing incorrect classification.101

This issue arises not from missing knowledge but from an architectural artifact of processing long102

sequences [Shi et al., 2024].103

To overcome these constraints, prompt engineering has become a leading strategy [Liu et al., 2023].104

Effective prompts often mimic domain-specific reasoning patterns, analogous to Chain-of-Thought105

[Wei et al., 2022]. A prime example in bioinformatics is the TALISMAN method, which explicitly106

instructs the model to perform a "term enrichment test" on a list of genes, forcing it to synthesize a107

high-level biological concept [Yuan et al., 2024]. Similarly, in medical diagnosis, a two-step prompt108

that first organizes clinical data before deriving a diagnosis [Singhal et al., 2023]. Here we address109

those methods as "confirmation processes", and incorporate them into our framework.110

Another line of work develops a more robust architectural pattern of partition-query-aggregate Liu111

et al. [2025]. These approaches decompose the long, heterogeneous list of observations into smaller112

partitions, query the LLM on each one, and then synthesize the final result based on the framework113

of Consensus Ranking from Partial Observations Kemeny and Snell [1962]. While very effective,114

these architectures come with an extremely high computational cost Wang et al. [2023b], Simeoni115

et al. [2024], requiring numerous LLM calls. Hence, current research is focused on optimizing parts116

of the architecture, from context-aware approaches for observation partitioning such as semantic117

partitioning using feature clustering Saito et al. [2025] , or agentic partitioning Wu et al. [2025], to118

faster weighted Consensus Ranking algorithms Wang et al. [2025].119

Pathway Enrichment Analysis (PEA) is a widely studied field Nguyen et al. [2019], Reimand et al.120

[2019], Mathur et al. [2018] with extensive validation efforts Geistlinger et al. [2021], Buzzao121

et al. [2024] , yet it faces several well-documented limitations Lazareva et al. [2021], Khatri et al.122

[2012], Mubeen et al. [2022] . These limitations often arise from the difficulty of establishing123

a singular, comprehensive knowledge base, as the required biological knowledge is constantly124

updating, profoundly heterogeneous, and context-dependent Kotrys et al. [2024], Mubeen et al.125

[2022]. Those challenges have driven large collaborative efforts to manually curate biological126

knowledge, exemplified by the Kyoto Encyclopedia of Genes and Genomes (KEGG) database127

Kanehisa and Goto [2000], Kanehisa et al. [2023]. Those efforts highlights the immense promise128

of leveraging LLMs for this task, given their potential for deep biological understanding and129

their capacity to integrate real-time knowledge. Unfortunately, attempting to apply LLMs directly130

to this problem often falls short Hu et al. [2025a, 2023], as the specific difficulties of LLM-based131

PEA are a clear manifestation of the general ECQA challenges previously discussed.132

2.1 Online Learning with Side-Information133

Our framework is a novel application within the broader field of sequential decision-making, which134

evolved from the seminal frameworks of prediction with expert advice Cesa-Bianchi and Lugosi135

[2006], where the learner observes the loss of all possible actions at each step (also known as the136

"full-information" or "expert" setting), and the classic Multi-Armed Bandit (MAB) problem Robbins137

and Monro [1951], where the learner only observes the loss of the single action they chose (also138

known as the "bandit" setting).139

Here, we focus on a middle ground where side-information for every chosen action exists, meaning140

choosing one action reveals partial information about others. Specifically, our work incorporates and141

synthesizes two distinct fields: 1) The graph-structured feedback model, introduced by Mannor142

and Shamir [2011] and extensively developed by Alon et al. [2017]. This framework formalizes143

side-information using a feedback graph where an edge from action i to j means playing i reveals the144
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Figure 1: Overview of the ARISE framework with its dual-expert algorithm DUETS. Observations
O are mapped to candidate entities Ei. The GraphExpert uses co-occurrence priors via a feedback
graph, while the NoiseExpert scores observation quality. LLM outputs (E1, E2) are validated
through Confirmation Atoms (Ac), which assess uncertainty and update both the significance engine
(p-values with confidence intervals) and the experts, enabling an adaptive ECQA pipeline.

loss of j. Key distinctions in this literature include the informed setting, where the learner knows145

the feedback graph before choosing an action, versus the uninformed setting. Further nuances146

involve whether the graph is symmetric (reciprocal feedback) or directed, and whether it is fixed or147

time-varying Alon et al. [2017]. The work of Li et al. [2019] extends this framework to stochastic148

graphs where each edge is associated with a probability of being realized. 2) Learning with noisy149

side observations Kocák et al. [2016]. This framework models a different form of side partial150

information. Instead of sparse feedback, it is assumed to be fully present but corrupted by noise.151

3 Methodological Rationale and Core Components152

At the core of ARISE is the view of entity identification as a Multi-Armed Bandit (MAB) problem,153

where each candidate entity is an arm and pulling it triggers a full investigative cycle. A query is154

formed by sampling a representative subset of observables from the entity-observable joint distri-155

bution, according to the framework’s current beliefs, and executed against the LLM. The response156

is validated through a modular suite of Confirmation Atoms, which assess stability, coherence, and157

factuality to produce a quantitative confidence score. Residual information from this step updates158

the internal beliefs online. The confidence-weighted result is then aggregated by a Statistical Signif-159

icance Engine, which tests against a null hypothesis to produce p-values and confidence intervals.160

Entities considered “statistically enriched” are masked in subsequent rounds. The entire process is161

orchestrated by the DUETS (DUal Experts for Turbid side-Observations with Stochastic feedback162

graph) algorithm.Figure 1 presents a conceptual overview of the framework.163

3.1 Generative Model and Statistical Components164

As described before, we assume some reference corpus exists of the relation between entities and165

observables, and Supplementary Section D discusses the case where this data is absent.166

Mapping Observables to Entities We model the generation of a set of observables gq as a draw167

from a mixture model, where each component corresponds to an entity Ei. Each entity Ei is168

characterized by a categorical distribution over the universe of Nback observables, O. The parameters169

of this distribution, a probability vector θ⃗i ∈ ∆Nback−1, are assumed to be drawn from a conjugate170

Dirichlet prior, governed by a concentration parameter vector α⃗i, and this constitutes a Dirichlet-171

Multinomial (D-M) model.172
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The posterior Dirichlet parameters, α⃗′, are learned from a reference corpus built from a set of datasets,173

each corresponding to a ranked list of all observables and a set of observed entities. The ranking is174

based on the assumption that observables with a higher rank are more strongly associated with at least175

one of the entities. These ranked lists are partitioned into m quintiles, with each quintile assigned a176

distinct, monotonically decreasing weight. The weights for each entity are then aggregated across the177

corpus to form an empirical count vector, C⃗i.178

Modeling and Updating Entity Relationships To leverage entity relationships for the stochastic179

feedback graph (§3.2), we must ensure these relationships enable probabilistic meaning and updates180

from confirmation atoms. The stochastic feedback graph has entities as nodes and edges representing181

the conditional probability of observing entity Ej given the presence of entity Ei, denoted P (Ej |Ei).182

While this can be estimated from co-occurrence frequencies via MLE, such estimates are brittle,183

especially with small sparse data. We instead use a Bayesian approach that regularizes, handles184

unseen events, and supports efficient sequential updates.185

We model the conditional probability P (Ej |Ei) as a latent parameter θj|i ∈ [0, 1]. For a given entity186

Ei, the presence or absence of any other entity Ej in the same dataset is treated as a Bernoulli187

trial. To facilitate Bayesian inference, we place a conjugate Beta prior on this parameter: θj|i ∼188

Beta(αj|i, βj|i). A weakly informative prior (e.g., αj|i = 1, βj|i = 1) is chosen to regularize the189

estimate while allowing the data to drive the posterior.190

Given corpus-wide counts of entity occurrences (Ni) and co-occurrences (Ni,j), the posterior dis-
tribution for the parameter is also a Beta distribution, θj|i|data ∼ Beta(α′

j|i, β
′
j|i), with updated

parameters: α′
j|i = αj|i + Ni,j , and β′

j|i = βj|i + (Ni − Ni,j). Then, the point estimate for the
conditional probability is the mean of this posterior :

P (Ej |Ei) =
α′
j|i

α′
j|i + β′

j|i
=

αj|i +Ni,j

αj|i + βj|i +Ni

This Bayesian approach offers significant advantages over the MLE (P (Ej |Ei) = Ni,j/Ni). The191

prior acts as a smoothing mechanism, preventing the model from assigning probabilities of exactly 0 or192

1 based on limited observations (the "zero-frequency problem"), which ensures more robust estimates193

in sparse data regimes. Furthermore, the model is inherently updatable. New data, summarized by194

counts N ′
i and N ′

i,j , can be incorporated by treating the current posterior parameters (α′
j|i, β

′
j|i) as195

the new prior and applying the same update rules, avoiding the need to reprocess the entire corpus.196

The Statistical Significance Engine For a grounded result, we need a mechanism to aggregate197

iterative queries until a true signal emerges. We achieve this by formal statistical confidence, providing198

p-value for each entity. For that, we explicitly build the null hypothesis (H0), which defined as199

the probability of observing an entity given the prior beliefs only, position our framework as an200

"enrichment over current belief" enrichment problem. As described before, Supplementary Section D201

discuses the case where no prior belief is given and the enrichment is defined over background noise.202

A central challenge is that our framework is built on sequential querying over sampled sub-sets,
which are intentionally biased through the prior beliefs of the played action, meaning the probability
of observing an entity changes with every trial. The correct underlying model is therefore a Poisson
Binomial distribution, where the prior beliefs probabilities are:

P (Ei = 1|gq) =
P (gq|Ei) · πi

P (gq|Ei) · πi + P (gq|¬Ei) · (1− πi)

Where gq is the current queried set of observables, πi = P (Ei = 1) is the prior probability for each203

entity being observed, and P (gq|¬Ei) is the observables probability for the "background". In our204

current "working example" where a reference corpus exists, we can easily infer πi and P (gq|¬Ei)205

from the data. Supplementary Section D discuss the case those doesn’t exist.206

For a given entity Ei, let X be the random variable for its total count across T trials, and let k be207

the observed count. Under the null hypothesis, X follows a Poisson Binomial distribution defined208

by the set of success probabilities {pi(gq(1)), . . . , pi(gq(T ))}. Since we are testing for enrichment,209

we perform a one-tailed test. The p-value is the probability of observing a count of k or greater210

by chance :p-value = P (X ≥ k) =
∑T

j=k P (X = j). Directly computing the probability mass211
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function P (X = j) is computationally infeasible as it requires summing over an exponential number212

of combinations, but efficient methods exists Biscarri et al. [2018].213

Our framework incorporates two sources of uncertainty for robust confidence assessment: sampling214

variance, to ensure stability across trials, and observation variance, returned by the confirmation215

atoms, reflecting certainty for each query result. We construct a confidence interval (CI) for the216

empirical success probability. Because a CI for the p-value estimator is analytically infeasible, we use217

the duality between hypothesis tests and CIs: instead of framing the CI on the p-value, we construct a218

CI for the empirical success probability parameter p̂ that includes both uncertainties. For sampling219

variance we use the Clopper–Pearson(C-P) method, for observation variance we incorporate MCMC220

with adaptive stopping into this CI.221

Specifically, we treat the confidence from each observation as its probability of being a true positive,222

P (True observation|Ei = 1), and in each iteration, we sample an "effective k" from the resulting223

distribution. A C-P interval is calculated for this simulated count, generating a distribution of plausible224

lower and upper bounds. To construct a single CI which accounts for both sources of uncertainty225

simultaneously, we use the simulation to derive a confidence interval on the bounds themselves; the226

final lower bound is taken from the lower tail of the distribution of simulated lower bounds, and the227

final upper bound from the upper tail of the distribution of simulated upper bounds. An entity is228

considered "enriched" only if its p-value is below a significance threshold and its prior probability,229

πi, falls outside this composite confidence interval.230

3.2 The Arm Selection Policy231

The motivation for our arm selection policy is to intelligently reconcile two distinct beliefs about232

the data, informed by prior literature and our Confirmation Atoms (CA). The first belief is the233

co-occurrence probability between entities, which we model as a probabilistic feedback graph to234

guide exploration. The second is the mapping between observables and entities, which dictates the235

relevance of information we expect to receive from each query. Our ‘DUETS Bandit‘(or simply236

’DUETS’) algorithm is designed to synthesize these two beliefs while accounting for the framework’s237

inherently biased query mechanism; by using observables sampled for one entity to query the LLM238

about all entities, we receive a turbid signal for each entity.239

To achieve this, the core of ‘DUETS‘ is its dual-perspective architecture: two parallel expert advisors240

with different worldviews that learn to synthesize their advice. The ‘GraphExpert‘ is designed to241

enforce the co-occurrence prior. It operates as if it were in the informed, partial-information setting242

of Alon et al. [2017], and more specifically under the stochastic setup of Li et al. [2019], treating243

the realized co-occurrence graph Gt as a feedback mechanism. By focusing its exploration strategy244

on structurally important nodes (e.g., a dominating set), it ensures that the sampling policy take into245

account the known relationships between entities.246

The ‘NoiseExpert‘ acknowledges the noisy full-information reality of the problem, resamples the247

noisy side-observation model of Kocák et al. [2016]. Its goal is to strategically select the query248

(action) that is expected to yield the highest quality information across all entities. It does this by249

performing a proactive lookahead calculation, using a learned model of observation quality to identify250

the most informative query to make in each round. This lookahead function is intuitively defined as:251

p̂g(i, j) = Eo∼P (·|Ei)[P (Ej |o)] (1)

Which is the expected posterior probability of entity j, where the expectation is taken over all252

the input observables that a query for entity i is likely to produce. Direct computation of this253

expectation is analytically intractable, we therefore propose an approximation. Given that Equation 1254

represents the confusability between entities Ei and Ej , an intuitive and computationally efficient255

solution is to define a score based on the information-theoretic similarity of the entities’ learned256

distributions. Specifically, the Kullback-Leibler (KL) divergence between their posterior Dirichlet257

distributions, DKL(Dir(α⃗′
i)||Dir(α⃗′

j)), measures the inefficiency of using the distribution of Ej258

to describe observables generated from Ei. Supplementary Section B discuses the theoretical259

justifications beyond the score. We leverage this by defining a similarity score via an exponential260

kernel, which serves as a principled proxy for the desired expectation:261

p̂g(i, j) := exp
(
−DKL(Dir(α⃗′

i)||Dir(α⃗′
j))

)
(2)

This score provides a fast and robust measure of entity similarity, directly grounded in the information262

content of their learned models, which we use in place of the intractable expectation.263
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‘DUETS‘ then uses a high-level ‘Meta-Expert‘ that adaptively learns how to best mix the rec-264

ommendations from these two distinct advisors. By tracking the historical performance of the265

‘GraphExpert‘’s structural advice and the ‘NoiseExpert‘’s quality-driven advice, the ‘Meta-Expert‘266

dynamically adjusts their relative influence on the final action selection. This dual-perspective ap-267

proach allows our framework to achieve a near-optimal sampling strategy that minimizes queries268

while maximizing confidence.269

The environment is modeled with a stochastic setting where the loss for each entity j at time step t270

is constructed from a transformed Bernoulli process. After each action It, the environment reveals271

a binary outcome, rt,j ∈ {0, 1}, where rt,j = 1 signifies that entity j was returned by the LLM.272

Crucially, the environment also provides two measures of uncertainty that modulate this binary273

outcome: 1) A confidence score, Ac(It, j), which reflects the reliability of a positive outcome274

(rt,j = 1), And 2) A query relevance score, p(noise)
t,k , derived from the sampled observables for the275

query It and can be seen as a realization of pg(It, j) . These components, along with a constant276

hyperparameter Cback, which is the hyperparameter reflects the LLM confidence in the absent entities,277

are combined to form the confirmation-weighted loss that ‘DUETS‘ tracks:278

ℓ(rt,j , Ac(It, j), p
(noise)
t,k ;Cback) = rt,j ·Ac(It, j) + (1− rt,j) · p(noise)

t,k · Cback (3)

Intuitively, when an entity is present (rt,j = 1), the loss is determined solely by the confirmation279

atoms’ confidence for positive predictions, penalizing unreliable positives. When the entity is absent,280

this loss is attenuated by the observation relevance pg(It, j), ensuring that only relevant queries281

contribute strongly to the framework’s statistical engine.282

The complete algorithmic details of DUETS are provided in the Supplementary Material Section B.283

Subsection B.0.3 provides implementation-ready pseudocode with mathematical operations.284

3.3 Confirmation Atoms: A Dynamic Feedback System285

As discussed before, most state-of-the-art methods for ECQA employs additional LLM queries to286

validate results and assign confidence scores. We abstract these validation routines into a modular287

structure of "confirmation atoms(CA)." As described previously, a central innovation of our framework288

is the dual purpose these atoms serve. Their primary function is to probe the LLM’s output and289

generate a confidence score for the returned results, which is used by our Statistical Engine to290

calculate the MAB’s intrinsic loss. Their second, novel function, is to provide the residual information291

necessary for the online updating of our framework’s internal beliefs about the system. To make292

this process principled, each atom is designed to probe a distinct source of uncertainty, which we293

explicitly separate into epistemic (model-based) and aleatoric (data-based) types [Hüllermeier and294

Waegeman, 2021]. Table 1 summarizes which internal components each atom updates.295

Confirmation Atom Uncertainty
Type

Updates
Mapping

Updates
Gt

Updates
S

Counterfactual Agreement Epistemic — ✓ ✓
Graph Cohesion Aleatoric — ✓ ✓
The Round-Trip Atom Epistemic ✓ — ✓
Knowledge Grounding Epistemic ✓ — ✓

Table 1: The relationship between each Confirmation Atom and the framework components it updates.
All atoms contribute to the confidence score Ac(It, j) which is fed into the Statistical Engine (S).

Here we provide a short description of the CAs. The full description of the CAs together with the296

formal way they update the beliefs are in Supplementary Section C. The Counterfactual Agreement297

Atom measures epistemic uncertainty by testing prediction stability under perturbed observables.298

The Graph Cohesion Atom captures aleatoric uncertainty by checking the semantic plausibility of299

returned entities via their average distance in the entity correlation graph. The Round-Trip Atom300

tests internal coherence by retrieving an entity from observables, then asking the LLM to regenerate301

observables for that entity and comparing them. The Knowledge Grounding Atom performs a factual302

check by comparing LLM-generated observables to an external curated database. Together, these303

atoms provide a multi-faceted quality assessment aggregated into a single confidence score.304
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While each confirmation atom provides a distinct signal, a single, unified confidence score is required305

to drive the updates of the statistical engine. We define the total confidence score Ac(It, j) for a306

returned entity Ej at time step t as a normalized weighted aggregation of the individual atom scores.307

First, we transform the Entity Neighborhood Dispersion (END) score, which measures dispersion,308

into a normalized cohesion score, Cohesiont = 1− ENDt

max(distGt )
. For each entity Ej , the individual atom309

scores are represented by uj,t = [UA(Ej), UC(Ej), UG(Ej),Cohesiont]
T , and their relative impor-310

tance is defined by a non-negative hyperparameter weight vector, w = [wA, wRT , wKG, wGC ]
T .311

The final confidence score is then computed as:312

Ac(It, j) =
w · uj,t

∥w∥1
(4)

where ∥w∥1 is the L1 norm of the weight vector, ensuring the score is a convex combination that313

remains in the range [0, 1]. This normalized score Ac(It, j) serves as a single, potent signal that314

encapsulates the evidence gathered in each trial. It is then fed into the statistical engine to update the315

total observed count kj and total expected count λj .316

4 Evaluations - Parliamentary Work.317

For evaluating ARISE on the hallmark problem of pathway enrichment analysis, we collected a corpus318

of 180 datasets across multiple diseases from three benchmarks [Buzzao et al., 2024, Geistlinger319

et al., 2021, ?], each containing raw gene-expression data for control and disease groups and known320

biological pathways as ground truth. Our goals were to show the benefit of aggregating partial321

queries, demonstrate token efficiency, and study ablations of ARISE and DUETS, including the322

no-prior case. First, replicating Hu et al. [2025b], we found that even advanced models like GPT-4323

(gpt-4-1106-preview) achieved insufficient accuracy on our benchmarks; the model’s confidence324

correlated only weakly with semantic similarity (r=0.22), with many low-similarity predictions as325

shown in Figure 3 in the Supplementary Section A. Second, we evaluated DUETS in a controlled326

synthetic setting (K = 60 actions, C = 3 clusters, m⋆ = 2 per cluster) using a hubbed feedback327

graph and inverse propensity weighting. We compared GraphOnly, NoiseOnly, and DUETS, and328

found DUETS consistently more sample-efficient, reaching 80% recall in 375 rounds versus 390 for329

NoiseOnly and 428 for GraphOnly as shown in Figure 2 in the Supplementary Section A. These330

results confirm the need for structured querying and show DUETS’s advantage in speed and accuracy.331

5 Conclusions332

Our work addresses the critical trade-off between reliability and computational cost in entity-centric333

question answering (ECQA) from long, complex contexts. Current methods, while effective, often334

lead to a "token explosion" that renders them impractical for large-scale scientific discovery. To335

overcome this, we introduced ARISE, a novel framework that reframes ECQA as a multi-armed bandit336

problem with side observations. ARISE’s core innovation is the DUETS Bandit, a dual-expert online337

learning algorithm that intelligently synthesizes prior structural knowledge (‘GraphExpert‘) with338

expected observation quality (‘NoiseExpert‘) to guide an efficient query policy. This is complemented339

by a modular system of Confirmation Atoms for robust, multi-faceted validation and a Statistical340

Engine that moves beyond opaque self-reported scores to provide rigorous, entity-wise p-values341

under an explicit null hypothesis. Our preliminary results are promising. On synthetic data, DUETS342

demonstrates superior sample efficiency compared to single-expert policies, confirming the value343

of its adaptive mixing strategy. Furthermore, our baseline replication on over 180 real-world gene344

expression datasets highlights the limitations of current single-query approaches.345

Limitations and Future Work. While ARISE presents a promising direction, we acknowledge346

several limitations that offer avenues for future research. First, ARISE relays on the availability of a347

relevant prior knowledge corpus. Although we have outlined a robust "uninformed initialization"348

protocol, its performance relative to a well-initialized model needs to be thoroughly benchmarked.349

Second, while ARISE is designed for efficiency, its scalability to extremely large sets of entities350

(e.g., tens of thousands) has not yet been tested. Finally, our framework assumes that the underlying351

LLM behaves as a consistent, stateless oracle. The performance of ARISE could be impacted by352

significant stochasticity in LLM responses or by unannounced updates to proprietary models, which353

could introduce non-stationarity into the learning environment.354
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Technical Appendices and Supplementary Material503

A Evaluation504

We evaluate along two complementary axes. First, a controlled synthetic study that isolates the505

contribution of the online policy (DUETS) under graph-structured, noisy side-observations. Second,506

an ongoing real-data study that follows the work of Hu et al Hu et al. [2025b] to benchmark ARISE507

against contemporary LLM-based baselines on annotated gene-expression datasets.508

A.0.1 Synthetic evaluation: DUETS sample efficiency under graph-structured509

side-observations510

To isolate the contribution of the online policy itself, we benchmark DUETS on a controlled synthetic511

environment that mirrors the setting in Section 3: actions correspond to entities (pathways), pulling512

one action reveals noisy side-observations about many others, and which observations are revealed is513

governed by a feedback graph.514

Environment. We simulate K = 60 actions partitioned into C = 3 clusters of equal size. A small515

subset of actions are truly relevant: we draw m⋆ = 2 per cluster (6 in total) and set their Bernoulli516

success probabilities to θj = θhi = 0.75; the remaining actions have θj = θlo = 0.10. Querying517

action i produces a revealed/hidden mask according to a directed feedback matrix P ∈ [0, 1]K×K518

(row i gives the probability that j is revealed when i is played), and quality weights according to519

S ∈ [0, 1]K×K (row i gives the observation quality for all j). We instantiate a clustered, hubbed520

feedback graph. In each cluster we designate 25% of actions as hubs—actions whose feedback521

rows have high out-coverage (large
∑

j Pij), meaning that playing a hub i tends to reveal many522

neighbors. Concretely, for same-cluster j we set Pij = 0.95 if i is a hub and Pij = 0.12 if i is a523

non-hub; cross-cluster reveals are rare with Pij = 0.01. Observation quality is high within clusters524

and low across clusters (Sij = 0.90 within, Sij = 0.12 across), with small Gaussian jitter (clipped to525

[0, 1]). A single round proceeds as follows: after playing i, each j is revealed with probability Pij ; if526

revealed, we draw rt,j ∼ Bernoulli(θj) and record a reward rt,j Sij ; otherwise the reward for j is527

zero. We use the loss ℓt,j = 1− rt,jSij .528

Unbiased ranking via inverse propensity weighting (IPW). Because hubs reveal more neighbors,529

a naïve cumulative-reward ranking is biased. We therefore build, for each policy, a per-arm IPW530

estimator of the latent relevance rj :531

r̂t,j =
∑
τ≤t

obsτ,j
PIτ j SIτ j + ε

, obsτ,j = 1{j revealed} · rτ,j SIτ j ,

with a small ε for numerical stability. This estimator is unbiased for E[rj ]. At round t we rank actions532

by r̂t,j and report Recall@m⋆ (the fraction of the m⋆ ground-truth actions appearing in the top-m⋆533

estimated list).534

Policies. We compare three policies; all hyperparameters are identical to the code used to produce535

Fig. 2.536

• GraphOnly. An Exp3-style learner (following the Exp3 algorithm of Alon et al Alon et al.537

[2017]) that uses the known feedback graph P to enforce exploration on a dominating set538

Dt of the current graph. The sampling distribution is pgrapht = (1 − λ) wt

∥wt∥1
+ λ

|Dt|1Dt539

with λ = 0.35 and learning rate ηG = 0.25. We update weights using an importance-540

weighted estimator computed only on revealed coordinates: ℓ̂grapht,j = min
{
ℓt,j/(PItj +541

10−12), cap
}
· 1{j revealed}, with a cap of 50 to control variance.542

• NoiseOnly. A quality-aware look-ahead policy that chooses actions expected to yield the543

most informative side-observations. It maintains an exponential moving average of per-arm544

rewards, r̂ ← (1−β)r̂+β(1−ℓt) with β = 0.05, and samples from a softmax over utilities545

Ut(i) =
∑

j(S ⊙ P )ij r̂j (temperature 1/ηN , with ηN = 1.0).546

• DUETS. Our meta-learner mixes the two advisers: pt = (1 − αt) p
graph
t + αt p

noise
t .547

During a short warm-up of 40 rounds we use a fixed αt = αwarm = 0.20 to en-548

sure coverage. Thereafter, αt is learned online by Hedge with meta-rate ηmeta = 1.5:549

WG
t+1 = WG

t exp(−ηmeta · ⟨pgrapht , ℓt⟩), WN
t+1 = WN

t exp(−ηmeta · ⟨pnoiset , ℓt⟩), and550
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Figure 2: Synthetic evaluation with a hubbed feedback graph. Shaded bands are 95% CIs over
40 seeds. We report recall of the true top arms using inverse-propensity weighting (IPW) to debias
coverage. DUETS attains 80% recall in 375 rounds (median) versus 390 for NoiseOnly and 428 for
GraphOnly, reflecting faster sample-efficient discovery while maintaining competitive late-round
performance.

αt = WN
t /(WG

t +WN
t ), with on-the-fly normalization to prevent numeric under/overflow.551

DUETS uses the same graph and noise sub-learners as above (λ = 0.35, ηG = 0.25,552

ηN = 1.0, β = 0.05).553

Protocol and metric. We run each policy for T = 500 rounds on independent environments554

(40 random seeds) and report the mean recall curve with 95% confidence bands. For a compact555

sample-complexity summary we also report, for each policy, the median number of rounds needed to556

reach ≥ 80% Recall@m⋆.557

Results. Figure 2 shows mean recall with 95% CIs over 40 runs (evaluation by inverse-propensity558

weighting). The hubbed feedback makes graph structure consequential, and IPW removes the559

coverage bias induced by hubs. In this regime, DUETS accelerates early discovery by combining (i)560

structural coverage from the GraphOnly dominating-set exploration and (ii) quality-aware look-ahead561

from NoiseOnly. After a short warm-up, the Hedge meta-update shifts weight toward the stronger562

adviser online. Quantitatively, DUETS reaches 80% recall in 375 rounds (median), compared to 390563

for NoiseOnly and 428 for GraphOnly; end-of-horizon recall remains competitive across methods.564

A.0.2 Real-data evaluation: Planned ARISE comparison565

To assess the performance of ARISE on real data, we compare to recent benchmarks established566

by Hu et al. Hu et al. [2025b], who evaluated five large language models on the task of assigning567

functional names to gene sets. In their study, LLMs such as GPT-4 and Gemini Pro were prompted568

with full lists of genes and tasked with producing a descriptive pathway name together with a self-569

reported confidence score. GPT-4 was found to generate names similar to curated Gene Ontology570

(GO) terms in over 70% of cases, with its confidence estimates predictive of correctness; it also571

showed the strongest ability to decline naming incoherent or random sets, a crucial property for572

scientific reliability.573
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Figure 3: Baseline replication on our 180+ datasets using the Hu et al. pipeline: GPT-4’s self-reported
confidence versus semantic similarity between the LLM-produced pathway name and the ground-truth
pathway name. Points in the lower-right (high confidence, low semantic similarity) indicate likely
evaluation mismatches or model overconfidence.

Our Dataset. To enable systematic evaluation of ARISE, we assembled a large corpus of more than574

180 annotated gene expression datasets, spanning multiple diseases and experimental conditions.575

This corpus provides a diverse and challenging benchmark for entity-centric question answering in576

biology.577

Reproducing the Baseline. As a first step, we re-implemented the evaluation pipeline from Hu et578

al., running their published code on our 180+ datasets. This produced baseline results consisting579

of (i) the pathway names assigned by the LLM to each dataset, and (ii) the model’s self-reported580

confidence scores. These outputs form a direct replication of the Hu et al benchmark, but on a broader581

and more heterogeneous testbed. As shown in Figure 3, the Pearson correlation between model582

confidence and the semantic similarity of generated versus ground-truth names is r = 0.22 (weak583

association); moreover, a substantial fraction of generated names have similarity < 0.5.584

Planned Comparison with ARISE. Our next step is to run the ARISE framework incorporating585

Confirmation Atoms, the DUETS bandit policy, and the statistical significance engine on the same586

datasets. This will allow a direct, head-to-head comparison between ARISE and the baseline pipeline.587

We hypothesize that ARISE will outperform the baseline by achieving higher accuracy at substantially588

lower query cost, while also providing calibrated, interpretable significance estimates rather than589

opaque self-reported confidence scores.590

B The DUETS Algorithm: An Adaptive Dual-Perspective Solution591

B.0.1 Motivation: Reconciling Disparate Priors in a Concrete Setting592

Our problem is motivated by a concrete scenario: learning which entities are most likely to be593

returned by a query to a Large Language Model (LLM). In this setting, the true reward rt,j ∈ {0, 1}594

for an entity j is determined by its absence or presence in the LLM’s response. For this we leverage595

two distinct, independent sources of prior knowledge that an effective learning agent use:596
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1. A Graph-Based Co-occurrence Prior: The literature provides data on the co-occurrence597

probabilities of different entities. This knowledge is best represented as a directed graph598

Gt, realized from a known probability matrix P = {pij}, where an edge suggests a likely599

co-occurrence. To leverage this, an agent should behave as if it is exploring a sparse, partial-600

information landscape, where observing one entity provides a strong signal to observe its601

neighbors. This perspective is directly inspired by the feedback graph model of Mannor and602

Shamir Mannor and Shamir [2011].603

2. An Observation Quality Prior: The query mechanism itself introduces another layer604

of complexity. A query for entity i is performed using a specific set of its "observables"605

(features). While this provides the best possible observation for entity i, the same set of606

observables also provides a noisy signal about all other entities j. The quality of these607

observations, represented by pg(It, j), is stochastic but drawn from a known distribution.608

This implies a noisy full-information setting, where the agent’s action It determines the609

observation quality for the entire system. This setup shares conceptual similarities with the610

noisy side-observation models explored by Kocák et al. Kocák et al. [2016].611

These two priors suggest fundamentally different algorithmic strategies. The DUal Experts for612

Turbid side-Observations with Stochastic feedback graph (DUETS) algorithm is designed to613

resolve this tension. It creates a single agent that maintains two parallel worldviews—one partial-614

information and one full-information—and learns online how to best combine their advice.615

B.0.2 Algorithmic Framework: Adaptive Mixing of Two Expert Perspectives616

The ‘DUETS‘ algorithm consists of three core components, each justified by the need to handle a617

specific aspect of the problem:618

• A GraphExpert, which operates under the assumption that feedback is sparse and deter-619

mined by the graph Gt. Its purpose is to enforce a robust exploration strategy that respects620

the co-occurrence prior. Its design is heavily influenced by the ‘Exp3.G‘ family of algorithms621

from Alon et al. ?, which demonstrate that leveraging graph structure (e.g., dominating sets)622

is critical for efficient exploration in partial-information settings.623

• A NoiseExpert, which acknowledges the noisy full-information reality. Its purpose is624

to strategically choose an action that maximizes the overall quality of the observations it625

receives. Unlike the reactive model in Kocák et al. Kocák et al. [2016], where noise quality626

is unknown and adversarial, our ‘NoiseExpert‘ can be proactive because the statistics of the627

noise (p̄g(It, j)) are known. It performs a lookahead calculation to find the most informative628

action.629

• A high-level Meta-Expert, which acts as an adaptive mixer. This is a standard and powerful630

technique from the "learning from expert advice" literature. Its purpose is to learn the631

optimal blending of the two sub-experts’ advice by tracking their historical performance,632

thus freeing the user from having to manually set a fixed mixing parameter.633

Consulting the Experts. The two experts generate their advice independently, based on their634

distinct worldviews.635

• The ‘GraphExpert‘’s distribution, pgraph
t , must ensure exploration. Following Alon et al.636

Alon et al. [2015], an effective strategy is to guarantee a minimum level of exploration on a637

dominating set Dt of the current graph Gt. This ensures that all nodes are observed (in the638

hypothetical partial-information world) with high probability.639

• The ‘NoiseExpert‘’s utility function, Ut(i), is a proactive, one-step lookahead. It estimates640

the total "information reward" from playing action i, weighting the expected quality of each641

observation p̄g(It, j) by the current estimated reward of action j. This prioritizes choosing642

queries that yield high-quality information about promising entities.643

The Dual Update and its Estimators. This is the core of the algorithm’s dual nature. After644

observing the outcome, both experts update their internal state, but they interpret the information645

differently.646

• The ‘NoiseExpert‘ uses the simple, low-variance estimator ℓ̃t,k. This is possible because it647

operates in the full-information world and has access to the signal for every action.648
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• The ‘GraphExpert‘ must use the high-variance, importance-weighted estimator ℓ̂graph
t,k . The649

term I{(It, k) ∈ Et} enforces its worldview that it only "sees" feedback along realized edges.650

The denominator qt,k is the probability of this event occurring. Dividing by qt,k is essential651

to correct for the selection bias and ensure that the estimator is unbiased in expectation652

(E[ℓ̂graph
t,k ] = ℓt,k). This importance weighting is a cornerstone of modern bandit algorithms,653

essential for handling partial feedback as seen in works from Li et al. ? to Esposito et al. ?.654

Updating the Meta-Expert. The ‘Meta-Expert‘ learns by evaluating the advice of its sub-experts655

in hindsight. The meta-loss, Lmeta,G
t , represents the expected loss the agent would have suffered if it656

had followed the ‘GraphExpert‘’s recommendation pgraph
t precisely. By updating its weights based657

on these meta-losses, the ‘Meta-Expert‘ learns to increase the influence (αt) of the sub-expert that658

provides consistently better recommendations for the given environment.659

B.0.3 The DUETS Algorithm: Implementation-Level Pseudo-code660

This section provides a highly detailed pseudocode for the DUETS algorithm, intended to serve as661

a direct guide for implementation. Each step is broken down into its constituent mathematical and662

logical operations.663

The Loss Model The algorithm operates in a full-information setting where, after each round, the664

true binary outcome rt,j ∈ {0, 1} and the parameters Ac(t) and pg(It, j) are revealed for all entities665

j. The algorithm then constructs the loss for the round using the following function:666

ℓ(rt,j , Ac(It, j), p
(noise)
t,k ;Cback) = rt,j ·Ac(It, j) + (1− rt,j) · p(noise)

t,k · Cback (5)

This constructed loss, which incorporates various measures of uncertainty, is then used to update all667

expert components.668

Helper Functions For clarity, we first define two helper functions that will be used within the main669

algorithm.670

Algorithm 1 *
Function GreedyDominatingSet(G = (V, E))

1: Input: A directed graph G = (V, E).
2: Initialize: Dominating set D ← ∅, Uncovered nodes U ← V .
3: while U is not empty do
4: Let Nout(v)← {v} ∪ {j ∈ V | (v, j) ∈ E}.
5: Select node v∗ ∈ V that maximizes |Nout(v) ∩ U |.
6: D ← D ∪ {v∗}.
7: U ← U \Nout(v

∗).
8: end while
9: Return D.

Algorithm 2 *
Function NormalizeWeights(w)

1: Input: A vector of non-negative weights w = {w1, . . . , wK}.
2: W ←

∑K
k=1 wk.

3: if W = 0 then return uniform distribution {1/K, . . . , 1/K}.
4: elsereturn {w1/W, . . . , wK/W}.
5: end if

Main Algorithm The main loop of the DUETS algorithm integrates the advice from its three expert671

components to make decisions and learn from feedback.672

17



Algorithm 3 The DUETS Algorithm (Detailed)
Require: Set of actions (entities) V , |V | = K; Number of rounds T .
Require: Learning rates: ηG, ηN , ηmeta > 0; Regularization parameter γ > 0.
Require: GraphExpert exploration parameter λG ∈ [0, 1].
Require: Known co-occurrence probability matrix P ∈ [0, 1]K×K , where Pij = pij .
Require: Known constant hyperparameter acb.

1: Initialize Data Structures:
2: GraphExpert weights: wgraph

1 ← {1, . . . , 1} ∈ RK .
3: NoiseExpert weights: wnoise

1 ← {1, . . . , 1} ∈ RK .
4: Meta-Expert weights: Wmeta,G

1 ← 1, Wmeta,N
1 ← 1.

5: Cumulative losses for NoiseExpert’s model: Lnoise
0 ← {0, . . . , 0} ∈ RK .

6: Running sum for Ac: SAc ← 0; Running count for Ac: NAc ← 0.
7: for t = 1, . . . , T do
8: Observe Context: An external process provides the realized graph Gt = (V, E⊔).
9: — Consult GraphExpert —

10: Compute dominating set Dt ← GreedyDominatingSet(Gt).
11: Normalize weights: pw,graph

t ← NormalizeWeights(wgraph
t ).

12: Form GraphExpert’s mixed distribution for all k ∈ V :
pgraph
t,k ← (1− λG) · pw,graph

t,k + λG

|Dt| · I{k ∈ Dt}.
13: — Consult NoiseExpert —
14: For each pair (i, j), compute the estimated quality: p̂g(i, j) ←

CalculateExpectedPg(i, j).

15: Let est_rewardt,j ← 1− Lnoise
t−1,j

t−1 · I{t > 1}.
16: Compute lookahead utilities for all i ∈ V : Ut(i)←

∑K
j=1 est_rewardt,j · p̂g(i, j).

17: Compute unnormalized weights: wu,noise
t,k ← exp(ηN · Ut(k)).

18: Normalize to form distribution: pnoise
t ← NormalizeWeights(wu,noise

t ).
19: — Consult Meta-Expert and Mix Advice —
20: Compute dynamic mixing parameter: αt ←Wmeta,N

t /(Wmeta,G
t +Wmeta,N

t ).
21: Form the final action distribution for all k ∈ V : pt,k ← (1− αt) · pgraph

t,k + αt · pnoise
t,k .

22: — Act and Observe Feedback —
23: Draw action to play: It ∼ pt.
24: An external process reveals the true binary outcomes: {rt,j}j∈V .
25: An external process reveals the scalar loss parameter: Ac(It, j).
26: An external process reveals the vector of loss parameters: {pg(It, j)}j∈V .
27: — Perform Dual Update —
28: For each j ∈ V , construct the loss for the round:

ℓt,j ← Ac(It, j) · (rt,j) + (1− rt,j) · p(noise)
t,k · Cback.

29: Update NoiseExpert:
30: Update cumulative losses: Lnoise

t,k ← Lnoise
t−1,k + ℓt,k for all k ∈ V .

31: Update weights: wnoise
t+1,k ← wnoise

t,k · exp(−ηN · ℓt,k) for all k ∈ V .
32: Update GraphExpert:
33: Compute observation probabilities for all k ∈ V : qt,k ←

∑K
i=1 pt,i · pik.

34: Form importance-weighted estimators for all k ∈ V :
ℓ̂graph
t,k ← ℓt,k

qt,k+γ · I{(It, k) ∈ E⊔}.
35: Update weights: wgraph

t+1,k ← wgraph
t,k · exp(−ηG · ℓ̂graph

t,k ) for all k ∈ V .
36: Update Online Learning Model for Ac(It, j):
37: SAc ← SAc +Ac(It, j); NAc ← NAc + 1.
38: — Update Meta-Expert —
39: Compute meta-loss for GraphExpert’s advice: Lmeta,G

t ←
∑K

k=1 p
graph
t,k · ℓt,k.

40: Compute meta-loss for NoiseExpert’s advice: Lmeta,N
t ←

∑K
k=1 p

noise
t,k · ℓt,k.

41: Update meta-weights:
Wmeta,G

t+1 ←Wmeta,G
t · exp(−ηmeta · Lmeta,G

t ).
Wmeta,N

t+1 ←Wmeta,N
t · exp(−ηmeta · Lmeta,N

t ).
42: end for
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B.0.4 Estimating the Quality Score pg(i, j)673

The core motivation is to quantify the relationship between the query action i and the observed entity674

j. Specifically, we want to answer the question: "If we query the LLM using a set of observables675

sampled for entity i, how much evidence should we expect to see for entity j?". We define this676

quality score, pg(i, j), as the expected posterior probability of entity j, where the expectation is taken677

over all the evidence (sets of observables) that a query for entity i is likely to produce. Formally, we678

want to calculate the expectation:679

pg(i, j) = Eo∼P (o|θi) [P (j | o)] (6)

The direct computation of this expectation is intractable due to the combinatorial explosion in the680

number of possible observable sets o. We therefore turn to an information-theoretic analytical681

approximation, grounded in Large Deviation Theory(LD-T), for this value.682

The core of the approximation is to replace the true expectation over all observable sets,683

Eo∼P (·|θi)[P (j|o)], with the posterior evaluated at the mean set of observables, P (j|E[o]). The684

mean observables from entity i, E[o], is a count vector whose empirical distribution is precisely the685

mean probability vector θ̂i.686

A key result from Large Deviation Theory (Sanov [1957] Sanov’s Theorem states that the probability687

of observing an empirical distribution θ̂′ from a source k is asymptotically given by P (. . . ) ≈688

exp(−n ·DKL(θ̂
′||θ̂k)), where n is the number of observables.689

C Confirmation Atoms690

Our framework leverages a set of "confirmation atoms" to assign per-entity confidence scores based691

on LLM output behavior. Each atom is designed to probe a distinct source of uncertainty, which we692

explicitly separate into two types: epistemic uncertainty and aleatoric uncertainty. The results from693

these atoms are aggregated into a single confidence score, Ac(It, j), for each returned entity Ej at694

time step t.695

Here we provide an full description of the CAs.696

1. Counterfactual Agreement Atom This atom measures epistemic uncertainty by quantifying697

the stability of the LLM’s predictions under input perturbations. Given an initial observations subset698

Oquery, we generate n perturbed queries {Ok}nk=1 from neighbored entities from the graph Gt and699

observe the resulting LLM responses {Eresponse,k}nk=1. The Counterfactual Agreement Score A(Ej)700

for a returned entity Ej is defined as the proportion of perturbed queries that still include Ej in their701

top predictions:702

A(Ej) =
1

n

n∑
k=1

I[Ej ∈ Eresponse,k]

A low score indicates instability in the prediction, suggesting that the LLM lacks consistent internal703

knowledge.704

2. Graph Cohesion Atom This atom measures aleatoric uncertainty by evaluating the domain705

plausibility of the LLM’s output. It computes an Entity Neighborhood Dispersion (END) score based706

on the shortest-path distances between the entities returned by the LLM in our a-priori correlation707

graph Gt. Let {E1, . . . , Ek} be the set of entities returned in a trial. The END score is defined as the708

average pairwise shortest-path distance:709

END =
1(
k
2

) ∑
j<m

distGt(Ej , Em)

A low END score indicates a dense, localized cluster of entities, reflecting aleatoric uncer-710

tainty—multiple plausible domain interpretations of the same observations subset.711

3. The Round-Trip Atom This atom provides a powerful measure of the LLM’s internal knowledge712

coherence. It performs a round-trip verification by first retrieving an entity from a given observations713

set and then immediately asking the LLM to generate observations for that retrieved entity.714

1. Forward Pass: A query with an observations set Oquery yields a primary response entity Ej .715
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2. Reverse Pass: A second query, "Given entity Ej , what are its top N observations?", yields716

a new observations set Oreverse.717

The Self-Consistency Score UC(Ej) is defined as the Jaccard similarity between the initial and718

reverse-pass observations sets:719

UC(Ej) =
|Oquery ∩Oreverse|
|Oquery ∪Oreverse|

A high UC(Ej) indicates robust, self-consistent knowledge.720

4. Knowledge Grounding Atom This atom directly addresses factual inconsistency by comparing721

the LLM’s knowledge to an authoritative, external source. It builds upon the Round-Trip Atom, using722

the observations list Oreverse produced by the LLM. An external query is issued to a curated database723

to obtain a "ground truth" observations list, Oexternal, for entity Ej . The Grounding Score UG(Ej) is724

the Jaccard similarity between the two lists:725

UG(Ej) =
|Oreverse ∩Oexternal|
|Oreverse ∪Oexternal|

A high UG(Ej) provides a strong signal of factual accuracy, contributing to the confidence score.726
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D Framework Robustness: Uninformed Initialization727

A key strength of the ARISE framework is its robustness and adaptability, allowing it to function728

effectively even in the absence of a pre-existing, curated corpus for generating prior knowledge. We729

address this uninformed initialization scenario through three complementary mechanisms.730

First, in a practical application where no corpus is available, the framework can use the LLM itself731

to generate a preliminary set of priors. By prompting the LLM with randomly sampled sets of732

observables, we can build an initial, albeit noisy, estimate of entity co-occurrence probabilities and733

observable-to-entity mappings. This serves as a functional starting point for the framework.734

More fundamentally, the framework is designed to learn and refine these priors online as a core735

part of its operation. The residual information gathered by the Confirmation Atoms is not only736

used for scoring but also for updating ARISE’s internal beliefs. For instance, the Graph Cohesion737

Atom provides direct evidence for updating the stochastic feedback graph, allowing the framework738

to bootstrap and continuously improve its own knowledge base from the LLM’s responses.739

Finally, ARISE remains viable even in the most extreme case, assuming no initial priors are provided740

and the Confirmation Atom updates are disabled.741

1. A feedback graph is inherently constructed from the very first query. Each list of entities742

returned by the LLM is a direct observation of their co-occurrence, providing an immediate,743

dynamically updated graph for the ‘GraphExpert‘ to leverage.744

2. The statistical engine remains well-defined. The success probabilities {pi} used to parame-745

terize the Poisson Binomial distribution for the null hypothesis would default to a uniform746

distribution over all entities. While uninformative, this is not a misspecification but rather747

the correct assumption when no relationship between observables and entities is known a748

priori.749

3. The DUETS bandit is designed to adapt to this uncertainty. Initially, the ‘NoiseExpert‘750

(which relies on observable-entity mappings) will provide poor advice. However, the751

‘MetaExpert‘ will quickly learn to down-weight its recommendations and rely more heavily752

on the ‘GraphExpert‘, which learns from the dynamically observed co-occurrence graph.753

This results in a less sample-efficient "warm-up" period, but the system is designed to754

converge and find the correct signal.755

To validate these claims, we will include a dedicated ablation study in our final evaluation to em-756

pirically demonstrate the framework’s performance under this challenging uninformed initialization757

scenario.758

NeurIPS Paper Checklist759

The checklist is designed to encourage best practices for responsible machine learning research,760

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove761

the checklist: The papers not including the checklist will be desk rejected. The checklist should762

follow the references and follow the (optional) supplemental material. The checklist does NOT count763

towards the page limit.764

Please read the checklist guidelines carefully for information on how to answer these questions. For765

each question in the checklist:766

• You should answer [Yes] , [No] , or [NA] .767

• [NA] means either that the question is Not Applicable for that particular paper or the768

relevant information is Not Available.769

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).770

The checklist answers are an integral part of your paper submission. They are visible to the771

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it772

(after eventual revisions) with the final version of your paper, and its final version will be published773

with the paper.774

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.775

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a776
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proper justification is given (e.g., "error bars are not reported because it would be too computationally777

expensive" or "we were unable to find the license for the dataset we used"). In general, answering778

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we779

acknowledge that the true answer is often more nuanced, so please just use your best judgment and780

write a justification to elaborate. All supporting evidence can appear either in the main paper or the781

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification782

please point to the section(s) where related material for the question can be found.783

IMPORTANT, please:784

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",785

• Keep the checklist subsection headings, questions/answers and guidelines below.786

• Do not modify the questions and only use the provided macros for your answers.787

1. Claims788

Question: Do the main claims made in the abstract and introduction accurately reflect the789

paper’s contributions and scope?790

Answer: [Yes]791

Justification: Our main framework and ongoing evaluations are clearly stated in the abstract792

and demonstrated in the paper. They reflect the paper’s contributions and scope.793

Guidelines:794

• The answer NA means that the abstract and introduction do not include the claims795

made in the paper.796

• The abstract and/or introduction should clearly state the claims made, including the797

contributions made in the paper and important assumptions and limitations. A No or798

NA answer to this question will not be perceived well by the reviewers.799

• The claims made should match theoretical and experimental results, and reflect how800

much the results can be expected to generalize to other settings.801

• It is fine to include aspirational goals as motivation as long as it is clear that these goals802

are not attained by the paper.803

2. Limitations804

Question: Does the paper discuss the limitations of the work performed by the authors?805

Answer: [Yes]806

Justification: We are discussing the limitations in section 5.807

Guidelines:808

• The answer NA means that the paper has no limitation while the answer No means that809

the paper has limitations, but those are not discussed in the paper.810

• The authors are encouraged to create a separate "Limitations" section in their paper.811

• The paper should point out any strong assumptions and how robust the results are to812

violations of these assumptions (e.g., independence assumptions, noiseless settings,813

model well-specification, asymptotic approximations only holding locally). The authors814

should reflect on how these assumptions might be violated in practice and what the815

implications would be.816

• The authors should reflect on the scope of the claims made, e.g., if the approach was817

only tested on a few datasets or with a few runs. In general, empirical results often818

depend on implicit assumptions, which should be articulated.819

• The authors should reflect on the factors that influence the performance of the approach.820

For example, a facial recognition algorithm may perform poorly when image resolution821

is low or images are taken in low lighting. Or a speech-to-text system might not be822
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used reliably to provide closed captions for online lectures because it fails to handle823

technical jargon.824

• The authors should discuss the computational efficiency of the proposed algorithms825

and how they scale with dataset size.826

• If applicable, the authors should discuss possible limitations of their approach to827

address problems of privacy and fairness.828

• While the authors might fear that complete honesty about limitations might be used by829

reviewers as grounds for rejection, a worse outcome might be that reviewers discover830

limitations that aren’t acknowledged in the paper. The authors should use their best831

judgment and recognize that individual actions in favor of transparency play an impor-832

tant role in developing norms that preserve the integrity of the community. Reviewers833

will be specifically instructed to not penalize honesty concerning limitations.834

3. Theory assumptions and proofs835

Question: For each theoretical result, does the paper provide the full set of assumptions and836

a complete (and correct) proof?837

Answer: [Yes]838

Justification: Assumptions underlying our online algorithm DUETS are stated in Section 3.2839

and Supplementary.840

Guidelines:841

• The answer NA means that the paper does not include theoretical results.842

• All the theorems, formulas, and proofs in the paper should be numbered and cross-843

referenced.844

• All assumptions should be clearly stated or referenced in the statement of any theorems.845

• The proofs can either appear in the main paper or the supplemental material, but if846

they appear in the supplemental material, the authors are encouraged to provide a short847

proof sketch to provide intuition.848

• Inversely, any informal proof provided in the core of the paper should be complemented849

by formal proofs provided in appendix or supplemental material.850

• Theorems and Lemmas that the proof relies upon should be properly referenced.851

4. Experimental result reproducibility852

Question: Does the paper fully disclose all the information needed to reproduce the main ex-853

perimental results of the paper to the extent that it affects the main claims and/or conclusions854

of the paper (regardless of whether the code and data are provided or not)?855

Answer: [Yes]856

Justification: We provide detailed descriptions of our experimental procedures in the Sup-857

plementary sub section A.0.1.858

Guidelines:859

• The answer NA means that the paper does not include experiments.860

• If the paper includes experiments, a No answer to this question will not be perceived861

well by the reviewers: Making the paper reproducible is important, regardless of862

whether the code and data are provided or not.863

• If the contribution is a dataset and/or model, the authors should describe the steps taken864

to make their results reproducible or verifiable.865

• Depending on the contribution, reproducibility can be accomplished in various ways.866

For example, if the contribution is a novel architecture, describing the architecture fully867

might suffice, or if the contribution is a specific model and empirical evaluation, it may868

be necessary to either make it possible for others to replicate the model with the same869
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dataset, or provide access to the model. In general. releasing code and data is often870

one good way to accomplish this, but reproducibility can also be provided via detailed871

instructions for how to replicate the results, access to a hosted model (e.g., in the case872

of a large language model), releasing of a model checkpoint, or other means that are873

appropriate to the research performed.874

• While NeurIPS does not require releasing code, the conference does require all submis-875

sions to provide some reasonable avenue for reproducibility, which may depend on the876

nature of the contribution. For example877

(a) If the contribution is primarily a new algorithm, the paper should make it clear how878

to reproduce that algorithm.879

(b) If the contribution is primarily a new model architecture, the paper should describe880

the architecture clearly and fully.881

(c) If the contribution is a new model (e.g., a large language model), then there should882

either be a way to access this model for reproducing the results or a way to reproduce883

the model (e.g., with an open-source dataset or instructions for how to construct884

the dataset).885

(d) We recognize that reproducibility may be tricky in some cases, in which case886

authors are welcome to describe the particular way they provide for reproducibility.887

In the case of closed-source models, it may be that access to the model is limited in888

some way (e.g., to registered users), but it should be possible for other researchers889

to have some path to reproducing or verifying the results.890

5. Open access to data and code891

Question: Does the paper provide open access to the data and code, with sufficient instruc-892

tions to faithfully reproduce the main experimental results, as described in supplemental893

material?894

Answer: [No]895

Justification: We don’t have any available code to share at the moment, the work is still in896

progress.897

Guidelines:898

• The answer NA means that paper does not include experiments requiring code.899

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/900

public/guides/CodeSubmissionPolicy) for more details.901

• While we encourage the release of code and data, we understand that this might not be902

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not903

including code, unless this is central to the contribution (e.g., for a new open-source904

benchmark).905

• The instructions should contain the exact command and environment needed to run to906

reproduce the results. See the NeurIPS code and data submission guidelines (https:907

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.908

• The authors should provide instructions on data access and preparation, including how909

to access the raw data, preprocessed data, intermediate data, and generated data, etc.910

• The authors should provide scripts to reproduce all experimental results for the new911

proposed method and baselines. If only a subset of experiments are reproducible, they912

should state which ones are omitted from the script and why.913

• At submission time, to preserve anonymity, the authors should release anonymized914

versions (if applicable).915

• Providing as much information as possible in supplemental material (appended to the916

paper) is recommended, but including URLs to data and code is permitted.917

6. Experimental setting/details918
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Question: Does the paper specify all the training and test details (e.g., data splits, hyper-919

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the920

results?921

Answer: [Yes]922

Justification: in the Supplementary section B, all the details of the DUETS algorithm are923

specified, including initial parameters, hyperparameters, etc.924

Guidelines:925

• The answer NA means that the paper does not include experiments.926

• The experimental setting should be presented in the core of the paper to a level of detail927

that is necessary to appreciate the results and make sense of them.928

• The full details can be provided either with the code, in appendix, or as supplemental929

material.930

7. Experiment statistical significance931

Question: Does the paper report error bars suitably and correctly defined or other appropriate932

information about the statistical significance of the experiments?933

Answer: [Yes]934

Justification: [TODO]935

Guidelines:936

• The answer NA means that the paper does not include experiments.937

• The authors should answer "Yes" if the results are accompanied by error bars, confi-938

dence intervals, or statistical significance tests, at least for the experiments that support939

the main claims of the paper.940

• The factors of variability that the error bars are capturing should be clearly stated (for941

example, train/test split, initialization, random drawing of some parameter, or overall942

run with given experimental conditions).943

• The method for calculating the error bars should be explained (closed form formula,944

call to a library function, bootstrap, etc.)945

• The assumptions made should be given (e.g., Normally distributed errors).946

• It should be clear whether the error bar is the standard deviation or the standard error947

of the mean.948

• It is OK to report 1-sigma error bars, but one should state it. The authors should949

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis950

of Normality of errors is not verified.951

• For asymmetric distributions, the authors should be careful not to show in tables or952

figures symmetric error bars that would yield results that are out of range (e.g. negative953

error rates).954

• If error bars are reported in tables or plots, The authors should explain in the text how955

they were calculated and reference the corresponding figures or tables in the text.956

8. Experiments compute resources957

Question: For each experiment, does the paper provide sufficient information on the com-958

puter resources (type of compute workers, memory, time of execution) needed to reproduce959

the experiments?960

Answer: [TODO]961

Justification: [TODO]962

Guidelines:963

• The answer NA means that the paper does not include experiments.964
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,965

or cloud provider, including relevant memory and storage.966

• The paper should provide the amount of compute required for each of the individual967

experimental runs as well as estimate the total compute.968

• The paper should disclose whether the full research project required more compute969

than the experiments reported in the paper (e.g., preliminary or failed experiments that970

didn’t make it into the paper).971

9. Code of ethics972

Question: Does the research conducted in the paper conform, in every respect, with the973

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?974

Answer: [Yes]975

Justification: After careful review of the NeurIPS Code of Ethics, our research conforms976

with the Code of Ethics, as seen in all sections.977

Guidelines:978

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.979

• If the authors answer No, they should explain the special circumstances that require a980

deviation from the Code of Ethics.981

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-982

eration due to laws or regulations in their jurisdiction).983

10. Broader impacts984

Question: Does the paper discuss both potential positive societal impacts and negative985

societal impacts of the work performed?986

Answer: [NA]987

Justification: This work is primarily theoretical and methodological, and we do not anticipate988

any immediate societal impact. That said, we recognize that large-scale deployment of our989

algorithm could inherit the same societal biases present in other generative models.990

Guidelines:991

• The answer NA means that there is no societal impact of the work performed.992

• If the authors answer NA or No, they should explain why their work has no societal993

impact or why the paper does not address societal impact.994

• Examples of negative societal impacts include potential malicious or unintended uses995

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations996

(e.g., deployment of technologies that could make decisions that unfairly impact specific997

groups), privacy considerations, and security considerations.998

• The conference expects that many papers will be foundational research and not tied999

to particular applications, let alone deployments. However, if there is a direct path to1000

any negative applications, the authors should point it out. For example, it is legitimate1001

to point out that an improvement in the quality of generative models could be used to1002

generate deepfakes for disinformation. On the other hand, it is not needed to point out1003

that a generic algorithm for optimizing neural networks could enable people to train1004

models that generate Deepfakes faster.1005

• The authors should consider possible harms that could arise when the technology is1006

being used as intended and functioning correctly, harms that could arise when the1007

technology is being used as intended but gives incorrect results, and harms following1008

from (intentional or unintentional) misuse of the technology.1009

• If there are negative societal impacts, the authors could also discuss possible mitigation1010

strategies (e.g., gated release of models, providing defenses in addition to attacks,1011
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mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1012

feedback over time, improving the efficiency and accessibility of ML).1013

11. Safeguards1014

Question: Does the paper describe safeguards that have been put in place for responsible1015

release of data or models that have a high risk for misuse (e.g., pretrained language models,1016

image generators, or scraped datasets)?1017

Answer: [NA]1018

Justification: Our paper presents a framework that utilizes an online learning algorithm. We1019

don’t present any data or models that have a high risk for misuse.1020

Guidelines:1021

• The answer NA means that the paper poses no such risks.1022

• Released models that have a high risk for misuse or dual-use should be released with1023

necessary safeguards to allow for controlled use of the model, for example by requiring1024

that users adhere to usage guidelines or restrictions to access the model or implementing1025

safety filters.1026

• Datasets that have been scraped from the Internet could pose safety risks. The authors1027

should describe how they avoided releasing unsafe images.1028

• We recognize that providing effective safeguards is challenging, and many papers do1029

not require this, but we encourage authors to take this into account and make a best1030

faith effort.1031

12. Licenses for existing assets1032

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1033

the paper, properly credited and are the license and terms of use explicitly mentioned and1034

properly respected?1035

Answer: [Yes]1036

Justification: The creators of the data and code used for creating a baseline for future1037

comparison are mentioned in the Evaluation section 4.1038

Guidelines:1039

• The answer NA means that the paper does not use existing assets.1040

• The authors should cite the original paper that produced the code package or dataset.1041

• The authors should state which version of the asset is used and, if possible, include a1042

URL.1043

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1044

• For scraped data from a particular source (e.g., website), the copyright and terms of1045

service of that source should be provided.1046

• If assets are released, the license, copyright information, and terms of use in the1047

package should be provided. For popular datasets, paperswithcode.com/datasets1048

has curated licenses for some datasets. Their licensing guide can help determine the1049

license of a dataset.1050

• For existing datasets that are re-packaged, both the original license and the license of1051

the derived asset (if it has changed) should be provided.1052

• If this information is not available online, the authors are encouraged to reach out to1053

the asset’s creators.1054

13. New assets1055

Question: Are new assets introduced in the paper well documented and is the documentation1056

provided alongside the assets?1057
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Answer: [TODO]1058

Justification: [TODO]1059

Guidelines:1060

• The answer NA means that the paper does not release new assets.1061

• Researchers should communicate the details of the dataset/code/model as part of their1062

submissions via structured templates. This includes details about training, license,1063

limitations, etc.1064

• The paper should discuss whether and how consent was obtained from people whose1065

asset is used.1066

• At submission time, remember to anonymize your assets (if applicable). You can either1067

create an anonymized URL or include an anonymized zip file.1068

14. Crowdsourcing and research with human subjects1069

Question: For crowdsourcing experiments and research with human subjects, does the paper1070

include the full text of instructions given to participants and screenshots, if applicable, as1071

well as details about compensation (if any)?1072

Answer: [NA]1073

Justification: The paper does not involve human subjects or crowdsourced data.1074

Guidelines:1075

• The answer NA means that the paper does not involve crowdsourcing nor research with1076

human subjects.1077

• Including this information in the supplemental material is fine, but if the main contribu-1078

tion of the paper involves human subjects, then as much detail as possible should be1079

included in the main paper.1080

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1081

or other labor should be paid at least the minimum wage in the country of the data1082

collector.1083

15. Institutional review board (IRB) approvals or equivalent for research with human1084

subjects1085

Question: Does the paper describe potential risks incurred by study participants, whether1086

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1087

approvals (or an equivalent approval/review based on the requirements of your country or1088

institution) were obtained?1089

Answer: [NA]1090

Justification: The paper does not involve human subjects or crowdsourced data.1091

Guidelines:1092

• The answer NA means that the paper does not involve crowdsourcing nor research with1093

human subjects.1094

• Depending on the country in which research is conducted, IRB approval (or equivalent)1095

may be required for any human subjects research. If you obtained IRB approval, you1096

should clearly state this in the paper.1097

• We recognize that the procedures for this may vary significantly between institutions1098

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1099

guidelines for their institution.1100

• For initial submissions, do not include any information that would break anonymity (if1101

applicable), such as the institution conducting the review.1102

16. Declaration of LLM usage1103
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Question: Does the paper describe the usage of LLMs if it is an important, original, or1104

non-standard component of the core methods in this research? Note that if the LLM is used1105

only for writing, editing, or formatting purposes and does not impact the core methodology,1106

scientific rigorousness, or originality of the research, declaration is not required.1107

Answer: [Yes]1108

Justification: The paper clearly describes the use of LLMs for confirmation atoms, querying,1109

etc. in Section 3.1110

Guidelines:1111

• The answer NA means that the core method development in this research does not1112

involve LLMs as any important, original, or non-standard components.1113

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1114

for what should or should not be described.1115
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