
Every Answer Counts: Enhancing Scientific Discovery with Efficient Entity-Centric Question Answering from Long Contexts

Anonymous Author(s)

Affiliation

Address

email

Abstract

Entity-centric question answering (ECQA) is the problem of selecting which entities from a large, predefined set are most relevant to given observations. For example, given genes active in disease, scientists want to identify which biological processes are involved. This represents a fundamental challenge for LLM-based scientific discovery. While LLMs can process complex knowledge, obtaining reliable answers from long, heterogeneous inputs remains largely unattainable. Current approaches rely mostly on consensus aggregation or extensive validation, but these methods incur token costs that scale poorly with input complexity, leading to "token explosion."

We introduce *ARISE* (Adaptive Residual Information Sampling Engine), a framework that reframes ECQA as a multi-armed bandit problem with side observations. Our key insight is that each query provides noisy side-observations about related entities, which can be recycled for statistically-grounded updates and a more efficient query policy. ARISE employs the *DUETS Bandit*, a novel online learning algorithm with dual expert advisors: a *GraphExpert* that leverages entity co-occurrence and a *NoiseExpert* that strategically selects queries to maximize expected observation quality. This process is supported by *Confirmation Atoms*, a set of commonly known validation processes designed for scientific knowledge validation, which assess outputs and update the system's internal beliefs.

Together, these components enable statistically rigorous hypothesis testing with formal p-values while dramatically reducing query complexity. For validating ARISE, we use the hallmark challenge of pathway enrichment analysis using 180+ annotated gene expression datasets we collected from three common benchmarks.

1 Introduction

Large Language Model (LLM)-based question answering (QA) is a rapidly growing research area. A key sub-area is *entity-centric question answering (ECQA)*, where LLMs extract concrete and factual results for a predefined set of *target entities*. For example, a clinician might ask for relevant conditions (entities) based on a patient's symptoms (observables). We focus on a more constrained and challenging form, *prompt-only ECQA*, where the prompt itself serves as the knowledge base, framing the task as zero-shot classification. This does not prevent the LLM from querying external sources but rather removes the requirement of referencing a singular, predefined knowledge base.

Nonetheless, the inherent limitations of LLMs often impede their ability to provide high-confidence results due to issues like *hallucination* and *factual inconsistency* Huang et al. [2024], Wang et al. [2024b]. These limitations are most evident when factual queries require long, complex inputs or high confidence in the generated answers. In scientific question answering, queries often involve

36 multi-module and out-of-distribution reasoning. For example, a scientist may ask about novel lab
37 results, where measurements combine signals from multiple phenomena and refer to knowledge not
38 present in the LLM’s training data.

39 A key example of this challenge is retrieving functional meaning in biology, known as *Gene Set*
40 *Enrichment Analysis (GSEA)* or *Pathway Enrichment Analysis (PEA)*. In this instance of ECQA, the
41 target entities are known biological pathways, and the observables are gene lists, often distinguishing
42 disease from control groups. Scientists ask: “Which pathways explain these differentially expressed
43 genes?” This remains a central, largely unsolved problem in bioinformatics, which we use to
44 demonstrate our framework’s power.

45 Those limitations lead to a plethora of works aiming to overcome these limitations, primarily along
46 three directions: 1) approaches utilizing partial queries combined with consensus aggregation have
47 shown substantial improvements for long contexts [Singhal, 2025, Wang et al., 2023a, 2024a, Jiang
48 et al., 2023] (see Chen et al. [2024] for overview and related scaling laws); 2) A growing body
49 of literature focuses on assigning confidence scores to LLM answers, addressing both epistemic
50 and aleatoric uncertainties Hüllermeier and Waegeman [2021], Zong and Huang [2025]; and 3)
51 the emergence of agentic, web-enabled LLMs allows for querying external sources to mitigate
52 out-of-distribution issues Gao et al. [2024], Xi et al. [2023].

53 Despite these advancements, a significant challenge remains: the harsh trade-off between performance
54 and computational cost. While combining these three directions can yield significantly improved
55 results, the practical application of iterative query feedback loops on expensive models becomes
56 infeasible for large sets of observables or hypotheses (target entities) Chen et al. [2024].

57 Here we directly address this cost-performance trade-off by leveraging three key insights inherent to
58 the iterative retrieval. First, each retrieval step, even if directed through assessing the relevance of a
59 single target entity, can be seen as a partial and biased retrieval of all entities. Second, we can leverage
60 known co-occurrence probabilities between entities for smart sampling of observables necessary for
61 the partial querying. Third, the extensive validation associated with the retrieval process contains
62 residual information that we can further leverage.

63 To this end, we introduce **ARISE (Adaptive Residual Information Sampling Engine)**, a framework
64 that facilitates a statistically-grounded orchestration of components that govern the dynamics of
65 iterative retrieval. ARISE is built from two symbiotic yet deliberately separated parts. The first is a
66 smart sampling policy of partial sets of observables, which leverages both prior and online knowledge.
67 The second is a statistical engine that enables online validation of the consensus score through an
68 explicit formulation of an appropriate null distribution. Although these parts are connected, they
69 rely on different sources, prior knowledge versus LLM-retrieved knowledge, with the goal of finding
70 enrichment of the LLM’s knowledge over the prior beliefs.

71 The smart sampling policy at the heart of the ARISE framework is a novel multi-armed bandit
72 algorithm, **DUETS Bandit** (“DUal Experts for Turbid side-Observations with Stochastic feedback
73 graph”), which is specifically designed to navigate this complex information landscape. The DUETS
74 algorithm models the problem as a noisy full-information (“expert”) setting, where each query
75 provides a corrupted signal about all entities. However, it solves it with a unique dual-perspective
76 approach. One component of the algorithm, the **GraphExpert**, treats the known entity co-occurrence
77 data (the prior knowledge) as a stochastic feedback graph, adopting strategies from the foundational
78 works of Mannor and Alon Mannor and Shamir [2011], Alon et al. [2017]. A parallel component,
79 the **NoiseExpert**, focuses on strategically choosing queries to maximize the *expected* quality of the
80 LLM-retrieved information. By adaptively mixing and weighting the advice from these two experts
81 using a meta-policy, DUETS achieves a sampling scheme that greatly improves efficiency.

82 The rest of the paper is structured as follows: Section 2 positions our work relative to the related
83 fields of ECQA and online learning. Section 3 provides a detailed description of the core components
84 of ARISE, including the generative models, the statistical engine, the DUETS bandit arm selection
85 policy, and the confirmation atoms. Finally, Section 4 presents the current evaluation of our framework
86 and discusses our work in progress.

87 2 Related Works and Positioning

88 Zero-Shot Entity-Centric Question Answering (which we refer here simply as ECQA) is characterized
89 by several key exclusions. It operates without Retrieval-Augmented Generation (RAG) [Lewis et al.,

90 2020], fine-tuning, or access to the model’s output probabilities. Consequently, the model’s weights
91 are frozen, its reasoning is confined to its in-context learning abilities (including MCP Hou et al.
92 [2025]), and it is treated as a black box.

93 A key feature of our ECQA setup is the complexity of the input, which directly challenges a core
94 limitation of modern LLMs: using long, information-dense, and multimodal context effectively. While
95 new models offer large context windows, research shows a clear gap between this theoretical capacity
96 and practical reasoning ability, effects like "lost in the middle" [Liu et al., 2023], hallucinations
97 [Huang et al., 2024], or "long-tail knowledge collapse" Kandpal et al. [2023], are well-documented
98 and result in sharp performance decay. This performance decay is not merely theoretical, in tasks
99 like PEA, a long gene list can cause a diagnostically important gene to be overlooked if it falls into the
100 neglected middle section [Liu et al., 2023, Shi et al., 2024, Yuan et al., 2024]. The model’s reasoning
101 is then based on a flawed, incomplete representation of the input, causing incorrect classification.
102 This issue arises not from missing knowledge but from an architectural artifact of processing long
103 sequences [Shi et al., 2024].

104 To overcome these constraints, prompt engineering has become a leading strategy [Liu et al., 2023].
105 Effective prompts often mimic domain-specific reasoning patterns, analogous to Chain-of-Thought
106 [Wei et al., 2022]. A prime example in bioinformatics is the TALISMAN method, which explicitly
107 instructs the model to perform a "term enrichment test" on a list of genes, forcing it to synthesize a
108 high-level biological concept [Yuan et al., 2024]. Similarly, in medical diagnosis, a two-step prompt
109 that first organizes clinical data before deriving a diagnosis [Singhal et al., 2023]. Here we address
110 those methods as "*confirmation processes*", and incorporate them into our framework.

111 Another line of work develops a more robust architectural pattern of partition-query-aggregate Liu
112 et al. [2025]. These approaches decompose the long, heterogeneous list of observations into smaller
113 partitions, query the LLM on each one, and then synthesize the final result based on the framework
114 of Consensus Ranking from Partial Observations Kemeny and Snell [1962]. While very effective,
115 these architectures come with an extremely high computational cost Wang et al. [2023b], Simeoni
116 et al. [2024], requiring numerous LLM calls. Hence, current research is focused on optimizing parts
117 of the architecture, from context-aware approaches for observation partitioning such as semantic
118 partitioning using feature clustering Saito et al. [2025], or agentic partitioning Wu et al. [2025], to
119 faster weighted Consensus Ranking algorithms Wang et al. [2025].

120 Pathway Enrichment Analysis (PEA) is a widely studied field Nguyen et al. [2019], Reimand et al.
121 [2019], Mathur et al. [2018] with extensive validation efforts Geistlinger et al. [2021], Buzzao
122 et al. [2024], yet it faces several well-documented limitations Lazareva et al. [2021], Khatri et al.
123 [2012], Mubeen et al. [2022]. These limitations often arise from the difficulty of establishing
124 a singular, comprehensive knowledge base, as the required biological knowledge is constantly
125 updating, profoundly heterogeneous, and context-dependent Kotrys et al. [2024], Mubeen et al.
126 [2022]. Those challenges have driven large collaborative efforts to manually curate biological
127 knowledge, exemplified by the Kyoto Encyclopedia of Genes and Genomes (KEGG) database
128 Kanehisa and Goto [2000], Kanehisa et al. [2023]. **Those efforts highlights the immense promise**
129 **of leveraging LLMs for this task, given their potential for deep biological understanding and**
130 **their capacity to integrate real-time knowledge.** Unfortunately, attempting to apply LLMs directly
131 to this problem often falls short Hu et al. [2025a, 2023], as the specific difficulties of LLM-based
132 PEA are a clear manifestation of the general ECQA challenges previously discussed.

133 2.1 Online Learning with Side-Information

134 Our framework is a novel application within the broader field of sequential decision-making, which
135 evolved from the seminal frameworks of prediction with expert advice Cesa-Bianchi and Lugosi
136 [2006], where the learner observes the loss of all possible actions at each step (also known as the
137 "full-information" or "expert" setting), and the classic Multi-Armed Bandit (MAB) problem Robbins
138 and Monro [1951], where the learner only observes the loss of the single action they chose (also
139 known as the "bandit" setting).

140 Here, we focus on a middle ground where side-information for every chosen action exists, meaning
141 choosing one action reveals partial information about others. Specifically, our work incorporates and
142 synthesizes two distinct fields: 1) The **graph-structured feedback model**, introduced by Mannor
143 and Shamir [2011] and extensively developed by Alon et al. [2017]. This framework formalizes
144 side-information using a feedback graph where an edge from action i to j means playing i reveals the

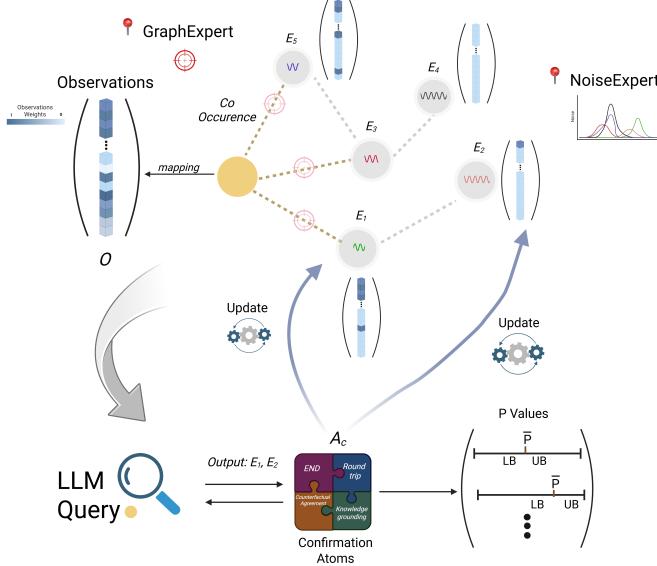


Figure 1: Overview of the **ARISE** framework with its dual-expert algorithm **DUETS**. Observations O are mapped to candidate entities E_i . The **GraphExpert** uses co-occurrence priors via a feedback graph, while the **NoiseExpert** scores observation quality. LLM outputs (E_1, E_2) are validated through **Confirmation Atoms** (A_c), which assess uncertainty and update both the significance engine (p-values with confidence intervals) and the experts, enabling an adaptive ECQA pipeline.

loss of j. Key distinctions in this literature include the **informed setting**, where the learner knows the feedback graph before choosing an action, versus the **uninformed setting**. Further nuances involve whether the graph is **symmetric** (reciprocal feedback) or **directed**, and whether it is fixed or **time-varying** Alon et al. [2017]. The work of Li et al. [2019] extends this framework to stochastic graphs where each edge is associated with a probability of being realized. 2) **Learning with noisy side observations** Kocák et al. [2016]. This framework models a different form of side partial information. Instead of sparse feedback, it is assumed to be fully present but corrupted by noise.

3 Methodological Rationale and Core Components

At the core of ARISE is the view of entity identification as a Multi-Armed Bandit (MAB) problem, where each candidate entity is an arm and pulling it triggers a full investigative cycle. A query is formed by sampling a representative subset of observables from the entity-observable joint distribution, according to the framework's current beliefs, and executed against the LLM. The response is validated through a modular suite of Confirmation Atoms, which assess stability, coherence, and factuality to produce a quantitative confidence score. Residual information from this step updates the internal beliefs online. The confidence-weighted result is then aggregated by a Statistical Significance Engine, which tests against a null hypothesis to produce p-values and confidence intervals. Entities considered “statistically enriched” are masked in subsequent rounds. The entire process is orchestrated by the DUETS (DUal Experts for Turbid side-Observations with Stochastic feedback graph) algorithm. Figure 1 presents a conceptual overview of the framework.

3.1 Generative Model and Statistical Components

As described before, we assume some reference corpus exists of the relation between entities and observables, and Supplementary Section D discusses the case where this data is absent.

Mapping Observables to Entities We model the generation of a set of observables g_q as a draw from a mixture model, where each component corresponds to an entity E_i . Each entity E_i is characterized by a categorical distribution over the universe of N_{back} observables, \mathcal{O} . The parameters of this distribution, a probability vector $\vec{\theta}_i \in \Delta^{N_{\text{back}}-1}$, are assumed to be drawn from a conjugate Dirichlet prior, governed by a concentration parameter vector $\vec{\alpha}_i$, and this constitutes a Dirichlet-Multinomial (D-M) model.

173 The posterior Dirichlet parameters, $\vec{\alpha}'$, are learned from a reference corpus built from a set of datasets,
 174 each corresponding to a ranked list of all observables and a set of observed entities. The ranking is
 175 based on the assumption that observables with a higher rank are more strongly associated with at least
 176 one of the entities. These ranked lists are partitioned into m quintiles, with each quintile assigned a
 177 distinct, monotonically decreasing weight. The weights for each entity are then aggregated across the
 178 corpus to form an empirical count vector, \vec{C}_i .

179 **Modeling and Updating Entity Relationships** To leverage entity relationships for the stochastic
 180 feedback graph (§3.2), we must ensure these relationships enable probabilistic meaning and updates
 181 from confirmation atoms. The stochastic feedback graph has entities as nodes and edges representing
 182 the conditional probability of observing entity E_j given the presence of entity E_i , denoted $P(E_j|E_i)$.
 183 While this can be estimated from co-occurrence frequencies via MLE, such estimates are brittle,
 184 especially with small sparse data. We instead use a Bayesian approach that regularizes, handles
 185 unseen events, and supports efficient sequential updates.

186 We model the conditional probability $P(E_j|E_i)$ as a latent parameter $\theta_{j|i} \in [0, 1]$. For a given entity
 187 E_i , the presence or absence of any other entity E_j in the same dataset is treated as a Bernoulli
 188 trial. To facilitate Bayesian inference, we place a conjugate *Beta* prior on this parameter: $\theta_{j|i} \sim$
 189 $\text{Beta}(\alpha_{j|i}, \beta_{j|i})$. A weakly informative prior (e.g., $\alpha_{j|i} = 1, \beta_{j|i} = 1$) is chosen to regularize the
 190 estimate while allowing the data to drive the posterior.

Given corpus-wide counts of entity occurrences (N_i) and co-occurrences ($N_{i,j}$), the posterior distribution for the parameter is also a Beta distribution, $\theta_{j|i}|\text{data} \sim \text{Beta}(\alpha'_{j|i}, \beta'_{j|i})$, with updated parameters: $\alpha'_{j|i} = \alpha_{j|i} + N_{i,j}$, and $\beta'_{j|i} = \beta_{j|i} + (N_i - N_{i,j})$. Then, the point estimate for the conditional probability is the mean of this posterior :

$$P(E_j|E_i) = \frac{\alpha'_{j|i}}{\alpha'_{j|i} + \beta'_{j|i}} = \frac{\alpha_{j|i} + N_{i,j}}{\alpha_{j|i} + \beta_{j|i} + N_i}$$

191 This Bayesian approach offers significant advantages over the MLE ($P(E_j|E_i) = N_{i,j}/N_i$). The
 192 prior acts as a smoothing mechanism, preventing the model from assigning probabilities of exactly 0 or
 193 1 based on limited observations (the "zero-frequency problem"), which ensures more robust estimates
 194 in sparse data regimes. Furthermore, the model is inherently updatable. New data, summarized by
 195 counts N'_i and $N'_{i,j}$, can be incorporated by treating the current posterior parameters $(\alpha'_{j|i}, \beta'_{j|i})$ as
 196 the new prior and applying the same update rules, avoiding the need to reprocess the entire corpus.

197 **The Statistical Significance Engine** For a grounded result, we need a mechanism to aggregate
 198 iterative queries until a true signal emerges. We achieve this by formal statistical confidence, providing
 199 p-value for each entity. For that, we **explicitly build the null hypothesis** (H_0), which defined as
 200 the probability of observing an entity given the prior beliefs only, position our framework as an
 201 "enrichment over current belief" enrichment problem. As described before, Supplementary Section D
 202 discusses the case where no prior belief is given and the enrichment is defined over background noise.

A central challenge is that our framework is built on sequential querying over sampled sub-sets, which are intentionally biased through the prior beliefs of the played action, meaning the probability of observing an entity changes with every trial. The correct underlying model is therefore a *Poisson Binomial distribution*, where the prior beliefs probabilities are:

$$P(E_i = 1|g_q) = \frac{P(g_q|E_i) \cdot \pi_i}{P(g_q|E_i) \cdot \pi_i + P(g_q|\neg E_i) \cdot (1 - \pi_i)}$$

203 Where g_q is the current queried set of observables, $\pi_i = P(E_i = 1)$ is the prior probability for each
 204 entity being observed, and $P(g_q|\neg E_i)$ is the observables probability for the "background". In our
 205 current "working example" where a reference corpus exists, we can easily infer π_i and $P(g_q|\neg E_i)$
 206 from the data. Supplementary Section D discuss the case those doesn't exist.

207 For a given entity E_i , let X be the random variable for its total count across T trials, and let k be
 208 the observed count. Under the null hypothesis, X follows a Poisson Binomial distribution defined
 209 by the set of success probabilities $\{p_i(g_{q(1)}), \dots, p_i(g_{q(T)})\}$. Since we are testing for enrichment,
 210 we perform a one-tailed test. The p-value is the probability of observing a count of k or greater
 211 by chance :p-value = $P(X \geq k) = \sum_{j=k}^T P(X = j)$. Directly computing the probability mass

212 function $P(X = j)$ is computationally infeasible as it requires summing over an exponential number
 213 of combinations, but efficient methods exists Biscarri et al. [2018].

214 Our framework incorporates two sources of uncertainty for robust confidence assessment: *sampling*
 215 *variance*, to ensure stability across trials, and *observation variance*, returned by the confirmation
 216 atoms, reflecting certainty for each query result. We construct a confidence interval (CI) for the
 217 empirical success probability. Because a CI for the p-value estimator is analytically infeasible, we use
 218 the duality between hypothesis tests and CIs: instead of framing the CI on the p-value, we construct a
 219 CI for the empirical success probability parameter \hat{p} that includes both uncertainties. For sampling
 220 variance we use the Clopper–Pearson(C-P) method, for observation variance we incorporate MCMC
 221 with adaptive stopping into this CI.

222 Specifically, we treat the confidence from each observation as its probability of being a true positive,
 223 $P(\text{True observation}|E_i = 1)$, and in each iteration, we sample an "effective k" from the resulting
 224 distribution. A C-P interval is calculated for this simulated count, generating a distribution of plausible
 225 lower and upper bounds. To construct a single CI which accounts for both sources of uncertainty
 226 simultaneously, we use the simulation to derive a confidence interval on the bounds themselves; the
 227 final lower bound is taken from the lower tail of the distribution of simulated lower bounds, and the
 228 final upper bound from the upper tail of the distribution of simulated upper bounds. An entity is
 229 considered "enriched" only if its p-value is below a significance threshold **and** its prior probability,
 230 π_i , falls outside this composite confidence interval.

231 **3.2 The Arm Selection Policy**

232 The motivation for our arm selection policy is to intelligently reconcile two distinct beliefs about
 233 the data, informed by prior literature and our Confirmation Atoms (CA). The first belief is the
 234 co-occurrence probability between entities, which we model as a probabilistic feedback graph to
 235 guide exploration. The second is the mapping between observables and entities, which dictates the
 236 relevance of information we expect to receive from each query. Our 'DUETS Bandit' (or simply
 237 'DUETS') algorithm is designed to synthesize these two beliefs while accounting for the framework's
 238 inherently biased query mechanism; by using observables sampled for one entity to query the LLM
 239 about all entities, we receive a turbid signal for each entity.

240 To achieve this, the core of 'DUETS' is its dual-perspective architecture: two parallel expert advisors
 241 with different worldviews that learn to synthesize their advice. The '**GraphExpert**' is designed to
 242 enforce the co-occurrence prior. It operates as if it were in the informed, partial-information setting
 243 of Alon et al. [2017], and more specifically under the stochastic setup of Li et al. [2019], treating
 244 the realized co-occurrence graph G_t as a feedback mechanism. By focusing its exploration strategy
 245 on structurally important nodes (e.g., a dominating set), it ensures that the sampling policy take into
 246 account the known relationships between entities.

247 The '**NoiseExpert**' acknowledges the noisy full-information reality of the problem, resamples the
 248 noisy side-observation model of Kocák et al. [2016]. Its goal is to strategically select the query
 249 (action) that is *expected* to yield the highest quality information across all entities. It does this by
 250 performing a proactive lookahead calculation, using a learned model of observation quality to identify
 251 the most informative query to make in each round. This lookahead function is intuitively defined as:

$$\hat{p}_g(i, j) = E_{o \sim P(\cdot|E_i)}[P(E_j|o)] \quad (1)$$

252 Which is the expected posterior probability of entity j , where the expectation is taken over all
 253 the input observables that a query for entity i is likely to produce. Direct computation of this
 254 expectation is analytically intractable, we therefore propose an approximation. Given that Equation 1
 255 represents the confusability between entities E_i and E_j , an intuitive and computationally efficient
 256 solution is to define a score based on the information-theoretic similarity of the entities' learned
 257 distributions. Specifically, the Kullback-Leibler (KL) divergence between their posterior Dirichlet
 258 distributions, $D_{KL}(\text{Dir}(\vec{\alpha}'_i) \parallel \text{Dir}(\vec{\alpha}'_j))$, measures the inefficiency of using the distribution of E_j
 259 to describe observables generated from E_i . Supplementary Section B discusses the theoretical
 260 justifications beyond the score. We leverage this by defining a similarity score via an exponential
 261 kernel, which serves as a principled proxy for the desired expectation:

$$\hat{p}_g(i, j) := \exp(-D_{KL}(\text{Dir}(\vec{\alpha}'_i) \parallel \text{Dir}(\vec{\alpha}'_j))) \quad (2)$$

262 This score provides a fast and robust measure of entity similarity, directly grounded in the information
 263 content of their learned models, which we use in place of the intractable expectation.

264 ‘DUETS’ then uses a high-level ‘**Meta-Expert**’ that adaptively learns how to best mix the rec-
 265 commendations from these two distinct advisors. By tracking the historical performance of the
 266 ‘GraphExpert’’s structural advice and the ‘NoiseExpert’’s quality-driven advice, the ‘Meta-Expert’
 267 dynamically adjusts their relative influence on the final action selection. This dual-perspective ap-
 268 proach allows our framework to achieve a near-optimal sampling strategy that minimizes queries
 269 while maximizing confidence.

270 The environment is modeled with a stochastic setting where the loss for each entity j at time step t
 271 is constructed from a transformed Bernoulli process. After each action I_t , the environment reveals
 272 a binary outcome, $r_{t,j} \in \{0, 1\}$, where $r_{t,j} = 1$ signifies that entity j was returned by the LLM.
 273 Crucially, the environment also provides two measures of uncertainty that modulate this binary
 274 outcome: 1) A confidence score, $A_c(I_t, j)$, which reflects the reliability of a positive outcome
 275 ($r_{t,j} = 1$), And 2) A query relevance score, $p_{t,k}^{(\text{noise})}$, derived from the sampled observables for the
 276 query I_t and can be seen as a realization of $p_g(I_t, j)$. These components, along with a constant
 277 hyperparameter C_{back} , which is the hyperparameter reflects the LLM confidence in the absent entities,
 278 are combined to form the confirmation-weighted loss that ‘DUETS’ tracks:

$$\ell(r_{t,j}, A_c(I_t, j), p_{t,k}^{(\text{noise})}; C_{\text{back}}) = r_{t,j} \cdot A_c(I_t, j) + (1 - r_{t,j}) \cdot p_{t,k}^{(\text{noise})} \cdot C_{\text{back}} \quad (3)$$

279 Intuitively, when an entity is present ($r_{t,j} = 1$), the loss is determined solely by the confirmation
 280 atoms’ confidence for positive predictions, penalizing unreliable positives. When the entity is absent,
 281 this loss is attenuated by the observation relevance $p_g(I_t, j)$, ensuring that only relevant queries
 282 contribute strongly to the framework’s statistical engine.

283 The complete algorithmic details of DUETS are provided in the Supplementary Material Section B.
 284 Subsection B.0.3 provides implementation-ready pseudocode with mathematical operations.

285 3.3 Confirmation Atoms: A Dynamic Feedback System

286 As discussed before, most state-of-the-art methods for ECQA employs additional LLM queries to
 287 validate results and assign confidence scores. We abstract these validation routines into a modular
 288 structure of “*confirmation atoms*(CA).” As described previously, a central innovation of our framework
 289 is the dual purpose these atoms serve. Their primary function is to probe the LLM’s output and
 290 generate a confidence score for the returned results, which is used by our Statistical Engine to
 291 calculate the MAB’s intrinsic loss. Their second, novel function, is to provide the *residual information*
 292 necessary for the online updating of our framework’s internal beliefs about the system. To make
 293 this process principled, each atom is designed to probe a distinct source of uncertainty, which we
 294 explicitly separate into epistemic (model-based) and aleatoric (data-based) types [Hüllermeier and
 295 Waegeman, 2021]. Table 1 summarizes which internal components each atom updates.

Confirmation Atom	Uncertainty Type	Updates Mapping	Updates G_t	Updates S
Counterfactual Agreement	Epistemic	—	✓	✓
Graph Cohesion	Aleatoric	—	✓	✓
The Round-Trip Atom	Epistemic	✓	—	✓
Knowledge Grounding	Epistemic	✓	—	✓

Table 1: The relationship between each Confirmation Atom and the framework components it updates.
 All atoms contribute to the confidence score $A_c(I_t, j)$ which is fed into the Statistical Engine (S).

296 Here we provide a short description of the CAs. The full description of the CAs together with the
 297 formal way they update the beliefs are in Supplementary Section C. The Counterfactual Agreement
 298 Atom measures epistemic uncertainty by testing prediction stability under perturbed observables.
 299 The Graph Cohesion Atom captures aleatoric uncertainty by checking the semantic plausibility of
 300 returned entities via their average distance in the entity correlation graph. The Round-Trip Atom
 301 tests internal coherence by retrieving an entity from observables, then asking the LLM to regenerate
 302 observables for that entity and comparing them. The Knowledge Grounding Atom performs a factual
 303 check by comparing LLM-generated observables to an external curated database. Together, these
 304 atoms provide a multi-faceted quality assessment aggregated into a single confidence score.

305 While each confirmation atom provides a distinct signal, a single, unified confidence score is required
306 to drive the updates of the statistical engine. We define the total confidence score $A_c(I_t, j)$ for a
307 returned entity E_j at time step t as a normalized weighted aggregation of the individual atom scores.

308 First, we transform the Entity Neighborhood Dispersion (END) score, which measures dispersion,
309 into a normalized cohesion score, $\text{Cohesion}_t = 1 - \frac{\text{END}_t}{\max(\text{dist}_{G_t})}$. For each entity E_j , the individual atom
310 scores are represented by $\mathbf{u}_{j,t} = [U_A(E_j), U_C(E_j), U_G(E_j), \text{Cohesion}_t]^T$, and their relative impor-
311 tance is defined by a non-negative hyperparameter weight vector, $\mathbf{w} = [w_A, w_{RT}, w_{KG}, w_{GC}]^T$.
312 The final confidence score is then computed as:

$$A_c(I_t, j) = \frac{\mathbf{w} \cdot \mathbf{u}_{j,t}}{\|\mathbf{w}\|_1} \quad (4)$$

313 where $\|\mathbf{w}\|_1$ is the L1 norm of the weight vector, ensuring the score is a convex combination that
314 remains in the range $[0, 1]$. This normalized score $A_c(I_t, j)$ serves as a single, potent signal that
315 encapsulates the evidence gathered in each trial. It is then fed into the statistical engine to update the
316 total observed count k_j and total expected count λ_j .

317 4 Evaluations - Parliamentary Work.

318 For evaluating ARISE on the hallmark problem of pathway enrichment analysis, we collected a corpus
319 of 180 datasets across multiple diseases from three benchmarks [Buzzao et al., 2024, Geistlinger
320 et al., 2021, ?], each containing raw gene-expression data for control and disease groups and known
321 biological pathways as ground truth. Our goals were to show the benefit of aggregating partial
322 queries, demonstrate token efficiency, and study ablations of ARISE and DUETS, including the
323 no-prior case. First, replicating Hu et al. [2025b], we found that even advanced models like GPT-4
324 (gpt-4-1106-preview) achieved insufficient accuracy on our benchmarks; the model's confidence
325 correlated only weakly with semantic similarity ($r=0.22$), with many low-similarity predictions as
326 shown in Figure 3 in the Supplementary Section A. Second, we evaluated DUETS in a controlled
327 synthetic setting ($K = 60$ actions, $C = 3$ clusters, $m^* = 2$ per cluster) using a hubbed feedback
328 graph and inverse propensity weighting. We compared *GraphOnly*, *NoiseOnly*, and *DUETS*, and
329 found DUETS consistently more sample-efficient, reaching 80% recall in 375 rounds versus 390 for
330 *NoiseOnly* and 428 for *GraphOnly* as shown in Figure 2 in the Supplementary Section A. These
331 results confirm the need for structured querying and show DUETS's advantage in speed and accuracy.

332 5 Conclusions

333 Our work addresses the critical trade-off between reliability and computational cost in entity-centric
334 question answering (ECQA) from long, complex contexts. Current methods, while effective, often
335 lead to a "token explosion" that renders them impractical for large-scale scientific discovery. To
336 overcome this, we introduced **ARISE**, a novel framework that reframes ECQA as a multi-armed bandit
337 problem with side observations. ARISE's core innovation is the **DUETS Bandit**, a dual-expert online
338 learning algorithm that intelligently synthesizes prior structural knowledge ('GraphExpert') with
339 expected observation quality ('NoiseExpert') to guide an efficient query policy. This is complemented
340 by a modular system of **Confirmation Atoms** for robust, multi-faceted validation and a **Statistical
341 Engine** that moves beyond opaque self-reported scores to provide rigorous, entity-wise p-values
342 under an explicit null hypothesis. Our preliminary results are promising. On synthetic data, DUETS
343 demonstrates superior sample efficiency compared to single-expert policies, confirming the value
344 of its adaptive mixing strategy. Furthermore, our baseline replication on over 180 real-world gene
345 expression datasets highlights the limitations of current single-query approaches.

346 **Limitations and Future Work.** While ARISE presents a promising direction, we acknowledge
347 several limitations that offer avenues for future research. First, ARISE relays on the availability of a
348 relevant prior knowledge corpus. Although we have outlined a robust "uninformed initialization"
349 protocol, its performance relative to a well-initialized model needs to be thoroughly benchmarked.
350 Second, while ARISE is designed for efficiency, its scalability to extremely large sets of entities
351 (e.g., tens of thousands) has not yet been tested. Finally, our framework assumes that the underlying
352 LLM behaves as a consistent, stateless oracle. The performance of ARISE could be impacted by
353 significant stochasticity in LLM responses or by unannounced updates to proprietary models, which
354 could introduce non-stationarity into the learning environment.

355 **References**

356 Noga Alon, Nicolò Cesa-Bianchi, Ofer Dekel, and Tomer Koren. Online learning with feedback
357 graphs: Beyond bandits. In *Proceedings of the 28th Conference on Learning Theory (COLT)*,
358 volume 40 of *Proceedings of Machine Learning Research*, pages 23–35. PMLR, 2015. URL
359 <https://proceedings.mlr.press/v40/Alon15.html>.

360 Noga Alon, Nicolò Cesa-Bianchi, Ofer Dekel, and Tomer Koren. Nonstochastic multi-armed bandits
361 with graph-structured feedback. In *Proceedings of the 34th International Conference on Machine
362 Learning (ICML)*, pages 30–38. PMLR, 2017.

363 Wilson Biscarri, Senhua D. Zhao, Robert J. Brunner, et al. A simple and fast method for computing
364 the poisson binomial distribution function. *Computational Statistics & Data Analysis*, 122:92–100,
365 2018.

366 Davide Buzzao, Miguel Castresana-Aguirre, Dimitri Guala, and Erik L L Sonnhammer. Benchmarking
367 enrichment analysis methods with the disease pathway network. *Briefings in Bioinformatics*, 25(2):bbae069, 03 2024. ISSN 1477-4054. doi: 10.1093/bib/bbae069. URL
369 <https://doi.org/10.1093/bib/bbae069>.

370 Nicolo Cesa-Bianchi and Gabor Lugosi. *Prediction, Learning, and Games*. Cambridge University
371 Press, 2006.

372 Lingjiao Chen, Jared Quincy Davis, Boris Hanin, Peter Bailis, Ion Stoica, Matei Zaharia, and James
373 Zou. Are more llm calls all you need? towards scaling laws of compound inference systems, 2024.
374 URL <https://arxiv.org/abs/2403.02419>.

375 Shanghua Gao, Ada Fang, Yepeng Huang, Valentina Giunchiglia, Ayush Noori, Jonathan Richard
376 Schwarz, Yasha Ektefaie, Jovana Kondic, and Marinka Zitnik. Empowering biomedical discovery
377 with ai agents. *Cell*, 187(22):6125–6151, Oct 2024. ISSN 0092-8674. doi: 10.1016/j.cell.2024.09.
378 022. URL <https://doi.org/10.1016/j.cell.2024.09.022>.

379 Ludwig Geistlinger, Gergely Csaba, Mara Santarelli, Marcel Ramos, Lucas Schiffer, Nitesh Turaga,
380 Charity Law, Sean Davis, Vincent Carey, Martin Morgan, Ralf Zimmer, and Levi Waldron. Toward
381 a gold standard for benchmarking gene set enrichment analysis. *Brief Bioinform*, 22(1):545–556,
382 January 2021.

383 Xinyi Hou, Yanjie Zhao, Shenao Wang, and Haoyu Wang. Model context protocol (mcp): Landscape,
384 security threats, and future research directions, 2025. URL <https://arxiv.org/abs/2503.23278>.

386 Mengzhou Hu, Sahar Alkhairy, Ingoo Lee, Rudolf T Pillich, Robin Bachelder, Trey Ideker, and
387 Dexter Pratt. Evaluation of large language models for discovery of gene set function. September
388 2023.

389 Mengzhou Hu, Sahar Alkhairy, Ingoo Lee, Rudolf T. Pillich, Dylan Fong, Kevin Smith, Robin
390 Bachelder, Trey Ideker, and Dexter Pratt. Evaluation of large language models for discovery of
391 gene set function. *Nature Methods*, 22(1):82–91, Jan 2025a. ISSN 1548-7105. doi: 10.1038/s41592-024-02525-x. URL <https://doi.org/10.1038/s41592-024-02525-x>.

393 Mengzhou Hu, Sahar Alkhairy, Ingoo Lee, Rudolf T Pillich, Dylan Fong, Kevin Smith, Robin
394 Bachelder, Trey Ideker, and Dexter Pratt. Evaluation of large language models for discovery of
395 gene set function. *Nat Methods*, 22(1):82–91, 2025b. doi: 10.1038/s41592-024-02525-x.

396 Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
397 Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, and Ting Liu. A survey on hallucination in large
398 language models: Principles, taxonomy, challenges, and open questions, 2024. Accepted by ACM
399 Transactions on Information Systems (TOIS).

400 Eyke Hüllermeier and Willem Waegeman. Aleatoric and epistemic uncertainty in machine learning:
401 An introduction to concepts and methods. *Machine Learning*, 110(3):457–506, 2021.

402 Zhengbao Jiang, Luyu Gao, Jun Araki, Jamie Callan, and Graham Neubig. Llm-blender: En-
403 sembling large language models with pairwise ranking and generative fusion. *arXiv preprint
404 arXiv:2306.02561*, 2023.

405 Nikhil Kandpal, Haikang Deng, Adam Roberts, Eric Wallace, and Colin Raffel. Large language
406 models struggle to learn long-tail knowledge, 2023. ICML 2023 camera-ready version.

407 M Kanehisa and S Goto. KEGG: kyoto encyclopedia of genes and genomes. *Nucleic Acids Res*, 28
408 (1):27–30, January 2000.

409 Minoru Kanehisa, Miho Furumichi, Yoko Sato, Masayuki Kawashima, and Mari Ishiguro-Watanabe.
410 KEGG for taxonomy-based analysis of pathways and genomes. *Nucleic Acids Res*, 51(D1):
411 D587–D592, January 2023.

412 John G Kemeny and J Laurie Snell. *Mathematical models in the social sciences*. Ginn, 1962.

413 Purvesh Khatri, Marina Sirota, and Atul J Butte. Ten years of pathway analysis: current approaches
414 and outstanding challenges. *PLoS Comput Biol*, 8(2):e1002375, February 2012.

415 Tomáš Kocák, Gergely Neu, and Michal Valko. Online learning with noisy side observations. In
416 Arthur Gretton and Christian C. Robert, editors, *Proceedings of the 19th International Con-*
417 *ference on Artificial Intelligence and Statistics*, volume 51 of *Proceedings of Machine Learn-*
418 *ing Research*, pages 1186–1194. PMLR, 2016. URL <http://proceedings.mlr.press/v51/kocak16.html>.

420 Anna V. Kotrys, Timothy J. Durham, Xiaoyan A. Guo, Venkata R. Vantaku, Sareh Parangi, and
421 Vamsi K. Mootha. Single-cell analysis reveals context-dependent, cell-level selection of mtDNA.
422 *Nature*, 629(8011):458–466, May 2024. ISSN 1476-4687. doi: 10.1038/s41586-024-07332-0.
423 URL <https://doi.org/10.1038/s41586-024-07332-0>.

424 O. Lazareva, J. Baumbach, M. List, and David B. Blumenthal. On the limits of active module
425 identification. *Briefings in bioinformatics*, 2021. doi: 10.1093/bib/bbab066.

426 Patrick Lewis, Ethan Perez, Aleksandra Piktus, et al. Retrieval-augmented generation for knowledge-
427 intensive NLP tasks. In *Advances in Neural Information Processing Systems*, volume 33, 2020.

428 Shuai Li, Wei Chen, Zheng Wen, and Kwong-Sak Leung. Stochastic online learning with probabilistic
429 graph feedback. *arXiv preprint arXiv:1903.01083*, 2019. doi: 10.48550/arXiv.1903.01083.

430 M. Liu, Z. Zhang, Y. Wang, and et al. Towards event extraction with massive types: LLM-based
431 collaborative annotation and partitioning extraction, 2025. URL <https://arxiv.org/abs/25XX.XXXX>. Unpublished, cited with permission.

433 Nelson F. Liu, Kevin Lin, John Hewitt, et al. Lost in the middle: How language models use long
434 contexts, 2023.

435 Shie Mannor and Ohad Shamir. From bandits to experts: On the value of side-
436 observations. In *Advances in Neural Information Processing Systems 24 (NeurIPS 2011)*,
437 pages 684–692, 2011. URL <https://proceedings.neurips.cc/paper/2011/hash/e1e32e235eee1f970470a3a6658dfdd5-Abstract.html>.

439 Ravi Mathur, Daniel Rotroff, Jun Ma, Ali Shojaie, and Alison Motsinger-Reif. Gene set analysis
440 methods: a systematic comparison. *BioData Mining*, 11(1):8, May 2018. ISSN 1756-0381. doi:
441 10.1186/s13040-018-0166-8. URL <https://doi.org/10.1186/s13040-018-0166-8>.

442 Sarah Mubeen, Alpha Tom Kodamullil, Martin Hofmann-Apitius, and Daniel Domingo-Fernández.
443 On the influence of several factors on pathway enrichment analysis. *Briefings in Bioinformatics*,
444 23(3):bbac143, 04 2022. ISSN 1477-4054. doi: 10.1093/bib/bbac143. URL <https://doi.org/10.1093/bib/bbac143>.

446 Tuan-Minh Nguyen, Adib Shafi, Tin Nguyen, and Sorin Draghici. Identifying significantly im-
447 pacted pathways: a comprehensive review and assessment. *Genome Biology*, 20(1):203, Oct
448 2019. ISSN 1474-760X. doi: 10.1186/s13059-019-1790-4. URL <https://doi.org/10.1186/s13059-019-1790-4>.

450 Jüri Reimand, Ruth Isserlin, Veronique Voisin, Mike Kucera, Christian Tannus-Lopes, Asha Ros-
 451 tamianfar, Lina Wadi, Mona Meyer, Jeff Wong, Changjiang Xu, Daniele Merico, and Gary D.
 452 Bader. Pathway enrichment analysis and visualization of omics data using g:profiler, gsea, cy-
 453 toscape and enrichmentmap. *Nature Protocols*, 14(2):482–517, Feb 2019. ISSN 1750-2799. doi:
 454 10.1038/s41596-018-0103-9. URL <https://doi.org/10.1038/s41596-018-0103-9>.

455 Herbert Robbins and Sutton Monro. A stochastic approximation method. *The Annals of Mathematical
 456 Statistics*, 22(3):400–407, 1951. ISSN 00034851. URL <http://www.jstor.org/stable/2236626>.

458 K. Saito et al. Lisa: Llm-guided semantic-aware clustering for topic modeling. *ACL Anthology*, 2025.

459 I. N. Sanov. On the probability of large deviations of random variables. *Matematicheskii Sbornik*, 42
 460 (84)(1):11–44, 1957. Original in Russian.

461 Weijia Shi, Qian Chen, and Yuguang Yao. BABILong: A new benchmark for long-context under-
 462 standing, 2024.

463 F. Simeoni, M. Rossi, C. De Sanctis, and E. Fornari. From academia to industry: On the economics
 464 of large language models. *arXiv preprint arXiv:2402.12345*, 2024.

465 Karan Singhal. Toward expert-level medical question answering with large language models. *Nature
 466 Medicine*, 31(3):943–950, Mar 2025. ISSN 1546-170X. doi: 10.1038/s41591-024-03423-7. URL
 467 <https://doi.org/10.1038/s41591-024-03423-7>.

468 Karan Singhal, Shekoofeh Azizi, Tu Tu, et al. Large language models encode clinical knowledge.
 469 *Nature*, 620(7972):172–180, 2023.

470 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
 471 ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models,
 472 2023a. URL <https://arxiv.org/abs/2203.11171>.

473 Yikun Wang, Rui Zheng, Haoming Li, Qi Zhang, Tao Gui, and Fei Liu. Rescue: Ranking LLM
 474 responses with partial ordering to improve response generation. In Xiyan Fu and Eve Fleisig,
 475 editors, *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics
 476 (Volume 4: Student Research Workshop)*, August 2024a.

477 Yuxia Wang, Minghan Wang, Muhammad Arslan Manzoor, Fei Liu, Georgi Georgiev, Rocktim Jyoti
 478 Das, and Preslav Nakov. Factuality of large language models: A survey, 2024b. URL <https://arxiv.org/abs/2402.02420>.

480 Z. Wang, J. Wei, D. Schuurmans, Q. V. Le, E. H. Chi, K. Guu, and D. Zhou. Self-consistency
 481 improves chain of thought reasoning in large language models. *arXiv preprint arXiv:2203.11171*,
 482 2023b.

483 Z. Wang et al. First: Faster improved listwise reranking with single token decoding. *arXiv preprint*,
 484 2025.

485 Jason Wei, Xuezhi Wang, Dale Schuurmans, et al. Chain-of-thought prompting elicits reasoning in
 486 large language models. In *Advances in Neural Information Processing Systems*, volume 35, pages
 487 24824–24837, 2022.

488 Junde Wu, Jiayuan Zhu, Yuyuan Liu, Min Xu, and Yueming Jin. Agentic reasoning: A streamlined
 489 framework for enhancing llm reasoning with agentic tools. *arXiv preprint arXiv:2502.04644*, 2025.

490 Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Junzhe
 491 Wang, Senjie Jin, Enyu Zhou, Rui Zheng, Xiaoran Fan, Xiao Wang, Limao Xiong, Yuhao Zhou,
 492 Weiran Wang, Changhao Jiang, Yicheng Zou, Xiangyang Liu, Zhangyue Yin, Shihan Dou, Rongx-
 493 iang Weng, Wensen Cheng, Qi Zhang, Wenjuan Qin, Yongyan Zheng, Xipeng Qiu, Xuanjing
 494 Huang, and Tao Gui. The rise and potential of large language model based agents: A survey, 2023.
 495 URL <https://arxiv.org/abs/2309.07864>.

496 Ge Yuan, Zifan Zhao, Anastasia Belyaeva, et al. TALISMAN: A tool for analyzing and summarizing
 497 information in lists of molecules and other entities, 2024. preprint.

498 Chen-Chen Zong and Sheng-Jun Huang. Rethinking epistemic and aleatoric uncertainty for active
499 open-set annotation: An energy-based approach. In *Proceedings of the IEEE/CVF Conference on*
500 *Computer Vision and Pattern Recognition (CVPR)*, 2025. URL https://openaccess.thecvf.com/content/CVPR2025/papers/Zong_Rethinking_Epistemic_and_Aleatoric_Uncertainty_for_Active_Open-Set_annotation_An_CVPR_2025_paper.pdf.
501
502

503 **Technical Appendices and Supplementary Material**

504 **A Evaluation**

505 We evaluate along two complementary axes. First, a controlled *synthetic* study that isolates the
 506 contribution of the online policy (DUETS) under graph-structured, noisy side-observations. Second,
 507 an ongoing *real-data* study that follows the work of Hu et al [2025b] to benchmark ARISE
 508 against contemporary LLM-based baselines on annotated gene-expression datasets.

509 **A.0.1 Synthetic evaluation: DUETS sample efficiency under graph-structured
 510 side-observations**

511 To isolate the contribution of the online policy itself, we benchmark DUETS on a controlled synthetic
 512 environment that mirrors the setting in Section 3: actions correspond to entities (pathways), pulling
 513 one action reveals *noisy side-observations* about many others, and which observations are revealed is
 514 governed by a *feedback graph*.

515 **Environment.** We simulate $K = 60$ actions partitioned into $C = 3$ clusters of equal size. A small
 516 subset of actions are truly relevant: we draw $m^* = 2$ per cluster (6 in total) and set their Bernoulli
 517 success probabilities to $\theta_j = \theta_{hi} = 0.75$; the remaining actions have $\theta_j = \theta_{lo} = 0.10$. Querying
 518 action i produces a *revealed/hidden* mask according to a directed feedback matrix $P \in [0, 1]^{K \times K}$
 519 (row i gives the probability that j is revealed when i is played), and *quality* weights according to
 520 $S \in [0, 1]^{K \times K}$ (row i gives the observation quality for all j). We instantiate a clustered, **hubbed
 521 feedback graph**. In each cluster we designate 25% of actions as *hubs*—actions whose feedback
 522 rows have high *out-coverage* (large $\sum_j P_{ij}$), meaning that playing a hub i tends to reveal many
 523 neighbors. Concretely, for same-cluster j we set $P_{ij} = 0.95$ if i is a hub and $P_{ij} = 0.12$ if i is a
 524 non-hub; cross-cluster reveals are rare with $P_{ij} = 0.01$. Observation quality is high within clusters
 525 and low across clusters ($S_{ij} = 0.90$ within, $S_{ij} = 0.12$ across), with small Gaussian jitter (clipped to
 526 $[0, 1]$). A single round proceeds as follows: after playing i , each j is *revealed* with probability P_{ij} ; if
 527 revealed, we draw $r_{t,j} \sim \text{Bernoulli}(\theta_j)$ and record a reward $r_{t,j} S_{ij}$; otherwise the reward for j is
 528 zero. We use the loss $\ell_{t,j} = 1 - r_{t,j} S_{ij}$.

529 **Unbiased ranking via inverse propensity weighting (IPW).** Because hubs reveal more neighbors,
 530 a naive cumulative-reward ranking is biased. We therefore build, for each policy, a per-arm *IPW*
 531 estimator of the latent relevance r_j :

$$\hat{r}_{t,j} = \sum_{\tau \leq t} \frac{\text{obs}_{\tau,j}}{P_{I_{\tau j}} S_{I_{\tau j}} + \varepsilon}, \quad \text{obs}_{\tau,j} = \mathbf{1}\{j \text{ revealed}\} \cdot r_{\tau,j} S_{I_{\tau j}},$$

532 with a small ε for numerical stability. This estimator is unbiased for $\mathbb{E}[r_j]$. At round t we rank actions
 533 by $\hat{r}_{t,j}$ and report *Recall@m** (the fraction of the m^* ground-truth actions appearing in the top- m^*
 534 estimated list).

535 **Policies.** We compare three policies; all hyperparameters are identical to the code used to produce
 536 Fig. 2.

- 537 • **GraphOnly.** An Exp3-style learner (following the Exp3 algorithm of Alon et al [2017]) that uses the known feedback graph P to enforce exploration on a dominating set
 538 D_t of the current graph. The sampling distribution is $p_t^{\text{graph}} = (1 - \lambda) \frac{w_t}{\|w_t\|_1} + \frac{\lambda}{|D_t|} \mathbf{1}_{D_t}$
 539 with $\lambda = 0.35$ and learning rate $\eta_G = 0.25$. We update weights using an *importance-
 540 weighted* estimator computed *only* on revealed coordinates: $\hat{\ell}_{t,j}^{\text{graph}} = \min\{\ell_{t,j}/(P_{I_{t j}} +
 541 10^{-12}), \text{cap}\} \cdot \mathbf{1}\{j \text{ revealed}\}$, with a cap of 50 to control variance.
- 543 • **NoiseOnly.** A quality-aware look-ahead policy that chooses actions expected to yield the
 544 most informative side-observations. It maintains an exponential moving average of per-arm
 545 rewards, $\hat{r} \leftarrow (1 - \beta)\hat{r} + \beta(1 - \ell_t)$ with $\beta = 0.05$, and samples from a softmax over utilities
 546 $U_t(i) = \sum_j (S \odot P)_{ij} \hat{r}_j$ (temperature $1/\eta_N$, with $\eta_N = 1.0$).
- 547 • **DUETS.** Our meta-learner mixes the two advisers: $p_t = (1 - \alpha_t) p_t^{\text{graph}} + \alpha_t p_t^{\text{noise}}$.
 548 During a short *warm-up* of 40 rounds we use a fixed $\alpha_t = \alpha_{\text{warm}} = 0.20$ to en-
 549 sure coverage. Thereafter, α_t is learned online by Hedge with meta-rate $\eta_{\text{meta}} = 1.5$:
 550 $W_{t+1}^G = W_t^G \exp(-\eta_{\text{meta}} \cdot \langle p_t^{\text{graph}}, \ell_t \rangle)$, $W_{t+1}^N = W_t^N \exp(-\eta_{\text{meta}} \cdot \langle p_t^{\text{noise}}, \ell_t \rangle)$, and

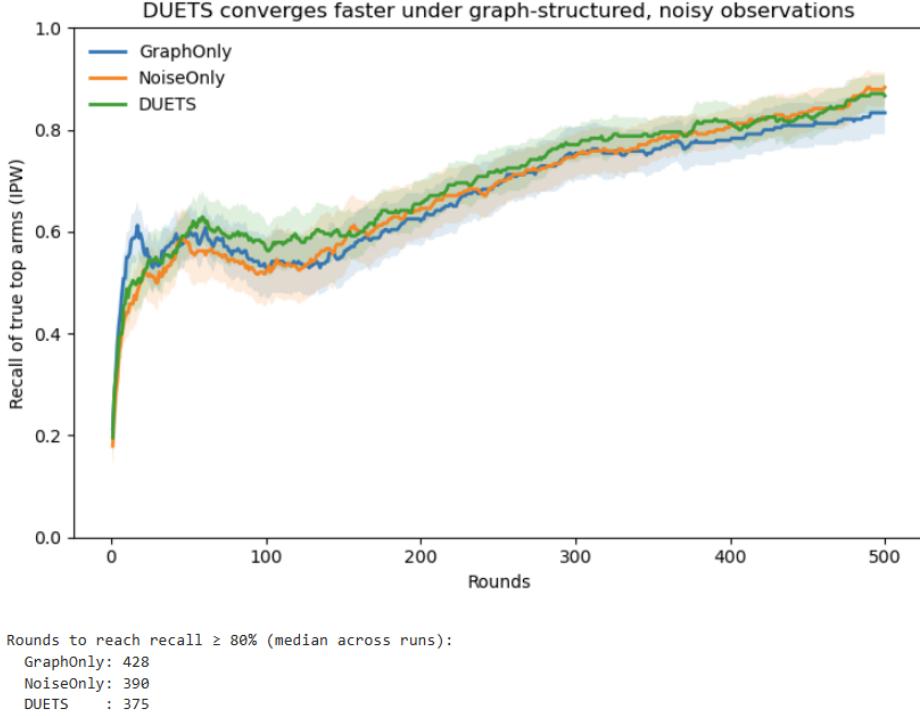


Figure 2: **Synthetic evaluation with a hubbed feedback graph.** Shaded bands are 95% CIs over 40 seeds. We report recall of the true top arms using inverse-propensity weighting (IPW) to debias coverage. DUETS attains 80% recall in 375 rounds (median) versus 390 for NoiseOnly and 428 for GraphOnly, reflecting faster sample-efficient discovery while maintaining competitive late-round performance.

551 $\alpha_t = W_t^N / (W_t^G + W_t^N)$, with on-the-fly normalization to prevent numeric under/overflow.
 552 DUETS uses the same graph and noise sub-learners as above ($\lambda = 0.35$, $\eta_G = 0.25$,
 553 $\eta_N = 1.0$, $\beta = 0.05$).

554 **Protocol and metric.** We run each policy for $T = 500$ rounds on independent environments
 555 (40 random seeds) and report the mean recall curve with 95% confidence bands. For a compact
 556 sample-complexity summary we also report, for each policy, the median number of rounds needed to
 557 reach $\geq 80\%$ Recall@ m^* .

558 **Results.** Figure 2 shows mean recall with 95% CIs over 40 runs (evaluation by inverse-propensity
 559 weighting). The hubbed feedback makes graph structure consequential, and IPW removes the
 560 coverage bias induced by hubs. In this regime, **DUETS** accelerates early discovery by combining (i)
 561 structural coverage from the **GraphOnly** dominating-set exploration and (ii) quality-aware look-ahead
 562 from **NoiseOnly**. After a short warm-up, the Hedge meta-update shifts weight toward the stronger
 563 adviser online. Quantitatively, DUETS reaches 80% recall in **375** rounds (median), compared to **390**
 564 for **NoiseOnly** and **428** for **GraphOnly**; end-of-horizon recall remains competitive across methods.

565 **A.0.2 Real-data evaluation: Planned ARISE comparison**

566 To assess the performance of ARISE on real data, we compare to recent benchmarks established
 567 by Hu et al. Hu et al. [2025b], who evaluated five large language models on the task of assigning
 568 functional names to gene sets. In their study, LLMs such as GPT-4 and Gemini Pro were prompted
 569 with full lists of genes and tasked with producing a descriptive pathway name together with a self-
 570 reported confidence score. GPT-4 was found to generate names similar to curated Gene Ontology
 571 (GO) terms in over 70% of cases, with its confidence estimates predictive of correctness; it also
 572 showed the strongest ability to decline naming incoherent or random sets, a crucial property for
 573 scientific reliability.

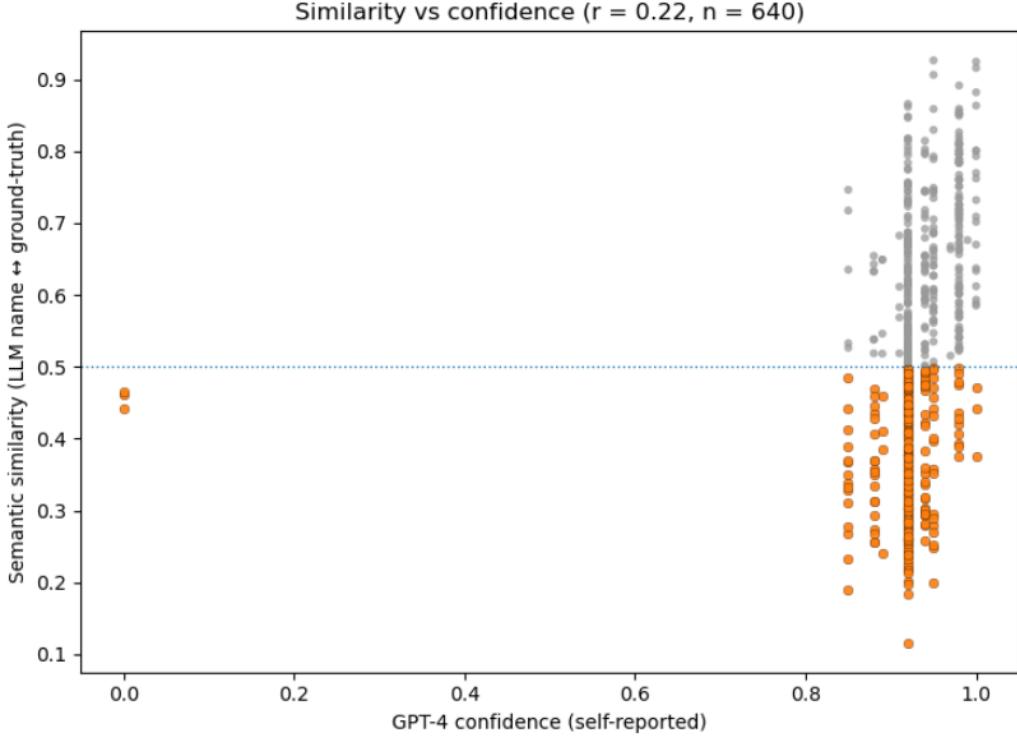


Figure 3: Baseline replication on our 180+ datasets using the Hu et al. pipeline: GPT-4’s self-reported confidence versus semantic similarity between the LLM-produced pathway name and the ground-truth pathway name. Points in the lower-right (high confidence, low semantic similarity) indicate likely evaluation mismatches or model overconfidence.

574 **Our Dataset.** To enable systematic evaluation of ARISE, we assembled a large corpus of more than
 575 **180 annotated gene expression datasets**, spanning multiple diseases and experimental conditions.
 576 This corpus provides a diverse and challenging benchmark for entity-centric question answering in
 577 biology.

578 **Reproducing the Baseline.** As a first step, we re-implemented the evaluation pipeline from Hu et
 579 al., running their published code on our 180+ datasets. This produced baseline results consisting
 580 of (i) the pathway names assigned by the LLM to each dataset, and (ii) the model’s self-reported
 581 confidence scores. These outputs form a direct replication of the Hu et al benchmark, but on a broader
 582 and more heterogeneous testbed. As shown in Figure 3, the Pearson correlation between model
 583 confidence and the semantic similarity of generated versus ground-truth names is $r = 0.22$ (weak
 584 association); moreover, a substantial fraction of generated names have similarity < 0.5 .

585 **Planned Comparison with ARISE.** Our next step is to run the ARISE framework incorporating
 586 Confirmation Atoms, the DUETS bandit policy, and the statistical significance engine on the same
 587 datasets. This will allow a direct, head-to-head comparison between ARISE and the baseline pipeline.
 588 We hypothesize that ARISE will outperform the baseline by achieving higher accuracy at substantially
 589 lower query cost, while also providing calibrated, interpretable significance estimates rather than
 590 opaque self-reported confidence scores.

591 **B The DUETS Algorithm: An Adaptive Dual-Perspective Solution**

592 **B.0.1 Motivation: Reconciling Disparate Priors in a Concrete Setting**

593 Our problem is motivated by a concrete scenario: learning which entities are most likely to be
 594 returned by a query to a Large Language Model (LLM). In this setting, the true reward $r_{t,j} \in \{0, 1\}$
 595 for an entity j is determined by its absence or presence in the LLM’s response. For this we leverage
 596 two distinct, independent sources of prior knowledge that an effective learning agent use:

597 1. **A Graph-Based Co-occurrence Prior:** The literature provides data on the co-occurrence
 598 probabilities of different entities. This knowledge is best represented as a directed graph
 599 G_t , realized from a known probability matrix $P = \{p_{ij}\}$, where an edge suggests a likely
 600 co-occurrence. To leverage this, an agent should behave as if it is exploring a sparse, partial-
 601 information landscape, where observing one entity provides a strong signal to observe its
 602 neighbors. This perspective is directly inspired by the feedback graph model of Mannor and
 603 Shamir Mannor and Shamir [2011].

604 2. **An Observation Quality Prior:** The query mechanism itself introduces another layer
 605 of complexity. A query for entity i is performed using a specific set of its "observables"
 606 (features). While this provides the best possible observation for entity i , the same set of
 607 observables also provides a noisy signal about all other entities j . The quality of these
 608 observations, represented by $p_g(I_t, j)$, is stochastic but drawn from a known distribution.
 609 This implies a noisy full-information setting, where the agent's action I_t determines the
 610 observation quality for the entire system. This setup shares conceptual similarities with the
 611 noisy side-observation models explored by Kocák et al. Kocák et al. [2016].

612 These two priors suggest fundamentally different algorithmic strategies. The **Dual Experts for**
 613 **Turbid side-Observations with Stochastic feedback graph (DUETS)** algorithm is designed to
 614 resolve this tension. It creates a single agent that maintains two parallel worldviews—one partial-
 615 information and one full-information—and learns online how to best combine their advice.

616 B.0.2 Algorithmic Framework: Adaptive Mixing of Two Expert Perspectives

617 The 'DUETS' algorithm consists of three core components, each justified by the need to handle a
 618 specific aspect of the problem:

- 619 • A **GraphExpert**, which operates under the assumption that feedback is sparse and deter-
 620 mined by the graph G_t . Its purpose is to enforce a robust exploration strategy that respects
 621 the co-occurrence prior. Its design is heavily influenced by the 'Exp3.G' family of algorithms
 622 from Alon et al. ?, which demonstrate that leveraging graph structure (e.g., dominating sets)
 623 is critical for efficient exploration in partial-information settings.
- 624 • A **NoiseExpert**, which acknowledges the noisy full-information reality. Its purpose is
 625 to strategically choose an action that maximizes the overall quality of the observations it
 626 receives. Unlike the reactive model in Kocák et al. Kocák et al. [2016], where noise quality
 627 is unknown and adversarial, our 'NoiseExpert' can be proactive because the statistics of the
 628 noise ($p_g(I_t, j)$) are known. It performs a lookahead calculation to find the most informative
 629 action.
- 630 • A high-level **Meta-Expert**, which acts as an adaptive mixer. This is a standard and powerful
 631 technique from the "learning from expert advice" literature. Its purpose is to learn the
 632 optimal blending of the two sub-experts' advice by tracking their historical performance,
 633 thus freeing the user from having to manually set a fixed mixing parameter.

634 **Consulting the Experts.** The two experts generate their advice independently, based on their
 635 distinct worldviews.

- 636 • The 'GraphExpert's distribution, p_t^{graph} , must ensure exploration. Following Alon et al.
 637 Alon et al. [2015], an effective strategy is to guarantee a minimum level of exploration on a
 638 dominating set D_t of the current graph G_t . This ensures that all nodes are observed (in the
 639 hypothetical partial-information world) with high probability.
- 640 • The 'NoiseExpert's utility function, $U_t(i)$, is a proactive, one-step lookahead. It estimates
 641 the total "information reward" from playing action i , weighting the expected quality of each
 642 observation $p_g(I_t, j)$ by the current estimated reward of action j . This prioritizes choosing
 643 queries that yield high-quality information about promising entities.

644 **The Dual Update and its Estimators.** This is the core of the algorithm's dual nature. After
 645 observing the outcome, both experts update their internal state, but they interpret the information
 646 differently.

- 647 • The 'NoiseExpert' uses the simple, low-variance estimator $\tilde{\ell}_{t,k}$. This is possible because it
 648 operates in the full-information world and has access to the signal for every action.

649 • The ‘GraphExpert’ must use the high-variance, importance-weighted estimator $\hat{\ell}_{t,k}^{\text{graph}}$. The
 650 term $\mathbb{I}\{(I_t, k) \in \mathcal{E}_t\}$ enforces its worldview that it only “sees” feedback along realized edges.
 651 The denominator $q_{t,k}$ is the probability of this event occurring. Dividing by $q_{t,k}$ is essential
 652 to correct for the selection bias and ensure that the estimator is unbiased in expectation
 653 ($\mathbb{E}[\hat{\ell}_{t,k}^{\text{graph}}] = \ell_{t,k}$). This importance weighting is a cornerstone of modern bandit algorithms,
 654 essential for handling partial feedback as seen in works from Li et al. ? to Esposito et al. ?.

655 **Updating the Meta-Expert.** The ‘Meta-Expert’ learns by evaluating the advice of its sub-experts
 656 in hindsight. The meta-loss, $L_t^{\text{meta},G}$, represents the expected loss the agent would have suffered if it
 657 had followed the ‘GraphExpert’’s recommendation p_t^{graph} precisely. By updating its weights based
 658 on these meta-losses, the ‘Meta-Expert’ learns to increase the influence (α_t) of the sub-expert that
 659 provides consistently better recommendations for the given environment.

660 **B.0.3 The DUETS Algorithm: Implementation-Level Pseudo-code**

661 This section provides a highly detailed pseudocode for the **DUETS** algorithm, intended to serve as
 662 a direct guide for implementation. Each step is broken down into its constituent mathematical and
 663 logical operations.

664 **The Loss Model** The algorithm operates in a full-information setting where, after each round, the
 665 true binary outcome $r_{t,j} \in \{0, 1\}$ and the parameters $A_c(I_t, j)$ and $p_g(I_t, j)$ are revealed for all entities
 666 j . The algorithm then constructs the loss for the round using the following function:

$$\ell(r_{t,j}, A_c(I_t, j), p_{t,k}^{(\text{noise})}; C_{\text{back}}) = r_{t,j} \cdot A_c(I_t, j) + (1 - r_{t,j}) \cdot p_{t,k}^{(\text{noise})} \cdot C_{\text{back}} \quad (5)$$

667 This constructed loss, which incorporates various measures of uncertainty, is then used to update all
 668 expert components.

669 **Helper Functions** For clarity, we first define two helper functions that will be used within the main
 670 algorithm.

Algorithm 1 *

Function **GreedyDominatingSet**($G = (V, \mathcal{E})$)
 1: **Input:** A directed graph $G = (V, \mathcal{E})$.
 2: **Initialize:** Dominating set $D \leftarrow \emptyset$, Uncovered nodes $U \leftarrow V$.
 3: **while** U is not empty **do**
 4: Let $N_{\text{out}}(v) \leftarrow \{v\} \cup \{j \in V \mid (v, j) \in \mathcal{E}\}$.
 5: Select node $v^* \in V$ that maximizes $|N_{\text{out}}(v) \cap U|$.
 6: $D \leftarrow D \cup \{v^*\}$.
 7: $U \leftarrow U \setminus N_{\text{out}}(v^*)$.
 8: **end while**
 9: **Return** D .

Algorithm 2 *

Function **NormalizeWeights**(w)
 1: **Input:** A vector of non-negative weights $w = \{w_1, \dots, w_K\}$.
 2: $W \leftarrow \sum_{k=1}^K w_k$.
 3: **if** $W = 0$ **then return** uniform distribution $\{1/K, \dots, 1/K\}$.
 4: **else return** $\{w_1/W, \dots, w_K/W\}$.
 5: **end if**

671 **Main Algorithm** The main loop of the DUETS algorithm integrates the advice from its three expert
 672 components to make decisions and learn from feedback.

Algorithm 3 The DUETS Algorithm (Detailed)

Require: Set of actions (entities) V , $|V| = K$; Number of rounds T .
Require: Learning rates: $\eta_G, \eta_N, \eta_{meta} > 0$; Regularization parameter $\gamma > 0$.
Require: GraphExpert exploration parameter $\lambda_G \in [0, 1]$.
Require: Known co-occurrence probability matrix $P \in [0, 1]^{K \times K}$, where $P_{ij} = p_{ij}$.
Require: Known constant hyperparameter a_{cb} .

- 1: **Initialize Data Structures:**
- 2: GraphExpert weights: $w_1^{\text{graph}} \leftarrow \{1, \dots, 1\} \in \mathbb{R}^K$.
- 3: NoiseExpert weights: $w_1^{\text{noise}} \leftarrow \{1, \dots, 1\} \in \mathbb{R}^K$.
- 4: Meta-Expert weights: $W_1^{\text{meta,G}} \leftarrow 1$, $W_1^{\text{meta,N}} \leftarrow 1$.
- 5: Cumulative losses for NoiseExpert's model: $L_0^{\text{noise}} \leftarrow \{0, \dots, 0\} \in \mathbb{R}^K$.
- 6: Running sum for A_c : $S_{Ac} \leftarrow 0$; Running count for A_c : $N_{Ac} \leftarrow 0$.
- 7: **for** $t = 1, \dots, T$ **do**
- 8: **Observe Context:** An external process provides the realized graph $G_t = (V, \mathcal{E}_\sqcup)$.
- 9: **— Consult GraphExpert —**
- 10: Compute dominating set $D_t \leftarrow \text{GreedyDominatingSet}(G_t)$.
- 11: Normalize weights: $p_t^{\text{w,graph}} \leftarrow \text{NormalizeWeights}(w_t^{\text{graph}})$.
- 12: Form GraphExpert's mixed distribution for all $k \in V$:

$$p_{t,k}^{\text{graph}} \leftarrow (1 - \lambda_G) \cdot p_t^{\text{w,graph}} + \frac{\lambda_G}{|D_t|} \cdot \mathbb{I}\{k \in D_t\}$$
.
- 13: **— Consult NoiseExpert —**
- 14: For each pair (i, j) , compute the estimated quality: $\hat{p}_g(i, j) \leftarrow \text{CalculateExpectedPg}(i, j)$.
- 15: Let $\text{est_reward}_{t,j} \leftarrow 1 - \frac{L_{t-1,j}^{\text{noise}}}{t-1} \cdot \mathbb{I}\{t > 1\}$.
- 16: Compute lookahead utilities for all $i \in V$: $U_t(i) \leftarrow \sum_{j=1}^K \text{est_reward}_{t,j} \cdot \hat{p}_g(i, j)$.
- 17: Compute unnormalized weights: $w_{t,k}^{\text{u,noise}} \leftarrow \exp(\eta_N \cdot U_t(k))$.
- 18: Normalize to form distribution: $p_t^{\text{noise}} \leftarrow \text{NormalizeWeights}(w_t^{\text{u,noise}})$.
- 19: **— Consult Meta-Expert and Mix Advice —**
- 20: Compute dynamic mixing parameter: $\alpha_t \leftarrow W_t^{\text{meta,N}} / (W_t^{\text{meta,G}} + W_t^{\text{meta,N}})$.
- 21: Form the final action distribution for all $k \in V$: $p_{t,k} \leftarrow (1 - \alpha_t) \cdot p_{t,k}^{\text{graph}} + \alpha_t \cdot p_{t,k}^{\text{noise}}$.
- 22: **— Act and Observe Feedback —**
- 23: Draw action to play: $I_t \sim p_t$.
- 24: An external process reveals the true binary outcomes: $\{r_{t,j}\}_{j \in V}$.
- 25: An external process reveals the scalar loss parameter: $A_c(I_t, j)$.
- 26: An external process reveals the vector of loss parameters: $\{\ell_{t,j}\}_{j \in V}$.
- 27: **— Perform Dual Update —**
- 28: For each $j \in V$, construct the loss for the round:

$$\ell_{t,j} \leftarrow A_c(I_t, j) \cdot (r_{t,j}) + (1 - r_{t,j}) \cdot p_{t,k}^{\text{(noise)}} \cdot C_{\text{back}}$$
.
- 29: **Update NoiseExpert:**
- 30: Update cumulative losses: $L_{t,k}^{\text{noise}} \leftarrow L_{t-1,k}^{\text{noise}} + \ell_{t,k}$ for all $k \in V$.
- 31: Update weights: $w_{t+1,k}^{\text{noise}} \leftarrow w_{t,k}^{\text{noise}} \cdot \exp(-\eta_N \cdot \ell_{t,k})$ for all $k \in V$.
- 32: **Update GraphExpert:**
- 33: Compute observation probabilities for all $k \in V$: $q_{t,k} \leftarrow \sum_{i=1}^K p_{t,i} \cdot p_{ik}$.
- 34: Form importance-weighted estimators for all $k \in V$:

$$\hat{\ell}_{t,k}^{\text{graph}} \leftarrow \frac{\ell_{t,k}}{q_{t,k} + \gamma} \cdot \mathbb{I}\{(I_t, k) \in \mathcal{E}_\sqcup\}$$
.
- 35: Update weights: $w_{t+1,k}^{\text{graph}} \leftarrow w_{t,k}^{\text{graph}} \cdot \exp(-\eta_G \cdot \hat{\ell}_{t,k}^{\text{graph}})$ for all $k \in V$.
- 36: **Update Online Learning Model for $A_c(I_t, j)$:**
- 37: $S_{Ac} \leftarrow S_{Ac} + A_c(I_t, j)$; $N_{Ac} \leftarrow N_{Ac} + 1$.
- 38: **— Update Meta-Expert —**
- 39: Compute meta-loss for GraphExpert's advice: $L_t^{\text{meta,G}} \leftarrow \sum_{k=1}^K p_{t,k}^{\text{graph}} \cdot \ell_{t,k}$.
- 40: Compute meta-loss for NoiseExpert's advice: $L_t^{\text{meta,N}} \leftarrow \sum_{k=1}^K p_{t,k}^{\text{noise}} \cdot \ell_{t,k}$.
- 41: Update meta-weights:

$$W_{t+1}^{\text{meta,G}} \leftarrow W_t^{\text{meta,G}} \cdot \exp(-\eta_{meta} \cdot L_t^{\text{meta,G}})$$
.

$$W_{t+1}^{\text{meta,N}} \leftarrow W_t^{\text{meta,N}} \cdot \exp(-\eta_{meta} \cdot L_t^{\text{meta,N}})$$
.
- 42: **end for**

673 **B.0.4 Estimating the Quality Score $p_g(i, j)$**

674 The core motivation is to quantify the relationship between the query action i and the observed entity
 675 j . Specifically, we want to answer the question: "**If we query the LLM using a set of observables**
 676 **sampled for entity i , how much evidence should we expect to see for entity j ?**". We define this
 677 quality score, $p_g(i, j)$, as the expected posterior probability of entity j , where the expectation is taken
 678 over all the evidence (sets of observables) that a query for entity i is likely to produce. Formally, we
 679 want to calculate the expectation:

$$p_g(i, j) = \mathbb{E}_{o \sim P(o|\theta_i)} [P(j | o)] \quad (6)$$

680 The direct computation of this expectation is intractable due to the combinatorial explosion in the
 681 number of possible observable sets o . We therefore turn to an information-theoretic analytical
 682 approximation, grounded in Large Deviation Theory(LD-T), for this value.

683 The core of the approximation is to replace the true expectation over all observable sets,
 684 $\mathbb{E}_{o \sim P(\cdot|\theta_i)} [P(j|o)]$, with the posterior evaluated at the mean set of observables, $P(j|\mathbb{E}[o])$. The
 685 mean observables from entity i , $\mathbb{E}[o]$, is a count vector whose empirical distribution is precisely the
 686 mean probability vector $\hat{\theta}_i$.

687 A key result from Large Deviation Theory (Sanov [1957] Sanov's Theorem states that the probability
 688 of observing an empirical distribution $\hat{\theta}'$ from a source k is asymptotically given by $P(\dots) \approx$
 689 $\exp(-n \cdot D_{KL}(\hat{\theta}' || \hat{\theta}_k))$, where n is the number of observables.

690 **C Confirmation Atoms**

691 Our framework leverages a set of "confirmation atoms" to assign per-entity confidence scores based
 692 on LLM output behavior. Each atom is designed to probe a distinct source of uncertainty, which we
 693 explicitly separate into two types: *epistemic uncertainty* and *aleatoric uncertainty*. The results from
 694 these atoms are aggregated into a single confidence score, $A_c(I_t, j)$, for each returned entity E_j at
 695 time step t .

696 Here we provide an full description of the CAs.

697 **1. Counterfactual Agreement Atom** This atom measures epistemic uncertainty by quantifying
 698 the stability of the LLM's predictions under input perturbations. Given an initial observations subset
 699 O_{query} , we generate n perturbed queries $\{O_k\}_{k=1}^n$ from neighbored entities from the graph G_t and
 700 observe the resulting LLM responses $\{E_{\text{response},k}\}_{k=1}^n$. The Counterfactual Agreement Score $A(E_j)$
 701 for a returned entity E_j is defined as the proportion of perturbed queries that still include E_j in their
 702 top predictions:

$$A(E_j) = \frac{1}{n} \sum_{k=1}^n \mathbb{I}[E_j \in E_{\text{response},k}]$$

703 A low score indicates instability in the prediction, suggesting that the LLM lacks consistent internal
 704 knowledge.

705 **2. Graph Cohesion Atom** This atom measures aleatoric uncertainty by evaluating the domain
 706 plausibility of the LLM's output. It computes an Entity Neighborhood Dispersion (END) score based
 707 on the shortest-path distances between the entities returned by the LLM in our a-priori correlation
 708 graph G_t . Let $\{E_1, \dots, E_k\}$ be the set of entities returned in a trial. The END score is defined as the
 709 average pairwise shortest-path distance:

$$\text{END} = \frac{1}{\binom{k}{2}} \sum_{j < m} \text{dist}_{G_t}(E_j, E_m)$$

710 A low END score indicates a dense, localized cluster of entities, reflecting aleatoric uncer-
 711 tainty—multiple plausible domain interpretations of the same observations subset.

712 **3. The Round-Trip Atom** This atom provides a powerful measure of the LLM's internal knowledge
 713 coherence. It performs a round-trip verification by first retrieving an entity from a given observations
 714 set and then immediately asking the LLM to generate observations for that retrieved entity.

715 **1. Forward Pass:** A query with an observations set O_{query} yields a primary response entity E_j .

716 2. **Reverse Pass:** A second query, "Given entity E_j , what are its top N observations?", yields
717 a new observations set O_{reverse} .

718 The Self-Consistency Score $U_C(E_j)$ is defined as the Jaccard similarity between the initial and
719 reverse-pass observations sets:

$$U_C(E_j) = \frac{|O_{\text{query}} \cap O_{\text{reverse}}|}{|O_{\text{query}} \cup O_{\text{reverse}}|}$$

720 A high $U_C(E_j)$ indicates robust, self-consistent knowledge.

721 **4. Knowledge Grounding Atom** This atom directly addresses factual inconsistency by comparing
722 the LLM's knowledge to an authoritative, external source. It builds upon the Round-Trip Atom, using
723 the observations list O_{reverse} produced by the LLM. An external query is issued to a curated database
724 to obtain a "ground truth" observations list, O_{external} , for entity E_j . The Grounding Score $U_G(E_j)$ is
725 the Jaccard similarity between the two lists:

$$U_G(E_j) = \frac{|O_{\text{reverse}} \cap O_{\text{external}}|}{|O_{\text{reverse}} \cup O_{\text{external}}|}$$

726 A high $U_G(E_j)$ provides a strong signal of factual accuracy, contributing to the confidence score.

727 **D Framework Robustness: Uninformed Initialization**

728 A key strength of the **ARISE** framework is its robustness and adaptability, allowing it to function
729 effectively even in the absence of a pre-existing, curated corpus for generating prior knowledge. We
730 address this **uninformed initialization** scenario through three complementary mechanisms.

731 First, in a practical application where no corpus is available, the framework can use the LLM itself
732 to generate a preliminary set of priors. By prompting the LLM with randomly sampled sets of
733 observables, we can build an initial, albeit noisy, estimate of entity co-occurrence probabilities and
734 observable-to-entity mappings. This serves as a functional starting point for the framework.

735 More fundamentally, the framework is designed to learn and refine these priors **online** as a core
736 part of its operation. The residual information gathered by the **Confirmation Atoms** is not only
737 used for scoring but also for updating ARISE's internal beliefs. For instance, the **Graph Cohesion**
738 **Atom** provides direct evidence for updating the stochastic feedback graph, allowing the framework
739 to bootstrap and continuously improve its own knowledge base from the LLM's responses.

740 Finally, ARISE remains viable even in the most extreme case, assuming no initial priors are provided
741 and the Confirmation Atom updates are disabled.

742 1. A **feedback graph** is inherently constructed from the very first query. Each list of entities
743 returned by the LLM is a direct observation of their co-occurrence, providing an immediate,
744 dynamically updated graph for the 'GraphExpert' to leverage.

745 2. The statistical engine remains well-defined. The success probabilities $\{p_i\}$ used to parameterize
746 the **Poisson Binomial distribution** for the null hypothesis would default to a **uniform**
747 **distribution** over all entities. While uninformative, this is not a misspecification but rather
748 the correct assumption when no relationship between observables and entities is known *a*
749 *priori*.

750 3. The **DUETS bandit** is designed to adapt to this uncertainty. Initially, the 'NoiseExpert'
751 (which relies on observable-entity mappings) will provide poor advice. However, the
752 'MetaExpert' will quickly learn to down-weight its recommendations and rely more heavily
753 on the 'GraphExpert', which learns from the dynamically observed co-occurrence graph.
754 This results in a less sample-efficient "warm-up" period, but the system is designed to
755 converge and find the correct signal.

756 To validate these claims, we will include a dedicated **ablation study** in our final evaluation to em-
757 pirically demonstrate the framework's performance under this challenging uninformed initialization
758 scenario.

759 **NeurIPS Paper Checklist**

760 The checklist is designed to encourage best practices for responsible machine learning research,
761 addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
762 the checklist: **The papers not including the checklist will be desk rejected**. The checklist should
763 follow the references and follow the (optional) supplemental material. The checklist does NOT count
764 towards the page limit.

765 Please read the checklist guidelines carefully for information on how to answer these questions. For
766 each question in the checklist:

- 767 • You should answer **[Yes]**, **[No]**, or **[NA]**.
- 768 • **[NA]** means either that the question is Not Applicable for that particular paper or the
769 relevant information is Not Available.
- 770 • Please provide a short (1–2 sentence) justification right after your answer (even for NA).

771 **The checklist answers are an integral part of your paper submission.** They are visible to the
772 reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
773 (after eventual revisions) with the final version of your paper, and its final version will be published
774 with the paper.

775 The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
776 While "**[Yes]**" is generally preferable to "**[No]**", it is perfectly acceptable to answer "**[No]**" provided a

777 proper justification is given (e.g., "error bars are not reported because it would be too computationally
778 expensive" or "we were unable to find the license for the dataset we used"). In general, answering
779 "[No]" or "[NA]" is not grounds for rejection. While the questions are phrased in a binary way, we
780 acknowledge that the true answer is often more nuanced, so please just use your best judgment and
781 write a justification to elaborate. All supporting evidence can appear either in the main paper or the
782 supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
783 please point to the section(s) where related material for the question can be found.

784 **IMPORTANT**, please:

- 785 **• Delete this instruction block, but keep the section heading "NeurIPS Paper Checklist",**
- 786 **• Keep the checklist subsection headings, questions/answers and guidelines below.**
- 787 **• Do not modify the questions and only use the provided macros for your answers.**

788 1. **Claims**

789 Question: Do the main claims made in the abstract and introduction accurately reflect the
790 paper's contributions and scope?

791 Answer: [Yes]

792 Justification: Our main framework and ongoing evaluations are clearly stated in the abstract
793 and demonstrated in the paper. They reflect the paper's contributions and scope.

794 Guidelines:

- 795 • The answer NA means that the abstract and introduction do not include the claims
796 made in the paper.
- 797 • The abstract and/or introduction should clearly state the claims made, including the
798 contributions made in the paper and important assumptions and limitations. A No or
799 NA answer to this question will not be perceived well by the reviewers.
- 800 • The claims made should match theoretical and experimental results, and reflect how
801 much the results can be expected to generalize to other settings.
- 802 • It is fine to include aspirational goals as motivation as long as it is clear that these goals
803 are not attained by the paper.

804 2. **Limitations**

805 Question: Does the paper discuss the limitations of the work performed by the authors?

806 Answer: [Yes]

807 Justification: We are discussing the limitations in section 5.

808 Guidelines:

- 809 • The answer NA means that the paper has no limitation while the answer No means that
810 the paper has limitations, but those are not discussed in the paper.
- 811 • The authors are encouraged to create a separate "Limitations" section in their paper.
- 812 • The paper should point out any strong assumptions and how robust the results are to
813 violations of these assumptions (e.g., independence assumptions, noiseless settings,
814 model well-specification, asymptotic approximations only holding locally). The authors
815 should reflect on how these assumptions might be violated in practice and what the
816 implications would be.
- 817 • The authors should reflect on the scope of the claims made, e.g., if the approach was
818 only tested on a few datasets or with a few runs. In general, empirical results often
819 depend on implicit assumptions, which should be articulated.
- 820 • The authors should reflect on the factors that influence the performance of the approach.
821 For example, a facial recognition algorithm may perform poorly when image resolution
822 is low or images are taken in low lighting. Or a speech-to-text system might not be

823 used reliably to provide closed captions for online lectures because it fails to handle
824 technical jargon.

825 • The authors should discuss the computational efficiency of the proposed algorithms
826 and how they scale with dataset size.

827 • If applicable, the authors should discuss possible limitations of their approach to
828 address problems of privacy and fairness.

829 • While the authors might fear that complete honesty about limitations might be used by
830 reviewers as grounds for rejection, a worse outcome might be that reviewers discover
831 limitations that aren't acknowledged in the paper. The authors should use their best
832 judgment and recognize that individual actions in favor of transparency play an impor-
833 tant role in developing norms that preserve the integrity of the community. Reviewers
834 will be specifically instructed to not penalize honesty concerning limitations.

835 **3. Theory assumptions and proofs**

836 Question: For each theoretical result, does the paper provide the full set of assumptions and
837 a complete (and correct) proof?

838 Answer: [\[Yes\]](#)

839 Justification: Assumptions underlying our online algorithm DUETS are stated in Section 3.2
840 and Supplementary.

841 Guidelines:

842 • The answer NA means that the paper does not include theoretical results.

843 • All the theorems, formulas, and proofs in the paper should be numbered and cross-
844 referenced.

845 • All assumptions should be clearly stated or referenced in the statement of any theorems.

846 • The proofs can either appear in the main paper or the supplemental material, but if
847 they appear in the supplemental material, the authors are encouraged to provide a short
848 proof sketch to provide intuition.

849 • Inversely, any informal proof provided in the core of the paper should be complemented
850 by formal proofs provided in appendix or supplemental material.

851 • Theorems and Lemmas that the proof relies upon should be properly referenced.

852 **4. Experimental result reproducibility**

853 Question: Does the paper fully disclose all the information needed to reproduce the main ex-
854 perimental results of the paper to the extent that it affects the main claims and/or conclusions
855 of the paper (regardless of whether the code and data are provided or not)?

856 Answer: [\[Yes\]](#)

857 Justification: We provide detailed descriptions of our experimental procedures in the Sup-
858 plementary sub section A.0.1.

859 Guidelines:

860 • The answer NA means that the paper does not include experiments.

861 • If the paper includes experiments, a No answer to this question will not be perceived
862 well by the reviewers: Making the paper reproducible is important, regardless of
863 whether the code and data are provided or not.

864 • If the contribution is a dataset and/or model, the authors should describe the steps taken
865 to make their results reproducible or verifiable.

866 • Depending on the contribution, reproducibility can be accomplished in various ways.
867 For example, if the contribution is a novel architecture, describing the architecture fully
868 might suffice, or if the contribution is a specific model and empirical evaluation, it may
869 be necessary to either make it possible for others to replicate the model with the same

870 dataset, or provide access to the model. In general, releasing code and data is often
871 one good way to accomplish this, but reproducibility can also be provided via detailed
872 instructions for how to replicate the results, access to a hosted model (e.g., in the case
873 of a large language model), releasing of a model checkpoint, or other means that are
874 appropriate to the research performed.

875 • While NeurIPS does not require releasing code, the conference does require all submis-
876 sions to provide some reasonable avenue for reproducibility, which may depend on the
877 nature of the contribution. For example

878 (a) If the contribution is primarily a new algorithm, the paper should make it clear how
879 to reproduce that algorithm.

880 (b) If the contribution is primarily a new model architecture, the paper should describe
881 the architecture clearly and fully.

882 (c) If the contribution is a new model (e.g., a large language model), then there should
883 either be a way to access this model for reproducing the results or a way to reproduce
884 the model (e.g., with an open-source dataset or instructions for how to construct
885 the dataset).

886 (d) We recognize that reproducibility may be tricky in some cases, in which case
887 authors are welcome to describe the particular way they provide for reproducibility.
888 In the case of closed-source models, it may be that access to the model is limited in
889 some way (e.g., to registered users), but it should be possible for other researchers
890 to have some path to reproducing or verifying the results.

891 **5. Open access to data and code**

892 Question: Does the paper provide open access to the data and code, with sufficient instruc-
893 tions to faithfully reproduce the main experimental results, as described in supplemental
894 material?

895 Answer: **[No]**

896 Justification: We don't have any available code to share at the moment, the work is still in
897 progress.

898 Guidelines:

- 899 • The answer NA means that paper does not include experiments requiring code.
- 900 • Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- 902 • While we encourage the release of code and data, we understand that this might not be
903 possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not
904 including code, unless this is central to the contribution (e.g., for a new open-source
905 benchmark).
- 906 • The instructions should contain the exact command and environment needed to run to
907 reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- 909 • The authors should provide instructions on data access and preparation, including how
910 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- 911 • The authors should provide scripts to reproduce all experimental results for the new
912 proposed method and baselines. If only a subset of experiments are reproducible, they
913 should state which ones are omitted from the script and why.
- 914 • At submission time, to preserve anonymity, the authors should release anonymized
915 versions (if applicable).
- 916 • Providing as much information as possible in supplemental material (appended to the
917 paper) is recommended, but including URLs to data and code is permitted.

918 **6. Experimental setting/details**

919 Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
920 parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
921 results?

922 Answer: [Yes]

923 Justification: in the Supplementary section B, all the details of the DUETS algorithm are
924 specified, including initial parameters, hyperparameters, etc.

925 Guidelines:

926 • The answer NA means that the paper does not include experiments.
927 • The experimental setting should be presented in the core of the paper to a level of detail
928 that is necessary to appreciate the results and make sense of them.
929 • The full details can be provided either with the code, in appendix, or as supplemental
930 material.

931 7. Experiment statistical significance

932 Question: Does the paper report error bars suitably and correctly defined or other appropriate
933 information about the statistical significance of the experiments?

934 Answer: [Yes]

935 Justification: [TODO]

936 Guidelines:

937 • The answer NA means that the paper does not include experiments.
938 • The authors should answer "Yes" if the results are accompanied by error bars, confi-
939 dence intervals, or statistical significance tests, at least for the experiments that support
940 the main claims of the paper.
941 • The factors of variability that the error bars are capturing should be clearly stated (for
942 example, train/test split, initialization, random drawing of some parameter, or overall
943 run with given experimental conditions).
944 • The method for calculating the error bars should be explained (closed form formula,
945 call to a library function, bootstrap, etc.)
946 • The assumptions made should be given (e.g., Normally distributed errors).
947 • It should be clear whether the error bar is the standard deviation or the standard error
948 of the mean.
949 • It is OK to report 1-sigma error bars, but one should state it. The authors should
950 preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
951 of Normality of errors is not verified.
952 • For asymmetric distributions, the authors should be careful not to show in tables or
953 figures symmetric error bars that would yield results that are out of range (e.g. negative
954 error rates).
955 • If error bars are reported in tables or plots, The authors should explain in the text how
956 they were calculated and reference the corresponding figures or tables in the text.

957 8. Experiments compute resources

958 Question: For each experiment, does the paper provide sufficient information on the com-
959 puter resources (type of compute workers, memory, time of execution) needed to reproduce
960 the experiments?

961 Answer: [TODO]

962 Justification: [TODO]

963 Guidelines:

964 • The answer NA means that the paper does not include experiments.

965 • The paper should indicate the type of compute workers CPU or GPU, internal cluster,
966 or cloud provider, including relevant memory and storage.
967 • The paper should provide the amount of compute required for each of the individual
968 experimental runs as well as estimate the total compute.
969 • The paper should disclose whether the full research project required more compute
970 than the experiments reported in the paper (e.g., preliminary or failed experiments that
971 didn't make it into the paper).

972 **9. Code of ethics**

973 Question: Does the research conducted in the paper conform, in every respect, with the
974 NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

975 Answer: [Yes]

976 Justification: After careful review of the NeurIPS Code of Ethics, our research conforms
977 with the Code of Ethics, as seen in all sections.

978 Guidelines:

979 • The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
980 • If the authors answer No, they should explain the special circumstances that require a
981 deviation from the Code of Ethics.
982 • The authors should make sure to preserve anonymity (e.g., if there is a special consid-
983 eration due to laws or regulations in their jurisdiction).

984 **10. Broader impacts**

985 Question: Does the paper discuss both potential positive societal impacts and negative
986 societal impacts of the work performed?

987 Answer: [NA]

988 Justification: This work is primarily theoretical and methodological, and we do not anticipate
989 any immediate societal impact. That said, we recognize that large-scale deployment of our
990 algorithm could inherit the same societal biases present in other generative models.

991 Guidelines:

992 • The answer NA means that there is no societal impact of the work performed.
993 • If the authors answer NA or No, they should explain why their work has no societal
994 impact or why the paper does not address societal impact.
995 • Examples of negative societal impacts include potential malicious or unintended uses
996 (e.g., disinformation, generating fake profiles, surveillance), fairness considerations
997 (e.g., deployment of technologies that could make decisions that unfairly impact specific
998 groups), privacy considerations, and security considerations.
999 • The conference expects that many papers will be foundational research and not tied
1000 to particular applications, let alone deployments. However, if there is a direct path to
1001 any negative applications, the authors should point it out. For example, it is legitimate
1002 to point out that an improvement in the quality of generative models could be used to
1003 generate deepfakes for disinformation. On the other hand, it is not needed to point out
1004 that a generic algorithm for optimizing neural networks could enable people to train
1005 models that generate Deepfakes faster.
1006 • The authors should consider possible harms that could arise when the technology is
1007 being used as intended and functioning correctly, harms that could arise when the
1008 technology is being used as intended but gives incorrect results, and harms following
1009 from (intentional or unintentional) misuse of the technology.
1010 • If there are negative societal impacts, the authors could also discuss possible mitigation
1011 strategies (e.g., gated release of models, providing defenses in addition to attacks,

1012 mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
1013 feedback over time, improving the efficiency and accessibility of ML).

1014 11. Safeguards

1015 Question: Does the paper describe safeguards that have been put in place for responsible
1016 release of data or models that have a high risk for misuse (e.g., pretrained language models,
1017 image generators, or scraped datasets)?

1018 Answer: [NA]

1019 Justification: Our paper presents a framework that utilizes an online learning algorithm. We
1020 don't present any data or models that have a high risk for misuse.

1021 Guidelines:

- 1022 • The answer NA means that the paper poses no such risks.
- 1023 • Released models that have a high risk for misuse or dual-use should be released with
1024 necessary safeguards to allow for controlled use of the model, for example by requiring
1025 that users adhere to usage guidelines or restrictions to access the model or implementing
1026 safety filters.
- 1027 • Datasets that have been scraped from the Internet could pose safety risks. The authors
1028 should describe how they avoided releasing unsafe images.
- 1029 • We recognize that providing effective safeguards is challenging, and many papers do
1030 not require this, but we encourage authors to take this into account and make a best
1031 faith effort.

1032 12. Licenses for existing assets

1033 Question: Are the creators or original owners of assets (e.g., code, data, models), used in
1034 the paper, properly credited and are the license and terms of use explicitly mentioned and
1035 properly respected?

1036 Answer: [Yes]

1037 Justification: The creators of the data and code used for creating a baseline for future
1038 comparison are mentioned in the Evaluation section 4.

1039 Guidelines:

- 1040 • The answer NA means that the paper does not use existing assets.
- 1041 • The authors should cite the original paper that produced the code package or dataset.
- 1042 • The authors should state which version of the asset is used and, if possible, include a
1043 URL.
- 1044 • The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- 1045 • For scraped data from a particular source (e.g., website), the copyright and terms of
1046 service of that source should be provided.
- 1047 • If assets are released, the license, copyright information, and terms of use in the
1048 package should be provided. For popular datasets, paperswithcode.com/datasets
1049 has curated licenses for some datasets. Their licensing guide can help determine the
1050 license of a dataset.
- 1051 • For existing datasets that are re-packaged, both the original license and the license of
1052 the derived asset (if it has changed) should be provided.
- 1053 • If this information is not available online, the authors are encouraged to reach out to
1054 the asset's creators.

1055 13. New assets

1056 Question: Are new assets introduced in the paper well documented and is the documentation
1057 provided alongside the assets?

1058 Answer: [TODO]

1059 Justification: [TODO]

1060 Guidelines:

- 1061 • The answer NA means that the paper does not release new assets.
- 1062 • Researchers should communicate the details of the dataset/code/model as part of their
1063 submissions via structured templates. This includes details about training, license,
1064 limitations, etc.
- 1065 • The paper should discuss whether and how consent was obtained from people whose
1066 asset is used.
- 1067 • At submission time, remember to anonymize your assets (if applicable). You can either
1068 create an anonymized URL or include an anonymized zip file.

1069 14. **Crowdsourcing and research with human subjects**

1070 Question: For crowdsourcing experiments and research with human subjects, does the paper
1071 include the full text of instructions given to participants and screenshots, if applicable, as
1072 well as details about compensation (if any)?

1073 Answer: [NA]

1074 Justification: The paper does not involve human subjects or crowdsourced data.

1075 Guidelines:

- 1076 • The answer NA means that the paper does not involve crowdsourcing nor research with
1077 human subjects.
- 1078 • Including this information in the supplemental material is fine, but if the main contribu-
1079 tion of the paper involves human subjects, then as much detail as possible should be
1080 included in the main paper.
- 1081 • According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
1082 or other labor should be paid at least the minimum wage in the country of the data
1083 collector.

1084 15. **Institutional review board (IRB) approvals or equivalent for research with human 1085 subjects**

1086 Question: Does the paper describe potential risks incurred by study participants, whether
1087 such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
1088 approvals (or an equivalent approval/review based on the requirements of your country or
1089 institution) were obtained?

1090 Answer: [NA]

1091 Justification: The paper does not involve human subjects or crowdsourced data.

1092 Guidelines:

- 1093 • The answer NA means that the paper does not involve crowdsourcing nor research with
1094 human subjects.
- 1095 • Depending on the country in which research is conducted, IRB approval (or equivalent)
1096 may be required for any human subjects research. If you obtained IRB approval, you
1097 should clearly state this in the paper.
- 1098 • We recognize that the procedures for this may vary significantly between institutions
1099 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
1100 guidelines for their institution.
- 1101 • For initial submissions, do not include any information that would break anonymity (if
1102 applicable), such as the institution conducting the review.

1103 16. **Declaration of LLM usage**

1104 Question: Does the paper describe the usage of LLMs if it is an important, original, or
1105 non-standard component of the core methods in this research? Note that if the LLM is used
1106 only for writing, editing, or formatting purposes and does not impact the core methodology,
1107 scientific rigorosity, or originality of the research, declaration is not required.

1108 Answer: [Yes]

1109 Justification: The paper clearly describes the use of LLMs for confirmation atoms, querying,
1110 etc. in Section 3.

1111 Guidelines:

1112 • The answer NA means that the core method development in this research does not
1113 involve LLMs as any important, original, or non-standard components.

1114 • Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>)
1115 for what should or should not be described.