
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

M3PC: TEST-TIME MODEL PREDICTIVE CONTROL
FOR PRETRAINED MASKED TRAJECTORY MODEL

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent work in Offline Reinforcement Learning (RL) has shown that a unified
transformer trained under a masked auto-encoding objective can effectively cap-
ture the relationships between different modalities (e.g., states, actions, rewards)
within given trajectory datasets. However, this information has not been fully ex-
ploited during the inference phase, where the agent needs to generate an optimal
policy instead of just reconstructing masked components from unmasked. Given
that a pretrained trajectory model can act as both a Policy Model and a World
Model with appropriate mask patterns, we propose using Model Predictive Con-
trol (MPC) at test time to leverage the model’s own predictive capacity to guide
its action selection. Empirical results on D4RL and RoboMimic show that our
inference-phase MPC significantly improves the decision-making performance of
a pretrained trajectory model without any additional parameter training. Further-
more, our framework can be adapted to Offline to Online (O2O) RL and Goal
Reaching RL, resulting in more substantial performance gains when an additional
online interaction budget is given, and better generalization capabilities when dif-
ferent task targets are specified. Our code and models will be released.

1 INTRODUCTION

Masked Modeling paradigm has a simple, self-supervised training objective: predicting a random-
masked subset of the original sequence. It has become a powerful technique for generation or
representation learning for sequential data, e.g. language tokens (Devlin et al., 2018) or image
patches (He et al., 2022). Unlike autoregressive models like GPT (Brown et al., 2020) that condition
only on the past context in the “left”, bidirectional models trained with this objective learn to model
the context from both sides, leading to richer representations and deeper understanding of the data’s
underlying dependencies.

Given that a sequential decision-making trajectory inherently involves a sequence of states s and
actions a, and other optional augmented properties like return-to-go (RTG) g (Chen et al., 2021)
or approximate state-action value v (Yamagata et al., 2023) across T timesteps, the mask modeling
paradigm can be adapted easily for sequential decision-making task. E.g., in the case of Reinforce-
ment Learning, the policy output P(a|s) at each time step can be regarded as predicting a masked
action a conditioned on given states s. Moreover, recent works (Carroll et al., 2022; Liu et al., 2022;
Wu et al., 2023) have demonstrated that a unified bidirectional trajectory model (BTM) pretrained
with a highly random masking pattern can be applied zero-shot in various downstream tasks. By
applying appropriate masks to different modalities — whether states, actions, or rewards — during
inference time, different reconstruction tasks can be deliberately created.

However, the inherent flexibility and versatility of models trained with random masking techniques
have not been fully exploited in deployment settings. Previous research has highlighted the mul-
titasking capabilities of Bidirectional Trajectory Models (BTMs) by assigning one single specific
mask patterns to individual tasks, such as the RCBC mask commonly used in offline RL after pre-
training phase. Our findings, in contrast, suggest that integrating multiple capabilities like short-
term reward and long-term return prediction, along with forward dynamics, could significantly en-
hance decision-making. These capabilities allow the agent to explicitly evaluate action candidates
and determine an optimal one, rather than merely relying on implicit mappings from expected re-
turns to policies.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

improvements
Online Finetuning
Offline RL
Behavior Cloning

+23%
+12%

BC DT[2]ODT[9] BTM M3PC(Ours)
30

60

90 offline dataset:
walk

zero-shot:
split

(a) (b) (c)

+6%

Existing DT / BTM M3PC (Ours)

past future

Figure 1: Benefits of equipping pre-trained bi-directional decision transformer with our test-
time M3PC. (a) Instead of generating actions solely based on history context, we leverage the full
capacity of the masked pretrained model to predict future outcomes (e.g. states, rewards, returns) as
a test-time self-enhanced decision making approach. Such a MPC framework can be used to achieve
higher return at inference time or to reach a given goal state (in dashed square block) even unseen
during offline training. (b) Forward M3PC achieves better offline learning performances, using the
same model without any fine-tuning, and gains better O2O improvement when online finetuning is
allowed after offline pretrain. (c) Backward M3PC unlocks zero shot goal reaching capability. Given
a desired state, the walker agent is able to split its legs to a large degree without any prior experience.

Building on these insights, we introduce the M3PC framework: Enhancing Decision-Making via
using the Masked Model itself for test-time Model Predictive Control. Our framework decomposes
decision making tasks into a series of simpler steps in a typical sample-based MPC style: sampling
potential actions, inferring possible future states, evaluating these actions based on predicted out-
comes, and selecting the final optimal action. Then we show how a pretrained model, equipped with
our adaptation and ensemble of masks, can efficiently and effectively handle those subtasks. Our em-
pirical results demonstrate that, by using M3PC to give a final decision, the same pretrained model
can get substantial decision quality improvement in offline RL and goal-reaching RL, outperforming
traditional single-mask models. Furthermore, M3PC supports sample-efficient online finetuning —
a capability rarely seen in previous sequential modeling agents. By fully leveraging the potential of
a pretrained BTM, M3PC evolves the model from a multitasking framework into an inference phase
self-enhancing, and a finetuning phase self-improving generalist agent. We summary our results in
Figure 1 and highlight our contributions as:

• We present M3PC, a novel framework that utilizes mask ensembles to address complex deci-
sion making tasks, effectively leveraging the multitasking abilities of a pretrained bidirectional
trajectory model (BTM).

• We demonstrate that M3PC not only improves the test-time performance of the same pretrained
BTM in offline RL by 6.0%, but also enables efficient finetuning through online interactions
with environments, outperforming specialized offline-to-online (O2O) RL algorithms, such as
ODT, by 26.0%.

• We demonstrate that M3PC can be adapted for goal-reaching tasks, effectively guiding agents
to specified goal states—even when these states are out-of-distribution relative to the datasets
used for pretraining.

2 RELATED WORK

Transformers for Sequential Decision Making. The transformer architecture, introduced
by (Vaswani et al., 2017), has significantly improved sequence modeling due to its powerful at-
tention mechanism. This architecture has been extensively applied in sequential decision-making
tasks such as reinforcement learning (RL) (Chen et al., 2021; Janner et al., 2021; Wang et al.,
2022) and imitation learning (IL) (Reed et al., 2022; Shafiullah et al., 2022; Brohan et al., 2022;
Baker et al., 2022). Representative work such as Decision Transformer (DT) (Chen et al., 2021)
and its variants (Zheng et al., 2022; Yamagata et al., 2023) learn a return-conditioned policy us-
ing a causal-masked transformer. Recent studies (Carroll et al., 2022; Liu et al., 2022; Wu et al.,
2023) utilize a bidirectional transformer to model the trajectory, highlighting the model’s versatil-
ity enhanced by the mask prediction training objective. These researches focus on the potential of
trajectory transformers to unify various decision-making tasks, typically employing a unique mask
pattern tailored to each specific downstream task. Building upon these insights, our work diverges by
aiming to harness the functional versatility of pretrained transformers to enhance decision-making.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

More specifically, we investigate whether utilizing two or more mask patterns can lead to improved
decision-making within a single downstream task.

Offline RL with Online Finetuning. Traditional off-policy RL algorithms often suffer from boot-
strapping error accumulation (Fujimoto et al., 2019; Nair et al., 2020). To mitigate these issues, most
offline RL algorithms adopt regularization techniques to mitigate errors caused by out-of-distribution
actions (Fujimoto et al., 2019; Nair et al., 2020; Kumar et al., 2020; Kostrikov et al., 2021; An et al.,
2021; Kumar et al., 2019). However, finetuning an offline RL algorithm can be challenging due
to its inherent conservatism and the offline-to-online data distribution shift (Nair et al., 2020; Yu
& Zhang, 2023). Many techniques such as value calibration (Nakamoto et al., 2024), balanced re-
play (Lee et al., 2022) and policy expansion (Zhang et al., 2023) have been investigated to improve
the online sample efficiency. In parallel, some work (Chen et al., 2021; Zheng et al., 2022) following
supervised learning (SL) paradigm can naturally ensure in-distribution learning but also suffer from
poor online sample efficiency (Brandfonbrener et al., 2022). Our approach sticks on SL paradigm
but incorporate DP-based module to improve online sample efficiency.

Model-based RL. Learning a dynamics model of the environment can be used for policy learn-
ing (Pong et al., 2018; Ha & Schmidhuber, 2018; Hafner et al., 2019) or planning (Silver et al.,
2008; Walsh et al., 2010; Zhang et al., 2019; Yu et al., 2020). Some recent work has explored the
feasibility of MPC in online RL (Chua et al., 2018; Janner et al., 2019; Wu et al., 2022; Lowrey
et al., 2018; Hatch & Boots, 2021; Hansen et al., 2022) Similar planning methods have also been
tailored for offline RL through techniques like behavior cloning regularization (Argenson & Dulac-
Arnold, 2020) and trajectory pruning (Zhan et al., 2021; Wang et al., 2023). Instead of maintaining
separate world and policy models, Trajectory Transformer (TT) (Janner et al., 2021) frames RL as
a sequential modeling problem and performs beam search planning based on return heuristics. Our
work follows a similar paradigm but leverages bidirectional transformer and a mask autoencoding
to enable a more computationally efficient planning process.

3 PRELIMINARY

We consider the environment as a Markov Decision Process (MDP), formally defined by the tuple
M = ⟨S,A, P,R, γ, ρ0⟩. In this notation, S represents the state space, and A represents the action
space. The transition probability distribution, P (st+1 | st, at), defines the likelihood of moving
from state st to state st+1 given action at. The reward function, R(st, at), assigns a reward for each
action taken in a particular state. The discount factor, denoted by γ, quantifies the preference for
immediate rewards over future rewards. The maximum episode length, which is also known as the
horizon of MDP, is denoted as H .

Additional notations are introduced to adapt RL to sequential modeling. We denote the training
data distribution as T . Note that this distribution can be dynamic when the agent interacts with
the environment. A trajectory τ consisting of T states, actions, RTGs and rewards and represented
by τ = (s1, g1, a1, r1, · · · , sT , gT , aT , rT). Note that some other properties can also be directly
or indirectly accessed from the training data such as next-states (s′1, · · · , s′T), estimated values
(v1, · · · , vT) for state-action pairs, but we do not model them on the transformer.

4 METHOD

This section details how we leverage a bidirectional trajectory model’s versatile prediction capabil-
ities in a M3PC way to enhance an agent’s decision-making. In a typical MPC process, the system
repeatedly solves an optimization problem to find the best sequence of actions over a finite horizon
by evaluating the outcomes of these actions and then executing the first action in the sequence. The
following subsections describe our approach to adapt a BTM so that it can carry out those MPC
steps: First, we enable the BTM to reconstruct actions with uncertainty, allowing us to sample
from a distribution of action proposals. Next, we demonstrate how to use different masking patterns
for forward or backward prediction for MDP sequence elements. These predictions serve as ref-
erences for evaluating the expected outcomes of action proposals, which we use to determine the
optimal action to execute. As in Figure 3, by breaking down decision-making into above structured
steps and using the BTM for versatile predictions, our M3PC framework enhances the agent’s ability

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

...

...

...

...

...

...

...

...

Bidirectional Transformer

tokenize+ flatten

timestep embeding

modality embeding

untokenize
trajectory output

trajectory input

R₀ s₀ a₀

r₀

ER

E₀

R3 s3

R3 s3 a3r3

…

…

… …

… …

ES Ea ER ES

E₀E₀ E3E3

R₀ s₀ a₀ RT sT aTrT

+ + + + +

+ + + + +

...

...

...

...

...

...

...

...

...

...

...

...

[RP]

[ID]

[RCBC]

training-time mask pattern model I/O structure test-time capabilities

...

...

...

...

[FD]
E Embeding

Masked Token

Figure 2: Model overview. The bi-directional trajectory model is pre-trained using MAE loss that
aims to reconstruct the whole MDP trajectory taken a [Random] masked trajectory. After pre-
training, the model show multiple capabilities by applying different test-time masks. E.g., Return-
Conditioned Behaviour Clone [RCBC] Mask: Predict actions given states, expected return and
context trajectory. Reward and Return Prediction [RP] Mask: Predict intermediate rewards and
future return given states and actions. Forward Dynamics [FD] Mask: Predict future states given
current state and future actions. Inverse Dynamics [ID] Mask: Infer actions needed taken to per-
form a given state path. As a pretrained masked transformer can always reconstruct the full trajec-
tory, for those those MDP-elements that is not related to given task, e.g., the rewards during [RCBC],
we omit them and mark as gray.

beyond simply imitating behaviors observed in offline data, e.g. achieving higher reward incomes
or diverse goals which typically fall in offline RL and goal reaching domains, respectively.

Bidirectional Trajectory Model. We illustrate the model architecture and how the model pro-
cess a masked MDP trajectory as Figure 2. To perform masked trajectory modeling, we first flatten
and tokenize the different elements in the raw trajectory sequence. This tokenization involves three
components: a modality-specific encoder that lifts elements from the raw modality space to a com-
mon representation space, and the addition of timestep embeddings and modality-type embeddings.
These components collectively enable the transformer to distinguish between different elements in
the sequence.

We employ an encoder-decoder architecture with both the encoder and decoder being bidirectional
transformers. The tokenized and flattened trajectory is fed into the transformer encoder, where only
unmasked tokens are processed. The decoder then processes the full trajectory sequence, utilizing
values from the encoder when available or a mask token when not. The decoder is trained to predict
the original sequence, including the unmasked tokens.

Training-phase Mask Pattern. Inspired by previous work (Wu et al., 2023; Zeng et al., 2024), we
employ a two-step masking pattern for training. Firstly, we randomly mask a proportion of elements
in the trajectory τ . Secondly, we mask all elements to the right of a randomly chosen position. By
learning to predict the mask elements, the model can handle temporal dependencies as well as infer
based on only past events.

Uncertainty-Aware Action Reconstruction. To equip the agent with robust decision-making capa-
bilities beyond mere imitation, our method employs uncertainty-aware action reconstruction rather
than predicting the masked action deterministically. The primary focus of MAE lies on perfectly
reconstructing each token of the sequence, typically optimizing a Mean Squared Error (MSE) loss.
This inherently leads to deterministic action reconstruction, which limits the agent’s awareness of
uncertainties associated with the actions.

To address this limitation, we propose reconstructing an uncertainty-aware action distribution A by
minimizing a Negative Log Likelihood (NLL) loss J(θ) denoted by

J(θ) =
1

T
Eτ∼T

[
T∑
t=1

− logPθ(at|Masked(τ))

]
. (1)

Inspired by ODT (Zheng et al., 2022), we additionally impose a lower bound on trajectory-level
action entropyHT

θ to encourage agent’s online exploratory behavior. The overall constraint problem
is formally written by

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

~

$

$
$

$

$

$

(a) (b)

…

predict
future s,r,g given a



predict s...T-1 given sT

execute at

evaluate TD(λ) utility

combine short & long-term reward

sample

future a with
uncertainty

Figure 3: Leverage the Masked Model itself for test-time Model Predictive Control. Our
pipeline utilizes BTM’s versatile inference capabilities to enhance decision making. (a) Forward
M3PC. We employ [RCBC], [FD] and [RP] masks to build an MPC pipeline for planning, predic-
tion, and action resample. (b) Backward M3PC. Given a goal state that we finally want to reach,
we first use Path Inference [PI] mask to infer the waypoint-states, followed by a Inverse Dynamic
[ID] mask to get the action sequence conditioned on those waypoints, and finally execute the first
one.

min
θ
J(θ) subject toHT

θ ≥ β, HT
θ =

1

T
Eτ∼T

[
T∑
t=1

H [Pθ(at|Masked(τ))]

]
, (2)

where H [·] denotes the Shannon entropy of the distribution, β is the predefined target entropy. We
consider solving the Lagrangian dual problem of Equation 2 to avoid explicitly dealing with the
inequality constraint. The implementation details are shown in Appendix A.

Forward M3PC for Reward Maximization. A bidirectional trajectory model agent has demon-
strated zero-shot ability in offline RL tasks when equipped with an [RCBC] mask in previous
work (Carroll et al., 2022; Wu et al., 2023). By predicting actions conditioned on states and RTGs,
the agent generates actions by imitating trajectories with similar RTGs in offline data. This imitative
behavior’s performance is inherently upper-bounded by the best trajectory in offline data.

To address this limitation, we propose to additionally refine the decision-making process by imple-
menting an explicit reward-maximization procedure using the forward dynamics function and the
return and reward prediction function provided by the unified trajectory model. Typically, we divide
the decision-making into three substeps: generating action proposals, rolling out the future, and
selecting action proposals based on their potential utilities. Suppose we have access to both inter-
mediate and long-term reward estimation for candidate action sequence at:T , which are represented
by rt:T and gt:T , respectively. We define the TD(λ)-style utility U for this candidate action which
denoted by

U = (1− λ)
T−t−1∑
n=0

λnGt:t+n + λT−tGt:T , where Gt:t+n =
n−1∑
k=0

γkrt+k + γngt+n, (3)

where decay parameter λ determines the weights of longer horizon estimates that contribute to the
final result which can help trade off the errors from dynamics predictions and value estimates. We
construct a categorical distribution P using softmax for proposal selection:

P [i] =
exp(ξU i)∑
j exp(ξU

j)
, ∀i ∈ [1, · · · , N] , (4)

where ξ denote the softmax temperature. Notably, M3PC requires only two prediction steps for
planning at each timestep. Leveraging the bidirectional nature of transformers and the masked au-
toencoding paradigm, M3PC can predict all future actions given current states and all future states
given future actions in parallel. This parallel prediction capability mitigates the computational cost’s
linear growth concerning the planning horizon which is commonly seen in planning algorithms (e.g.
beam search in TT (Janner et al., 2021), CEM in TD-MPC (Hansen et al., 2022)). We detail the
decision making process for reward-maximization in Algorithm 1. Since RTG value is a trajectory-
wise Monte Carlo estimation, which becomes uninformative when datasets’ behavior policies are
diverse. We can optionally extend M3PC by replacing RTG guidance with a transition-wise value
for better heuristic. In this case, we calculate this value with a standalone value estimator updated
in a dynamic programming way proposed in IQL (Kostrikov et al., 2021).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Having the ‘Utility’ as a metric to estimate future actions before they were taken, forward M3PC can
also be adaptive to an exploration strategy in the subsequent online finetuning phase, where equa-
tion 3 are used again. During the offline-to-online process, instead of executing the expectation in
categorical distribution equation 4, the M3PC agent sample action from the candidate set according
to the possibility proportional to their utility for stochasticity. This maintains the overall superior
action while simultaneously guaranteeing diversity of the experience collected during exploration,
balancing the exploration and exploitation.

Algorithm 1 Forward M3PC for Reward Maximization

1: Input: Current state st, past trajectory τ<t, discount factor γ, decay parameter λ, number of
candidates N , softmax temperature ξ

2: Initialize: Proposal action set A, Utilily set U
3: Output: Selected action a
4: A ← Initialize an empty list for candidate actions
5: αt:T ← Predict uncertainty-aware action distribution sequence using [RCBC] mask as Fig. 2
6: for i = 1 to N do
7: ait:T ← Sample a candidate action sequence from distribution αt:T
8: st+1:T ← Roll out the candidate sequence with [FD] mask as Fig. 2
9: rit:T , git:T ← Simulate intermediate rewards and long-term rewards using [RP] mask as Fig.

2
10: U i ← Calculate expected utility ▷ using Equation 3
11: Append ait, Ui to A,U , respectively.
12: end for
13: P ← Construct candidate selection distribution ▷ using Equation 4
14:
15: return a←

[
Ai|i ∼ P

]
if online, else a← Ei∼P

[
Ai

]
Backward M3PC for Goal Reaching. The capability of a BTM to infer past tokens conditioning on
future events makes it different from GPT-based models. This feature is particularly advantageous
for implementing MPC from a reverse or “backward” perspective when the objective is to achieve
a specified goal state. Unlike the goal reaching mask proposed by previous work (Liu et al., 2022;
Carroll et al., 2022) that masks all elements along the trajectory except the current and final states to
reconstruct the action at the current timestep, we leverage the BTM’s bi-directional conditioning ca-
pacity to inpaint a transition path to guide the action selection. We refer to this method as backward
M3PC.

Specifically, backward M3PC approach uses a Path Inference [PI] mask (illustrated in Figure 3(b)),
to guide the model in predicting a sequence of intermediate states leading to the goal. Once a path is
established, the model employs an Inverse Dynamics [ID] mask to deduce the necessary actions to
transition between consecutive states along the predicted path. This approach gets rid of generating
a large number of candidates and rolling out every one which inherently demands considerable
computational complexity, while implicitly doing the same thing as traditional MPC to select the
first action in a sequence that most satisfies a given goal.

5 EXPERIMENTS

Our experiments aim to answer the following questions:

Q1: Can forward M3PC enable the (same) agent to achieve higher accumulated rewards in
offline RL and subsequent online finetuning?

Q2: Can backward M3PC enable the agent to perform diverse tasks given target states?
Q3: How does each algorithmic component contribute to M3PC?
Q4: Is the pretrained model capable enough to perform M3PC in more complex environments

that demand the knowledge of interaction with external objects, e.g. manipulation?

Tasks and Datasets. To answer these questions, we utilize D4RL and RoboMimic dataset suits.
We apply three D4RL locomotion domains (Hopper, Walker2d, HalfCheetah) with two

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

dataset types for each task: medium(m) and medium-replay(m-r), used to benchmark our
proposed forward M3PC in offline RL and O2O settings. The RoboMimic encompasses three manip-
ulation tasks (Can, Lift, Square). We utilize three official datasets (can-pair, square-mh,
lift-mg) and two customized datasets (can-lim, can-real) to evaluate M3PC’s potential
real-world application, typically in robotic manipulation tasks. Detailed descriptions of the tasks
and datasets can be found in Appendix D.

Table 1: Offline Results on D4RL. Comparison of the average normalized return against several
baseline methods without online finetuning. M3PC-M and M3PC-Q are shortened for our method
M3PC with (M)onte-carlo return estimation and (Q)-value estimation guidance heuristic, respec-
tively. We report the mean and standard deviation of 5 seeds. The best result for each dataset is
highlighted in bold. Note that M3PC-M shares the exact same weights as a pretrained BTM, but
constantly outperform BTM in all tasks due to the test-time enhancement brought by M3PC.

Dataset BC TD3+BC CQL IQL DT TT BTM M3PC-M M3PC-Q

hopper-m 53.5 60.4 58.5 63.8 65.1 61.1 64.3 70.7±6.2 73.6±5.6

walker2d-m 63.2 82.7 72.5 79.9 67.6 79.0 72.5 80.9±2.5 86.4±2.6

halfcheetah-m 42.4 48.1 44.0 47.4 42.2 46.9 43.0 43.9±3.9 51.2±0.7

hopper-m-r 29.8 64.4 95.0 92.1 81.8 91.5 75.3 80.4±5.2 78.3±16.2

walker2d-m-r 21.8 85.6 77.2 73.7 82.1 82.6 76.6 78.2±10.2 92.2±2.4

halfcheetah-m-r 35.7 44.8 45.5 44.1 48.3 41.9 41.1 41.8±0.5 48.2±0.4

Total 246.4 386.0 392.7 401.0 387.1 403.0 372.8 395.9 429.8

Q1: Offline RL. We present the offline results of M3PC with Monto Carlo return estimation guid-
ance (M3PC-M) and Q value estimation guidance (M3PC-Q) in Table 1. To assess the offline RL
performance of our proposed method, we compare it against the following baselines: (1) BC: behav-
ior cloning, which directly mimics the behaviors in the offline dataset; (2) TD3+BC (Fujimoto & Gu,
2021): an off-policy RL method incorporating a behavior cloning regularization term; (3)CQL (Ku-
mar et al., 2020): a model free algorithm learning a conservative value function that lower bounds the
policy’s true value; (4) IQL (Kostrikov et al., 2021): a model free algorithm designed to avoid boot-
strapping errors by learning implicit Q-functions; (5) DT (Chen et al., 2021): a sequence-modeling
model free approach that predicts actions conditioned on expected returns; (6) TT (Janner et al.,
2021): a sequence-modeling model based approach that utilizes beam search planning and (7) BTM:
which shares the same pretrained model as our method but applies only the [RCBC] mask for policy
inference. The results demonstrate that M3PC significantly improves reward accumulation com-
pared to BTM, consistently outperforming it across all datasets and domains, irrespective of the
guidance heuristic used. This indicates that M3PC’s planning phase effectively refines the action
proposals generated by BTM. Moreover, as a generalist agent, M3PC-M performs competitively
with specialized offline RL algorithms such as TD3+BC and IQL. Notably, M3PC-R achieves even
more competitive results, outperforming all baselines by a considerable margin.

Online Finetuning. Under the O2O setup, we compare our method against IQL and ODT (Zheng
et al., 2022), a specially designed O2O method for DT. The full online training curves of each
algorithm can be found in Appendix C. In Table 2, we report the performance of each algorithm with
a 200K online sample budget. To ensure a fair comparison, we pick the max performance between
ODT’s original paper (Chen et al., 2021) and our result running its open-sourced version. Our
method outperforms the other two methods in all the environments except the hopper-medium
dataset, and our total performance score after finetuning is 31% higher than IQL and 26% higher
than ODT, with improvements over finetuning 123% more substantial than ODT’s. We plot the
normalized exploration rollout statistics of M3PC agent and BTM agent in Fig. . Results show that
M3PC is more like to collect trajectory with high quality while holds some randomness to cover
diverse states. See more results in Appendix C.

Q2: Goal Reaching. To assess whether our proposed method can effectively guide an agent to spec-
ified goal states, we consider the following three tasks: (a) Halfcheetah flipping, (b) Walker doing
splits, and (c) Hopper wiggling. Due to the limited horizon of our model, we provide a sequence of
consecutive subgoals to ensure each goal reaching task is within the model’s planning horizon ca-
pacity, instead of directly providing the final desired goal state. Details about the subgoal selection

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Step 105

0

20

40

60

80

100

N
oi

se
 E

xp
lo

re
 R

et
ur

n
M

ea
n

1.5 2
Step 105

0

20

40

60

80

100

10.51.5 210.5

M
3P

C
 E

xp
lo

re
 R

et
ur

n
M

ea
n

Figure 4: Exploration Rollout Statistics. Results from two example runs of the Hopper task on
the medium dataset using the same offline-pretrained BTM agent. One run employs Gaussian noise
for exploration, while the other utilizes M3PC. The red line represents the offline result. Compared
to naive Gaussian noise exploration, M3PC significantly improves the agent’s exploration quality by
generating more high-return trajectories while maintaining stochasticity, including some mid-level
or low-return trajectories.

Table 2: Online Finetuning Results on D4RL. Comparison of normalized returns before and after
online finetuning, as well as the improvement achieved using a 200K online sample budget. We
report the mean from five seeds. The best final result for each dataset are highlighted in bold and
the greatest improvement is highlighted in green.

Dataset IQL ODT M3PC (Ours)
offline online δ offline online δ offline online δ

hopper-m 63.8 66.8 +3.0 67.0 97.5 +30.6 73.6±5.6 93.9±15.8 +20.3
walker2d-m 79.9 80.3 +0.4 72.2 76.8 +4.6 86.4±2.6 91.9±7.8 +5.5

halfcheetah-m 47.4 47.4 +0.0 42.7 42.2 -0.6 51.2±0.7 69.3±2.1 +18.1
hopper-m-r 92.1 96.2 +4.1 86.6 88.9 +2.3 78.3±16.2 103.5±6.0 +25.2

walker2d-m-r 73.7 70.6 -3.1 68.9 76.9 +7.9 92.2±2.4 105.2±1.0 +13.0
halfcheetah-m-r 44.1 44.1 +0.0 40.0 40.4 +0.4 48.2±0.4 67.0±7.1 +18.8

Total 401.0 405.5 +4.5 377.4 422.7 +45.3 429.8 530.8 +101.0

for each task are provided in Appendix A. These tasks deviate from the reward mechanisms typically
seen in offline data but can be extrapolated or stitched from offline trajectories. We showcase our
results in Figure 5, which illustrates that backward M3PC enables the agent to generalize diverse
tasks rather than merely imitating offline experiences. This demonstrates the model’s capability to
adapt to new challenges by leveraging its knowledge of complex dynamics to reach specific goals.

Figure 5: Demonstration for D4RL
Goal Reaching. One evaluation visu-
alization for (a) Halfcheetah flipping,
(b) Walker doing splits, and (c) Hop-
per wiggling at a predefined frequency.
These behavior are all unseen in the
offline dataset during pre-training, see
Appendix C for more details.

Additionally, we evaluated the BTM’s goal-reaching ability using a single goal-reaching mask, sim-
ilar to previous studies (Carroll et al., 2022; Liu et al., 2022). This method involves keeping the
current state and goal state unmasked and directly executing the impainted action. However, as de-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

tailed in Appendix C, this approach did not enable the agent to reach the goal state as expected. This
discrepancy highlights the effectiveness of our model-based approach.

hopper-m hopper-m-r walker2d-m walker2d-m-r halfcheetah-m halfcheetah-m-r

100

80

60

40

20

0

N
or

m
al

iz
ed

 D
4R

L
Te

st
-t

im
e

R
et

ur
n BTM-S

M3PC-S
BTM
M3PC

Figure 6: Offline RL comparison between unified and specialized model. We report the nor-
malized average returns of BTM and M3PC on a unified pretrained agent compared to specified
pretrained agents, denoted by BTM-S and M3PC-S, respectively. The results represent the mean
over five seeds. The comparison suggests that the unified pretrained model leads to more efficient
representations and better performance with BTM and M3PC.

Q3: Ablation Studies. We conduct ablation studies to investigate the contribution of individual
components to the success of our method. Specifically, we investigate whether unifying the pre-
training process using a random masking technique enhances M3PC performance. To this end, we
pretrain two seperate policy model and world model using the same training objective and model
structure with BTM but are only applied [RCBC] mask and [FD] mask respectively during training
phase. These specialized models were then integrated to implement MPC. Our findings indicate
that two specialized pretrained models do not improve decision quality compared to the unified-
pretrained BTM, as shown in Figure 6. Moreover, implementing MPC with separate policy and
world models does not significantly contribute to decision-making compared to the specialized pol-
icy model. This suggests that the unified pretraining approach benefits performance, as the bidirec-
tional transformer captures both policy behaviors and environmental dynamics cohesively, leading
to more effective planning during MPC.

Figure 7: Ablation Study on Planning
and Uncertainty-aware Action Recon-
struction. We ablate sample-based planning,
uncertainty-aware action reconstruction, and
both components to investigate their contri-
butions to the algorithmic performance in the
online finetuning phase. We report average
results over six datasets. Mean of five seeds.
The shaded area represents the averaged per-
task standard deviation across random seeds.

We furthermore justify some design choices in M3PC’s online finetuning phase by comparing: (a)
Our M3PC as in Algorithm 1, combining uncertainty-aware action distribution A reconstruction
and planning-based action resample (b) randomly sample from A for exploration (c) BTM’s origin
way of action a reconstruction trained with MSE loss, adding a fixed action noise N (0, σI) for
exploration with the same entropy level as M3PC. (d) do planning-based action resample for (c)’s
decision. We show the averaged finetuning process across D4RL datasets in Figure 7. The results
highlight the effectiveness of our key contributions. Specifically, an uncertainty-aware policy for
exploration is crucial for maintaining online training stability and forward planning significantly
boosts sample efficiency. Figure 7 also shows that the performance drastically drops when naively

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

using an uncertainty-“unaware” original BTM for exploration. Find per-task training curves and
more ablation studies in Appendix C.

Table 3: Offline Results on RoboMimic.
Success rate of various offline pretrained
agents in manipulation tasks. We report
the mean of 5 seeds (50 trials for simulator
and 20 trials for real world). We exclude
the BC and IQL from real-world imple-
mentation due to their poor performance
in the corresponding simulated tasks.

Dataset BC IQL DT M3PC

Can-Pair 0.64 0.34 0.94 0.98±0.01

Square-MH 0.53 0.13 0.21 0.28±0.14

Lift-MG 0.65 0.29 0.93 0.77±0.07

Can-Lim 0.25 0.27 0.46 0.54±0.16

Can-Real - - 0.50 0.70±0.10

Figure 8: Skill Generalization in Can-Pick task.
Simulated environments on the top and real-world
environments on the bottom. The columns show
the original behavior (left), behavior conditioned
on the seen goal state (mid), and behavior condi-
tioned on the unseen goal state (right).

Q4: Manipulation. In addition to the self-body motion control tasks we focused on in earlier
experiments, we shift our attention to manipulation tasks to explore whether our proposed M3PC
method can be effectively applied to robotics tasks that require interaction with objects in the en-
vironment. We conducted experiments across three simulated tasks in RoboMimic—Can, Square,
and Lift—each with varying levels of complexity. Additionally, we used datasets of different qual-
ity levels, including machine-generated (MG), mid-level human-demonstrated (MH), and paired
positive-and-negative (Pair) demonstrations. We also created a customized simulated task named
Can-Lim, a variant of the Can-Pick task, in which the dataset is adapted to the scenario where the
relative pose between the gripper and the can is unavailable. Finally, we tested our method on a
real-world Can-Pick task, referred to as Can-Real. The results are compared against several offline
RL baselines, as shown in Table 3.

To test the generalization capabilities, we take a goal-conditioned RL experiment in the Can-Picking
task with Paired dataset. This dataset contains 50% perfect demonstrations that successfully pick the
can and place it into the box in the right corner and other 50% demonstrations that directly throw the
can away from the table, getting no reward. As in Figure 8, by specifying the final goal states, we
can control the agent’s behavior between completing the original task or reproducing the throwing-
away behavior. Moreover, by specifying the final state numerically between two seen states in the
dataset, the model can generate actions that make the agent reach a state never seen in the dataset —
place the can into the box next to the right one.

6 DISCUSSIONS AND LIMITATIONS

We propose M3PC, a test-time MPC framework designed to enhance the inference performance of
masked transformers pretrained under offline RL settings. We demonstrate that M3PC offers the
following benefits: (1) Improved Decision-Making without Further Training: During inference,
M3PC can improve decision-making with high computational efficiency. (2) Enhanced Finetuning
Efficiency: With an additional online interaction budget, M3PC achieves better final performance
and improvements over previous sequential modeling O2O approach ODT, enhancing the agent’s
continuous learning ability. (3) Generalization Ability: The framework showcases notable gener-
alization capabilities. It can generate actions that effectively drive the agent towards unseen goal
states in both simulated and real-world tasks.

While M3PC demonstrates promising results, there are areas for further investigation: (1) Handling
Pixel Observations: Currently, our framework is limited to environments with state-based observa-
tions. Future work will delve into handling pixel observations. (2) Transformer Scalability: Our
experiments employed a fixed-structure masked trajectory transformer. We haven’t identified if a
transformer with a larger capacity will lead to better test-time planning.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline re-
inforcement learning with diversified q-ensemble. Advances in neural information processing
systems, 34:7436–7447, 2021.

Arthur Argenson and Gabriel Dulac-Arnold. Model-based offline planning. arXiv preprint
arXiv:2008.05556, 2020.

Bowen Baker, Ilge Akkaya, Peter Zhokov, Joost Huizinga, Jie Tang, Adrien Ecoffet, Brandon
Houghton, Raul Sampedro, and Jeff Clune. Video pretraining (vpt): Learning to act by watching
unlabeled online videos. Advances in Neural Information Processing Systems, 35:24639–24654,
2022.

David Brandfonbrener, Alberto Bietti, Jacob Buckman, Romain Laroche, and Joan Bruna. When
does return-conditioned supervised learning work for offline reinforcement learning? Advances
in Neural Information Processing Systems, 35:1542–1553, 2022.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
transformer for real-world control at scale. arXiv preprint arXiv:2212.06817, 2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Micah Carroll, Orr Paradise, Jessy Lin, Raluca Georgescu, Mingfei Sun, David Bignell, Stephanie
Milani, Katja Hofmann, Matthew Hausknecht, Anca Dragan, et al. Uni [mask]: Unified inference
in sequential decision problems. Advances in neural information processing systems, 35:35365–
35378, 2022.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement learn-
ing in a handful of trials using probabilistic dynamics models. Advances in neural information
processing systems, 31, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132–20145, 2021.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International conference on machine learning, pp. 2052–2062. PMLR, 2019.

David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evolution. Advances
in neural information processing systems, 31, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. PMLR, 2018.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019.

Nicklas Hansen, Xiaolong Wang, and Hao Su. Temporal difference learning for model predictive
control. arXiv preprint arXiv:2203.04955, 2022.

Nathan Hatch and Byron Boots. The value of planning for infinite-horizon model predictive control.
In 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 7372–7378.
IEEE, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked au-
toencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 16000–16009, 2022.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-
based policy optimization. Advances in neural information processing systems, 32, 2019.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. Advances in neural information processing systems, 34:1273–1286, 2021.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning. arXiv preprint arXiv:2110.06169, 2021.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. Advances in neural information processing systems,
32, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191,
2020.

Seunghyun Lee, Younggyo Seo, Kimin Lee, Pieter Abbeel, and Jinwoo Shin. Offline-to-online
reinforcement learning via balanced replay and pessimistic q-ensemble. In Conference on Robot
Learning, pp. 1702–1712. PMLR, 2022.

Fangchen Liu, Hao Liu, Aditya Grover, and Pieter Abbeel. Masked autoencoding for scalable and
generalizable decision making. Advances in Neural Information Processing Systems, 35:12608–
12618, 2022.

Kendall Lowrey, Aravind Rajeswaran, Sham Kakade, Emanuel Todorov, and Igor Mordatch. Plan
online, learn offline: Efficient learning and exploration via model-based control. arXiv preprint
arXiv:1811.01848, 2018.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online rein-
forcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Mitsuhiko Nakamoto, Simon Zhai, Anikait Singh, Max Sobol Mark, Yi Ma, Chelsea Finn, Aviral
Kumar, and Sergey Levine. Cal-ql: Calibrated offline rl pre-training for efficient online fine-
tuning. Advances in Neural Information Processing Systems, 36, 2024.

Vitchyr Pong, Shixiang Gu, Murtaza Dalal, and Sergey Levine. Temporal difference models: Model-
free deep rl for model-based control. arXiv preprint arXiv:1802.09081, 2018.

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov,
Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al.
A generalist agent. arXiv preprint arXiv:2205.06175, 2022.

Nur Muhammad Shafiullah, Zichen Cui, Ariuntuya Arty Altanzaya, and Lerrel Pinto. Behavior
transformers: Cloning k modes with one stone. Advances in neural information processing sys-
tems, 35:22955–22968, 2022.

David Silver, Richard S Sutton, and Martin Müller. Sample-based learning and search with perma-
nent and transient memories. In Proceedings of the 25th international conference on Machine
learning, pp. 968–975, 2008.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Thomas Walsh, Sergiu Goschin, and Michael Littman. Integrating sample-based planning and
model-based reinforcement learning. In Proceedings of the aaai conference on artificial intel-
ligence, volume 24, pp. 612–617, 2010.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Kerong Wang, Hanye Zhao, Xufang Luo, Kan Ren, Weinan Zhang, and Dongsheng Li. Bootstrapped
transformer for offline reinforcement learning. Advances in Neural Information Processing Sys-
tems, 35:34748–34761, 2022.

Mianchu Wang, Rui Yang, Xi Chen, Hao Sun, Meng Fang, and Giovanni Montana. Goplan: Goal-
conditioned offline reinforcement learning by planning with learned models. arXiv preprint
arXiv:2310.20025, 2023.

Philipp Wu, Arjun Majumdar, Kevin Stone, Yixin Lin, Igor Mordatch, Pieter Abbeel, and Aravind
Rajeswaran. Masked trajectory models for prediction, representation, and control. In Interna-
tional Conference on Machine Learning, pp. 37607–37623. PMLR, 2023.

Zifan Wu, Chao Yu, Chen Chen, Jianye Hao, and Hankz Hankui Zhuo. Plan to predict: Learning
an uncertainty-foreseeing model for model-based reinforcement learning. Advances in Neural
Information Processing Systems, 35:15849–15861, 2022.

Taku Yamagata, Ahmed Khalil, and Raul Santos-Rodriguez. Q-learning decision transformer:
Leveraging dynamic programming for conditional sequence modelling in offline rl. In Inter-
national Conference on Machine Learning, pp. 38989–39007. PMLR, 2023.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea Finn,
and Tengyu Ma. Mopo: Model-based offline policy optimization. Advances in Neural Information
Processing Systems, 33:14129–14142, 2020.

Zishun Yu and Xinhua Zhang. Actor-critic alignment for offline-to-online reinforcement learning.
In International Conference on Machine Learning, pp. 40452–40474. PMLR, 2023.

Zilai Zeng, Ce Zhang, Shijie Wang, and Chen Sun. Goal-conditioned predictive coding for offline
reinforcement learning. Advances in Neural Information Processing Systems, 36, 2024.

Xianyuan Zhan, Xiangyu Zhu, and Haoran Xu. Model-based offline planning with trajectory prun-
ing. arXiv preprint arXiv:2105.07351, 2021.

Haichao Zhang, We Xu, and Haonan Yu. Policy expansion for bridging offline-to-online reinforce-
ment learning. arXiv preprint arXiv:2302.00935, 2023.

Marvin Zhang, Sharad Vikram, Laura Smith, Pieter Abbeel, Matthew Johnson, and Sergey Levine.
Solar: Deep structured representations for model-based reinforcement learning. In International
conference on machine learning, pp. 7444–7453. PMLR, 2019.

Qinqing Zheng, Amy Zhang, and Aditya Grover. Online decision transformer. In international
conference on machine learning, pp. 27042–27059. PMLR, 2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A IMPLEMENTATION DETAILS

Loss Function Construction. We consider the Lagrangian of Equation 2 given by:

L(θ, σ) = J(θ) + σ(β −HT
θ), (5)

where σ is a non-negative Lagrange multiplier. The training objective then become

max
σ≥0

min
θ
L(θ, σ). (6)

We alternately optimize θ and σ as follows:

• Optimizing θ with fixed σ, which involves:

min
θ

(
J(θ)− σHT

θ

)
, (7)

• Optimizing σ with fixed θ, formulated as:

min
σ≥0

σ
(
HT
θ − β

)
. (8)

This iterative training of θ and σ ensures compliance with the entropy constraint while optimizing
the objective function J(θ).

Transition-wise Value Estimator. We choose IQL (Kostrikov et al., 2021) algorithm to train the
value estimator because its Bellman updates do not require an explicit policy function. Typically,
IQL simultaneously learns a critic network Qψ and value network Vϕ with the losses defined by:

JQ(ψ) = E(s,a,r,s′)∼T

[
(r + γVϕ(s

′)−Qψ(s, a))
2
]
,

JV (ϕ) = E(s,a)∼T
[∣∣t− 1{Qψ(s,a)−Vϕ(s)<0}

∣∣ (Qψ(s, a)− Vϕ(s))2] (9)

, where t is a constant hyperparameter named expectile used to control the conservatism of the value
estimation. The critic network Qψ will be applied to estimate the long-term reward for a given
state-action pair in our approach. t is set to 0.7 for D4RL locomotion tasks and 0.9 for RoboMimic
manipulation tasks.

Goal State Definitions in Goal Reaching Tasks. In the goal-reaching setup for Hopper, Walker,
and HalfCheetah, we craft rough trajectories based on the specific anticipated dynamics of each
agent. For the Hopper, a sinusoidal trajectory is designed for the foot joint to induce a wiggling
motion, while the other two joints’ initial positions are maintained. In the case of the Walker, a lin-
early increasing trajectory for the thigh joint facilitates the splits, with the dynamics of other joints
extracted from the offline trajectory which correspond to a stepping behavior, providing rough guid-
ance. For the HalfCheetah, the primary flipping motion is guided by linear trajectories that set the
body height decrease and a full 180-degree rotation to simulate a flip. Complementing this, the dy-
namics of the other joints and body movements are derived from offline datasets that capture detailed
flipping steps, providing a coherent and realistic motion base. Subgoals are extracted from these tra-
jectories at specific intervals—every fifth, thirtieth, and every timestep, respectively—to guide each
model towards achieving the intended maneuvers, ensuring that while the main actions are precisely
targeted, the full spectrum of body dynamics remains realistically integrated and synchronized with
the models’ overall movements.

In the Can Pick task, we deploy specific guidance trajectories for each distinct behavior—throwing
away and moving to a nearer box. For the ”throwing-away” behavior, we directly select a suitable
trajectory from an offline dataset without any modifications, ensuring that the agent replicates a
proven effective throwing motion. For the ”moving to a nearer box” behavior, the process begins
by selecting a ”moving to correct box” trajectory from the offline dataset. To tailor this trajec-
tory to the specific task, we apply an affine transformation to adjust the horizontal positions of the
Franka robot’s end effector and the object along the trajectory. This transformation proportionally
reduces the distance the object needs to be moved, customizing the trajectory to the current scenario.
Subgoals are then extracted from these guidance trajectories at every state, providing detailed, step-
by-step targets that guide the agent’s actions towards successful task completion.

Hardware. The entire training process, including both pretraining and finetuning, is performed
on NVIDIA 3090 GPUs. During the offline pretraining phase, we train the BTM model for 140K

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

gradient steps, which takes approximately 4 hours per dataset on a single GPU. For the finetuning
phase, we allow 1 million online exploration steps for figure plot and report the performance with 0.2
million exploration steps. The finetuning phase including exploration and evaluation in simulator
takes between 7 and 9 hours per dataset on a single GPU, while finetuning the pretrained trajectory
model itself takes half of the total time.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B HYPERPARAMETERS

Table 4: Hyperparameters.

Hyperparameter Offline Online
Training
Nonlinearity GELU GELU
Batch size 2048 512
Trajectory-segment length 8 8
Dropout 0.10 0.10
Learning rate 0.0001 0.0001
Weight decay 0.005 0.005
Target entropy β -3 -3
Scheduler cosine decay -
Warmup steps 40000 -
Training steps 140000 -

Evaluation
Context length 4 4

Bidirectional Transformer
of Encoder Layers 2 2
of Decoder Layers 1 1
Heads 4 4
Embedding Dim 512 512

Mode Decoding Head
Number of Layers 2 2
Embedding Dim 512 512

Reward Maximization
Decay Parameter λ 0.6 0.6
Candidata Number N 625 625
Softmax temperature ξ 1.0 1.0

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

C ADDITIONAL RESULTS

Online Finetuning Results. We report the per-task online training curves over 1 million online
samples for our method and our reproductions of baseline methods in Figure 9, ablations in Figure
10.

BTMODTM³PC IQL

Figure 9: D4RL Benchmark Comparison. Per-task Online Training Curves for M3PC and baseline
methods. Mean of 5 seeds. The shaded area represents the standard deviation across seeds.

We furthermore compete M3PC with some stronger, specialized O2O baseline methods with the
100k online sample budget practice: (1) AWAC (Nair et al., 2020), a representative O2O approach
utilizing advantage-weighted actor-critic; (2) ODT (Zheng et al., 2022), a unified sequential mod-
eling framework for offline RL and online finetuning; (3) OFF2ON Lee et al. (2022), a CQL-based
pessimistic Q-ensemble method that incorporates a balanced replay to encourage near on-policy
samples from the offline dataset; and (4) PEX (Kostrikov et al., 2021), an IQL-based algorithm fo-
cused on policy expansion. We evaluate the baselines on the D4RL locomotion datasets, with the
results summarized in Table 5. The results demonstrate that M3PC achieves performance compara-
ble to SOTA specialized O2O methods such as OFF2ON and PEX.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Dataset AWAC ODT OFF2ON PEX M3PC

hopper-m 57.8 → 55.1 73.4 → 67.0 97.5 → 80.2 56.5 → 87.5 73.6 → 81.3
walker2d-m 35.9 → 72.1 72.0 → 72.2 66.2 → 72.4 80.1 → 92.3 86.4 → 74.9
halfCheetah-m 43.0 → 42.4 42.7 → 42.1 39.3 → 59.6 50.8 → 60.9 51.2 → 64.0
hopper-mr 37.7 → 60.1 60.4 → 78.5 28.2 → 79.5 31.5 → 97.1 78.3 → 78.6
walker2d-mr 24.5 → 79.8 44.2 → 71.8 17.7 → 89.2 80.1 → 92.3 92.2 → 98.8
halfCheetah-mr 40.5 → 41.2 32.4 → 39.7 42.1 → 60.0 45.5 → 51.3 48.2 → 62.7

Average 39.9 → 58.5 54.2 → 61.9 48.5 → 73.5 57.4 → 80.2 71.7 → 76.8

Table 5: O2O Baseline Comparison Results. Comparison of normalized returns before and after
online finetuning with a 100K online sample budget. We report the mean of four seeds.

 ~ A w/o planing ~ a + N w/o planing ~ A w/ planing (ours) ~ a + N w/ planing

Figure 10: Ablation Studies for Algorithmic Components Contribution. Mean of 5 seeds.The
shaded area represents the standard deviation across seeds.

Inference Time. We have introduced M3PC’s computational efficiency due to the parallel predic-
tion nature of the mask autoencoding paradigm in the methodology section. For completeness, we
report the inference time of M3PC’s planning overhead with respect to a range of planning horizons
(1 to 8) in Fig. 11. We additionally include two methods for references: (1) TT (Janner et al.,
2021), a sequential modeling approach that employs beam search for test-time planning; (2) TD-
MPC (Hansen et al., 2022), a representative model-based RL method combining MPC and temporal
difference learning. All inference times were benchmarked on a single NVIDIA RTX 3090 GPU.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Note that we used the original implementations of the baseline methods, so the number of parame-
ters is not aligned across approaches. Results demonstrate that M3PC is much more computational
efficient compared to the sequential modeling approach TT. Furthermore, as the planning horizon
increases, M3PC even outperforms TD-MPC, despite the latter being a more lightweight model.

Figure 11: Inference Time Comparison. M3PC
is much more computational efficient compared to
sequential modeling approach TT and even out-
perform lightweight model TD-MPC as planning
horizon increases.

Ablation Study on Decay Parameter. Decay parameter λ play a significant role in balanc-
ing the weight of instant rewards and long-term value. We provide the training curves for λ ∈
{0.0, 0.1, 0.3, 0.5, 0.7, 0.9}. Figure 12 indicates our approach is not sensitive to the choice for λ
since each choice outperforms the baseline (randomly sampling action from A for exploration) by a
large margin, and has minor difference in learning speed (fine-tuning improvements happen slower
when λ = 0.1 and long step stability (performance drops after 800k online steps when λ = 0.9. We
choose λ = 0.6 in all the experiments as an intermediate choice for balancing converge speed and
online training stability.

Figure 12: Ablation Study for λ Choices. Normalized score as a function of λ choice with 0.1m,
0.5m, 1.0m online steps. The red star represents our default choice (0.6) while the grey line denotes
baseline results (explore w/o planning). Mean of 3 seeds.

Ablation Study on Entropy Constraint. We also report the effects of entropy constraint we im-
posed in Equation 2. The results of offline results M3PC-M, M3PC-Q and online finetuning results
M3PC-online are summarized in Table 6. Empirical results show that entropy constraint does not
have substantial influences on offline results but significantly boost the online sample efficiency.

Datasets M3PC-M M3PC-Q M3PC-online
w/o w w/o w w/o w

hopper-m 84.3±7.3 70.7±6.2 81.6±3.5 73.6±5.6 94.9±11.7 93.9±15.8

halfcheetah-m 43.8±0.6 43.9±3.9 50.0±0.3 51.2±0.7 71.5±3.6 69.3±2.1

walker2d-m 79.9±1.4 80.9±2.5 80.7±7.2 86.4±2.6 68.3±25.0 91.9±7.8

hopper-mr 75.1±11.3 80.4±5.2 76.8±27.2 78.3±16.2 88.7±26.9 103.5±6.0

walker2d-mr 78.5±16.0 78.2±10.2 94.0±0.8 92.2±2.4 108.1±3.5 105.2±1.0

halfcheetah-mr 40.0±1.0 41.8±0.5 48.0±0.8 48.2±0.4 70.2±2.8 67.0±7.1

Average 66.9 66.0 71.8 71.6 83.6 88.5

Table 6: Ablation Study on Entropy Constraint. Comparison of M3PC-M, M3PC-Q, and online
results w or w/o entropy constraint across D4RL datasets.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Goal Reaching Results. We show more results in goal reaching tasks here. To demonstrate the
extent to which our unseen goal is out of the distribution, we show together the PCA dimension-
reduced results for all states in the offline dataset on which the model was pretrained, and the states
in the trajectory of reaching the given goal. As in Fig.13, The different tasks have different out-
of-distribution cases: For the walker-split task, the agent starts with a seen state and finally reach
to a state never seen before (the angle of the hip-joint). For the cheetah-flip task, the initial state
and goal state are both seen in the offline dataset, the normal state usually corresponds to better
rewards, while the flip-over state hardly leads to any reward, as the original task in the dataset is run
fast. However, conditioned on the state given, the agent finds many unseen intermediate states to
finally transit to a flip-over state. For the Hopper-Wiggle task, the agent strings together a series of
near-in-distribution states to form a loop of wiggling action, which is not seen in the dataset.

Figure 13: Visualization of states in different tasks after 2-dim PCA mapping.

Additionally, we show the goal states we take as input in order to reach the final behavior, and how
well BTM with a single Goal Reaching mask and backward M3PC can follow those states. We only
plot the most representative dimension in the state vector for each task, respectively. E.g., Angle of
the front tip (dim[1]) of cheetah, and angle of the thigh joint (dim[2]) of walker and angle of the top
(dim[1]) of hopper. As in Fig.14, with only a single mask, the agent can hardly achieve the goal,
and the overall behavior resembles the behavior cloning result from the pretrain dataset. However,
with backward M3PC, the agent can successfully follow the kinematics guidance, although some do
not exactly satisfy the dynamics. Moreover, we show that the same pretrained model with backward
M3PC can reach wiggling behavior of different frequencies in hopper environment, with proper goal
states.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Goal state Naive Goal-reaching (single mask) Goal-reaching with M³PC

Cheetah-Filp Walker-Split

Hopper-wiggle frequency=2

Hopper-wiggle frequency=6

Hopper-wiggle frequency=0

Figure 14: Comparison between Backward M3PC and a single Mask in Goal-Reaching Tasks.
We present the goal states and resulting states after policy execution across three goal-reaching tasks,
focusing on a single key dimension. The single Mask fails to guide the agent toward the goal states
when the given current-goal state pairs are out of distribution.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

D TASKS AND DATASETS

The dataset utilization checklist is shown in Table 7.

Figure 15: Tasks Setup. (a) Locomotion tasks in D4RL: halfcheetah, hopper, walker2d (from left
to right); (b) Manipulation tasks in RoboMimic: lift, can, square (from left to right), (c) Left view
and front view of real-world manipulation task setup.

D4RL. We consider three representative D4RL locomotion domains (Hopper, Walker, and
HalfCheetah). Each domain contains two datasets (medium, medium-replay) which have
different data compositions. The medium datasets contain 1M samples collected by a partially-
trained SAC (Haarnoja et al., 2018) agent. The medium-replay dataset consists of recording all
samples in the replay buffer observed during training until the agent reaches the ”medium” level.
We use both these two types of datasets in offline RL and O2O RL.

RoboMimic. RoboMimic includes a suite of manipulation task datasets designed for the Franka
Panda robot, focusing on three specific tasks: Can, Square, and Lift. The dataset for pretrain-
ing encompasses four distinct categories: (1) Multi-Human (MH), consisting of six sets with each
containing 50 demonstrations by different pairs of demonstrators; (2) Machine Generated (MG),
generated by a Soft Actor-Critic (SAC) agent at various stages of its training, providing a spectrum
of behaviors from early exploratory to more refined tactics; and (3) Paired, where a single expe-
rienced operator recorded two demonstrations for each of 100 initializations of the Can task—one
demonstrating correct placement and the other tossing the object outside. We detailed the state space
and action space definition for each environment in Robomimic below, including our customized en-
vironments can-limit and can-real.

The Action Space and State Space for Manipulation. The action space for each timestep is a
7-dimensional vector per arm, where the first six coordinates represent control signals in the op-
erational space control (OSC) space, and the last coordinate controls the opening and closing of
the gripper fingers. The observation space includes a 7-dimensional vector for the absolute end ef-
fector position quaternion and a 2-dimensional vector for the left and right finger relative poses of
the gripper in addition to task-specified object observations. In the ”Lift” task, object observations
include a 10-dimensional vector consisting of the absolute cube position and quaternion (7-dim),
and the cube position relative to the robot end effector (3-dim). In the ”Can” task, the object ob-
servations are a 14-dimensional vector, including the absolute can position and quaternion (7-dim),
and the can’s position and quaternion relative to the robot end effector (7-dim). For the ”Square”
task, object observations also form a 14-dimensional vector with the absolute square nut position
and quaternion (7-dim) and their relative positions and quaternions (7-dim) to the robot end effec-
tor. In the ”Can-Limit” task, the object observations include only the absolute can position (3-dim),
excluding relative position knowledge to align with goal-reaching tasks where precise relative poses
are unnecessary. In the ”Can-real” task, which is a real-world environment similar to Can-Limit, ob-
ject position is detected using two vertically placed depth cameras, with actions output at 20 Hz, and

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

robot joint torques adjusted at 500 Hz to achieve the desired Cartesian poses based on the operational
space controller.

Table 7: Dataset Utilization. We outline the dataset utilization for each experiment part here, a
checkmark means the corresponding dataset is use for pretraining.

Dataset Offline RL Goal Reaching RL Online Finetuning

hopper-medium-v2 ✓ ✓ ✓
hopper-medium-replay-v2 ✓ ✓
walker2d-medium-v2 ✓ ✓ ✓
walker2d-medium-replay-v2 ✓ ✓
halfcheetah-medium-v2 ✓ ✓
halfcheetah-medium-replay-v2 ✓ ✓ ✓

Can-Pair ✓
Square-MH ✓
Lift-MG ✓
Can-Lim ✓ ✓
Can-Real ✓ ✓

23

	Introduction
	Related Work
	Preliminary
	Method
	Experiments
	Discussions and Limitations
	Implementation Details
	Hyperparameters
	Additional Results
	Tasks and Datasets

