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Abstract

Long video understanding is inherently challenging for vision-language models
(VLMs) because of the extensive number of frames. With each video frame typ-
ically expanding into tens or hundreds of tokens, the limited context length of
large language models (LLMs) forces the VLMs to perceive the frames sparsely
and lose temporal information. To address this, we explore extreme video token
compression towards one token per frame at the final LLM layer. Our key in-
sight is that heuristic-based compression, widely adopted by previous methods,
is prone to information loss, and this necessitates supervising LLM layers into
learnable and progressive modules for token-level compression (LP-Comp). Such
compression enables our VLM to digest 2x-4x more frames with improved per-
formance. To further increase the token efficiency, we investigate frame-level
compression, which selects the frames most relevant to the queries via the inter-
nal attention scores of the LLM layers, named question-conditioned compression
(QC-Comp). As a notable distinction from previous studies, we mitigate the
position bias of LLM attention in long contexts, i.e., the over-concentration on
the beginning and end of a sequence, by splitting long videos into short seg-
ments and employing local attention. Collectively, our combined token-level and
frame-level leads to an extreme compression model for long video understanding,
named XComp, achieving a significantly larger compression ratio and enabling
denser frame sampling. Our XComp is finetuned from VideoChat-Flash with a
data-efficient supervised compression tuning stage that only requires 2.5% of the
supervised fine-tuning data, yet boosts the accuracy from 42.9% to 46.2% on
LVBench and enhances multiple other long video benchmarks. Code and Model
are available at https://github. com/ZheyulAqaZhang/XComp.

1 Introduction

Enabling vision-language models (VLMs) to comprehensively understand long videos remains a
critical yet formidable challenge [12, 22, 23, 32, 35, 38, 57, 61, 62, 69, 70]. The sheer volume of
visual information challenges current VLMs’ inherent context length constraints: as each frame is

39th Conference on Neural Information Processing Systems (NeurIPS 2025).


https://github.com/ZheyuAqaZhang/XComp

XComp Approach Long Video Result

Accuracy vs. Ngame

g
: LLM Layers § 40
B . y @
é 42.5
(J: video tokens %400
Y I ~8— VideoChat-Flash
S Drop to 1-token-per frame 2375 XComp
S Q
M <
= 0 500 1000 1500 2000
E Number of Frames (Nframe)
£ . Accuracy vs. Nioken
S z
& 45.0
[
[22]
% 42,5
1F 2 40.0
D 0O IS —e— VideoChat-Flash
- - - - 3 37.5 XComp
1 1 <
<

L 5000 10000 15000
Number of Video Tokens (Ntoken)

Layer ID
Figure 1: Left: We present XComp that explores using the LLM layers to progressively compress the
video tokens towards the extreme of one token per frame. Right: Such capabilities enable the model
to better improve itself with denser input frames without significantly increasing video tokens.

encoded into tens or hundreds of tokens, processing more than 1k frames usually exceeds the typical
context lengths or computational budgets of the large language model (LLM) layers for the VLMs [11]
during both training and inference. Yet, such a framework is still far from processing an hour-long
video at more than one frame per second (FPS), easily losing critical temporal information and visual
details. Therefore, how to effectively compress the tokens of video frames while maintaining useful
information becomes the major bottleneck. In this paper, we explore the extreme of this direction and
propose an approach to compress each video frame into one single highly informative token when
reaching the final layer of the LLM in VLMs, thereby unlocking an unprecedented density of frames
for VLMs to process.

From this aspect, we aim to achieve extreme compression at the foken level: condensing the informa-
tion from tens or hundreds of tokens per frame into a single token. Existing methods predominantly
rely on heuristic-based or training-free strategies, such as special token selection [19, 35, 53] and
pooling [31, 34]. Despite their reduced token counts, these methods risk discarding crucial visual
tokens, as their underlying LLM layers of the VLMs were not supervised to encapsulate the capa-
bility of compression, i.e., condense the contexts from the dropped tokens into the kept ones. As
a result, our analysis (Table 2) reveals the limitations of such heuristic approaches when reaching
high compression ratios. Therefore, our key insight is that the LLM layers should be supervised
to compress extensive video data into remarkably fewer representative tokens via an additional
supervised compression tuning stage, motivating learnable compression. To further avoid drastically
losing information at large compression ratios, we let the LLM layers progressively compress the
visual tokens with a smooth schedule. These two combined lead to our “learnable and progressive
compression” (LP-Comp) as in Fig. 1, which marks clear distinctions with previous heuristic methods.

In addition to decreasing the number of tokens per frame, the token efficiency of long video un-
derstanding can be further enhanced by selecting the most relevant frames, corresponding to the
compression at the frame level. Within the internal representation of VLMs, the distinctions of
such relevant frames can be intuitively evaluated by the attention scores between the questions and
the video tokens [19], where the frames having larger attention scores are preferred. However, a
bottleneck under-explored by the previous methods is the internal position bias of LLM transformers
in long context understanding: the attention heads might assign larger scores to the tokens at the
beginning or the end of the sequence [42]. Inspired by local attention [3, 47, 76], under the context
of long video understanding, this motivates a splitting of long videos into short video chunks for
frame-level compression, where our model inspects the relevance of frames inside each video segment.
Such a step effectively utilizes the question information and is referred to as question-conditioned
compression (QC-Comp).

Combining both learnable & progressive compression (LP-Comp) and question-conditioned com-
pression (QC-Comp), we propose a VLM named XComp that could achieve extreme token efficiency



towards one-token-per-frame for highly selective frames. Notably, the compression behavior of the
LLM layers can be learned via a data-efficient supervised compression tuning stage requiring only
2.5% of the supervised fine-tuning (SFT) data of VideoChat-Flash [35]. More importantly, such
token efficiency enables us to sample the frames densely and significantly enhance the performance
as the LVBench [59] evaluation in Fig. 1: our method not only achieves better accuracy on a token-
for-token efficiency basis, but also keeps improving with the number of input frames increases, while
VideoChat-Flash experiences performance drops after a certain frame number.

In summary, we make the following contributions:

1. We introduce LC-Comp, a learnable and progressive framework that supervises LLM layers to
compress at the token level, without purely relying on heuristics.

2. We propose QC-Comp, a frame-level question-conditioned selection method that effectively
selects the relevant frames for specific questions.

3. We demonstrate the effectiveness of our token compression towards each selected video frame as
a single token, drastically increasing the number of frames that can be processed and leading to
improved long video understanding accuracy.

2 Related Work

Vision-Language Models for Long Sequence Understanding. Early Vision-Language Models
(VLMs), such as GPT-4V and Gemini-1.5 [49, 58], showcased powerful multimodal reasoning by
integrating visual encoders with large language models. Open-source efforts like Llama-Vid [36],
IDEFICS [24], VideoChat [34], Video-LLaMA [12], and others [2, 32, 35, 38, 44, 61, 62] have further
advanced capabilities, often matching or exceeding proprietary systems on various benchmarks.
While effective on static images or short video clips, scaling VLMs to long videos (minutes to hours)
introduces a significant challenge. The core difficulty lies in managing the immense volume of
visual data, which generates an excessive number of tokens that quickly exceed the typical context
windows and computational capacities of the LLM components during both training and inference.
Current research addressing long-context VLMs primarily explores two directions: (i) methods
that significantly extend the effective context length of the underlying transformer architectures,
such as LongVA, LongVILA, LongViTA, and LLaVA-NeXT [11, 55, 75, 77], and (ii) strategies
focused on reducing the number of visual tokens fed to the LLM via selection or compression
modules [26, 28, 56, 57]. While context extension allows processing more tokens, it often incurs
high computational costs. Conversely, existing visual compression techniques, while reducing
token count, frequently rely on heuristics or fixed operations, or uniform sampling across the
video [2, 12, 32, 34, 35, 75] that struggle to preserve critical temporal and fine-grained information,
particularly when pushed to high compression ratios necessary for very long videos. Other orthogonal
approaches tackle long videos by processing shorter segments independently and employing retrieval
mechanisms [3].

Video Token Compression in Multimodal LLMs. Given the computational constraints of pro-
cessing dense video streams with VLMs, compressing visual tokens is a vital approach. Various
methods have been proposed to distill frame sequences into more manageable representations.
These include temporal pooling strategies [17, 46], heuristic or saliency-based frame selection often
guided by simple visual priors or attention mechanisms [56, 57], and lightweight learned mod-
ules or bottlenecks aimed at reducing the token sequence, such as Llama-Vid [36] which explores
compressing frames potentially to a single token by leveraging cross-attention with a text query.
Relatedly, techniques for dynamic token pruning or merging have been explored for both images
and video [5, 13, 26, 29, 45, 52, 68, 70]. However, a critical limitation of many existing approaches,
especially those relying purely on heuristics or fixed pooling, is that they are not trained to consolidate
the information from dropped tokens into the retained ones within the LLM’s representation space.
Aggressively applying these methods to achieve the extreme compression ratios necessary for very
long videos risks discarding vital visual details, thus hindering deep understanding. Furthermore,
while frame selection is intuitive, applying it effectively across extremely long sequences with-
out being hampered by issues like internal LLM position biases remains challenging. Therefore,
developing methods that can perform learned and highly efficient visual compression, potentially
towards representing each frame with an unprecedentedly low token count while preserving critical
information, remains a significant research frontier.
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Figure 2: Overview. Our XComp comprises of two parts to achieve extreme compression in
long video understanding. (1) At the token level, we propose the supervised compression tuning
that enables the LLM to compress every video frame into one compact token in a learnable and
progressive manner, namely, LP-Comp (Sec. 3.2). (2) At the frame level, we utilize the internal
attention mechanism to select the frames relevant to the questions, which is question-conditioned
compression, namely, QC-Comp (Sec. 3.3). Both aspects combined lead to our objective of extreme
compression in long video understanding: one token per highly selective frame.

3 Methodology

Towards the objective of extreme compression, we introduce a novel framework that unifies the
compression of long video tokens from two dimensions, as illustrated in Fig. 2:

1. Token-level: the Learnable&Progressive Compression (LP-Comp) represents each frame using
as few as one token, which is learned via training (Sec. 3.2).

2. Frame-level: Question-conditioned Compression (QC-Comp) selects the frames that are most
relevant to the questions based on the attention scores inside the LLM layers, which is employed
as an inference-time enhancement (Sec. 3.3).

3.1 Preliminaries and Formulation

VLMs for Video Understanding. Current VLMs primarily follow the architecture of LLaVA [40]
when handling visual inputs: (1) an encoder encodes the raw pixels into a set of visual tokens; (2)
a projector, commonly several multi-layer perceptions (MLPs), projects the visual tokens into the
dimensions the LLMs; (3) an LLM accepts both the text tokens and projected visual tokens and
decodes the output in an auto-regressive manner. This paper concentrates on the compression between
the LLM layers and keeps the visual encoder and projector unchanged.

More formally, we consider accepting videos as input, the standard practice is to sample 7" frames
for the VLM to process, denoted as { F}}7__,. Suppose the vision encoder converts each frame into
N visual tokens, we then let the LLM’s input for the i-th frame be Vi(l) e RNYxd where d
is the LLM’s dimension. So the input video tokens for the LLM become a sequence of 7' x N (1)
tokens, namely, V(1) <« [Vl(l), e VT(I)]. Denoting the input query as Q(!) with N, tokens in
standard question-answering scenarios, we follow the practice of our baseline model VideoChat-
Flash [35] of appending the query Q(!) after the visual tokens V (1), yielding the input sequence to
LLM as X « [V QW)], a sequence with length T x N 4 N,. Then, the LLM begins the
auto-regressive generation of new text tokens based on the input sequence X (1),

Objective: Visual Token Compression. The computation process of the LLM is commonly
dominated by the large volume of visual tokens 7' x N in long video understanding. To reduce the
cost of LLM layers and permit more input frames, we explore two directions to reduce video token
counts: either from the aspect of NV (1) the number of tokens per frame, or 7', the number of frames.
(1) Token-level Compression. Denoting N as the number of tokens per frame at I-th transformer
layer, our formal objective is to decrease N () so that the transformer layers have a gradually more
concise set of visual tokens to process, shrinking from 7' x N to T' x N(). We demonstrate
such token-level compression in Sec. 3.2. (2) Frame-level Compression. Another way of decreasing
the computation is to convert the frame number 7" into a smaller 7”. In the context of long video
understanding, this means selecting a subset of relevant frames to process and ignoring the rest. Our
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Figure 3: Learnable and Progressive Compression (LP-Comp). With supervised compression
tuning, the LLM layers learn to condense the visual tokens progressively into a concise set of tokens
until reaching the extreme of one token per frame.

Sec. 3.3 presents frame-level compression strategies. Finally, our framework unifies both types of
compression to enhance long video understanding.

3.2 Learnable and Progressive Token Compression (LP-Comp)

Objective. As discussed in Sec. 3.1, the objective of token-level compression is to decrease the
number of video tokens N () than the initial token number N (1), Suppose the LLM contains L layers,
we aim at enabling the LLM to compress the tokens so that each frame is compressed to a single
token at the last layer, namely, N (L) = 1. In the case of our baseline VideoChat-Flash [35], where
N = 16, our target marks the compression ratio of 16.

Although previous studies have demonstrated the redundancy in visual modalities [5], especially for
videos [37], such a level of compression is challenging, as modern VLMs like VideoChat-Flash have
already utilized the projector for visual token compression in the form of downsampling. As a result,
we discover that the heuristic compression approaches, e.g., selecting tokens in a training-free manner,
are prone to failure for such a large compression ratio (as in Sec. 4.3, Table 2), whose performance
significantly falls behind the baseline without token compression. Therefore, our key insight is to let
the LLM layers actively learn to condense the tokens into a concise set instead of purely relying on
inference-time heuristics for extreme visual token compression.

Learnable Token Compression. As shown in Fig. 3, the LLM layers can be trained with the
token compression by decreasing the number of tokens during the training stage. A critical design of
such token compression is always to preserve the suffix tokens of a frame. Concretely, we assume
a specific layer k compresses visual tokens from N*) to N*+1 where N*+D < N then
the first N®) — N(+1) remaining tokens for a frame are determined to be removed (the dashed
boxes in Fig. 3). Such a suffix-preservation behavior is compatible with the causal attention of
decoder-only LLM layers, as the later tokens in a sequence can absorb the earlier token features
instead of the reverse direction. By end-to-end supervising the LLM layers for compression, we
observe a significant improvement over heuristics (Sec. 4.3, Table 2).

Progressive Token Compression. The effectiveness of learnable compression is determined by
the capability of LLM layers. For instance, we could directly conduct extreme one-token-per-frame
compression with the first LLM layer for maximum efficiency, i.e., N () = 1, but this would risk
discarding critical visual information. To balance both token efficiency and preserving information,
we propose to compress progressively across all the LLM layers. As illustrated in Fig. 3, each LLM
layer only decreases a small amount of visual tokens according to a smooth schedule. We empirically
find the cosine curve effective for token compression, where the visual token number evolves as,

NGO = [%COS(%W)+%—‘, {=1,...,L. (1)

Our experiments (Sec. 4.3, Table 2) show that smoother compression indeed performs better.



Data-efficient Supervised Compression Tuning. We state such continued training of VLMs for
the compression capability as supervised compression tuning (SCT). It can be learned in a data-
efficient way: only using 2.5% of the data samples from VideoChat-Flash’s SFT dataset. Besides,
our learnable compression also improves the training efficiency by reducing the average number of
tokens, accelerating the training speed, and enabling training on more frames.

Discussion. Despite its simplicity, we emphasize three critical insights leading to our effective
token compression: (1) it is viable to conduct visual token compression between the LLM layers
without only relying on the visual encoder and projector; (2) learnable LLM layers can grasp the
condensing of visual information without only relying on training-free heuristics; (3) progressive
schedule utilizes all the LLM layers for compression without only relying on a few selected layers.

3.3 Question-Conditioned Frame Compression (QC-Comp)

Objective. Recalling our objective in Sec. 3.1, this section addresses the compression at the frame
level (from T to T”). In its simplest form, our frame-level compression is achieved via frame selection,
where only the frames relevant to the user’s questions are used for the response. According to the
prior works in VLMs, reducing such redundancy is beneficial to the performance and also enable
us to digest more video frames. To complete such selection, we aim to assign a relevance score for
each frame reflecting its usefulness to the user’s question and then remove the ones with the lowest
relevance; thus, this step is named Question-Conditioned Compression.

QC-Comp Overview. The QC-
Comp is employed at the inference
time for our model to select the most
relevant frames. Similar to the previ-
ous works [6, 16, 50, 63], we also uti-
lize the internal representation of the
VLM for this objective. Concretely,
we calculate the attention scores be-
tween the question tokens and the
video tokens, which serve as the met-
ric for the contributions of a frame:
a larger attention score indicates bet-
ter relevance, an intuition adopted by
representative LLM [66] and video Q: ...night? | | ™2
analysis [79]. However, previous :
approaches utilizing attention score
for frame selection exhibit an under- (] : video tokens
explored issue: the bias of LLM atten- [ : texttokens .
tion for the tokens at the beginning ' L = J)

and the end of a sequence, namely . ) . . .
“lost in the middle” [42], which could Figure 4: Question-Conditioned Compression. To reduce

overlook the critical information at the Visual redundancy and improve long video understanding
the middle of videos. To address the Performance, we split a video into individual segments and
assign question-conditioned relevance scores to video frames.
The frames with lower relevance scores are discarded so that
the LLM only concentrates on the informative frames.

Segmented Local Attention

— Position — Position
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Q: ... night? (2

above problem, we propose splitting a
long video sequence into independent
short clips.

Segmented Local Attention for Relevance Scoring. The only change of our solution to conven-
tional LLM layers is to split a video token sequence V() with T" frames into Ng = [(T —w) /stride]

segments, where w is the window size of the segments. Denoting the Ng segments as [ ~1(l), e V]E[ls)],
we compute the question-conditioned attention within each segment locally by connecting the

segment-level video tokens with question tokens, i.e., [Vi(l), Q(l)]. The calculation of these segments
is independent and can be conducted in parallel, as shown in Fig. 4. Finally, we record the average
attention scores across different attention heads. With these attention scores, we calculate the relevant
score for each frame as the average of attention score from any question token to any video token that
represents this frame in any segment. Top-k relevant frames among the 7" frames are selected.



Table 1: Long video understanding comparison. Our method XComp built upon VideoChat-
Flash-2B achieves state-of-the-art results among 2B-scale models, demonstrating the effectiveness of
extreme compression in long video understanding. Note that the performance of proprietary models
and 3~9B-scale VLMs are provided for reference.

Size | LongVideoBench MLVU VideoMME (Long) LVBench
Average Duration 473s 651s 2386s 4101s
Proprietary Models
GPT-4V [48] - 59.1 49.2 53.5 -
GPT-40 [49] - 66.7 64.6 65.3 30.8
Gemini-1.5-Pro [58] - 64.0 - 67.4 33.1
3~9B-Scale VLMs
Qwen2.5VL-3B [4] 3B 433 68.2 - -
mPLUG-Ow13 [73] 7B 52.1 - 50.1 43.5
VideoChat-Flash-7B [35] | 7B 64.7 74.7 55.4 48.2
Eagle2.5-8B [8] 8B 66.4 77.6 - -
Kangaroo [41] 8B 54.8 61.0 46.7 394
TimeMarker [10] 8B 56.3 - 46.4 41.3
InternVL3-9B [81] 9B 62.5 70.8 - -
2B-Scale VLMs
InternVL3-2B [81] 2B 55.4 64.2 - -
VideoChat-Flash-2B [35] | 2B 58.3 65.7 449 429
XComp 2B 59.7 66.7 45.6 46.2

Discussion. Despite the complexity of duplicating the question token, it is viable to mitigate the
bias in long-context LLM attention, resulting in an improved performance as shown in Table 4.

4 Experiments

4.1 Implementation Details

We fine-tune XComp from VideoChat-Flash-2B [35] for supervised compression tuning, integrating
our proposed LP-Comp mechanism. The core components follow the original setup from VideoChat-
Flash: we use UMT-L [43] as the visual encoder, token merging with an MLP-based connector, and
Qwen2-1.5B [71] as the large language model (LLM). For long videos, we segment them into short
clips of 8 frames each. Each clip is compressed into 128 visual tokens, leading to an average of 16
tokens per frame.

Our LP-Comp mechanism introduces a progressive token reduction strategy across LLM layers.
Initially, each frame is represented by 16 tokens. After each LLM layer [, we compute the target
token count N ) as defined in Equation 1. If the token count from the previous layer N) differs
from N (=1, we uniformly drop N(=1) — N (1) tokens for each frame across the temporal dimension.
This process continues across all layers, eventually reducing to a single token per frame at the final
LLM layer, i.e., N(&) = 1. With LP-Comp reducing the token sequence length during training, our
method enables faster training of VLMs on video sequences with more frames. Concretely, we use the
mixture of 128-1024 frames per video with up to 8 frames per second in fine-tuning. The fine-tuning
data follows the mixture of short-video and long-video instruction tuning formats used in VideoChat-
Flash [35], but our supervised compression tuning only requires 2.5% of VideoChat-Flash’s dataset.
The training process costs around 24 hours on 8 x NVIDIA H100 GPUs.

During the inference stage, we utilize QC-Comp to conduct frame selection. When splitting the long
video into short segments, each segment contains 64 frames, and we select 512 frames for videos
with a duration of less than an hour, and 2048 frames for videos longer than an hour. More details on
implementation are in the supplementary materials.



T I T T T T T T T hun] Question: :In the video, there is a woman in a black dress in the kitchen. Behind her, there is a

] white cabinet with some items on it and a window with white curtains. The curtains are flanked by

wooden shelves. In front of her, there is a large counter with a cast iron pot on it. Above the pot is a

large stainless steel bowl which she is holding with both hands. Next to them, there is a large pink

container with red liquid inside. What is the woman doing in the kitchen?

(A) Turned the large bowl upside down. (B) Put a lid on the large bowl. (C) Moved the large bowl to

the windowsill. (D) Placed the large bowl on the counter. (E) Put the large bowl on the pink container.
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Figure 5: LongVideoBench case analysis. XComp leverages QC-Comp to divide a long video
into short segments, mitigating attention bias. Local attention highlights key frames relevant to the
question and correct answer, enabling effective filtering of irrelevant content.

High Local Attention

4.2 Main Results on Long Video Understanding

Benchmarks. We assess our model on four widely used long video understanding benchmarks:
LongVideoBench [64], MLVU [80], LVBench [59], and VideoMME [18] (w/o subtitles). Unlike
short-video datasets, they feature extended video durations ranging from several minutes to over
an hour, posing greater temporal reasoning and memory challenges. These benchmarks adopt a
question-answering format, primarily using accuracy as the evaluation metric.

Comparison. We choose the baselines with similar model size of VideoChat-Flash-2B [35] and
InternVL3-2B [81], as shown in Table 1. Importantly, our XComp is trained from VideoChat-Flash
using only 2.5% of the data, the improvement over VideoChat-Flash suggests that our one token per
highly selective frame preserves the critical information after compression.

Leading Performance. As shown in Table 1, our XComp consistently improves the baseline
VideoChat-Flash and outperforms the other VLMs at similar scales, even exhibiting comparable
performance to some models at 7B scale. As also demonstrated in Fig. 1, our XComp demonstrates
the unique trend of improving performance with more input frames, demonstrating the effectiveness
of our extreme compression.

Qualitative Analysis. Figure 5 presents an example from LongVideoBench illustrating how XComp
leverages QC-Comp to effectively identify frames relevant to the question. In this long video question
answering scenario, the question provides a detailed description of the background and inquires
about the character’s actions. Five answer candidates are also included. To answer the question,
QC-Comp divides the video into shorter segments of 64 frames each, mitigating attention biases such
as the “lost-in-the-middle” issue. This segmentation allows the model to focus local attention on key
frames, which receive high relevance scores with respect to both the question and the correct answer
candidate. As a result, XComp is able to discard 512 irrelevant frames and accurately identify the
correct answer.

4.3 Ablation Study

Learnable Compression. The Table 2: Ablation study using LVBench: progressive v.s.
key insight of our XComp is step-wise non-heuristic token compression v.s. heuristic com-
to train the LLM layers to con- pression from VideoChat-Flash, and learnable v.s. training-free
dense the visual tokens. In Ta- token compression. All the evaluations are conducted with 1024
ble 2, we compare using learnable frames. Both progressive compression and staged compression
with training-free token compres- would gradually compress tokens to 1 token per frame with the
sion. Enabling the LLM layers same amount of average tokens per frame.

to learn the compression behav-
ior consistently outperforms the
training—free model, supporting the Baseline (w/o Compression) ‘ 41.8 -
necessity of our learnable com-

Method \ Training-free Learnable

pression. Another critical com- + Heuristic | 411 i}
parison is that when using the  + Step-wise 38.4 423
heuristic token compression from  + Progressive 39.7 44.3

VideoChat-Flash, which utilizes at-
tention scores to select the tokens, it is worse than the original baseline under our extreme token



compression ratio. This is precisely the observation that motivates us to propose the learnable token
compression (Sec. 3.2).

Progressive Compression. To investigate the impor- Table 3: Comparison of token compres-
tance of progressive token compression, i.e., utilizing sion strategies on LVBench and MLVU.
all the LLM layers to gradually decreasing the token Both Uniform Drop and Suffix-Preservation
number, we conduct ablation experiments comparing follow the same Cosine compression sched-
it with the conventional step-wise approach, which per- ule and efficient continual training.

forms abrupt token reduction at pre-defined layers as

in VideoChat-Flash [35]. As shown in Table 2, pro- Strategy \ LVBench MLVU
tghresstwe tqken compression t_:l(')nstl'stelzltllyt outpetrlllcorms Uniform 436 64.1
e step-wise compression, indicating that smooth com- Suffix 443 652

pression schedule is essential for preserving the critical
visual information.

Compressing to Suffix Tokens. A critical design choice in our LP-Comp is that the LLM layers
should gradually preserve the information to the last token of each frame, namely, the suffix tokens.
Such a design is compatible with the causal attention in LLM layers, and we analyze its necessity
by comparing it with another intuitive strategy: keeping the tokens uniformly by their positions
(implementation details in the supplementary materials). As shown in Table 3, preserving the suffix
tokens outperforms its uniform counterpart strategy, supporting the importance of designing the
compression strategy aligning with the attention of LLM layers.

Segmented Local Attention. To understand the impact of segment-wise attention in QC-Comp,
which is proposed to mitigate the position bias of attention in long contexts, we compare it with
the conventional way of computing the attention between the question and all frames globally. As
shown in Table 4, segment-wise attention consistently leads to better performance across all three
long video QA benchmarks LongVideoBench, MLVU, and VideoMME (long). This validates our
design choice of computing frame scores locally within segments, effectively reducing positional
bias and improving the relevance of retained frames in the early filtering stage.

Table 4: Comparison of attention strategies in QC-drop. Segment-wise attention consistently
outperforms global attention across benchmarks.

Attention | LongVideoBench MLVU  VideoMME (long)
Global 59.5 66.3 44.8
Segment Local (Ours) 59.7 66.7 45.7

Effect of LP-Comp and QC-Comp. Table 5: Ablation results showing the individual and
We perform an ablation study to ana- combined impact of LP-Comp and QC-Comp on
lyze the impact of the two components LongVideoBench. Both components contribute to the over-
in XComp: LP-Comp and QC-Comp. all performance gains of XComp.

As shown in Table 5, the baseline with-

out any compression achieves a score | LongVideoBench
of 58.3 on LongVideoBench. Adding Baseline (w/o compression) 583
LP-Comp alone (XComp without QC- XComp w/o QC-Comp 588
Comp) yields a slight improvement XComp 597

to 58.8. When both LP-Comp and
QC-Comp are used (full XComp), the
performance reaches 59.7, suggesting that selectively removing less relevant content may help retain
useful information. These results indicate that both components contribute to the final performance.

Table 6: The complete table of all ablation studies on LongVideoBench and LVBench.

Model Name LP-Comp Variants QC-Comp Variants | LongVideoBench LVBench
VideoChat-Flash No - No - 583 429
XComp Yes Uniform No - 58.2 43.6
XComp Yes Suffix No - 58.8 44.3
XComp Yes Suffix Yes Global 59.5 45.6
XComp Yes Suffix Yes Segment Local 59.7 46.2




Compare All Variants Together. Table 6 shows the complete results for all ablation studies of
XComp design, on two benchmarks, LongVideoBench and LVBench. The results are consistent with
the studies above.

4.4 XComp for LLaVA-Next-Video

We apply XComp to LLaVA-Next-Video [78] to demonstrate the generalizability of our design.
Similar to the experiments reported in the paper, XComp effectively enhances model efficiency,
allowing a larger maximum number of frames to be processed under limited GPU memory. Following
the paper’s setup, we use only 2.5% of the training data of LLaVA-Next-Video (i.e., LLaVA-Video-
178k).

For a fair comparison, we also evaluate LLaVA-Next-Video with the same amount of fine-tuning
data while keeping the model architecture unchanged. As shown in Table 7, XComp improves
performance across both benchmarks.

Table 7: Generalize to LLaVA-Next-Video, a different model from VideoChat-Flash. XComp
consistently improves the efficiency and accuracy of LLaVA-Next-Video on the two long video
benchmarks, outperforming both the baseline and fine-tuning.

Model Version VideoMME (Long) LVBench
LLaVA-Next-Video 62.7 40.6
LLaVA-Next-Video + FT 61.4 414
LLaVA-Next-Video + XComp 63.2 43.1

5 Conclusion

In this work, we propose extreme token compression, named XComp, to address the long video
understanding problem by alleviating the large number of tokens. At the token level, our XComp
framework targets on compressing each frame to one roken. Observing the failures of heuristic
compression adopted by previous methods, we propose the key insight of letting the LLM layers
learn the progressive compression of video tokens. This compression strategy, called LP-Comp,
effectively improves the token efficiency and enables denser frame sampling. Our compression at
the frame level further enhances the information contained in the tokens by selecting the frames
relevant to the user queries. Based on the internal attention scores of LLM layers, we further propose
to split the whole video into shorter segments to mitigate the position bias issues. The resulting
question-conditioned compression, QC-Comp, curates a selective set of frames for the LLM to
process. Collectively, our proposed strategies enable XComp to explore the extreme of video token
compression via data-efficient fine-tuning and significantly improve the base VideoChat-Flash on
multiple long video understanding benchmarks.

Limitations and Future Work. Under a limited budget, we primarily explore the extreme token
compression with VideoChat-Flash-2B and LLaVA-Next-Video via data-efficient fine-tuning. There-
fore, potential future work includes adapting our XComp framework to larger VLMs and potentially
integrating the learnable compression into the pre-training stage of the VLM. In addition to the scale
and diversity of experiments, another future work lies in training with the question-conditioned frame
selection, which could be jointly optimized with the LLM layers to achieve even larger compression
ratios than presented in the paper.

Broader Impacts. This work presents advancements in vision-language modeling, with a focus
on improving long video understanding. While our contributions are primarily foundational, we
acknowledge potential societal risks associated with vision-language models, including misuse
of disinformation, privacy concerns, and the amplification of biases present in training data. We
encourage future work to include fairness assessments and responsible release strategies. Where
applicable, safeguards should be considered to mitigate unintended harms.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See the Methods and Experiments sections, where we provide a detailed
description of our proposed method and the corresponding experiments.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See the Conclusion section.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Justification: There is no theoretical result.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We show the methodology details with exact numbers with well-defined
formulas.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer:

Justification: We mentioned the data we used in the paper. These datasets are public. As for
the code, we are planning to release the code.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provided the details with specific numbers in appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Restricting to computation budget, we did not run experiments in multiple
seeds as well as apply statistical analysis.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The paper provides GPU hours.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: This research adheres to the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We mentioned the social impact in appendix.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:
Justification: The paper does not describe safeguards.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the assets used in the paper are either cited in the main paper (models,
benchmarks, ...) or in the appendix (data, ...).

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

21



Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Justification: LLM is a part of the method in this paper.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Implementation Details

A.1 XComp Architecture

XComp is based on VideoChat-Flash [35] and uniquely integrates our learnable progressive compres-
sion (LP-Comp)(Sec. 3.2) and question-conditioned compression (QC-Comp)(Sec. 3.3). XComp
comes from fine-tuning the VideoChat-Flash-2B model [35] with a small amount of 2.5% data, the
fine-tuning details are shown in Appendix A.2.

Algorithm A shows the neural network architecture of XComp, which is largely consistent with
VideoChat-Flash. It begins with the UMT-L visual encoder [43], which encodes short video clips
consisting of 8 frames into visual tokens. Token merging [5] is subsequently applied to reduce the
token count to 128 tokens per clip and 16 tokens per frame. A two-layer MLP connector then maps
these visual tokens from the visual encoder space into the representation space of the large language
model. Finally, Qwen2-1.5B [4] serves as the large language model (LLM) in our framework.

During inference with QC-Comp, multiple forward passes through the model are performed. First,
XComp conducts a forward pass to obtain scores for the frames. Note that for videos longer than
512 frames, the video is divided into shorter segments, each processed separately to compute frame
scores. These individual scores are then aggregated. Based on the aggregated scores, XComp selects
the top-ranked frames and passes them to the model to generate responses.

Details of LP-Comp Algorithm B shows the details of LP-Comp (Sec. 3.2). It compresses video

tokens layer-by-layer in a suffix-preserving manner. Given input tokens V' (¥) € RE*N xd g layer ¢,
the algorithm computes the target token count N, for the next layer using a cosine-based schedule.
If no reduction is needed, tokens are returned unchanged. Otherwise, for each video clip and each
frame within it, only the last /Ny, tokens are kept from the current Ny, preserving the temporal

suffix. The retained tokens across all frames and clips are concatenated to form the output V (¢+1),
This design ensures progressive compression while retaining semantically rich information.

Details of QC-Comp Algorithm C shows the details of Segmented Local Attention, which is the
main part of QC-Comp (Sec. 3.3) and computes scores from attention maps in LLM layers. For a
given video V' and text query @, the algorithm slides a local window (64 frames with a stride of 32)
over the video sequence. Within each segment, it computes the full attention map from the LLM’s
{-th layer. For each frame in the segment, the attention weights over the query tokens are averaged
and accumulated into corresponding 8-frame clip buckets. Although Segmented Local Attention
inherently produces clip-level scores, QC-Comp assigns the same score to all frames within a clip,
thereby converting clip-level scores to frame-level scores. For long videos exceeding 512 frames, the

Algorithm A: MODEL_FORWARD: forward pass with LP-Comp and the score for QC-Comp

Input: M (model), V' (video), @ (text), returnScore € {0, 1}

Output: logits; score (per-clip) if returnScore = 1

/* Step 1: video encoding */

(v VIPY «Partition(V, 8) // separate each 8 frames — 1 clip
foreach V' do _

L Ty ./\/l.umt_visual_enc(V,:hp)

T}, < TokenMerge (T}, 128) // to 128 tokens/clip, 16 tokens/frame
Ty + M.mlp(T%) // project to LLM dim
vV « concat(T, ..., Tk)
Q) + M.text_embed(Q)
/* Step 2: reasoning in LLM layers */
for { =0to M.L —1do
[VEDQUEAD T o MIlm_layer, (V®, Q)
y e+ <LP_Comp (4, y Dy // token-level compression
score[(] <SegmentedLocalAttention((, V¥ Q) // score for QC_Comp
logits +ComputeLogits (QW1))
if returnScore then return (logits, score)
else return logits
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method processes multiple overlapping 512-frame chunks. The final frame-level scores are obtained
by aggregating the results from these overlapping chunks. To ensure diverse frame-level scores, each
frame would be included in 7;¢pear Overlapping and shifted chunks that encourage score variation
across neighboring frames. With these frame-level scores, n_selected_frames among total frames
are selected. Table B shows the hyperparameters.

A.2 Supervised Fine-tuning Details

Hyperparameters Table A shows the hyperparameters used in fine-tuning. We follow the same
training configuration as VideoChat-Flash [35], including the learning rate, weight decay, warmup
ratio, and learning rate scheduler. The only difference lies in the frame sampling parameters:
frames_upbound, frames_lowbound, and the default frames per second (FPS). This change is due
to our use of LP-Comp, which enables more efficient frame representation. As a result, we double
the values of frames_lowbound and frames_upbound compared to VideoChat-Flash.

Datasets We used the 2.5% supervised fine-tuning data collected or released by
VideoChat-Flash [35]. During data curation, we disregarded a few datasets that were exceptionally
large on disk or whose licenses made automatic download impractical. After this filtering, the final
training set contains 71,927 instances are drawn from publicly available datasets, listed in Table C.

Algorithm B: LP_CoMP: suffix-preserving layer-wise video-token compression

Input: ¢ (layer index), V' (video tokens, shape K x NO % d)
Qutput: y ) (compressed video tokens)

(1) _ (1)
Nper = [ 2572 cos(£r) + X2 |

Noew = [ X571 cos( 1) + YL | // Eq. (1)

if Nprev = Niext then return Vo // nothing to compress

foreach T € V¥ do // iterate over K clips

foreach f < 1to F' do // iterate over F' frames in the clip
idx_keep < [ (f = 1) Ny + Npror = Naewt -, Npwor = 1]

T} « Tidx_keep] // suffix-preservation

T’ + concat(Ty,...,Ty)

VD« concat(T’_clipl, ..., T'_clipK)
return V “+1)

Algorithm C: SEGMENTEDLOCALATTENTION: compute clip-level saliency scores

Input: ¢ (layer index), V' (video tokens), ) (text tokens)
Output: score (list of length K, one mean score per clip)

Ly < 64 // frames per segment (8 clips)
stride + 32 // stride in frames (4 clips)
bucket + []_k =1%
for start = 0 to F' — Ly, step stride do // slide local window over the video
Vieg < V[start : start + L]
A +— MIm_layer,.attn([Vieg, @]) // full attention map
for i = 0to Ly, — 1do
c Lsmr‘%J // clip index

w < mean(A[i, Q_start : Q_end])
bucket|c].append (w)

for k = 1to K do
| score[k] <— mean(bucket[k]) // final clip score

return score
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Table A: The hyperparameters used in fine-tuning.

Hyperparameter Value / Description
tunable_parts Large Langauge Model
learning_rate 1x107°
weight_decay 0.0

warmup_ratio 0.03
1lr_scheduler_type Cosine
dataloader_num_workers 1

frames_upbound 1024
frames_lowbound 128
local_num_frames 8

sample_type Dynamic FPS (8 fps by default)

Table B: The hyperparameters used in evaluation.

Hyperparameter Value / Description
temperature 0.0

do_sample False

num_beams 1

n_repeat 2 (each frame in 2 chunks)

n_selected_frames 256 (Long), 512 (MME), 1,024 (MLVU), 2,048 (LVB)

Table C: Datasets used for supervised fine-tuning (71,927 instances).

Image datasets Video datasets

LLaVA-OneVision [32], Kinetics-400 [27], Something-Something [20], TGIF-QA [25],

LLaVA-NeXT [39], TVQA [30], CLEVRER [74], NEXT-QA [67], FAVD [54],

M4-Instruct [33] MovieChat-1K [57], TextVR [65], ShareGPT-Video [9],
ShareGPT-40 [14], Oops [15], OVIS [51], UVO [60],
GUI-World [7], Vript [72], HT-Step [1], Ego4D [21],
LLaVA-Video-178K [78], VideoChat-Flash [35]

B Additional Experiments

B.1 Ablation Study on Fine-tuning

Table D presents an ablation study to isolate the effect of our proposed design from that of fine-
tuning. Specifically, we compare XComp with a baseline that applies the same fine-tuning procedure
(on 2.5% of the data as mentioned in Appendix A.2) to the original VideoChat-Flash-2B model,
without introducing our LP-Comp and QC-Comp. VideoChat-Flash-2B+FT achieves comparable
performance to the original model, suggesting a limited benefit from fine-tuning. This indicates that
the performance gains of XComp stem from our method’s enhancements, rather than from fine-tuning
alone.

Table D: Ablation study of fine-tuning.

Size | LongVideoBench MLVU VideoMME (Long) LVBench
Average Duration 473s 651s 2386s 4101s
VideoChat-Flash-2B [35] | 2B 58.3 65.7 449 429
VideoChat-Flash-2B+FT | 2B 57.4 65.6 447 432
XComp 2B 59.7 66.7 45.6 46.2
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B.2 Efficiency Analysis

Table E shows the efficiency comparison on a LVBench query (863 text tokens), measured over 10
runs on a single NVIDIA H200. Across 1k—4k frames, XComp reduces LLM TFLOPs by ~53-58%
and latency by ~45-58%.

Table E: Efficiency Comparison on LVBench Queries at Inference Stage.

Frames Model |  TFLOPs Latency
1,024  VideoChat-Flash 43 0.22s
1,024  Ours 20 (53%]) | 0.12s  (45%1)
2,048 VideoChat-Flash | 132 0.54s
2,048 Ours 58 (56%)) | 0255 (54%.)
4,096 VideoChat-Flash | 448 1.56s
4,096 Ours 187 (58%1]) | 0.66s (58%)

B.3 More Evaluations

While XComp primarily targets multiple-choice tasks on long videos, it is also capable of handling
other fundamental video understanding tasks. We claim that the extreme compression is not harmful
to the fundamental capability for short videos. In particular, we include evaluations on (1) reasoning
benchmarks such as CLEVRER, which test causal and counterfactual reasoning, and (2) dense-output
tasks such as video captioning (VDC benchmark), which assess the ability to generate descriptive
text for videos. As shown in Table F, XComp achieves results comparable to its backbone model
(VideoChat-Flash-2B), demonstrating that the compression does not significantly harm performance
on these tasks.

We additionally evaluate on MME-VideoOCR, a benchmark designed to measure fine-grained text
perception from videos. Table G reports results on both the full benchmark and the subset of long
videos (>30s). XComp shows a moderate performance drop compared to the original VideoChat-
Flash-2B, consistent with our main paper observations that this is largely due to data differences rather
than architecture changes. When compared to fine-tuned with the same backbone, the performance
gap is minimal, confirming that the degradation primarily comes from training data rather than
compression.

Table F: CLEVRER and VDC results.

CLEVRER VDC
Expl (Opt) Expl (Q) Pred (Opt) Pred(Q) Cntrf(Opt) Cntrf(Q) BLEU@1 BLEU@4
VideoChat-Flash-2B 0.9463 0.8497 0.7789 0.5738 0.7775 0.4007 7.1 1.6
XComp 0.9398 0.8406 0.7697 0.5600 0.7625 0.3652 7.0 1.6

Table G: MME-VideoOCR results.

Model MME-VideoOCR (Overall) MME-VideoOCR (>30s)
VideoChat-Flash-2B 37.1 49.1
VideoChat-Flash-2B + FT 34.9 46.0
XComp 35.4 46.4

B.4 Multi-hop NIAH

Figure A shows the results of the Multi-Hop Needle-in-a-Haystack QA task [35] which is designed
to evaluate extreme long-context reasoning abilities. This benchmark embeds a reasoning path of
images within long video sequences, where each image contains clues guiding the model to the next.
Given a starting point, the model must trace the correct path, identify the target image (needle), and
answer a related question. In this experiment, we use QC-Comp with n_selected_frames =1
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Figure A: Multi-Hop Needle-in-a-Haystack QA Performance.

and n_repeat = 8. It accurately selects the keyframe with 65% accuracy at a sequence length
of 6,144, leading to QA average accuracies of 72.6 and 72.2 over 2,000 to 10,000 total frames for
VideoChat-Flash+QC-Comp and XComp, respectively.
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