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ABSTRACT

Recent work in Offline Reinforcement Learning (RL) has shown that a unified
transformer trained under a masked auto-encoding objective can effectively cap-
ture the relationships between different modalities (e.g., states, actions, rewards)
within given trajectory datasets. However, this information has not been fully ex-
ploited during the inference phase, where the agent needs to generate an optimal
policy instead of just reconstructing masked components from unmasked. Given
that a pretrained trajectory model can act as both a Policy Model and a World
Model with appropriate mask patterns, we propose using Model Predictive Con-
trol (MPC) at test time to leverage the model’s own predictive capacity to guide
its action selection. Empirical results on D4RL and RoboMimic show that our
inference-phase MPC significantly improves the decision-making performance of
a pretrained trajectory model without any additional parameter training. Further-
more, our framework can be adapted to Offline to Online (O2O) RL and Goal
Reaching RL, resulting in more substantial performance gains when an additional
online interaction budget is given, and better generalization capabilities when dif-
ferent task targets are specified. Our code and models will be released.

1 INTRODUCTION

Masked Modeling paradigm has a simple, self-supervised training objective: predicting a random-
masked subset of the original sequence. It has become a powerful technique for generation or
representation learning for sequential data, e.g. language tokens (Devlin et al., 2018) or image
patches (He et al., 2022). Unlike autoregressive models like GPT (Brown et al., 2020) that condition
only on the past context in the “left”, bidirectional models trained with this objective learn to model
the context from both sides, leading to richer representations and deeper understanding of the data’s
underlying dependencies.

Given that a sequential decision-making trajectory inherently involves a sequence of states s and
actions a, and other optional augmented properties like return-to-go (RTG) g (Chen et al., 2021)
or approximate state-action value v (Yamagata et al., 2023) across T timesteps, the mask modeling
paradigm can be adapted easily for sequential decision-making task. E.g., in the case of Reinforce-
ment Learning, the policy output P(a|s) at each time step can be regarded as predicting a masked
action a conditioned on given states s. Moreover, recent works (Carroll et al., 2022; Liu et al., 2022;
Wu et al., 2023) have demonstrated that a unified bidirectional trajectory model (BTM) pretrained
with a highly random masking pattern can be applied zero-shot in various downstream tasks. By
applying appropriate masks to different modalities — whether states, actions, or rewards — during
inference time, different reconstruction tasks can be deliberately created.

However, the inherent flexibility and versatility of models trained with random masking techniques
have not been fully exploited in deployment settings. Previous research has highlighted the mul-
titasking capabilities of Bidirectional Trajectory Models (BTMs) by assigning one single specific
mask patterns to individual tasks, such as the RCBC mask commonly used in offline RL after pre-
training phase. Our findings, in contrast, suggest that integrating multiple capabilities like short-
term reward and long-term return prediction, along with forward dynamics, could significantly en-
hance decision-making. These capabilities allow the agent to explicitly evaluate action candidates
and determine an optimal one, rather than merely relying on implicit mappings from expected re-
turns to policies.
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Figure 1: Benefits of equipping pre-trained bi-directional decision transformer with our test-
time M3PC. (a) Instead of generating actions solely based on history context, we leverage the full
capacity of the masked pretrained model to predict future outcomes (e.g. states, rewards, returns) as
a test-time self-enhanced decision making approach. Such a MPC framework can be used to achieve
higher return at inference time or to reach a given goal state (in dashed square block) even unseen
during offline training. (b) Forward M3PC achieves better offline learning performances, using the
same model without any fine-tuning, and gains better O2O improvement when online finetuning is
allowed after offline pretrain. (c) Backward M3PC unlocks zero shot goal reaching capability. Given
a desired state, the walker agent is able to split its legs to a large degree without any prior experience.

Building on these insights, we introduce the M3PC framework: Enhancing Decision-Making via
using the Masked Model itself for test-time Model Predictive Control. Our framework decomposes
decision making tasks into a series of simpler steps in a typical sample-based MPC style: sampling
potential actions, inferring possible future states, evaluating these actions based on predicted out-
comes, and selecting the final optimal action. Then we show how a pretrained model, equipped with
our adaptation and ensemble of masks, can efficiently and effectively handle those subtasks. Our em-
pirical results demonstrate that, by using M3PC to give a final decision, the same pretrained model
can get substantial decision quality improvement in offline RL and goal-reaching RL, outperforming
traditional single-mask models. Furthermore, M3PC supports sample-efficient online finetuning —
a capability rarely seen in previous sequential modeling agents. By fully leveraging the potential of
a pretrained BTM, M3PC evolves the model from a multitasking framework into an inference phase
self-enhancing, and a finetuning phase self-improving generalist agent. We summary our results in
Figure 1 and highlight our contributions as:

• We present M3PC, a novel framework that utilizes mask ensembles to address complex deci-
sion making tasks, effectively leveraging the multitasking abilities of a pretrained bidirectional
trajectory model (BTM).

• We demonstrate that M3PC not only improves the test-time performance of the same pretrained
BTM in offline RL by 6.0%, but also enables efficient finetuning through online interactions
with environments, outperforming specialized offline-to-online (O2O) RL algorithms, such as
ODT, by 26.0%.

• We demonstrate that M3PC can be adapted for goal-reaching tasks, effectively guiding agents
to specified goal states—even when these states are out-of-distribution relative to the datasets
used for pretraining.

2 RELATED WORK

Transformers for Sequential Decision Making. The transformer architecture, introduced
by (Vaswani et al., 2017), has significantly improved sequence modeling due to its powerful at-
tention mechanism. This architecture has been extensively applied in sequential decision-making
tasks such as reinforcement learning (RL) (Chen et al., 2021; Janner et al., 2021; Wang et al.,
2022) and imitation learning (IL) (Reed et al., 2022; Shafiullah et al., 2022; Brohan et al., 2022;
Baker et al., 2022). Representative work such as Decision Transformer (DT) (Chen et al., 2021)
and its variants (Zheng et al., 2022; Yamagata et al., 2023) learn a return-conditioned policy us-
ing a causal-masked transformer. Recent studies (Carroll et al., 2022; Liu et al., 2022; Wu et al.,
2023) utilize a bidirectional transformer to model the trajectory, highlighting the model’s versatil-
ity enhanced by the mask prediction training objective. These researches focus on the potential of
trajectory transformers to unify various decision-making tasks, typically employing a unique mask
pattern tailored to each specific downstream task. Building upon these insights, our work diverges by
aiming to harness the functional versatility of pretrained transformers to enhance decision-making.
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More specifically, we investigate whether utilizing two or more mask patterns can lead to improved
decision-making within a single downstream task.

Offline RL with Online Finetuning. Traditional off-policy RL algorithms often suffer from boot-
strapping error accumulation (Fujimoto et al., 2019; Nair et al., 2020). To mitigate these issues, most
offline RL algorithms adopt regularization techniques to mitigate errors caused by out-of-distribution
actions (Fujimoto et al., 2019; Nair et al., 2020; Kumar et al., 2020; Kostrikov et al., 2021; An et al.,
2021; Kumar et al., 2019). However, finetuning an offline RL algorithm can be challenging due
to its inherent conservatism and the offline-to-online data distribution shift (Nair et al., 2020; Yu
& Zhang, 2023). Many techniques such as value calibration (Nakamoto et al., 2024), balanced re-
play (Lee et al., 2022) and policy expansion (Zhang et al., 2023) have been investigated to improve
the online sample efficiency. In parallel, some work (Chen et al., 2021; Zheng et al., 2022) following
supervised learning (SL) paradigm can naturally ensure in-distribution learning but also suffer from
poor online sample efficiency (Brandfonbrener et al., 2022). Our approach sticks on SL paradigm
but incorporate DP-based module to improve online sample efficiency.

Model-based RL. Learning a dynamics model of the environment can be used for policy learn-
ing (Pong et al., 2018; Ha & Schmidhuber, 2018; Hafner et al., 2019) or planning (Silver et al.,
2008; Walsh et al., 2010; Zhang et al., 2019; Yu et al., 2020). Some recent work has explored the
feasibility of MPC in online RL (Chua et al., 2018; Janner et al., 2019; Wu et al., 2022; Lowrey
et al., 2018; Hatch & Boots, 2021; Hansen et al., 2022) Similar planning methods have also been
tailored for offline RL through techniques like behavior cloning regularization (Argenson & Dulac-
Arnold, 2020) and trajectory pruning (Zhan et al., 2021; Wang et al., 2023). Instead of maintaining
separate world and policy models, Trajectory Transformer (TT) (Janner et al., 2021) frames RL as
a sequential modeling problem and performs beam search planning based on return heuristics. Our
work follows a similar paradigm but leverages bidirectional transformer and a mask autoencoding
to enable a more computationally efficient planning process.

3 PRELIMINARY

We consider the environment as a Markov Decision Process (MDP), formally defined by the tuple
M = ⟨S,A, P,R, γ, ρ0⟩. In this notation, S represents the state space, and A represents the action
space. The transition probability distribution, P (st+1 | st, at), defines the likelihood of moving
from state st to state st+1 given action at. The reward function, R(st, at), assigns a reward for each
action taken in a particular state. The discount factor, denoted by γ, quantifies the preference for
immediate rewards over future rewards. The maximum episode length, which is also known as the
horizon of MDP, is denoted as H .

Additional notations are introduced to adapt RL to sequential modeling. We denote the training
data distribution as T . Note that this distribution can be dynamic when the agent interacts with
the environment. A trajectory τ consisting of T states, actions, RTGs and rewards and represented
by τ = (s1, g1, a1, r1, · · · , sT , gT , aT , rT ). Note that some other properties can also be directly
or indirectly accessed from the training data such as next-states (s′1, · · · , s′T ), estimated values
(v1, · · · , vT ) for state-action pairs, but we do not model them on the transformer.

4 METHOD

This section details how we leverage a bidirectional trajectory model’s versatile prediction capabil-
ities in a M3PC way to enhance an agent’s decision-making. In a typical MPC process, the system
repeatedly solves an optimization problem to find the best sequence of actions over a finite horizon
by evaluating the outcomes of these actions and then executing the first action in the sequence. The
following subsections describe our approach to adapt a BTM so that it can carry out those MPC
steps: First, we enable the BTM to reconstruct actions with uncertainty, allowing us to sample
from a distribution of action proposals. Next, we demonstrate how to use different masking patterns
for forward or backward prediction for MDP sequence elements. These predictions serve as ref-
erences for evaluating the expected outcomes of action proposals, which we use to determine the
optimal action to execute. As in Figure 3, by breaking down decision-making into above structured
steps and using the BTM for versatile predictions, our M3PC framework enhances the agent’s ability
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Figure 2: Model overview. The bi-directional trajectory model is pre-trained using MAE loss that
aims to reconstruct the whole MDP trajectory taken a [Random] masked trajectory. After pre-
training, the model show multiple capabilities by applying different test-time masks. E.g., Return-
Conditioned Behaviour Clone [RCBC] Mask: Predict actions given states, expected return and
context trajectory. Reward and Return Prediction [RP] Mask: Predict intermediate rewards and
future return given states and actions. Forward Dynamics [FD] Mask: Predict future states given
current state and future actions. Inverse Dynamics [ID] Mask: Infer actions needed taken to per-
form a given state path. As a pretrained masked transformer can always reconstruct the full trajec-
tory, for those those MDP-elements that is not related to given task, e.g., the rewards during [RCBC],
we omit them and mark as gray.

beyond simply imitating behaviors observed in offline data, e.g. achieving higher reward incomes
or diverse goals which typically fall in offline RL and goal reaching domains, respectively.

Bidirectional Trajectory Model. We illustrate the model architecture and how the model pro-
cess a masked MDP trajectory as Figure 2. To perform masked trajectory modeling, we first flatten
and tokenize the different elements in the raw trajectory sequence. This tokenization involves three
components: a modality-specific encoder that lifts elements from the raw modality space to a com-
mon representation space, and the addition of timestep embeddings and modality-type embeddings.
These components collectively enable the transformer to distinguish between different elements in
the sequence.

We employ an encoder-decoder architecture with both the encoder and decoder being bidirectional
transformers. The tokenized and flattened trajectory is fed into the transformer encoder, where only
unmasked tokens are processed. The decoder then processes the full trajectory sequence, utilizing
values from the encoder when available or a mask token when not. The decoder is trained to predict
the original sequence, including the unmasked tokens.

Training-phase Mask Pattern. Inspired by previous work (Wu et al., 2023; Zeng et al., 2024), we
employ a two-step masking pattern for training. Firstly, we randomly mask a proportion of elements
in the trajectory τ . Secondly, we mask all elements to the right of a randomly chosen position. By
learning to predict the mask elements, the model can handle temporal dependencies as well as infer
based on only past events.

Uncertainty-Aware Action Reconstruction. To equip the agent with robust decision-making capa-
bilities beyond mere imitation, our method employs uncertainty-aware action reconstruction rather
than predicting the masked action deterministically. The primary focus of MAE lies on perfectly
reconstructing each token of the sequence, typically optimizing a Mean Squared Error (MSE) loss.
This inherently leads to deterministic action reconstruction, which limits the agent’s awareness of
uncertainties associated with the actions.

To address this limitation, we propose reconstructing an uncertainty-aware action distribution A by
minimizing a Negative Log Likelihood (NLL) loss J(θ) denoted by

J(θ) =
1

T
Eτ∼T

[
T∑
t=1

− logPθ(at|Masked(τ))

]
. (1)

Inspired by ODT (Zheng et al., 2022), we additionally impose a lower bound on trajectory-level
action entropyHT

θ to encourage agent’s online exploratory behavior. The overall constraint problem
is formally written by

4
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Figure 3: Leverage the Masked Model itself for test-time Model Predictive Control. Our
pipeline utilizes BTM’s versatile inference capabilities to enhance decision making. (a) Forward
M3PC. We employ [RCBC], [FD] and [RP] masks to build an MPC pipeline for planning, predic-
tion, and action resample. (b) Backward M3PC. Given a goal state that we finally want to reach,
we first use Path Inference [PI] mask to infer the waypoint-states, followed by a Inverse Dynamic
[ID] mask to get the action sequence conditioned on those waypoints, and finally execute the first
one.

min
θ
J(θ) subject toHT

θ ≥ β, HT
θ =

1

T
Eτ∼T

[
T∑
t=1

H [Pθ(at|Masked(τ))]

]
, (2)

where H [·] denotes the Shannon entropy of the distribution, β is the predefined target entropy. We
consider solving the Lagrangian dual problem of Equation 2 to avoid explicitly dealing with the
inequality constraint. The implementation details are shown in Appendix A.

Forward M3PC for Reward Maximization. A bidirectional trajectory model agent has demon-
strated zero-shot ability in offline RL tasks when equipped with an [RCBC] mask in previous
work (Carroll et al., 2022; Wu et al., 2023). By predicting actions conditioned on states and RTGs,
the agent generates actions by imitating trajectories with similar RTGs in offline data. This imitative
behavior’s performance is inherently upper-bounded by the best trajectory in offline data.

To address this limitation, we propose to additionally refine the decision-making process by imple-
menting an explicit reward-maximization procedure using the forward dynamics function and the
return and reward prediction function provided by the unified trajectory model. Typically, we divide
the decision-making into three substeps: generating action proposals, rolling out the future, and
selecting action proposals based on their potential utilities. Suppose we have access to both inter-
mediate and long-term reward estimation for candidate action sequence at:T , which are represented
by rt:T and gt:T , respectively. We define the TD(λ)-style utility U for this candidate action which
denoted by

U = (1− λ)
T−t−1∑
n=0

λnGt:t+n + λT−tGt:T , where Gt:t+n =
n−1∑
k=0

γkrt+k + γngt+n, (3)

where decay parameter λ determines the weights of longer horizon estimates that contribute to the
final result which can help trade off the errors from dynamics predictions and value estimates. We
construct a categorical distribution P using softmax for proposal selection:

P [i] =
exp(ξU i)∑
j exp(ξU

j)
, ∀i ∈ [1, · · · , N ] , (4)

where ξ denote the softmax temperature. Notably, M3PC requires only two prediction steps for
planning at each timestep. Leveraging the bidirectional nature of transformers and the masked au-
toencoding paradigm, M3PC can predict all future actions given current states and all future states
given future actions in parallel. This parallel prediction capability mitigates the computational cost’s
linear growth concerning the planning horizon which is commonly seen in planning algorithms (e.g.
beam search in TT (Janner et al., 2021), CEM in TD-MPC (Hansen et al., 2022)). We detail the
decision making process for reward-maximization in Algorithm 1. Since RTG value is a trajectory-
wise Monte Carlo estimation, which becomes uninformative when datasets’ behavior policies are
diverse. We can optionally extend M3PC by replacing RTG guidance with a transition-wise value
for better heuristic. In this case, we calculate this value with a standalone value estimator updated
in a dynamic programming way proposed in IQL (Kostrikov et al., 2021).

5
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Having the ‘Utility’ as a metric to estimate future actions before they were taken, forward M3PC can
also be adaptive to an exploration strategy in the subsequent online finetuning phase, where equa-
tion 3 are used again. During the offline-to-online process, instead of executing the expectation in
categorical distribution equation 4, the M3PC agent sample action from the candidate set according
to the possibility proportional to their utility for stochasticity. This maintains the overall superior
action while simultaneously guaranteeing diversity of the experience collected during exploration,
balancing the exploration and exploitation.

Algorithm 1 Forward M3PC for Reward Maximization

1: Input: Current state st, past trajectory τ<t, discount factor γ, decay parameter λ, number of
candidates N , softmax temperature ξ

2: Initialize: Proposal action set A, Utilily set U
3: Output: Selected action a
4: A ← Initialize an empty list for candidate actions
5: αt:T ← Predict uncertainty-aware action distribution sequence using [RCBC] mask as Fig. 2
6: for i = 1 to N do
7: ait:T ← Sample a candidate action sequence from distribution αt:T
8: st+1:T ← Roll out the candidate sequence with [FD] mask as Fig. 2
9: rit:T , git:T ← Simulate intermediate rewards and long-term rewards using [RP] mask as Fig.

2
10: U i ← Calculate expected utility ▷ using Equation 3
11: Append ait, Ui to A,U , respectively.
12: end for
13: P ← Construct candidate selection distribution ▷ using Equation 4
14:
15: return a←

[
Ai|i ∼ P

]
if online, else a← Ei∼P

[
Ai

]
Backward M3PC for Goal Reaching. The capability of a BTM to infer past tokens conditioning on
future events makes it different from GPT-based models. This feature is particularly advantageous
for implementing MPC from a reverse or “backward” perspective when the objective is to achieve
a specified goal state. Unlike the goal reaching mask proposed by previous work (Liu et al., 2022;
Carroll et al., 2022) that masks all elements along the trajectory except the current and final states to
reconstruct the action at the current timestep, we leverage the BTM’s bi-directional conditioning ca-
pacity to inpaint a transition path to guide the action selection. We refer to this method as backward
M3PC.

Specifically, backward M3PC approach uses a Path Inference [PI] mask (illustrated in Figure 3(b)),
to guide the model in predicting a sequence of intermediate states leading to the goal. Once a path is
established, the model employs an Inverse Dynamics [ID] mask to deduce the necessary actions to
transition between consecutive states along the predicted path. This approach gets rid of generating
a large number of candidates and rolling out every one which inherently demands considerable
computational complexity, while implicitly doing the same thing as traditional MPC to select the
first action in a sequence that most satisfies a given goal.

5 EXPERIMENTS

Our experiments aim to answer the following questions:

Q1: Can forward M3PC enable the (same) agent to achieve higher accumulated rewards in
offline RL and subsequent online finetuning?

Q2: Can backward M3PC enable the agent to perform diverse tasks given target states?
Q3: How does each algorithmic component contribute to M3PC?
Q4: Is the pretrained model capable enough to perform M3PC in more complex environments

that demand the knowledge of interaction with external objects, e.g. manipulation?

Tasks and Datasets. To answer these questions, we utilize D4RL and RoboMimic dataset suits.
We apply three D4RL locomotion domains (Hopper, Walker2d, HalfCheetah) with two

6
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dataset types for each task: medium(m) and medium-replay(m-r), used to benchmark our
proposed forward M3PC in offline RL and O2O settings. The RoboMimic encompasses three manip-
ulation tasks (Can, Lift, Square). We utilize three official datasets (can-pair, square-mh,
lift-mg) and two customized datasets (can-lim, can-real) to evaluate M3PC’s potential
real-world application, typically in robotic manipulation tasks. Detailed descriptions of the tasks
and datasets can be found in Appendix D.

Table 1: Offline Results on D4RL. Comparison of the average normalized return against several
baseline methods without online finetuning. M3PC-M and M3PC-Q are shortened for our method
M3PC with (M)onte-carlo return estimation and (Q)-value estimation guidance heuristic, respec-
tively. We report the mean and standard deviation of 5 seeds. The best result for each dataset is
highlighted in bold. Note that M3PC-M shares the exact same weights as a pretrained BTM, but
constantly outperform BTM in all tasks due to the test-time enhancement brought by M3PC.

Dataset BC TD3+BC CQL IQL DT TT BTM M3PC-M M3PC-Q

hopper-m 53.5 60.4 58.5 63.8 65.1 61.1 64.3 70.7±6.2 73.6±5.6

walker2d-m 63.2 82.7 72.5 79.9 67.6 79.0 72.5 80.9±2.5 86.4±2.6

halfcheetah-m 42.4 48.1 44.0 47.4 42.2 46.9 43.0 43.9±3.9 51.2±0.7

hopper-m-r 29.8 64.4 95.0 92.1 81.8 91.5 75.3 80.4±5.2 78.3±16.2

walker2d-m-r 21.8 85.6 77.2 73.7 82.1 82.6 76.6 78.2±10.2 92.2±2.4

halfcheetah-m-r 35.7 44.8 45.5 44.1 48.3 41.9 41.1 41.8±0.5 48.2±0.4

Total 246.4 386.0 392.7 401.0 387.1 403.0 372.8 395.9 429.8

Q1: Offline RL. We present the offline results of M3PC with Monto Carlo return estimation guid-
ance (M3PC-M) and Q value estimation guidance (M3PC-Q) in Table 1. To assess the offline RL
performance of our proposed method, we compare it against the following baselines: (1) BC: behav-
ior cloning, which directly mimics the behaviors in the offline dataset; (2) TD3+BC (Fujimoto & Gu,
2021): an off-policy RL method incorporating a behavior cloning regularization term; (3)CQL (Ku-
mar et al., 2020): a model free algorithm learning a conservative value function that lower bounds the
policy’s true value; (4) IQL (Kostrikov et al., 2021): a model free algorithm designed to avoid boot-
strapping errors by learning implicit Q-functions; (5) DT (Chen et al., 2021): a sequence-modeling
model free approach that predicts actions conditioned on expected returns; (6) TT (Janner et al.,
2021): a sequence-modeling model based approach that utilizes beam search planning and (7) BTM:
which shares the same pretrained model as our method but applies only the [RCBC] mask for policy
inference. The results demonstrate that M3PC significantly improves reward accumulation com-
pared to BTM, consistently outperforming it across all datasets and domains, irrespective of the
guidance heuristic used. This indicates that M3PC’s planning phase effectively refines the action
proposals generated by BTM. Moreover, as a generalist agent, M3PC-M performs competitively
with specialized offline RL algorithms such as TD3+BC and IQL. Notably, M3PC-R achieves even
more competitive results, outperforming all baselines by a considerable margin.

Online Finetuning. Under the O2O setup, we compare our method against IQL and ODT (Zheng
et al., 2022), a specially designed O2O method for DT. The full online training curves of each
algorithm can be found in Appendix C. In Table 2, we report the performance of each algorithm with
a 200K online sample budget. To ensure a fair comparison, we pick the max performance between
ODT’s original paper (Chen et al., 2021) and our result running its open-sourced version. Our
method outperforms the other two methods in all the environments except the hopper-medium
dataset, and our total performance score after finetuning is 31% higher than IQL and 26% higher
than ODT, with improvements over finetuning 123% more substantial than ODT’s. We plot the
normalized exploration rollout statistics of M3PC agent and BTM agent in Fig. . Results show that
M3PC is more like to collect trajectory with high quality while holds some randomness to cover
diverse states. See more results in Appendix C.

Q2: Goal Reaching. To assess whether our proposed method can effectively guide an agent to spec-
ified goal states, we consider the following three tasks: (a) Halfcheetah flipping, (b) Walker doing
splits, and (c) Hopper wiggling. Due to the limited horizon of our model, we provide a sequence of
consecutive subgoals to ensure each goal reaching task is within the model’s planning horizon ca-
pacity, instead of directly providing the final desired goal state. Details about the subgoal selection

7
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Figure 4: Exploration Rollout Statistics. Results from two example runs of the Hopper task on
the medium dataset using the same offline-pretrained BTM agent. One run employs Gaussian noise
for exploration, while the other utilizes M3PC. The red line represents the offline result. Compared
to naive Gaussian noise exploration, M3PC significantly improves the agent’s exploration quality by
generating more high-return trajectories while maintaining stochasticity, including some mid-level
or low-return trajectories.

Table 2: Online Finetuning Results on D4RL. Comparison of normalized returns before and after
online finetuning, as well as the improvement achieved using a 200K online sample budget. We
report the mean from five seeds. The best final result for each dataset are highlighted in bold and
the greatest improvement is highlighted in green.

Dataset IQL ODT M3PC (Ours)
offline online δ offline online δ offline online δ

hopper-m 63.8 66.8 +3.0 67.0 97.5 +30.6 73.6±5.6 93.9±15.8 +20.3
walker2d-m 79.9 80.3 +0.4 72.2 76.8 +4.6 86.4±2.6 91.9±7.8 +5.5

halfcheetah-m 47.4 47.4 +0.0 42.7 42.2 -0.6 51.2±0.7 69.3±2.1 +18.1
hopper-m-r 92.1 96.2 +4.1 86.6 88.9 +2.3 78.3±16.2 103.5±6.0 +25.2

walker2d-m-r 73.7 70.6 -3.1 68.9 76.9 +7.9 92.2±2.4 105.2±1.0 +13.0
halfcheetah-m-r 44.1 44.1 +0.0 40.0 40.4 +0.4 48.2±0.4 67.0±7.1 +18.8

Total 401.0 405.5 +4.5 377.4 422.7 +45.3 429.8 530.8 +101.0

for each task are provided in Appendix A. These tasks deviate from the reward mechanisms typically
seen in offline data but can be extrapolated or stitched from offline trajectories. We showcase our
results in Figure 5, which illustrates that backward M3PC enables the agent to generalize diverse
tasks rather than merely imitating offline experiences. This demonstrates the model’s capability to
adapt to new challenges by leveraging its knowledge of complex dynamics to reach specific goals.

Figure 5: Demonstration for D4RL
Goal Reaching. One evaluation visu-
alization for (a) Halfcheetah flipping,
(b) Walker doing splits, and (c) Hop-
per wiggling at a predefined frequency.
These behavior are all unseen in the
offline dataset during pre-training, see
Appendix C for more details.

Additionally, we evaluated the BTM’s goal-reaching ability using a single goal-reaching mask, sim-
ilar to previous studies (Carroll et al., 2022; Liu et al., 2022). This method involves keeping the
current state and goal state unmasked and directly executing the impainted action. However, as de-
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tailed in Appendix C, this approach did not enable the agent to reach the goal state as expected. This
discrepancy highlights the effectiveness of our model-based approach.

hopper-m hopper-m-r walker2d-m walker2d-m-r halfcheetah-m halfcheetah-m-r
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Figure 6: Offline RL comparison between unified and specialized model. We report the nor-
malized average returns of BTM and M3PC on a unified pretrained agent compared to specified
pretrained agents, denoted by BTM-S and M3PC-S, respectively. The results represent the mean
over five seeds. The comparison suggests that the unified pretrained model leads to more efficient
representations and better performance with BTM and M3PC.

Q3: Ablation Studies. We conduct ablation studies to investigate the contribution of individual
components to the success of our method. Specifically, we investigate whether unifying the pre-
training process using a random masking technique enhances M3PC performance. To this end, we
pretrain two seperate policy model and world model using the same training objective and model
structure with BTM but are only applied [RCBC] mask and [FD] mask respectively during training
phase. These specialized models were then integrated to implement MPC. Our findings indicate
that two specialized pretrained models do not improve decision quality compared to the unified-
pretrained BTM, as shown in Figure 6. Moreover, implementing MPC with separate policy and
world models does not significantly contribute to decision-making compared to the specialized pol-
icy model. This suggests that the unified pretraining approach benefits performance, as the bidirec-
tional transformer captures both policy behaviors and environmental dynamics cohesively, leading
to more effective planning during MPC.

Figure 7: Ablation Study on Planning
and Uncertainty-aware Action Recon-
struction. We ablate sample-based planning,
uncertainty-aware action reconstruction, and
both components to investigate their contri-
butions to the algorithmic performance in the
online finetuning phase. We report average
results over six datasets. Mean of five seeds.
The shaded area represents the averaged per-
task standard deviation across random seeds.

We furthermore justify some design choices in M3PC’s online finetuning phase by comparing: (a)
Our M3PC as in Algorithm 1, combining uncertainty-aware action distribution A reconstruction
and planning-based action resample (b) randomly sample from A for exploration (c) BTM’s origin
way of action a reconstruction trained with MSE loss, adding a fixed action noise N (0, σI) for
exploration with the same entropy level as M3PC. (d) do planning-based action resample for (c)’s
decision. We show the averaged finetuning process across D4RL datasets in Figure 7. The results
highlight the effectiveness of our key contributions. Specifically, an uncertainty-aware policy for
exploration is crucial for maintaining online training stability and forward planning significantly
boosts sample efficiency. Figure 7 also shows that the performance drastically drops when naively
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using an uncertainty-“unaware” original BTM for exploration. Find per-task training curves and
more ablation studies in Appendix C.

Table 3: Offline Results on RoboMimic.
Success rate of various offline pretrained
agents in manipulation tasks. We report
the mean of 5 seeds (50 trials for simulator
and 20 trials for real world). We exclude
the BC and IQL from real-world imple-
mentation due to their poor performance
in the corresponding simulated tasks.

Dataset BC IQL DT M3PC

Can-Pair 0.64 0.34 0.94 0.98±0.01

Square-MH 0.53 0.13 0.21 0.28±0.14

Lift-MG 0.65 0.29 0.93 0.77±0.07

Can-Lim 0.25 0.27 0.46 0.54±0.16

Can-Real - - 0.50 0.70±0.10

Figure 8: Skill Generalization in Can-Pick task.
Simulated environments on the top and real-world
environments on the bottom. The columns show
the original behavior (left), behavior conditioned
on the seen goal state (mid), and behavior condi-
tioned on the unseen goal state (right).

Q4: Manipulation. In addition to the self-body motion control tasks we focused on in earlier
experiments, we shift our attention to manipulation tasks to explore whether our proposed M3PC
method can be effectively applied to robotics tasks that require interaction with objects in the en-
vironment. We conducted experiments across three simulated tasks in RoboMimic—Can, Square,
and Lift—each with varying levels of complexity. Additionally, we used datasets of different qual-
ity levels, including machine-generated (MG), mid-level human-demonstrated (MH), and paired
positive-and-negative (Pair) demonstrations. We also created a customized simulated task named
Can-Lim, a variant of the Can-Pick task, in which the dataset is adapted to the scenario where the
relative pose between the gripper and the can is unavailable. Finally, we tested our method on a
real-world Can-Pick task, referred to as Can-Real. The results are compared against several offline
RL baselines, as shown in Table 3.

To test the generalization capabilities, we take a goal-conditioned RL experiment in the Can-Picking
task with Paired dataset. This dataset contains 50% perfect demonstrations that successfully pick the
can and place it into the box in the right corner and other 50% demonstrations that directly throw the
can away from the table, getting no reward. As in Figure 8, by specifying the final goal states, we
can control the agent’s behavior between completing the original task or reproducing the throwing-
away behavior. Moreover, by specifying the final state numerically between two seen states in the
dataset, the model can generate actions that make the agent reach a state never seen in the dataset —
place the can into the box next to the right one.

6 DISCUSSIONS AND LIMITATIONS

We propose M3PC, a test-time MPC framework designed to enhance the inference performance of
masked transformers pretrained under offline RL settings. We demonstrate that M3PC offers the
following benefits: (1) Improved Decision-Making without Further Training: During inference,
M3PC can improve decision-making with high computational efficiency. (2) Enhanced Finetuning
Efficiency: With an additional online interaction budget, M3PC achieves better final performance
and improvements over previous sequential modeling O2O approach ODT, enhancing the agent’s
continuous learning ability. (3) Generalization Ability: The framework showcases notable gener-
alization capabilities. It can generate actions that effectively drive the agent towards unseen goal
states in both simulated and real-world tasks.

While M3PC demonstrates promising results, there are areas for further investigation: (1) Handling
Pixel Observations: Currently, our framework is limited to environments with state-based observa-
tions. Future work will delve into handling pixel observations. (2) Transformer Scalability: Our
experiments employed a fixed-structure masked trajectory transformer. We haven’t identified if a
transformer with a larger capacity will lead to better test-time planning.
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A IMPLEMENTATION DETAILS

Loss Function Construction. We consider the Lagrangian of Equation 2 given by:

L(θ, σ) = J(θ) + σ(β −HT
θ ), (5)

where σ is a non-negative Lagrange multiplier. The training objective then become

max
σ≥0

min
θ
L(θ, σ). (6)

We alternately optimize θ and σ as follows:

• Optimizing θ with fixed σ, which involves:

min
θ

(
J(θ)− σHT

θ

)
, (7)

• Optimizing σ with fixed θ, formulated as:

min
σ≥0

σ
(
HT
θ − β

)
. (8)

This iterative training of θ and σ ensures compliance with the entropy constraint while optimizing
the objective function J(θ).

Transition-wise Value Estimator. We choose IQL (Kostrikov et al., 2021) algorithm to train the
value estimator because its Bellman updates do not require an explicit policy function. Typically,
IQL simultaneously learns a critic network Qψ and value network Vϕ with the losses defined by:

JQ(ψ) = E(s,a,r,s′)∼T

[
(r + γVϕ(s

′)−Qψ(s, a))
2
]
,

JV (ϕ) = E(s,a)∼T
[∣∣t− 1{Qψ(s,a)−Vϕ(s)<0}

∣∣ (Qψ(s, a)− Vϕ(s))2] (9)

, where t is a constant hyperparameter named expectile used to control the conservatism of the value
estimation. The critic network Qψ will be applied to estimate the long-term reward for a given
state-action pair in our approach. t is set to 0.7 for D4RL locomotion tasks and 0.9 for RoboMimic
manipulation tasks.

Goal State Definitions in Goal Reaching Tasks. In the goal-reaching setup for Hopper, Walker,
and HalfCheetah, we craft rough trajectories based on the specific anticipated dynamics of each
agent. For the Hopper, a sinusoidal trajectory is designed for the foot joint to induce a wiggling
motion, while the other two joints’ initial positions are maintained. In the case of the Walker, a lin-
early increasing trajectory for the thigh joint facilitates the splits, with the dynamics of other joints
extracted from the offline trajectory which correspond to a stepping behavior, providing rough guid-
ance. For the HalfCheetah, the primary flipping motion is guided by linear trajectories that set the
body height decrease and a full 180-degree rotation to simulate a flip. Complementing this, the dy-
namics of the other joints and body movements are derived from offline datasets that capture detailed
flipping steps, providing a coherent and realistic motion base. Subgoals are extracted from these tra-
jectories at specific intervals—every fifth, thirtieth, and every timestep, respectively—to guide each
model towards achieving the intended maneuvers, ensuring that while the main actions are precisely
targeted, the full spectrum of body dynamics remains realistically integrated and synchronized with
the models’ overall movements.

In the Can Pick task, we deploy specific guidance trajectories for each distinct behavior—throwing
away and moving to a nearer box. For the ”throwing-away” behavior, we directly select a suitable
trajectory from an offline dataset without any modifications, ensuring that the agent replicates a
proven effective throwing motion. For the ”moving to a nearer box” behavior, the process begins
by selecting a ”moving to correct box” trajectory from the offline dataset. To tailor this trajec-
tory to the specific task, we apply an affine transformation to adjust the horizontal positions of the
Franka robot’s end effector and the object along the trajectory. This transformation proportionally
reduces the distance the object needs to be moved, customizing the trajectory to the current scenario.
Subgoals are then extracted from these guidance trajectories at every state, providing detailed, step-
by-step targets that guide the agent’s actions towards successful task completion.

Hardware. The entire training process, including both pretraining and finetuning, is performed
on NVIDIA 3090 GPUs. During the offline pretraining phase, we train the BTM model for 140K
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gradient steps, which takes approximately 4 hours per dataset on a single GPU. For the finetuning
phase, we allow 1 million online exploration steps for figure plot and report the performance with 0.2
million exploration steps. The finetuning phase including exploration and evaluation in simulator
takes between 7 and 9 hours per dataset on a single GPU, while finetuning the pretrained trajectory
model itself takes half of the total time.
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B HYPERPARAMETERS

Table 4: Hyperparameters.

Hyperparameter Offline Online
Training
Nonlinearity GELU GELU
Batch size 2048 512
Trajectory-segment length 8 8
Dropout 0.10 0.10
Learning rate 0.0001 0.0001
Weight decay 0.005 0.005
Target entropy β -3 -3
Scheduler cosine decay -
Warmup steps 40000 -
Training steps 140000 -

Evaluation
Context length 4 4

Bidirectional Transformer
# of Encoder Layers 2 2
# of Decoder Layers 1 1
# Heads 4 4
Embedding Dim 512 512

Mode Decoding Head
Number of Layers 2 2
Embedding Dim 512 512

Reward Maximization
Decay Parameter λ 0.6 0.6
Candidata Number N 625 625
Softmax temperature ξ 1.0 1.0
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C ADDITIONAL RESULTS

Online Finetuning Results. We report the per-task online training curves over 1 million online
samples for our method and our reproductions of baseline methods in Figure 9, ablations in Figure
10.

BTMODTM³PC IQL

Figure 9: D4RL Benchmark Comparison. Per-task Online Training Curves for M3PC and baseline
methods. Mean of 5 seeds. The shaded area represents the standard deviation across seeds.

We furthermore compete M3PC with some stronger, specialized O2O baseline methods with the
100k online sample budget practice: (1) AWAC (Nair et al., 2020), a representative O2O approach
utilizing advantage-weighted actor-critic; (2) ODT (Zheng et al., 2022), a unified sequential mod-
eling framework for offline RL and online finetuning; (3) OFF2ON Lee et al. (2022), a CQL-based
pessimistic Q-ensemble method that incorporates a balanced replay to encourage near on-policy
samples from the offline dataset; and (4) PEX (Kostrikov et al., 2021), an IQL-based algorithm fo-
cused on policy expansion. We evaluate the baselines on the D4RL locomotion datasets, with the
results summarized in Table 5. The results demonstrate that M3PC achieves performance compara-
ble to SOTA specialized O2O methods such as OFF2ON and PEX.
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Dataset AWAC ODT OFF2ON PEX M3PC

hopper-m 57.8 → 55.1 73.4 → 67.0 97.5 → 80.2 56.5 → 87.5 73.6 → 81.3
walker2d-m 35.9 → 72.1 72.0 → 72.2 66.2 → 72.4 80.1 → 92.3 86.4 → 74.9
halfCheetah-m 43.0 → 42.4 42.7 → 42.1 39.3 → 59.6 50.8 → 60.9 51.2 → 64.0
hopper-mr 37.7 → 60.1 60.4 → 78.5 28.2 → 79.5 31.5 → 97.1 78.3 → 78.6
walker2d-mr 24.5 → 79.8 44.2 → 71.8 17.7 → 89.2 80.1 → 92.3 92.2 → 98.8
halfCheetah-mr 40.5 → 41.2 32.4 → 39.7 42.1 → 60.0 45.5 → 51.3 48.2 → 62.7

Average 39.9 → 58.5 54.2 → 61.9 48.5 → 73.5 57.4 → 80.2 71.7 → 76.8

Table 5: O2O Baseline Comparison Results. Comparison of normalized returns before and after
online finetuning with a 100K online sample budget. We report the mean of four seeds.

 ~ A w/o planing ~ a + N   w/o planing ~ A  w/ planing (ours) ~ a + N  w/  planing 

Figure 10: Ablation Studies for Algorithmic Components Contribution. Mean of 5 seeds.The
shaded area represents the standard deviation across seeds.

Inference Time. We have introduced M3PC’s computational efficiency due to the parallel predic-
tion nature of the mask autoencoding paradigm in the methodology section. For completeness, we
report the inference time of M3PC’s planning overhead with respect to a range of planning horizons
(1 to 8) in Fig. 11. We additionally include two methods for references: (1) TT (Janner et al.,
2021), a sequential modeling approach that employs beam search for test-time planning; (2) TD-
MPC (Hansen et al., 2022), a representative model-based RL method combining MPC and temporal
difference learning. All inference times were benchmarked on a single NVIDIA RTX 3090 GPU.
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Note that we used the original implementations of the baseline methods, so the number of parame-
ters is not aligned across approaches. Results demonstrate that M3PC is much more computational
efficient compared to the sequential modeling approach TT. Furthermore, as the planning horizon
increases, M3PC even outperforms TD-MPC, despite the latter being a more lightweight model.

Figure 11: Inference Time Comparison. M3PC
is much more computational efficient compared to
sequential modeling approach TT and even out-
perform lightweight model TD-MPC as planning
horizon increases.

Ablation Study on Decay Parameter. Decay parameter λ play a significant role in balanc-
ing the weight of instant rewards and long-term value. We provide the training curves for λ ∈
{0.0, 0.1, 0.3, 0.5, 0.7, 0.9}. Figure 12 indicates our approach is not sensitive to the choice for λ
since each choice outperforms the baseline (randomly sampling action from A for exploration) by a
large margin, and has minor difference in learning speed (fine-tuning improvements happen slower
when λ = 0.1 and long step stability (performance drops after 800k online steps when λ = 0.9. We
choose λ = 0.6 in all the experiments as an intermediate choice for balancing converge speed and
online training stability.

Figure 12: Ablation Study for λ Choices. Normalized score as a function of λ choice with 0.1m,
0.5m, 1.0m online steps. The red star represents our default choice (0.6) while the grey line denotes
baseline results (explore w/o planning). Mean of 3 seeds.

Ablation Study on Entropy Constraint. We also report the effects of entropy constraint we im-
posed in Equation 2. The results of offline results M3PC-M, M3PC-Q and online finetuning results
M3PC-online are summarized in Table 6. Empirical results show that entropy constraint does not
have substantial influences on offline results but significantly boost the online sample efficiency.

Datasets M3PC-M M3PC-Q M3PC-online
w/o w w/o w w/o w

hopper-m 84.3±7.3 70.7±6.2 81.6±3.5 73.6±5.6 94.9±11.7 93.9±15.8

halfcheetah-m 43.8±0.6 43.9±3.9 50.0±0.3 51.2±0.7 71.5±3.6 69.3±2.1

walker2d-m 79.9±1.4 80.9±2.5 80.7±7.2 86.4±2.6 68.3±25.0 91.9±7.8

hopper-mr 75.1±11.3 80.4±5.2 76.8±27.2 78.3±16.2 88.7±26.9 103.5±6.0

walker2d-mr 78.5±16.0 78.2±10.2 94.0±0.8 92.2±2.4 108.1±3.5 105.2±1.0

halfcheetah-mr 40.0±1.0 41.8±0.5 48.0±0.8 48.2±0.4 70.2±2.8 67.0±7.1

Average 66.9 66.0 71.8 71.6 83.6 88.5

Table 6: Ablation Study on Entropy Constraint. Comparison of M3PC-M, M3PC-Q, and online
results w or w/o entropy constraint across D4RL datasets.
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Goal Reaching Results. We show more results in goal reaching tasks here. To demonstrate the
extent to which our unseen goal is out of the distribution, we show together the PCA dimension-
reduced results for all states in the offline dataset on which the model was pretrained, and the states
in the trajectory of reaching the given goal. As in Fig.13, The different tasks have different out-
of-distribution cases: For the walker-split task, the agent starts with a seen state and finally reach
to a state never seen before (the angle of the hip-joint). For the cheetah-flip task, the initial state
and goal state are both seen in the offline dataset, the normal state usually corresponds to better
rewards, while the flip-over state hardly leads to any reward, as the original task in the dataset is run
fast. However, conditioned on the state given, the agent finds many unseen intermediate states to
finally transit to a flip-over state. For the Hopper-Wiggle task, the agent strings together a series of
near-in-distribution states to form a loop of wiggling action, which is not seen in the dataset.

Figure 13: Visualization of states in different tasks after 2-dim PCA mapping.

Additionally, we show the goal states we take as input in order to reach the final behavior, and how
well BTM with a single Goal Reaching mask and backward M3PC can follow those states. We only
plot the most representative dimension in the state vector for each task, respectively. E.g., Angle of
the front tip (dim[1]) of cheetah, and angle of the thigh joint (dim[2]) of walker and angle of the top
(dim[1]) of hopper. As in Fig.14, with only a single mask, the agent can hardly achieve the goal,
and the overall behavior resembles the behavior cloning result from the pretrain dataset. However,
with backward M3PC, the agent can successfully follow the kinematics guidance, although some do
not exactly satisfy the dynamics. Moreover, we show that the same pretrained model with backward
M3PC can reach wiggling behavior of different frequencies in hopper environment, with proper goal
states.
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Goal state Naive Goal-reaching (single mask)  Goal-reaching with M³PC

Cheetah-Filp Walker-Split

Hopper-wiggle frequency=2

Hopper-wiggle frequency=6

Hopper-wiggle frequency=0

Figure 14: Comparison between Backward M3PC and a single Mask in Goal-Reaching Tasks.
We present the goal states and resulting states after policy execution across three goal-reaching tasks,
focusing on a single key dimension. The single Mask fails to guide the agent toward the goal states
when the given current-goal state pairs are out of distribution.
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D TASKS AND DATASETS

The dataset utilization checklist is shown in Table 7.

Figure 15: Tasks Setup. (a) Locomotion tasks in D4RL: halfcheetah, hopper, walker2d (from left
to right); (b) Manipulation tasks in RoboMimic: lift, can, square (from left to right), (c) Left view
and front view of real-world manipulation task setup.

D4RL. We consider three representative D4RL locomotion domains (Hopper, Walker, and
HalfCheetah). Each domain contains two datasets (medium, medium-replay) which have
different data compositions. The medium datasets contain 1M samples collected by a partially-
trained SAC (Haarnoja et al., 2018) agent. The medium-replay dataset consists of recording all
samples in the replay buffer observed during training until the agent reaches the ”medium” level.
We use both these two types of datasets in offline RL and O2O RL.

RoboMimic. RoboMimic includes a suite of manipulation task datasets designed for the Franka
Panda robot, focusing on three specific tasks: Can, Square, and Lift. The dataset for pretrain-
ing encompasses four distinct categories: (1) Multi-Human (MH), consisting of six sets with each
containing 50 demonstrations by different pairs of demonstrators; (2) Machine Generated (MG),
generated by a Soft Actor-Critic (SAC) agent at various stages of its training, providing a spectrum
of behaviors from early exploratory to more refined tactics; and (3) Paired, where a single expe-
rienced operator recorded two demonstrations for each of 100 initializations of the Can task—one
demonstrating correct placement and the other tossing the object outside. We detailed the state space
and action space definition for each environment in Robomimic below, including our customized en-
vironments can-limit and can-real.

The Action Space and State Space for Manipulation. The action space for each timestep is a
7-dimensional vector per arm, where the first six coordinates represent control signals in the op-
erational space control (OSC) space, and the last coordinate controls the opening and closing of
the gripper fingers. The observation space includes a 7-dimensional vector for the absolute end ef-
fector position quaternion and a 2-dimensional vector for the left and right finger relative poses of
the gripper in addition to task-specified object observations. In the ”Lift” task, object observations
include a 10-dimensional vector consisting of the absolute cube position and quaternion (7-dim),
and the cube position relative to the robot end effector (3-dim). In the ”Can” task, the object ob-
servations are a 14-dimensional vector, including the absolute can position and quaternion (7-dim),
and the can’s position and quaternion relative to the robot end effector (7-dim). For the ”Square”
task, object observations also form a 14-dimensional vector with the absolute square nut position
and quaternion (7-dim) and their relative positions and quaternions (7-dim) to the robot end effec-
tor. In the ”Can-Limit” task, the object observations include only the absolute can position (3-dim),
excluding relative position knowledge to align with goal-reaching tasks where precise relative poses
are unnecessary. In the ”Can-real” task, which is a real-world environment similar to Can-Limit, ob-
ject position is detected using two vertically placed depth cameras, with actions output at 20 Hz, and

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

robot joint torques adjusted at 500 Hz to achieve the desired Cartesian poses based on the operational
space controller.

Table 7: Dataset Utilization. We outline the dataset utilization for each experiment part here, a
checkmark means the corresponding dataset is use for pretraining.

Dataset Offline RL Goal Reaching RL Online Finetuning

hopper-medium-v2 ✓ ✓ ✓
hopper-medium-replay-v2 ✓ ✓
walker2d-medium-v2 ✓ ✓ ✓
walker2d-medium-replay-v2 ✓ ✓
halfcheetah-medium-v2 ✓ ✓
halfcheetah-medium-replay-v2 ✓ ✓ ✓

Can-Pair ✓
Square-MH ✓
Lift-MG ✓
Can-Lim ✓ ✓
Can-Real ✓ ✓
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