
Decomposing Uncertainty for Large Language Models
through Input Clarification Ensembling

Bairu Hou 1 Yujian Liu 1 Kaizhi Qian 2 Jacob Andreas 3 Shiyu Chang 1 Yang Zhang 2

Abstract
Uncertainty decomposition refers to the task of
decomposing the total uncertainty of a predictive
model into aleatoric (data) uncertainty, resulting
from inherent randomness in the data-generating
process, and epistemic (model) uncertainty, re-
sulting from missing information in the model’s
training data. In large language models (LLMs)
specifically, identifying sources of uncertainty is
an important step toward improving reliability,
trustworthiness, and interpretability, but remains
an important open research question. In this pa-
per, we introduce an uncertainty decomposition
framework for LLMs, called input clarification en-
sembling, which can be applied to any pre-trained
LLM. Our approach generates a set of clarifi-
cations for the input, feeds them into an LLM,
and ensembles the corresponding predictions.
We show that, when aleatoric uncertainty arises
from ambiguity or under-specification in LLM
inputs, this approach makes it possible to factor
an (un-clarified) LLM’s predictions into separate
aleatoric and epistemic terms, using a decompo-
sition similar to the one employed by Bayesian
neural networks. Empirical evaluations demon-
strate that input clarification ensembling provides
accurate and reliable uncertainty quantification
on several language processing tasks. Code and
data are available at https://github.com/
UCSB-NLP-Chang/llm_uncertainty.

1. Introduction
With the widespread application of large language models
(LLMs), it is becoming crucial to ensure predictions from
LLMs are trustworthy. One critical dimension of trustworthi-
ness is the ability to indicate when generated text is reliable

1UC Santa Barbara 2MIT-IBM Watson AI Lab, IBM Research
3MIT CSAIL. Correspondence to: Bairu Hou <bairu@ucsb.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

and correct, which may be formalized as the problem of
uncertainty quantification (UQ). Uncertainty quantification
aims to measure the confidence level of neural networks
in their predictions (Gal et al., 2016; Bhatt et al., 2021;
Hüllermeier & Waegeman, 2021). A higher uncertainty
implies the output of LLMs should be clarified, manually
evaluated, or rejected.

Quantifying LLMs’ total uncertainty has been the focus
of increasing research attention. Existing work observes
that LLMs are relatively well-calibrated, especially when
predictions are obtained by ensembling multiple reasoning
chains (Wang et al., 2022; Huang et al., 2022; Si et al.,
2023) or prompts (Jiang et al., 2023), or when LLMs are
prompted to directly output their confidence levels (Kada-
vath et al., 2022; Lin et al., 2022; Tian et al., 2023). Many
other methods have been proposed to quantify the uncer-
tainty of LLMs (Lin et al., 2022; Xiao et al., 2022; Kuhn
et al., 2022; Lin et al., 2023; Duan et al., 2023; Huang et al.,
2023; Park & Kim, 2023; Ren et al., 2023). Accurate quan-
tification of the uncertainty can be used for various applica-
tions, such as out-of-distribution detection and misclassified
data detection.

However, measuring uncertainty is just the first step towards
understanding uncertainty in LLM predictions. For many
applications, it is necessary to distinguish between different
types of uncertainty and decompose the source into these
types, a problem we refer to as uncertainty decomposition.
As discussed more formally below, it is always possible to
decompose a predictive model’s uncertainty into two compo-
nents: aleatoric (data) uncertainty and epistemic (model) un-
certainty. Epistemic uncertainty arises when correct outputs
are predictable in principle, but models lack the knowledge
required for prediction. For example, the question What
is 2+3? requires the knowledge of algebraic operations.
Without such knowledge, the uncertainty will be high. On
the other hand, aleatoric uncertainty arises from ambiguity
or inherent randomness in the data-generating process itself:
in language processing applications, it may result from am-
biguous questions (Min et al., 2020; Guo et al., 2021; Kuhn
et al., 2023) and unclear task instructions (Tamkin et al.,
2022). In particular, an important source of aleatoric uncer-
tainty is the input ambiguity. For example, the answer to

1

https://github.com/UCSB-NLP-Chang/llm_uncertainty
https://github.com/UCSB-NLP-Chang/llm_uncertainty

Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling

the input question Who is the president of this country will
have a high aleatoric uncertainty because it is ambiguous
what country and time the question intends to query about.

This paper aims to obtain a finer-grained uncertainty mea-
surement by determining how much of the total uncertainty
can be attributed to aleatoric uncertainty due to input am-
biguity. Aleatoric uncertainty due to input ambiguity is
irreducible no matter how well a model learns. For example,
to answer the question Who is the president of this coun-
try?, without any context, the uncertainty would be high
regardless of how well the LLM learns, because the question
itself is ambiguous. Uncertainty decomposition provides
important insights for users to improve the performance of
LLM. If epistemic uncertainty is high, users could supply
the model with adequate knowledge through model adapta-
tion, in-context learning, etc.; if the aleatoric uncertainty is
high, then users should modify the query to make it more
concrete.

Despite existing work aimed at quantifying total uncer-
tainty in LLMs, decomposing this uncertainty for LLMs
remains understudied. Existing methods for uncertainty
decomposition in other models cannot be directly applied,
due to the black-box nature of LLMs and the prohibitive
cost of inference. For example, Bayesian Neural Networks
(BNNs) (Neal, 2012; Blundell et al., 2015; Graves, 2011;
Louizos & Welling, 2016; Hernández-Lobato & Adams,
2015; Hasenclever et al., 2017; Li et al., 2015) specify a
prior distribution over the model parameters and approxi-
mate the posterior distribution given the training data. DEEP
ENSEMBLES (Lakshminarayanan et al., 2017; Fort et al.,
2019) decompose the uncertainty by training different vari-
ants of models, e.g., with different random seeds, to with the
proper scoring rules (e.g., negative log-likelihood loss for
the classification task) in the target task and then ensembling
them.

Despite their effectiveness, Bayesian Neural Networks re-
quire substantial modifications to the training procedure,
while DEEP ENSEMBLES necessitate training multiple vari-
ants of LLMs. Both approaches are generally impractical
or prohibitively expensive. Given these challenges, we aim
to address the following question: How can we effectively
quantify and decompose uncertainty in LLMs?

In this paper, we propose a framework for uncertainty de-
composition that we call input clarification ensembling. Our
approach shares many intuitions and structural similarities
with BNN-based approaches, but avoid the need to modify
LLM parameters or inference procedures. Our approach
is motivated by the observation that, although it is very
challenging to modify LLM’s parameters, it is relatively
easy to manipulate the input to LLMs. Inspired by this,
rather than ensembling different model variants that mini-
mize the epistemic uncertainty, we introduce a set of input

𝐶 !

𝑪 "Input

LLM

Input

Clarify

𝜽 !

...
...

...

𝜽 "

Input

min
𝜽

KL[𝑝||𝑞]

ℋ(𝑝(𝒀|𝑿⊕ 𝑪))
min
𝑪

Epistemic
Uncertainty

Disagreement

Average
Individual

Uncertainty

Deep
Ensembles

Input Clarification
Ensembling

Aleatoric
Uncertainty

Aleatoric
Uncertainty

Disagreement

Average
Individual

Uncertainty

Epistemic
Uncertainty

Figure 1. The uncertainty quantification frameworks of DEEP EN-
SEMBLES (upper) and input clarification ensembling (lower).

clarifications which can minimize the aleatoric uncertainty.
We then ensemble an LLM’s predictions under different
clarifications. Figure 1 shows the general pipeline. For
example, for the question Who is the president of this coun-
try?, a possible clarification is ‘This country’ refers to the
US. By ruling out the aleatoric uncertainty by clarification,
we can ascribe the remaining uncertainty of each individ-
ual prediction to epistemic uncertainty. Furthermore, by
measuring the disagreement of the model predictions under
different clarifications, we can gauge the aleatoric uncer-
tainty. Our experiments verify that the proposed method
provide accurate uncertainty quantification results on both
total uncertainty and its decomposition.

2. Related Work
Uncertainty quantification. Uncertainty quantification
for machine learning models has been widely studied to
quantify the reliability of model predictions (Gal et al., 2016;
Gal & Ghahramani, 2016; Malinin & Gales, 2018; Ovadia
et al., 2019; Malinin et al., 2020; Lin et al., 2022; Kuhn
et al., 2022; Lin et al., 2023; Shen et al., 2023). Uncertainty
in model predictions can have numerous causes. Given
the total uncertainty in model predictions, one can further
decompose it into epistemic uncertainty (due to lack of
knowledge in the model) and aleatoric uncertainty (due to
the inherent randomness and noise in data).

Depending on how the uncertainty is obtained, existing un-
certainty quantification methods can be categorized into
intrinsic and extrinsic methods. Intrinsic methods adopt
machine learning models to provide an inherent uncer-
tainty estimate, such as Bayesian approaches and ensemble-
based approaches (Malinin & Gales, 2018). Bayesian ap-
proaches (Blundell et al., 2015; Gal & Ghahramani, 2016;

2

Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling

Teye et al., 2018; Mobiny et al., 2021; Lakshminarayanan
et al., 2017; Malinin et al., 2020; He et al., 2020) and
ensemble-based approaches (Lakshminarayanan et al., 2017;
Fort et al., 2019) can quantify both aleatoric and epistemic
uncertainty. In comparison, extrinsic methods quantify
the uncertainty in a post-hoc manner using auxiliary mod-
els (Kristiadi et al., 2021; Lahlou et al., 2022). Our method
belongs to the intrinsic family of methods and is directly
motivated by Bayesian neural network approaches.

Uncertainty Quantification and Model Calibration for
LLMs With the wide application of LLMs, how to accu-
rately quantify the predictive uncertainty has also drawn
attention (Xiao et al., 2022; Lin et al., 2022; Mielke et al.,
2022; Zhou et al., 2023; Huang et al., 2023; Duan et al.,
2023; Chen & Mueller, 2023; Ott et al., 2018; Malinin &
Gales, 2020). Semantic Uncertainty (Kuhn et al., 2022)
clusters string-valued LLM outputs by synonymy for better
uncertainty quantification. Lin et al. (2023) explores un-
certainty quantification within the challenging black-box
context, where the token generation probability is inaccessi-
ble. In this pursuit, BSDETECTOR (Chen & Mueller, 2023)
combines two strategies to estimate the model’s predictive
uncertainty. The first approach involves sampling multi-
ple answers from the LLM and assessing their consistency,
while the second directly queries the LLM for its confidence
in the generated answer. Although there have been some
explorations in this direction, existing methods can only
estimate the total uncertainty. In comparison, we propose
a more principled framework that can both quantify the to-
tal uncertainty and decompose it into aleatoric uncertainty
and epistemic uncertainty, leading to a more fine-grained
understanding of LLMs.

Another line of research is model calibration for LLMs.
Model calibration is the process of ensuring that the pre-
dicted probabilities or confidence scores from a machine
learning model align with the true probabilities or likeli-
hoods of events occurring (i.e., the prediction is correct).
Well-calibrated model predictions help improve the relia-
bility of uncertainty quantification. Using existing model
calibration methods (Hendrycks & Gimpel, 2016; Guo et al.,
2017; Ovadia et al., 2019; Riquelme et al., 2018; Desai &
Durrett, 2020), prior work (Huang et al., 2022; Jiang et al.,
2023; 2021; Ye & Durrett, 2022) has shown that LLMs
are relatively well-calibrated on factual QA and complex
reasoning tasks when properly prompted. Specifically, Ka-
davath et al. (2022); Tian et al. (2023) estimate the predic-
tion confidence of LLMs by prompting LLMs to output
their confidence of their answers. For complex reasoning
tasks, LLMs may output both the reasoning chains and
the final answer. To estimate the confidence score, previ-
ous approaches (Huang et al., 2022) sample multiple out-
puts for the input question and use the answer frequency

to indicate the confidence. Researchers further ensemble
multiple prompts for better calibration performance (Jiang
et al., 2023). Our uncertainty quantification is based on the
well-calibrated predictions of LLMs, which lead to a more
precise and accurate quantification result.

Modeling Ambiguity with language models Ambigu-
ity is a longstanding issue in the NLP domain, exten-
sively explored in tasks such as syntactic and seman-
tic parsing (Koller et al., 2008), open-domain question-
answering (Min et al., 2020; Cole et al., 2023), conver-
sational question-answering (Guo et al., 2021) and natural
language inference (Liu et al., 2023). Prior work, such as
AmbigQA (Min et al., 2020) and AmbigEnt (Liu et al.,
2023), have identified the widespread ambiguities and es-
tablished benchmarks with ambiguous inputs. These studies
have demonstrated that existing language models lack the
capability to effectively recognize and manage ambiguities.
Our work models the ambiguity from the perspective of un-
certainty quantification, where a high aleatoric uncertainty
can indicate the potential existence of input ambiguity. By
decomposing the aleatoric uncertainty, we show that it is
possible to enhance the ambiguity detection performance of
existing LLMs.

3. Methodology
3.1. Notations and Problem Formulation

Denote by X and Y the input and output target of a given
task and θ as the parameters of an LLM. Denote by p(Y |X)

and q(Y |X,θ) the ground-truth and predicted distribution
of Y given X.

We first introduce three uncertainty concepts. First, the to-
tal uncertainty is defined as the entropy of the predicted
distribution, i.e., Utotal = H(q(Y |X;θ)). If the overall un-
certainty is high, then it means the LLM has low confidence
in its output. The total uncertainty can be further decom-
posed into two different types of uncertainties.

The first type of uncertainty is referred to as the epistemic
uncertainty, which characterizes how well the LLM ap-
proaches the ground truth distribution, and thus learns the
knowledge therein. For example, to answer ‘What is 2+3?’,
if the LLM were able to learn the true knowledge of the al-
gebraic operation, it would be able to answer with certainty;
otherwise, the uncertainty would be high.

The second type of uncertainty is referred to as the aleatoric
uncertainty, which characterizes the fundamental uncer-
tainty residing in the ground-truth distribution, and is irre-
ducible no matter how well the LLM learns. For example,
to answer ‘Who is the president of this country?’, even if
the LLM were well acquainted with politics, it still could
not answer it confidently, because this question is inherently

3

Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling

ambiguous. The data aleatoric is often quantified by the
entropy in the ground-truth distribution, i.e., H(p(Y |X)).

The goal of this paper is to estimate both the epistemic and
aleatoric uncertainties in LLMs.

3.2. Background: Bayesian Neural Networks and DEEP
ENSEMBLES

The possible solutions to our task is to apply the canoni-
cal Bayesian Neural Network (BNN) approach (Blundell
et al., 2015; Graves, 2011) or DEEP ENSEMBLES (Laksh-
minarayanan et al., 2017), which are standard approaches
to uncertainty decomposition. Instead of having one set
of parameters, BNNs model the parameter distribution of
a neural network. With the Bayesian formalism, the pos-
terior distribution can be approximated give the training
data via techniques such as variational inference (Blundell
et al., 2015; Graves, 2011). Due to the prohibitive computa-
tional cost of BNNs, non-Bayesian methods such as DEEP
ENSEMBLES are proposed with better scalability. DEEP
ENSEMBLES maintain K models, each parameterized as
θ(k). Each of the k models seeks to minimize the training
loss, usually the cross entropy loss for classification tasks,
which is equivalent to solving the following optimization
problem

min
θ

KL(p(Y |X)∥q(Y |X,θ))). (1)

In DEEP ENSEMBLES, different models have slightly dif-
ferent initialization values and thus the optimized values,
{θ(k)}, are different. Denote the resulting distribution of
the model parameters θ as p(θ|D) (either approximated
by BNNs or DEEP ENSEMBLES) where D is the training
dataset. Then the ensembled distribution of BNN can be
represented as q(Y |X) = Eq(θ|D)[q(Y |X,θ)]. Then we can
decompose the predictive uncertainty as

H(q(Y |X)) = I(Y ;θ|X)︸ ︷︷ ︸
①

+Eq(θ|D)H(q(Y |X,θ))︸ ︷︷ ︸
②

, (2)

where I denotes the mutual information under the q distri-
bution. ① measures the disagreement among the different
models; ② measures the average uncertainty of each indi-
vidual model. The above equation can be straightforwardly
derived from the definition of conditional mutual informa-
tion. Under certain assumptions, ① and ② can approximate
the epistemic and aleatoric uncertainties, respectively (Gal
et al., 2016). An illustration of the DEEP ENSEMBLES
framework is shown in the upper panel of Figure 1.

Here is an intuitive explanation of why this is the case. Ac-
cording to Eq. 1, the goal of each model is to approach the
ground-truth distribution, and thus can be viewed as the pro-
cess of reducing the epistemic uncertainty. Therefore, if the
optimization is successful, all the models will learn the true

distribution, i.e., q(Y |X,θ(k)) = p(Y |X), ∀k, which, by
definition, results in zero epistemic uncertainty. Meanwhile,
① will also be zero because all the models produce the same
prediction. Thus ① equals epistemic uncertainty in this case.
② would also equal the aleatoric uncertainty because the
predicted distribution is equal to the true distribution.

On the other hand, if the models fail to learn the true distri-
bution, in which case the epistemic uncertainty will be large,
① will also be large since different models have different
hyperparameter settings and will be stuck in very different
local optima.

3.3. Do BNN and DEEP ENSEMBLES work for LLMs?

Our goal of decomposing uncertainty for LLMs would be
easily achieved if these methods were readily applicable to
LLMs. Unfortunately, this is not the case. For BNNs, we
need to significantly modify the training method of LLMs.
For DEEP ENSEMBLES, the learning process in Eq. 1 is
also very challenging for LLMs. Specifically, there are two
types of methods for adapting LLMs to a particular task,
supervised fine-tuning and prompting/in-context learning.
Directly fine-tuning the model according to Eq. 1 is usually
infeasible due to the limited access to model parameters and
its huge requirement for computation. Even if it is feasible,
it would be very time-consuming because it requires fine-
tuning multiple LLMs.

On the other hand, the in-context learning method, though
feasible, does not fit into the DEEP ENSEMBLES framework
because it does not directly aim to optimize Eq. 1, so the
decomposition will be very inaccurate. To demonstrate this,
we perform a simple experiment on the AmbigQA (Min
et al., 2020) dataset, which contains both ambiguous ques-
tions with multiple answers and unambiguous questions.
We use the BNN method to decompose the uncertainty of
ChatGPT, where the different individual model is derived
by providing different in-context examples. If the decompo-
sition method is accurate, we would expect to see that the
aleatoric uncertainty for the ambiguous questions is signifi-
cantly larger than that of the unambiguous ones. However,
as shown in Figure 2, the gap between the uncertainties of
the two groups of questions is very small. More experiment
details can be found in Section 4.

While the BNN and DEEP ENSEMBLE framework do not
work for LLMs, it inspires us to design an alternative frame-
work that is almost completely symmetrical to the BNN
approach, as discussed in the next subsection.

3.4. Input Clarification Ensembling

Although modifying or adapting LLMs is challenging, it is
relatively straightforward to modify the input to LLMs. By
analogy to the way BNNs and DEEP ENSEMBLES ensemble

4

Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
Aleatoric Uncertainty

0.0
0.5
1.0
1.5
2.0
2.5
3.0

De
ns

ity
Aleatoric Uncertainty Density

Ambiguous Input
Unambiguous Input

Figure 2. Aleatoric uncertainty distribution on the AmbigQA (Min
et al., 2020) dataset using the DEEP ENSEMBLES method. We
use kernel density estimation to smooth the frequency distribution
histogram. DEEP ENSEMBLES is achieved by ensembling different
in-context examples.

different models that minimize epistemic uncertainty (Eq. 1),
can we design a framework that ensembles different inputs
to minimize aleatoric uncertainty?

This is the motivation behind our framework, which consists
of the following two steps.

Step 1: Input Clarification. Given an input X, we first
generate a set of texts, C(k), called clarifications. Each clar-
ification C(k) seeks to minimize the ambiguity in X (and
thus the aleatoric uncertainty) when appended to X. For-
mally, we denote one clarification result as X ⊕Ck, where
⊕ denotes concatenation. In the aforementioned example,

‘Who is the president of this country?’, possible clarifica-
tions include ‘This country refers to the US.’ and many other
countries. Since there can be many valid clarifications for
the input, {C(k)} is a set.

Step 2: Ensemble. We denote the distribution of the afore-
mentioned input clarifications as q(C|X) given a particular
input X. Then, we define the predictive model q(Y |X)
as an ensemble of predictions conditional on each clarified
input, i.e., q(Y |X) = Eq(C|X)[q(Y |X ⊕C,θ)]. (Model pa-
rameters θ are kept constant, and thus will be omitted for
brevity below.)

We then propose to decompose the uncertainty of the en-
sembled model as

H(q(Y |X)) = I(Y ;C|X)︸ ︷︷ ︸
①′

+Eq(C|X)H(q(Y |X ⊕C))︸ ︷︷ ︸
②′

.

(3)
We claim that ①′, which computes the mutual information
between the model output distribution and the clarifications,
can approximate the aleatoric uncertainty caused by input
ambiguity. In contrast, ②′ is the average entropy of the
output distribution given different clarifications, represent-
ing the model’s uncertainty across clarified versions of the
input. Assuming that input ambiguity is the sole source of
aleatoric uncertainty, we may consider it as an estimate of

the epistemic uncertainty for the LLM given the original
input. This interpretation, however, diverges from the tra-
ditional definition of epistemic uncertainty, and we mainly
focus on decomposing the aleatoric uncertainty (①′) in this
paper.

By comparing the above process against Eqs. 1 and 2, we
can notice the symmetry between our framework and DEEP
ENSEMBLES’s — DEEP ENSEMBLES seeks to pin down
epistemic uncertainty whereas ours aleatoric uncertainty;
Eq. 3 takes almost an identical form to Eq. 2 but the corre-
sponding uncertainties are swapped. Figure 1 also shows
such symmetry.

Accordingly, the same explanation of why it works applies
here. When the input is already very clear, and hence
aleatoric uncertainty is low, the clarifications will be iden-
tically empty, so ①′ will approach zero. When the input
is very ambiguous, the clarifications will be very different
(think about the aforementioned president example), and
so would the answers produced with different clarifications.
In this case, ①′ will be very high. On the other hand, ②′

measures the average uncertainty on clarified input, which
rules out most of the aleatoric uncertainty, so the remaining
uncertainty can mostly be ascribed to epistemic uncertainty.

3.5. Input Clarification

Unlike the conventional neural networks, the input to LLMs
usually contains multiple components, including instruc-
tions, in-context examples, questions etc. Therefore, we can
separately measure the aleatoric uncertainties caused by dif-
ferent input components by clarifying only the correspond-
ing components. For example, to measure the aleatoric
uncertainty resulting from ambiguous instructions, we can
clarify only the instruction. For the aleatoric uncertainty
studied in this work, we will focus on the uncertainty caused
by instruction ambiguity and question ambiguity, but the
framework is readily generalizable to other input compo-
nents.

To derive clarifications that approximately minimize the am-
biguity in step 1 above, we introduce a clarification LLM,
where we provide an instruction and in-context example to
guide the LLM to perform adequate clarification. Therefore,
the above input clarification distribution q(C|X) in Equa-
tion 3 is the output distribution of the clarification LLM.
Note that the clarification LLM can be different from the
LLM for prediction. In this work, we propose the following
design choices for the clarification LLM to to ensure the
quality of clarification:

• Prompting an LLM with task instructions and in-context
examples. We design instructions for the clarification gen-
eration task and provide the model (gpt-3.5-turbo
and gpt-4) with several in-context examples.

5

Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling

• Supervised fine-tuning. We can also fine-tune a open-
sourced language model on datasets that contains the am-
biguous inputs and their corresponding clarifications. We
fine-tune the Llama-3-8b-instruct model on the
training set of the AmbigQA (Min et al., 2020) dataset.

Further implementation details are provided in Section 4
and Appendix A.2. For both design choices, we show that
we can easily adapt the LLMs for clarification generation
and quantify the uncertainty using our proposed framework.

3.6. Improving Performance via Soliciting Clarifications

Our framework not only provides a way of decomposing
the uncertainties, but can also enable an interpretable and
effective human-LLM interaction experience. Currently,
one of the major ways for humans to interact with LLMs is
designing appropriate input. However, the input designed by
humans may not be clear enough to LLMs, often resulting
in undesirable answers given by LLMs. With the proposed
input clarification framework, we can design an interaction
paradigm that alleviates this problem.

Given an input query, we can first gauge the uncertainties of
different input components. If one of the components, say
the instruction, contributes to high uncertainty (exceeding
a threshold), we can provide feedback to the user that the
LLM is not sure about the answer because the instruction
is ambiguous, along with several clarification options pro-
duced by the clarification LLM for the user to choose from.
This would help the user to perform directed improvement
of the input query and obtain the desirable answer.

4. Experiments
In this section, we conduct empirical evaluations to demon-
strate the validity and effectiveness of the proposed method.
Specifically, we aims to answer the following two questions:

1. Can the proposed UQ framework quantify total uncer-
tainty effectively and correctly?

2. Can the proposed UQ framework decompose the un-
certainty effectively and correctly?

To answer the first question, we conduct the mistake detec-
tion experiment, which will be introduced in Section 4.2. To
answer the second question, we conduct three experiments:
ambiguity detection, monotonicity check, and recall of cor-
rect answers, which will be presented in Sections 4.3-4.5,
respectively.

4.1. Experiment Configurations

We use gpt-3.5-turbo-0613 as the default LLM for
all experiments. We sample 10 model predictions with tem-

perature 0.5 and use the answer frequency to estimate the
output distribution. Since all the datasets we use are open-
ended generation tasks, different generated answers could
have the exactly same meaning. For example, to answer the
question ‘When did the world’s population reach 7 billion?’,
the LLM may generate several different answers such as

‘December 2017’ and ‘The world’s population reached 7
billion in December 2017’, which are essentially the same
meaning. Regarding these two answers as distinct answers
can lead to an overestimation of the entropy of output distri-
bution. Previous work (Kuhn et al., 2022; Lin et al., 2023)
uses a natural language inference model to cluster differ-
ent generated sequences with the same semantic meanings
into one group for better output distribution estimation. We
empirically find that LLMs can achieve better clustering
performance. Therefore, we prompt the LLM to cluster
output answers into different groups for output distribution
estimation on question-answering datasets. More details
about this process can be found in Appendix A.6.

For all the experiments, we introduce the following base-
lines: Semantic Uncertainty (Kuhn et al., 2022) (denoted
as SE) directly computes the entropy of the output distri-
bution as the estimated (total) uncertainty (named semantic
entropy in their paper). Tian et al. (2023) first queries the
LLM for the answer and then queries the LLM again for
the confidence of the correctness of the answer. We denote
this method as ASK4CONF. We also slightly modify the
prompt for the ambiguity detection task to query LLM for
the confidence of the ambiguity of the input (denoted as
ASK4CONF-D). The DEEP ENSEMBLES method (denoted
as ENSEMBLES∗ for brevity) is implemented by ensembling
the output distributions of multiple different in-context ex-
ample sets (we use 5 different sets). We add ∗ here since this
method is different from standard DEEP ENSEMBLES and
does not directly optimize Eq. 1. We provide more details
of the prompts used in the experiments in Appendix A.4.

4.2. Quantifying Total Uncertainty

Correctly quantifying the total uncertainty is the premise
of correctly decomposing the uncertainty. If the estimated
total uncertainty is inaccurate, so will the estimated aleatoric
and epistemic uncertainty. A reliable total uncertainty mea-
sure should have a close correspondence to the model’s
prediction accuracy. For model predictions whose total
uncertainty is high, the chances that the predictions are in-
correct should also be high. Therefore, we will evaluate the
total uncertainty quantification using the mistake detection
task, following the previous work (Kuhn et al., 2022; Lin
et al., 2023).

Evaluation Settings We evaluate the total uncertainty
on the Natural Question (NQ) dataset (Kwiatkowski
et al., 2019) and GSM8K (Cobbe et al., 2021). For each

6

Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling

Table 1. Uncertainty quantification for mistake detection. Entropy
(✔) refers to the average total uncertainty of questions with correct
answers, while Entropy (✘) refers to the average total uncertainty
of question with wrong answers.

Method AUROC F1 Score Entropy (✔) Entropy (✘)
Natural Question

SEMANTIC ENTROPY 63.8 77.9 0.29 0.56
ASK4CONF 70.4 83.9 - -
ENSEMBLES∗ 69.7 79.7 0.46 0.88
OURS 72.3 80.2 0.58 1.18

GSM8K

SEMANTIC ENTROPY 88.2 92.4 0.32 1.46
ASK4CONF 58.1 92.3 - -
ENSEMBLES∗ 88.3 94.6 0.57 1.94
OURS 89.7 94.7 0.42 1.82

dataset, we randomly sample 200 examples from the val-
idation set for evaluation. The total uncertainty on each
example is used to predict whether the model’s answer is
correct. We report the area under the receiver operator char-
acteristic curve (AUROC) as well as the best F1 score when
using the total uncertainty to predict the correctness of the
model answer. We use 5-shot in-context examples on the
NQ dataset and 2-shot on the GSM8K dataset with chain-of-
thoughts. We prompt the LLM to rephrase the input question
to generate the clarification set. The detailed prompts are
listed in Appendix A.4.

Results The experiment results are shown in Table 1,
which confirms that the total uncertainty measured by the
proposed approach is reliable. Specifically, we highlight
the following observations. First, our method achieves com-
parable uncertainty quantification performance compared
to the baselines, achieving a similar AUROC and F1 score.
Second, as the proposed method shares a symmetry form
with the DEEP ENSEMBLES method, one would expect the
total uncertainty quantification of the two should be similar.
The above experimental results verify that the quantification
results of these two methods are very close. Third, although
ASK4CONF performs well on factual QA tasks, it provides
a poor uncertainty estimation for the complex reasoning task
(GSM8K), while our method can still provide good mistake
detection performance.

4.3. Uncertainty Decomposition

Now we can proceed to evaluate whether the decomposed
uncertainty is reliable. As discussed, one of the main causes
of aleatoric uncertainty is the ambiguity of the input. There-
fore, we will test how well the measured aleatoric uncer-
tainty is predictive of whether an input is ambiguous. In
particular, we focus on two input components, the instruc-
tion and the question, and separately predict the ambiguity
within each component using the respective aleatoric uncer-
tainty (see Section 3.5).

Datasets For ambiguity detection of the question, we se-
lect the AmbigQA dataset (Min et al., 2020), which has
annotations on the ambiguity of questions. The questions in
AmbigQA are extracted from the NQ dataset (Kwiatkowski
et al., 2019). For ambiguity detection of the instruction,
since there is no existing dataset, we create a dataset,
AmbigInst, where we generate ambiguous instructions,
their disambiguation, and the input-output pairs using Chat-
GPT. Each instruction is paired with around 15 questions.
Since the focus of AmbigInst is to detect ambiguous
instructions, we do not introduce ambiguity to the paired
questions. More details about AmbigInst can be found
in Appendix B. We use the full AmbigInst dataset and
randomly sample 200 examples from the validation set of
AmbigQA for evaluation.

Evaluation Settings We use 5-shot in-context examples
on the AmbigQA dataset similar to the experiment on the
NQ dataset. Since the questions in AmbigInst are rela-
tively easy and straightforward, we directly prompt LLMs
in a zero-shot setting. For ambiguous question detection,
we perform clarifications on the input question only. We
evaluate two clarification LLMs on the AmbigQA dataset,
including the Llama-3-8B-Instruct fine-tuned on the
training set of AmbigQA and gpt-4. we retrieve the most
similar 16 questions as in-context examples when prompt-
ing the gpt-4 to generate clarifications for a particular
input question. The similarity between two questions is
measured by the cosine similarity of their sentence em-
beddings from SENTENCE-BERT1 (Reimers & Gurevych,
2019). For the AmbigInst dataset, we directly prompt
gpt-3.5-turbo-0613 to generate instruction clarifica-
tions (See Appendix A.4 for more details). We also include
the performance of our method when using ground-truth
disambiguation from the two datasets for reference (denoted
as OURS∗).

The baselines are similar to the methods in the mistake de-
tection task. The main difference is we use the quantified
uncertainty to predict whether the input contains ambiguity.
The total uncertainty for SE is used for ambiguity predic-
tion in this task. Also, we test both the aleatoric uncertainty
and total uncertainty quantified by the DEEP ENSEMBLES
method, denoted by ENSEMBLES∗(aleatoric) and ENSEM-
BLES∗ (total) respectively. For our method, we use the
aleatoric uncertainty for ambiguity prediction. DEEP EN-
SEMBLES is not included on the AmbigInst dataset since
we do not include in-context examples on that dataset. We
also incorporate results with additional methods from previ-
ous work (Si et al., 2022; Cole et al., 2023) in Appendix A.1.

1We use the pre-trained sentence transformer model
https://huggingface.co/sentence-transformers/all-mpnet-base-v2.

7

Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling

Table 2. Uncertainty quantification for ambiguity detection. Avg.
AU (✔) refers to the average aleatoric uncertainty of unambiguous
questions, while Avg. AU (✘) refers to the average aleatoric uncer-
tainty of ambiguous questions.

Method AUROC F1 Score Avg. AU (✔) Avg. AU (✘)
AmbigQA

SEMANTIC ENTROPY 54.9 46.8 0.24 0.47
ASK4CONF-D 55.0 64.3 - -
ENSEMBLES∗ (aleatoric) 53.6 53.0 0.13 0.13
ENSEMBLES∗ (total) 55.4 55.0 0.50 0.41
OURS (GPT) 71.7 70.1 0.28 0.67
OURS (LLaMA) 67.1 71.8 0.55 0.91
OURS∗ 89.8 85.6 0.53 1.52

AmbigInst

SEMANTIC ENTROPY 66.0 53.7 0.07 0.50
ASK4CONF-D 57.9 75.4 - -
OURS (GPT) 81.3 77.9 0.10 0.75
OURS∗ 96.7 92.6 0.10 1.04

Results The experiment results are shown in Table 2. We
emphasize two observations. First, our method achieves the
best ambiguity detection performance and significantly out-
performs the baselines. Note that all the baselines, except
for ENSEMBLES∗ (aleatoric), use the total uncertainty for
ambiguity detection, and thus could not disentangle epis-
temic uncertainty from the aleatoric uncertainty. Therefore,
these results verify the importance of uncertainty decompo-
sition. Second, even a small model can also be efficiently
adapted for the clarification generation task. When using the
fine-tuned LLaMA model, Our method can still outperform
baselines significantly. This adaptation process was remark-
ably efficient, requiring less than 10 minutes on 4×80G
H100 GPUs. Third, the DEEP ENSEMBLES∗ (aleatoric)
method is not effective in the black-box LLM setting. As
we have discussed in Section 3.3, simply varying the in-
context examples cannot accurately estimate the parameter
posterior distribution, while the proposed framework is spe-
cially designed for the black-box LLMs.

Another observation is that ambiguity detection perfor-
mance varies across different datasets. On the AmbigQA
dataset (Min et al., 2020), the ambiguities are more im-
plicit and hard to find by the clarification models, which
makes the detection performance relatively low (although
still higher than baselines significantly). Min et al. (2020)
also note that the ambiguity in the dataset is “sometimes
subtle” and “many (ambiguities) are only apparent after ex-
amining one or more Wikipedia pages”. In comparison, on
the AmbigInst dataset where we design ambiguities to be
very explicit (see Appendix B for more examples), the clari-
fication model can generate effective clarifications for most
cases, leading to a good detection performance. Finally, the
performance of our method can be further improved when
using with the ground-truth disambiguation from the two
datasets as the input clarifications, demonstrating that the
clarification model is still worth exploring.

0.48
1.04

0.43
0.21

1.53
0.59

1.311.36Epistemic
uncertainty

Aleatoric
uncertainty

Higher

H
ig

he
r

When did the Royal
Proclamation of 1763
ended?

NQ GSM8K

John … spends 6 hours
boating. He also watched 3
shows (2 hours each). This
was 30% of the time he
spent. (continued)

NQ

Who does Demetrius
love in A Midsummer
Night Dream?

AmbigQA

What is the lowest #
on the FM dial?

Figure 3. The uncertainty quantification examples using the pro-
posed method. The instances are selected from existing datasets
including Natural Question (NQ) (Kwiatkowski et al.,
2019), AmbigQA (Min et al., 2020), and GSM8K (Cobbe et al.,
2021).

Qualitative Results We further present a visual repre-
sentation of various uncertainty quantification results in
Figure 3. These examples have been grouped accord-
ing to the levels of aleatoric and epistemic uncertainty
the LLM exhibits. Our uncertainty quantification frame-
work enables a clear understanding of the sources of un-
certainty in each example. For instance, consider the ques-
tion “What is the lowest # on the FM dial”
from the AmbigQA dataset. This question lacks specificity
regarding the country and region, leading to ambiguity in
the input. Our uncertainty quantification illustrates that the
predominant source of uncertainty in the model’s prediction
stems from aleatoric uncertainty in this case. In contrast, de-
spite a clear question, the model struggles to answer a query
about the “Royal Proclamation” (as shown in the upper left
example), resulting in a high level of epistemic uncertainty.
Interestingly, we have identified a few examples within the
GSM8K dataset where the uncertainty in the LLM prediction
is attributed to data-related factors. For instance, the upper
right example in the figure raises ambiguity about whether
the word “this” refers solely to watching shows or encom-
passes both activities (the ground-truth annotation uses the
second interpretation). More details about these examples
can be found in Appendix A.5.

4.4. Monotonicity Check

To further evaluate the reliability of our aleatoric uncertainty
measure, particularly the clarification module, we perform a
monotonicity check experiment. Ideally, the clarified input
should contribute to a much lower aleatoric uncertainty than
the original ambiguous input. To test this, we perform two

8

Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling

AmbigQA AmbigInst0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Al
ea

to
ric

 U
nc

er
ta

in
ty

Aleatoric Uncertainty
Original
Clarification

Top-1 Top-2 Top-3 Top-4 Top-5
Top-K Clarifications

44

46

48

50

52

54

Re
ca

ll
(A

m
bi

gQ
A)

AmbigQA-Clarify
AmbigQA-Orig
AmbigInst-Clarify
AmbigInst-Orig

55

60

65

70

75

80

Re
ca

ll
(A

m
bi

gI
ns

t)

Figure 4. (Left) Average aleatoric uncertainty of the ambigu-
ous inputs and their clarifications. (Right) Performance im-
provement via Soliciting clarifications. AmbigQA-Orig and
AmbigInst-Orig refer to the recall of correct answers when
directly answering the original input. AmbigQA-Clarify and
AmbigInst-Clarify refer to the recall of correct answers us-
ing different number of input clarifications.

rounds of aleatoric uncertainty measuring. In the first round,
we measure the aleatoric uncertainty by clarifying the origi-
nal input segments (question or instruction). In the second
round, we measure the aleatoric uncertainty of the clari-
fied inputs obtained in the first round. Our goal is to check
whether the aleatoric uncertainty measured in the second
round is much smaller than that in the first round. This ex-
periment is performed on the AmbigQA and AmbigInst
datasets. In both rounds, we use the same clarification
prompt to generate the clarifications.

Figure 4(a) visualizes the change in uncertainty on both
datasets. As can be observed, the aleatoric uncertainty drops
significantly after the input is clarified, which verifies the
effectiveness of the clarification network.

4.5. Recall of Correct Answers

As discussed in Section 3.6, our framework can be used to
improve the performance in the presence of ambiguous input
by asking users to choose from a set of clarified versions
of the input. To make this happen, our methods must be
able to cover a good proportion of the possible answers
resulting from different clarifications of a given ambiguous
input. Also, the number of required clarifications should be
smaller, as the users might not want to select the responses
from a large set of choices.

To test this, we use the ambiguous questions and instruc-
tions from AmbigQA and AmbigInst respectively. For
each input, we collect all the possible labeled answers from
the ground-truth annotations. Then we select one answer as
the target answer that the user is asking for. In our pipeline,
the LLM will generate multiple answers given the gener-
ated clarifications. Therefore, we inspect how well these
generated answers cover the target answer given different
numbers of clarifications. We separately compute the recall
of the target answer with the different numbers of clarifica-
tions. As a baseline, we introduce a vanilla version, where

we directly query the LLM with ambiguous input without
any clarification.

The results are illustrated in Figure 4(b). We can consis-
tently observe an increase of recall given more clarifications.
Similar to the ambiguity detection performance, the recall
improvement on the AmbigInst dataset is more signifi-
cant compared to the AmbigQA dataset, which is due to the
subtlety of the AmbigQA dataset as discussed. Nevertheless,
the proposed clarification framework is able to significantly
improve the answer recall over the vanilla version without
the clarification.

5. Conclusion
In this paper, we focus on the uncertainty quantification
of LLMs and propose a new framework for decomposing
the uncertainty. With a symmetric structure of the BNN
methods, our framework leverages input clarifications for
uncertainty quantification, which is more suitable for black-
box LLMs. experimental results affirm that our proposed
method not only yields reliable uncertainty quantification
but also effectively decompose the total uncertainty into
aleatoric and epistemic uncertainty. In the future, we will
further explore how to build a more effective clarification
module to boost the effectiveness of our method.

Acknowledgment
The work of Bairu Hou, Yujian Liu, and Shiyu Chang was
partially supported by National Science Foundation (NSF)
Grant IIS-2207052, NSF Grant IIS-2302730, and CAHSI-
Google Research Award.

Impact Statement
In this paper, our primary objective is to develop an inno-
vative uncertainty quantification framework, which aims to
empower users in pinpointing the sources of uncertainty in
LLMs accurately. The principal application scenario for our
approach is to improve the trustworthiness and reliability of
LLMs. Consequently, the likelihood of unintended usage
or potential risks arising from our proposed method is con-
siderably reduced. We also assess both the evaluations and
datasets to ensure they are devoid of any harmful content or
adverse impacts.

Nonetheless, it’s imperative to note that our method relies on
the well-calibrated nature of LLMs when applied to factoid
QA and mathematical reasoning tasks. A well-calibrated
LLM helps improve the reliability of uncertainty quantifica-
tion. There exists a possibility that LLMs may not exhibit
the same level of calibration on particular downstream tasks,
and we are committed to continually refining the calibration
of LLMs to bolster the reliability and trustworthiness of

9

Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling

machine learning systems.

References
Bhatt, U., Antorán, J., Zhang, Y., Liao, Q. V., Sattigeri,

P., Fogliato, R., Melançon, G., Krishnan, R., Stanley, J.,
Tickoo, O., et al. Uncertainty as a form of transparency:
Measuring, communicating, and using uncertainty. In
Proceedings of the 2021 AAAI/ACM Conference on AI,
Ethics, and Society, pp. 401–413, 2021.

Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra,
D. Weight uncertainty in neural network. In International
conference on machine learning, 2015.

Chen, J. and Mueller, J. Quantifying uncertainty in answers
from any language model via intrinsic and extrinsic con-
fidence assessment. arXiv preprint arXiv:2308.16175,
2023.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., et al. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168, 2021.

Cole, J. R., Zhang, M. J., Gillick, D., Eisenschlos, J. M.,
Dhingra, B., and Eisenstein, J. Selectively answering am-
biguous questions. In The 2023 Conference on Empirical
Methods in Natural Language Processing, 2023.

Desai, S. and Durrett, G. Calibration of pre-trained trans-
formers. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), 2020.

Duan, J., Cheng, H., Wang, S., Wang, C., Zavalny, A.,
Xu, R., Kailkhura, B., and Xu, K. Shifting attention to
relevance: Towards the uncertainty estimation of large
language models. arXiv, 2023.

Fort, S., Hu, H., and Lakshminarayanan, B. Deep en-
sembles: A loss landscape perspective. arXiv preprint
arXiv:1912.02757, 2019.

Gal, Y. and Ghahramani, Z. Dropout as a bayesian approx-
imation: Representing model uncertainty in deep learn-
ing. In international conference on machine learning, pp.
1050–1059. PMLR, 2016.

Gal, Y. et al. Uncertainty in deep learning, 2016.

Graves, A. Practical variational inference for neural net-
works. Advances in neural information processing sys-
tems, 24, 2011.

Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. On
calibration of modern neural networks. In International
conference on machine learning, pp. 1321–1330. PMLR,
2017.

Guo, M., Zhang, M., Reddy, S., and Alikhani, M. Abg-
coqa: Clarifying ambiguity in conversational question
answering. In 3rd Conference on Automated Knowledge
Base Construction, 2021.

Hasenclever, L., Webb, S., Lienart, T., Vollmer, S., Laksh-
minarayanan, B., Blundell, C., and Teh, Y. W. Distributed
bayesian learning with stochastic natural gradient expec-
tation propagation and the posterior server. Journal of
Machine Learning Research, 18(106):1–37, 2017.

He, B., Lakshminarayanan, B., and Teh, Y. W. Bayesian
deep ensembles via the neural tangent kernel. Advances
in neural information processing systems, 33:1010–1022,
2020.

Hendrycks, D. and Gimpel, K. A baseline for detecting
misclassified and out-of-distribution examples in neural
networks. arXiv preprint arXiv:1610.02136, 2016.

Hernández-Lobato, J. M. and Adams, R. Probabilistic back-
propagation for scalable learning of bayesian neural net-
works. In International conference on machine learning,
pp. 1861–1869. PMLR, 2015.

Honovich, O., Shaham, U., Bowman, S. R., and Levy,
O. Instruction induction: From few examples to
natural language task descriptions. arXiv preprint
arXiv:2205.10782, 2022.

Huang, J., Gu, S. S., Hou, L., Wu, Y., Wang, X., Yu, H., and
Han, J. Large language models can self-improve. arXiv
preprint arXiv:2210.11610, 2022.

Huang, Y., Song, J., Wang, Z., Chen, H., and Ma, L. Look
before you leap: An exploratory study of uncertainty
measurement for large language models. arXiv preprint
arXiv:2307.10236, 2023.

Hüllermeier, E. and Waegeman, W. Aleatoric and epistemic
uncertainty in machine learning: An introduction to con-
cepts and methods. Machine Learning, 110:457–506,
2021.

Jiang, M., Ruan, Y., Huang, S., Liao, S., Pitis, S., Grosse,
R. B., and Ba, J. Calibrating language models via aug-
mented prompt ensembles. 2023.

Jiang, Z., Araki, J., Ding, H., and Neubig, G. How can we
know when language models know? on the calibration of
language models for question answering. Transactions of
the Association for Computational Linguistics, 2021.

Kadavath, S., Conerly, T., Askell, A., Henighan, T., Drain,
D., Perez, E., Schiefer, N., Hatfield-Dodds, Z., DasSarma,
N., Tran-Johnson, E., et al. Language models (mostly)
know what they know. arXiv preprint arXiv:2207.05221,
2022.

10

Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling

Koller, A., Regneri, M., and Thater, S. Regular tree gram-
mars as a formalism for scope underspecification. In
Proceedings of ACL-08: HLT, pp. 218–226, 2008.

Kristiadi, A., Hein, M., and Hennig, P. Learnable uncer-
tainty under laplace approximations. In Uncertainty in
Artificial Intelligence, pp. 344–353. PMLR, 2021.

Kuhn, L., Gal, Y., and Farquhar, S. Semantic uncertainty:
Linguistic invariances for uncertainty estimation in nat-
ural language generation. In The Eleventh International
Conference on Learning Representations, 2022.

Kuhn, L., Gal, Y., and Farquhar, S. Clam: Selective clarifi-
cation for ambiguous questions with generative language
models. 2023.

Kwiatkowski, T., Palomaki, J., Redfield, O., Collins, M.,
Parikh, A., Alberti, C., Epstein, D., Polosukhin, I., Devlin,
J., Lee, K., et al. Natural questions: a benchmark for ques-
tion answering research. Transactions of the Association
for Computational Linguistics, 7:452–466, 2019.

Lahlou, S., Jain, M., Nekoei, H., Butoi, V. I., Bertin, P.,
Rector-Brooks, J., Korablyov, M., and Bengio, Y. Deup:
Direct epistemic uncertainty prediction. Transactions on
Machine Learning Research, 2022.

Lakshminarayanan, B., Pritzel, A., and Blundell, C. Simple
and scalable predictive uncertainty estimation using deep
ensembles. Advances in neural information processing
systems, 30, 2017.

Li, Y., Hernández-Lobato, J. M., and Turner, R. E. Stochas-
tic expectation propagation. Advances in neural informa-
tion processing systems, 28, 2015.

Lin, S., Hilton, J., and Evans, O. Teaching models to express
their uncertainty in words. Transactions on Machine
Learning Research, 2022.

Lin, Z., Trivedi, S., and Sun, J. Generating with confidence:
Uncertainty quantification for black-box large language
models. arXiv preprint arXiv:2305.19187, 2023.

Liu, A., Wu, Z., Michael, J., Suhr, A., West, P., Koller, A.,
Swayamdipta, S., Smith, N. A., and Choi, Y. We’re afraid
language models aren’t modeling ambiguity. In The 2023
Conference on Empirical Methods in Natural Language
Processing, 2023.

Louizos, C. and Welling, M. Structured and efficient varia-
tional deep learning with matrix gaussian posteriors. In
International conference on machine learning, pp. 1708–
1716. PMLR, 2016.

Malinin, A. and Gales, M. Predictive uncertainty estima-
tion via prior networks. Advances in neural information
processing systems, 31, 2018.

Malinin, A. and Gales, M. Uncertainty estimation in autore-
gressive structured prediction. In International Confer-
ence on Learning Representations, 2020.

Malinin, A., Prokhorenkova, L., and Ustimenko, A. Uncer-
tainty in gradient boosting via ensembles. In International
Conference on Learning Representations, 2020.

Mielke, S. J., Szlam, A., Dinan, E., and Boureau, Y.-L.
Reducing conversational agents’ overconfidence through
linguistic calibration. Transactions of the Association for
Computational Linguistics, 2022.

Min, S., Michael, J., Hajishirzi, H., and Zettlemoyer, L.
Ambigqa: Answering ambiguous open-domain questions.
arXiv preprint arXiv:2004.10645, 2020.

Mobiny, A., Yuan, P., Moulik, S. K., Garg, N., Wu, C. C.,
and Van Nguyen, H. Dropconnect is effective in modeling
uncertainty of bayesian deep networks. Scientific reports,
11:5458, 2021.

Neal, R. M. Bayesian learning for neural networks, volume
118. Springer Science & Business Media, 2012.

Ott, M., Auli, M., Grangier, D., and Ranzato, M. Analyzing
uncertainty in neural machine translation. In Interna-
tional Conference on Machine Learning, pp. 3956–3965.
PMLR, 2018.

Ovadia, Y., Fertig, E., Ren, J., Nado, Z., Sculley, D.,
Nowozin, S., Dillon, J., Lakshminarayanan, B., and
Snoek, J. Can you trust your model’s uncertainty? evalu-
ating predictive uncertainty under dataset shift. Advances
in neural information processing systems, 32, 2019.

Park, S. and Kim, T. Pac neural prediction set learning to
quantify the uncertainty of generative language models.
arXiv preprint arXiv:2307.09254, 2023.

Reimers, N. and Gurevych, I. Sentence-bert: Sentence em-
beddings using siamese bert-networks. In Proceedings
of the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-
IJCNLP), pp. 3982–3992, 2019.

Ren, A., Dixit, A., Bodrova, A., Singh, S., Tu, S., Brown, N.,
Xu, P., Takayama, L., Xia, F., Varley, J., et al. Robots that
ask for help: Uncertainty alignment for large language
model planners. In 2nd Workshop on Language and Robot
Learning: Language as Grounding, 2023.

Riquelme, C., Tucker, G., and Snoek, J. Deep bayesian
bandits showdown: An empirical comparison of bayesian
deep networks for thompson sampling. In International
Conference on Learning Representations, 2018.

11

Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling

Shen, M., Bu, Y., Sattigeri, P., Ghosh, S., Das, S., and Wor-
nell, G. Post-hoc uncertainty learning using a dirichlet
meta-model. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 37, pp. 9772–9781, 2023.

Si, C., Gan, Z., Yang, Z., Wang, S., Wang, J., Boyd-Graber,
J. L., and Wang, L. Prompting gpt-3 to be reliable. In
The Eleventh International Conference on Learning Rep-
resentations, 2022.

Si, C., Gan, Z., Yang, Z., Wang, S., Wang, J., Boyd-Graber,
J. L., and Wang, L. Prompting GPT-3 to be reliable.
In The Eleventh International Conference on Learning
Representations, 2023.

Tamkin, A., Handa, K., Shrestha, A., and Goodman, N.
Task ambiguity in humans and language models. In The
Eleventh International Conference on Learning Repre-
sentations, 2022.

Teye, M., Azizpour, H., and Smith, K. Bayesian uncer-
tainty estimation for batch normalized deep networks.
In International Conference on Machine Learning, pp.
4907–4916. PMLR, 2018.

Tian, K., Mitchell, E., Zhou, A., Sharma, A., Rafailov, R.,
Yao, H., Finn, C., and Manning, C. D. Just ask for calibra-
tion: Strategies for eliciting calibrated confidence scores
from language models fine-tuned with human feedback.
arXiv preprint arXiv:2305.14975, 2023.

Wang, X., Wei, J., Schuurmans, D., Le, Q. V., Chi,
E. H., Narang, S., Chowdhery, A., and Zhou, D. Self-
consistency improves chain of thought reasoning in lan-
guage models. In The Eleventh International Conference
on Learning Representations, 2022.

Xiao, Y., Liang, P. P., Bhatt, U., Neiswanger, W., Salakhut-
dinov, R., and Morency, L.-P. Uncertainty quantification
with pre-trained language models: A large-scale empir-
ical analysis. In Findings of the Association for Com-
putational Linguistics: EMNLP 2022, pp. 7273–7284,
2022.

Ye, X. and Durrett, G. Can explanations be useful for
calibrating black box models?, 2022.

Zhou, K., Jurafsky, D., and Hashimoto, T. Navigating the
grey area: Expressions of overconfidence and uncertainty
in language models. arXiv preprint arXiv:2302.13439,
2023.

12

Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling

A. Additional Results and Implementation Details
A.1. Additional Results

In this section, we include additional methods that estimate the model’s confidence on its answer to study whether the
confidence score can be used for ambiguity detection. Specifically, Si et al. (2022) uses a self-consistency frequency to
estimate the LLM confidence (denoted as SELFCONSISTENCY), where multiple answers are sampled from the LLM given
the original question and the highest answer frequency are used as the confidence score. In addition, Cole et al. (2023)
incorporate two features to estimates the LLM confidence: the answer repetition and the answer diversity. The answer
repetition parallels the implementation of Si et al. (2022), and the answer diversity is estimated by counting the number
of unique answers from multiple sampled answers. We denote the two methods as SAMPLE REPETITION and SAMPLE
DIVERSITY. We include these 3 confidence scores for ambiguity detection.

Table 3. Additional results for ambiguity detection. Avg. AU (✔) refers to the
average aleatoric uncertainty of unambiguous questions, while Avg. AU (✘) refers
to the average aleatoric uncertainty of ambiguous questions.

Method AUROC F1 Score Avg. AU (✔) Avg. AU (✘)
AmbigQA

SEMANTIC ENTROPY 54.9 46.8 0.24 0.47
ASK4CONF-D 55.0 64.3 - -
ENSEMBLES∗ (aleatoric) 53.6 53.0 0.13 0.13
ENSEMBLES∗ (total) 55.4 55.0 0.50 0.41
SELFCONSISTENCY 56.0 62.5 - -
SAMPLE REPETITION 58.6 69.0 - -
SAMPLE DIVERSITY 57.6 66.7 - -
OURS (GPT) 71.7 70.1 0.28 0.67
OURS (LLaMA) 67.1 71.8 0.55 0.91
OURS∗ 89.8 85.6 0.53 1.52

We implement these methods as follows.
For SELFCONSISTENCY, we use the default
hyperparameters in the official implementa-
tion (temperature = 0.7, sample 10 answers
from the model) to compute the confidence.
When predict the input ambiguities, we use
1-confidence as the input, since a lower con-
fidence implies either the model’s answer is
wrong or there are multiple valid answers
(i.e., the input is ambiguous). For SAM-
PLEDIVERSITY, we use the default hyperpa-
rameters in the official implementation (tem-
perature = 0.5, sample 10 answers from the
model). We computed the number of unique
answers, using this metric to gauge the ambi-
guity of the input question. For SAMPLEREP-
ETITION, this method parallels SELFCONSISTENCY, where answers are generated using greedy decoding and then re-sampled
(temperature = 0.5, sample 10 answers) to assess the initial answer’s confidence.The experiment results is as below:

We visualize the results in Table 3. These results underscore that model confidence alone is insufficient for accurately
identifying ambiguous inputs, as evidenced by the AUROC scores of all three methods being under 60. We will also include
these findings and citations in the final version of the paper.

A.2. Supervised Fine-tuning for Clarification Generation

We fine-tuning the Llama-3-8B-Instruction on the full training set of AmbigQA dataset on 4×NVIDIA H100 80GB
HBM3 GPU. We organize the training data using the template in Figure 5. We use PyTorch Lightning, DeepSpeed
Stage 1, and flash-attention 2 to train the model. We train the model with batch size 16, learning rate 2e-5, and
cosine learning rate scheduler for 5 epochs. The loss is only computed on the output tokens. We evaluate the model on the
validation set and take the model that achieves lowest validation loss (epoch = 2) for testing.

A.3. Implementation details for baselines

Mistake detection For the mistake detection task, we strictly follow the experiment settings from Kuhn et al. (2022) and
Lin et al. (2023). For each example, we estimate the output distribution and take the answer with the highest frequency as
the final answer. Then we use the method (and the prompt) from Lin et al. (2023) to determine whether the answer is correct
by prompting ChatGPT. Based on the total uncertainty and correctness of the answer, we compute the AUROC and conduct
a grid search to find the best threshold for the F1 score, where the correct answers are regarded as positive examples.

For the implementation of ASK4CONF(Tian et al., 2023) in the mistake detection task, we use the “Verb. 2S top-1” method
(and the corresponding prompts) to estimate the confidence of the language model. Rather than asking the LLM to directly
generate an answer, we sample multiple answers and take the most frequent one as the answer. After that, we prompt the
LLM for the confidence of the most frequent answer. The prompt we use is:

13

Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling

<|begin_of_text|><|start_header_id|>user<|end_header_id|>

In this task, you will receive a question that may contain ambiguities. First analyze the
following aspects to find if there is any ambiguities according to the real-world facts:
- entities, objects, or events has multiple references or interpretations
- Unclear timestamps
- Unclear locations
- Unclear answer types (e.g., "When" refers to "which year or what date", and "Who" refers to "
which person or which team")

If there is any ambiguities, you need to remove ambiguities by adding some clarifications to
the question. Each clarification is an additional condition or explanations to the concept in
the question that resolve its ambiguity.

- You are only allowed to add conditions or explanations, and you cannot change the
original intent or semantics of the question.

- The conditions and explanations must be ground to real-word facts.

If there is no ambiguities, you only need to output the original question as it is.<|eot_id|><|
start_header_id|>assistant<|end_header_id|>

Sure. Please provide me with the question so that I can identify whether it is ambiguous and
clarify it.<|eot_id|><|start_header_id|>user<|end_header_id|>

Original Question: {original_question}<|eot_id|><|start_header_id|>assistant<|end_header_id|>

Question after adding condition: {ground_truth_clarification}<|eot_id|>

Figure 5. The prompt template for the fine-tuning of Llama-3-8B-Instruction. The {original question} and
{ground truth clarification} are two placeholders that will be filled with the original question (either ambiguous or not) and
the ground-truth clarifications.

Ambiguity detection For the mistake detection task, we use the total uncertainty for SEMANTIC UNCERTAINTY (Kuhn
et al., 2022), aleatoric uncertainty from BNN∗, and the confidence score of the ambiguity from ASK4CONF (Tian et al.,
2023) to predict whether the input is ambiguous or not. We slightly modify the prompt of ASK4CONF as follows:

A.4. Prompts for Our Clarification Model

We list the prompts we used for clarification generation on each dataset as follows:

• Input clarification prompt on Natural Question and GSM8K is shown in Figure 8.

• Input clarification prompt on AmbigQA is shown in Figure 9.

• Input clarification prompt on AmbigInst is shown in Figure 10.

A.5. Details of the Qualitative Results

Due to space limit, we truncate the example from GSM8K visualized in Figure 3. The whole question is: “John decides to
do several activities while out on vacation. He spends 6 hours boating and half that time swimming. He also watched 3
different shows which were 2 hours each. This was 30% of the time he spent. He spent 40% of his time sightseeing. How
much time did he spend sightseeing?”.

When generating the clarifications, we directly prompt the LLM to paraphrase the question with the following prompt: “I
am confused with the following question. Please paraphrase it so that it is easier to understand and solve.” Then we sample
5 responses from the LLM as the clarifications for uncertainty quantification.

A.6. Prompt the LLM for Answer Extraction

As we have discussed in Section 4.1, different outputs generated by the LLM may have the same meaning in the free-form
text generation setting. Unlike previous work (Kuhn et al., 2022; Lin et al., 2023) that map semantics-equivalent answers

14

Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling

Answer the following question.
Question: {The testing question}
Answer: {The most frequent answer}

Provide the probability that your answer is correct. Give ONLY the probability, no other words
or explanation.

For example:

Probability: <the probability between 0.0 and 1.0 that your solution is correct, without any
extra commentary whatsoever; just the probability!>

Figure 6. The prompt for mistake detection (ASK4CONF).

Read the following question:
Question:
{question}
Provide the probability that this question is ambiguous due to factors such as ambiguous
entities, ambiguous event references, or ambiguity over the answer type. Give ONLY the
probability, no other words or explanation.

For example:

Probability: <the probability between 0.0 and 1.0 that the question is ambiguous (1.0 means the
question is absolutely ambiguous), without any extra commentary whatsoever; just the
probability!>

Figure 7. The prompt for ambiguity detection (ASK4CONF-D).

into a unique set using the NLI models, we empirically find that the LLMs provide better performance on this task. The
prompt we use is in Figure 11.

After we extract and cluster the semantically equivalent answers, we further post-process the answers as follows. First, the
clarifications generated by the clarification LLM may be invalid and have no answers. In such cases, the LLM may refuse to
respond to the question and reply with phrases like “I’m sorry, but I couldn’t find any information about the question” or
other similar replies. The answer extraction prompt in Figure 11 maps these answers to a special answer, “Unknown.” To
ensure these answers are mapped to ”Unknown,” we adopt a keyword-matching approach that defines a set of key phrases
signaling a refusal to respond, such as “I’m sorry,” “cannot be determined,” and “invalid question.” Answers containing these
key phrases are mapped to “Unknown”. Second, if all answers to a particular clarification are mapped to “Unknown”, we
regard this clarification as invalid and directly drop it when ensembling the outputs for uncertainty quantification. Otherwise,
the appearance of the answer “Unknown” indicates the model’s insufficient knowledge regarding the question, contributing
to the epistemic uncertainty. Therefore, when computing the frequency to estimate the output distribution, we count the
occurrences of each unique answer, excluding the special “Unknown”. Then, we normalize these counts by dividing each by
the total number of answers. For every appearance of the special “Unknown”, we increase the normalized frequencies of all
other answers by 1

N , where N is the number of unique answers excluding the special answer. This adjustment ensures the
special answer’s impact is evenly distributed across the other answers and increases the epistemic uncertainty.

B. AmbigInst Dataset
B.1. Dataset Creation

We generate ambiguous instructions following the pipeline of SELF-INSTRUCTION (Wang et al., 2022). Specifically, we
first query CHATGPT with several manually designed ambiguous task descriptions as in-context examples. For better
verification of the ambiguity, we also prompt CHATGPT to output the cause of the ambiguity. Among the ambiguous

15

Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling

In this task, you will receive a single question, and your goal is to generate multiple
versions of it that convey the same meaning as the original. Please format your responses as
follows:
Rephrase 1: [Your rephrased question]
Rephrase 2: [Another rephrased question]
Rephrase 3: [Yet another rephrased question]
....
Ensure that each rephrased question is distinct from the others."

Here are two examples:
(examples skipped)

Figure 8. The prompt for question rephrase on the Natural Question dataset

descriptions generated by CHATGPT, we manually filter out those that have an open-ended output space such as Write
a report on the new marketing campaign. The final dataset contains 15 ambiguous task descriptions. After
that, we query CHATGPT again to generate ground-truth clarifications based on the cause of ambiguities generated in the
first query.

Given the collected ambiguous task descriptions and their clarifications, we then prompt the model to generate input-output
pairs for each task. Specifically, 15 inputs are generated for each task, and each input is further paired with different output
answers depending on the ground-truth clarifications. We additionally add a post-processing step where we filter out the
inputs that have exactly the same answer given different clarifications. The final ambiguous instructions consist of 15 tasks
with 214 input questions in total.

We take 10 tasks from the Instruction induction dataset (Honovich et al., 2022) as the unambiguous
tasks, including letters list, first word letter, second word letter, orthography starts with,
larger animal, singular to plural, diff, num to verbal, antonyms, and sum.

We manually add some clarifications to the 10 instructions to remove potential ambiguities. For example, given the
original instruction ”Break the input word into letters, separated by spaces”, we clarify it with
“Write the inputted word with a space between each letter”, since “separated by spaces” might
cause ambiguities of how many spaces should be added between two letters. Each task is also paired with 15 input-output
pairs. Overall, the AmbigInst dataset contains 25 tasks and 364 different inputs.

B.2. Dataset Examples

We list several examples from the synthetic dataset with ambiguous instructions.

▷ 1. Rearrange the objects on the table in ascending order.

Input: The following table lists the objects on my desk:

Name Size Weight Color Date of Manufacture Price

Pen 14cm 0.02kg blue 01/15/2022 $1.50
Book 23cm 0.5kg red 08/10/2020 $15.00

Laptop 38cm 1.8kg silver 05/04/2021 $1200.00

▷ 2. Calculate the average of the numbers in the given list, rounding to the nearest whole number.

Input: 23.5, 47.2, 30.1, 16.6

▷ 3. Determine the length of a sentence.

16

Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling

In what follows, you will be given some questions that might be ambiguous. These ambiguities
can arise from various factors, including but not limited to:

1. Ambiguous references to entities in the question.
2. Multiple properties of objects/entities in the question leading to different interpretations
.
3. Ambiguities due to unclear timestamps.
4. Ambiguities stemming from unclear locations.
5. Multiple valid answer types based on the question.

For each question, you are to provide at least two distinct rephrasings that resolve these
ambiguities. By "rephrasing," we mean you should reformulate the question to be clear and
direct, eliminating any possible ambiguity without altering the original intent of the question
. You should not seek further information or produce a binary (yes-no) question as a result of
the clarification. Instead, you must create a direct question (wh-question) that aims to obtain
a specific answer.

Please format your responses as follows (with at least two rephrasings per question):
Clarifications:
1. [First rephrased question]
2. [Second rephrased question]
3. [Third rephrased question]
...

If the original question is already clear and unambiguous, you should indicate this by stating,
"No clarification needed."

(In-context examples)

Figure 9. The prompt for question disambiguation on the AmbigQA dataset.

Input: The quick brown fox jumps over the lazy dog.

▷ 4. Sort the names alphabetically.

Input: Courtney Cox, Jennifer Aniston, Lisa Kudrow, Matthew Perry.

▷ 5. Identify the subject in the sentence.

Input: The CEO of the company gave a speech about the future of technology.

▷ 6. Count the number of objects in the given list of objects.

Input: Forks, Spoons, Knives, Plates, Cups, Spoons, Forks, Spoons, Cups.

▷ 7. Rank the football players based on their performance.

Input: The following table lists the statistics of football players:

Name Goal Scored Assists

Lionel Messi 30 12
Cristiano Ronaldo 25 10

Robert Lewandowski 35 5

17

Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling

Objective
Analyze the given task description for ambiguities based on the description itself and the
provided input question. If the task description is ambiguous, your task is to clarify it by
interpreting the ambiguous concepts, specifying necessary conditions, or using other methods.
Provide all possible disambiguations.

Important Rules
1. Perform detailed analyses before concluding whether the task description is clear or
ambiguous.
2. Output disambiguations in the specified format.
3. Some seemingly unambiguous task descriptions are actually ambiguous given that particular
input. So, do not forget to leverage the input to analyze whether the task description is
underspecified.

Output Format
Your output should follow this format:
Analyses:
[Think step-by-step to reason on the clarity of the task description. After that, output your
judgement on whether the task description is ambiguous or not]

Disambiguations:
1. [Disambiguated task description 1.]
2. [Disambiguated task description 2.]
3. [Disambiguated task description 3.]
...

If the task description is clear and unambiguous, simply output:
Disambiguations:
1. No clarification needed.

Figure 10. The prompt for instruction disambiguation on the AmbigInst dataset.

▷ 8. Sort the data in alphabetical order.

Input: Dog, Cat, Bird, Fish, Aardvark.

▷ 9. Identify the largest city in the set. Input: The following table lists the cities in the set:

Name Population Land Area

Paris 2.1 million 105.4 km
Berlin 3.6 million 891.8 km
Madrid 3.3 million 604.3 km

▷ 10. Organize the files by date.

Input: Files to be organized:

Filename Creation Date Last Modified Date

conference-recording.avi 11/10/2020 11/12/2020
birthday-video.mp4 05/05/2021 05/06/2021

budget.xlsx 12/31/2022 01/10/2023

▷ 11. Find the middle value in a list of numbers.

18

Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling

Task: Answer Extraction from Sentences

In this task, you will receive both a question and multiple sentences. Each sentence contains
an answer to the question. Your primary goal is to extract a concise answer, which can be a
single word or a short phrase, from each sentence. Again, ensure you only extract a short
answer! If a short answer cannot be directly extracted, then summarize the whole sentence into
a single word or a short phrase.

Additionally, while extracting answers, your secondary goal is to create an "answer set" that
contains all distinct answers from previous questions. If the extracted answer has not appeared
in the answer set, add it to the answer set.

Important Rules
1. If there is an answer in the answer set that is semantically equivalent to the extracted
answer, use the answer from the answer set as the result. Do not introduce a new, slightly
different answer. For example, if the answer set already contains "the matrix (1999)," and you
extract an answer from a sentence like "The popular movie in 1999... is the matrix," your
extraction should be "the matrix (1999)" rather than "the matrix."

2. Separate different answers in the answer set using "|".

3. Also, extract the answer as "Unknown" for the following cases:
- The sentence claims that there is no answer to the question
- The sentence claims it lacks sufficient information to answer the question
- The sentence claims it depends on various factors and the answer cannot be determined

Output Format

Your output format should follow this pattern (N is the number of sentences):

Answer set at the beginning: []
Extraction 1/N: [extraction from 1st sentence]
Updated answer set: []
Extraction 2/N: [extraction from 2nd sentence]
Updated answer set: []
Extraction 3/N: [extraction from 3rd sentence]
Updated answer set: []
...
Final answer set: []

Example
(examples skipped)

Figure 11. The prompt for answer extraction using LLMs for the Natural Question and AmbigQA datasets.

Input: 12, 20, 35, 46, 52, 66, 74, 81

▷ 12. Determine the square root of a number.

Input: 81

▷ 13. Find the capital of a country.

Input: South Africa

▷ 14. Classify a movie based on its rating.

Input: The movie “Toy Story 4” has an MPAA rating of G, an IMDb rating of 7.8, and a Rotten Tomatoes rating of 97%.

19

Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling

▷ 15. Select the longest sentence from the following choices, and output the sentence index.

Input: The following sentences are listed:

1. To be, or not to be, that is the question.

2. Whether ’tis nobler in the mind to suffer the slings and arrows of outrageous fortune.

3. Or to take arms against a sea of troubles and by opposing end them.

20

