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ABSTRACT

Purpose – We provide a dataset for enabling Deep Generative Models (DGMs) in engineering design
and propose methods to automate data labeling by utilizing large-scale foundation models.
Methodology – GeoBiked is curated to contain 4 355 bicycle images, annotated with structural and
technical features and is used to investigate two automated labeling techniques:

• The utilization of consolidated latent features (Hyperfeatures) from image-generation models to
detect geometric correspondences (e.g. the position of the wheel center) in structural images.

• The generation of diverse text descriptions for structural images. GPT-4o, a vision-language-
model (VLM), is instructed to analyze images and produce diverse descriptions aligned with the
system-prompt.

Findings – By representing technical images as Diffusion-Hyperfeatures, drawing geometric corre-
spondences between them is possible. The detection accuracy of geometric points in unseen samples
is improved by presenting multiple annotated source images.
GPT-4o has sufficient capabilities to generate accurate descriptions of technical images. Grounding
the generation only on images leads to diverse descriptions but causes hallucinations, while grounding
it on categorical labels restricts the diversity. Using both as input balances creativity and accuracy.
Research implications – Successfully using Hyperfeatures for geometric correspondence suggests
that this approach can be used for general point-detection and annotation tasks in technical images.
Labeling such images with text descriptions using VLMs is possible, but dependent on the models
detection capabilities, careful prompt-engineering and the selection of input information.
Originality – Applying foundation models in engineering design is largely unexplored. We aim to
bridge this gap with a dataset to explore training, finetuning and conditioning DGMs in this field and
suggesting approaches to bootstrap foundation models to process technical images.
Keywords Deep Generative Models, Data-driven design, AI-driven engineering design
Paper type Research paper

1 Introduction

Rapid advancements in the field of machine learning underscore the pivotal role of high-quality datasets in propelling
technological breakthroughs. In Computer Vision, the introduction of quality, publicly available datasets has acted as a
catalyst, enabling researchers to evaluate the performance of diverse methodologies. Datasets like ImageNet (Deng
et al. 2009), CIFAR (Krizhevsky 2009) and MNIST (LeCun et al. 1998) are crucial to level the playing field and set
benchmarks that define the state of the art.
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Recent breakthroughs in generative tasks, such as the synthesis of high-quality natural images with Stable Diffusion
(Rombach et al. 2022), rely on extensive, high-quality data pools such as LAION (Schuhmann et al. 2022) for
model training. Methodologies for the conditional control of the synthesized content also require data. Training a
single adapter to condition images on user-provided sketch-inputs within the ControlNet framework is based on 500k
sketch-image-caption pairs (Zhang et al. 2023) obtained from an internet database. An amount that is often out of
reach for limited, domain-specific applications of DGM’s in engineering-design. Even approaches that are training-free
require benchmark samples to evaluate the effectiveness of the mechanism.

Despite the public availability of general-purpose datasets for various deep learning applications, domain-specific fields
like engineering design still face the scarcity of datasets equipped with detailed structural and geometric information.
This gap has been highlighted in multiple studies (Regenwetter et al. 2022; Alam et al. 2024; Picard et al. 2023). It
limits the application of Deep Generative Models (DGMs) in engineering design, where the objective extends beyond
generating aesthetically pleasing visuals. Fulfillment of fundamental technical feasibility and unambiguous control over
the process are prerequisites to develop real-world design concepts.(Alam et al. 2024; Joskowicz and Slomovitz 2024).
In such scenarios, precise control over the generative process is necessary. Developing methods for conditioning and
controlling the generation requires datasets with design-relevant and interpretable annotations.

In response to these challenges, our work 1 builds upon and extends the foundational efforts of the BIKED project
(Regenwetter et al. 2021). We streamline and enrich the dataset with geometric and semantic details aiming to enable
engineers and designers to conduct basic experiments on DGMs with structural image data such as model training,
finetuning, developing conditioning mechanisms and benchmarking. Our updated dataset includes interpretable features
and geometric representations encompassing 12 reference points. We present the details about the dataset in Section 2.

Recognizing the bottleneck often encountered in annotating target data for generative tasks, our work furthermore
explores the capabilities of utilizing off-the-shelf generative models with capabilities for visual- and language-
understanding for automating these tedious manual efforts. We hypothesize that we can leverage the reasoning
capabilities and context understanding learned by large-scale foundation models (Tang et al. 2023; Hwang et al. 2023;
Picard et al. 2023; Singh et al. 2023) to bypass manual data annotation by passing this task to the generative model.
In that, we investigate the capabilities of these models to process domain-specific, engineering design image data.
Specifically, we ask two questions that relate to two relevant data annotation tasks.

1. Can we use the learned spatial and semantic understanding of pretrained latent diffusion models (Stable
Diffusion (Rombach et al. 2022) to detect and annotate geometric correspondences in structural images?

2. Can state-of-the-art vision-language models (GPT-4o (OpenAI 2024b)) be used to generate diverse text
descriptions of structural image data that accurately describe the technical object and its fine visual details?

The first question corresponds to the task of annotating the structural bicycle images with the geometric features, a task
we did by hand for all samples. Analogous to how humans approach such tasks, we aim to provide only a handful of
annotated examples. We then utilize the pretrained network by (Luo et al. 2023) to consolidate the learned feature
representations, extracted from Stable Diffusion. These Hyperfeatures are used to draw correspondences between the
geometric image features described by the annotated points and geometric features in unseen images. Leveraging the
feature representations learned by Stable Diffusion, we automate the task of annotating geometric reference points in the
GeoBiked images, showing that a) large-scale diffusion models for image generation can be used to process structural
images in engineering design, b) a learned consolidation of latent features can be used to draw correspondences between
such technical images, even if it has not been trained on them and c) presenting multiple reference images that show
different styles of the design objects leads to higher accuracy in the prediction of the geometrical reference points in
unseen images.

For the second question, we aim to generate diverse and creative text descriptions for the technical images by passing
them to GPT-4o (OpenAI 2024b) as our off-the-shelf vision-language model (VLM). The VLM is instructed to produce
descriptions of different lengths and styles. We investigate how the model can be aligned to produce desired descriptions
of sufficient diversity without hallucination. Therefore, we evaluate the influence of three different configurations of
input information. First, we only input the image for the VLM to describe. Second, we pass the labels annotating the
corresponding image. The labels contain information about the style and the technical layout of each bicycle. Finally,
we input both previous information types together.

To sum up our main contributions, we present the GeoBiked dataset that contains structural images of bicycles. The
images are annotated with interpretable design, technical and geometric features relevant for engineering design
applications. Based on the dataset, we propose two methods for automated labeling of structural image data utilizing
off-the-shelf foundation models, that do not need any training or finetuning. First, we show that a learned consolidation

1Dataset and Code is found under: https://anonymous.4open.science/r/GeoBIKED-D12C

2

https://anonymous.4open.science/r/GeoBIKED-D12C


of latent image features from Stable Diffusion can be used to accurately predict geometric reference points in unseen
images. Second, with GPT-4o’s vision-language capabilities, we generate diverse text descriptions of controllable style
that accurately describe the structural images, balancing the needs for diversity and accuracy.

2 GeoBiked Dataset

2.1 Related Work

Our dataset is based on the BIKED-dataset (Regenwetter et al. 2021), which originated from the BikeCAD software
(Curry 1998), a specialized tool for bicycle design. From an initial collection of 4791 bikes and 23813 descriptive
parameters, the authors distilled 4512 bicycles and 1314 parameters. These parameters correlate to the CAD-models
and describe every bicycle in detail. This curation process aimed to retain the raw richness of the data, facilitating a
broad spectrum of data-driven design applications. Their methodology exemplifies the utility of the dataset through
the training of two Variational Autoencoders (VAEs): one dedicated to generating new bike images and another to
reconstructing bike parameters, showcasing the versatility of the dataset in supporting innovative design synthesis.

The initial version of the dataset comes with a number of shortcomings, limiting its applicability in DGM-driven
engineering design tasks. Each sample is annotated with a total of 1314 parameters that were extracted from the
BikeCAD software. Despite large in quantity, these parameters are largely non-interpretable and contain no meaningful
information about design, style or structural composition of the bicycles they describe. Having such information is
crucial to enable DGMs in engineering and concept design, as they are the basis for conditioning and control modalities
of the generatice process (Alam et al. 2024; Joskowicz and Slomovitz 2024; Regenwetter et al. 2022). Furthermore, the
dataset contains a number of infeasible designs and unrealistic samples. It lacks a uniform scaling of the objects within
the image resolution, preventing direct geometric correspondences between the images.

2.2 Methodology

The first curation step in the derivation of GeoBiked from BIKED is a visual inspection of the 4512 provided bike
images for faulty and out-of-distribution samples. We categorize samples as faulty if their geometric integrity is not
ensured or the frame design is visibly unrealistic, see Figure Figure 1. We also remove the ten geometrically largest
samples from the dataset as they are significantly out-of-distribution, therefore reducing the variance of the bike sizes
and the geometric characteristics by more than 30% (Figure 8).

Figure 1. Unrealistic samples from the original BIKED dataset (Regenwetter et al. 2021)

The next step is the centering and geometric normalization of the images. In the original dataset, the images are not
normalized to the same scale. Using the provided information about the scaling factor in the BIKED dataset, we ensure
that all bikes are scaled equally. This step solidifies geometric consistency. Furthermore, we maximize the size of the
bikes within the image resolution by precisely fitting the largest sample to the image resolution in length (x-dimension).
This leads to one pixel equaling 10.19 mm in 256× 256 images and 1.27 mm in 2048× 2048 images.

To add geometric reference points to the dataset, we first define characteristic points and intersections in the bike
geometry, aiming to allow the representation of each sample solely by a combination of these points. We describe the
points in more detail in Section 2.3.3. Of the 12 geometric points, we derive six from the provided parameter set in the
original dataset. The remaining parameters have to be defined manually. The coordinate-values of the geometric points
are stored in millimeters for simplicity. They can be translated into pixel-values with the previously discussed scaling
for both image resolutions. We filter and modify the initial set of descriptive parameters for features with semantic,
geometric, or technical relevance, keeping a total of nine. We discuss the provided features in the next section in more
detail.
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2.3 Dataset Features

2.3.1 Design Features

We categorize the samples in the dataset into 19 different bicycle styles. This categorization is adapted from the original
BIKED dataset. The style distribution is shown in Figure 2a. In the dataset, Road-Bikes are the most common style,
followed by Mountain-Bikes and Track-Bikes.

We further add the diameters of the front and the rear wheel to the dataset. These are essential for the overall bicycle
composition and geometry and can therefore be used as technical or design parameters. Furthermore, we provide
the possibility of categorizing the samples by their Rim-style. The Rim-style has a significant impact on the overall
design and appearance of the bicycle. The dataset distinguishes between spoked rims, tri-spoked rims and disked rims.
Front-and rear wheel rim styles are separate categories, as several samples have a combination of two different rims.
We note that spoked rims are by far the most common category in the dataset, making up 93.5% of samples for the front
wheel and 92.9% for the rear wheel.

Another design-related feature that we provide in our dataset is the fork type. We distinguish between rigid forks,
suspension forks and single-sided forks. Rigid forks make up 77.1% of samples while suspension forks make up 20.2%
and single-sided forks 2.6%. The final set of design features are the bottles on the seat-tube and the down-tube. We
added information about their presence as Boolean-values to the dataset.

(a) Bike style distribution (b) Tube size distribution (c) Frame size distribution

Figure 2. Quantity distribution of bike styles, frame and tube sizes in GeoBiked.

2.3.2 Technical Features

To provide technical features, we categorize the samples by their tube-sizes, their frame-sizes and the number of teeth on
the chainring. For the tube-sizes, each bicycle consists of four major tubes. To categorize the samples in a meaningful
way, we calculate the average tube diameter for each of the four tubes. The average seat-tube-diameter is 31.5mm, the
average down-tube-diameter is 35.5mm, the average head-tube is 42.9mm in diameter and the top-tube measures at
32.0mm on average. The classification is carried out by counting how many diameters of a given sample are greater
than the average. If all diameters are smaller than their class-average (nTS = 0), the sample is considered to have a
“minimal” tube-size. For nTS = 1, the tube-size is considered “lite” and “standard” for nTS = 2. If nTS = 3 the tubes
are “reinforced” and for nTS = 4 they are categorized as “extreme”. The frequency of each category is visualized in
Figure 2b.

In addition to the tube sizes, we provide information about the bicycles’ frame sizes, as this is a common metric for
categorization. The most common way to determine the frame size is to measure the length of the seat-tube between the
bottom bracket and the top edge of the tube (Norman 2024). We consider all samples with a seat-tube length smaller
than 360 mm to be “XS”. For seat-tube lengths between 360mm and 420mm, the samples are considered “S” and for
lengths between 420mm and 480mm they are considered size “M”. A bicycle is of frame-size “L” if the seat-tube
length is between 480mm and 540mm and “XL” if it is longer than 540mm. The distribution of frame sizes is shown in
Figure 2c.

2.3.3 Geometric Features

With the selection of the 12 reference points, we aim to capture bicycles in all styles and sizes and characterize them
by their geometrical layout. The final selection of 12 geometric points is shown in Figure Figure 3. We select the
center points of the rear wheel (RWC) and the front wheel (FWC) for obvious reasons as they define the wheelbase of
the bicycle. The point “BB” marks the center of the intersection of the seat-tube and the chain-stay and therefore the
center of the bottom bracket. The head-tube-top (HTT) marks the upper end of the tube that connects the handlebars
to the fork, given that this is where the stem intersects with the fork-tube. The stem-top (ST) marks the end of the
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stem and is of significant influence for the reach of the bicycle frame (Norman 2024). We define another point on the
front-fork (FF), characterizing its shape and potential bends or angles. The seat-tube-top (STT) marks the upper end of
the seat-tube and the saddle-top (SAT) describes the highest point of the saddle.

In addition to the points already mentioned, we define every intersection of the tubes that make up the bicycle frame.
Namely, the intersections of top-tube and seat-tube (TTST), top-tube and head tube (TTHT), down-tube and head tube
(DTHT), rear-tube and seat-tube (RTST). All points are defined by their x- and y-coordinate values, given in millimeters.
The values are relative to the rear-wheel-center, which we defined as the center of the local coordinate system. Since
the position of RWC in the image varies from sample to sample, we provide two additional values, xzero and yzero,
that describe the distance of RWC to the bottom-left corner of the image. This allows for accurate localization of the
geometric points within an image as well as comparisons of the geometric layout and bicycle sizes.

Figure 3. Geometric layout described by the geometric reference points.

2.4 DGM-driven Engineering Design Applications

Our objective with GeoBiked is to enable DGMs for engineering design applications. We provide a dataset that can be
used for initial experiments and investigations which then lead to a faster and more efficient realization of real-world
engineering design use-cases. In this section, we briefly discuss potential applications of GeoBiked and give some
examples.

Model verification. For the case of training or finetuning visual DGMs in engineering design applications, the dataset
can be used to help find a suitable model architecture. By training different types of DGMs on GeoBiked, practitioners
get valuable insights into the capabilities of DGMs to handle structural image data. Such experiments furthermore
allow for the evaluation of required computational ressources and training durations as well as dataset quality and size.
This lets the user draw quick correspondences about the suitability and the limitations of given models for the task at
hand. As a comprehensible example of this application, we train three different visual DGMs on GeoBiked. We train a
convolutional VAE (Kingma and Welling 2013; Sohn et al. 2015; Rombach et al. 2022), a variant of the same VAE
with adversarial training (Blattmann et al. 2021), a simple diffusion model (DDIM) (Ho et al. 2020; Song et al. 2022;
Fan et al. 2023a) and a latent diffusion model (LDM) (Rombach et al. 2022) to reproduce the structural images. A
brief summary of the results is provided in Table I and Figure 4 shows some qualitative examples. Details about the
implementation can be found in Section 6.

While both diffusion-based models are able to reproduce the structural image data, the VAE-architecture struggles to
synthesize clean images. Even with the introduction of an adversarial loss, the results that can be synthesized remain
very blurry. In terms of compute requirements, the VAE is much cheaper but its capabilities are not sufficient for
detailed images with fine-grained structures. Even though there exist Autoencoder-based approaches for such image
data (Fan et al. 2023b), we observe that off-the-shelf diffusion models handle this data much better. Comparing both
diffusion-models, we observe that in both quantitative (FID-score (Szegedy et al. 2014)) and qualitative measures
(Figure 4), the LDM is outperformed by the DDIM. The DDIM, although significantly more expensive in training,
reproduces the fine-grained structures better. Due to the images being encoded into a latent representation before
learning the diffusion model, the LDM loses some structural and geometric information and the results are more blurred.

Conditioning. For engineering design applications, the possibility to condition the DGM on relevant modalities is a
fundamental requirement. Developing custom conditioning mechanisms either requires training data, for example to
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Table I. Model feasibility study. We compare four different DGM-architectures to synthesize the GeoBiked image
distribution. The training durations are normalized for 20GB VRAM. While VAE-architectures require significantly
less compute, they do not allow for the generation of high quality outputs with structural details. The DDIM shows the
best FID-score, but requires the most computational ressources.

Architecture FID ↓ Normalized Training Duration (hr)

CVAE 123.85 0.23
Adversarial CVAE 166.98 0.25

DDIM 12.03 68.05
LDM 20.69 30.18

Figure 4. Generated samples with DGMs trained on GeoBiked.

train a ControlNet adapter (Zhang et al. 2023), or test data to optimize and verify the method. GeoBiked can help with
these tasks. In a different work, the dataset is used to enable a training-free architecture for visualization of engineering
design images in realistic scenes (Mueller et al. 2024).

Evaluation of pretrained models. The GeoBiked dataset also provides an opportunity to evaluate pretrained models
with regards to their context understanding and capability to handle detailed, CAD-like image data. For example, users
can use the dataset to verify if a pretrained vision-language model posses enough visual understanding and context
knowledge to accurately categorize or describe the images. We discuss this task in detail in Section 3 and Section 4.

3 Geometric Feature Detection with Diffusion Hyperfeatures

Adding structural or geometric information to technical images is fundamentally important for the application of DGMs
in engineering design. Despite the recent explosion in publications about visual DGMs, there still is a shortage of
datasets with domain-specific modalities that enable conditional control over the generative process. However, this
control is a key requirement for the successful application of DGMs for technical and design tasks (Alam et al. 2024;
Mueller and Mikelsons 2024). In GeoBiked, we provide information about the geometric layout of each image sample.
This might be used to investigate geometry-aware image generation or conditioning a model on a geometric layout. In
annotating the geometric points largely by hand, we come to the conclusion that this time-intensive manual task poses a
significant barrier for domain-specific applications. We therefore aim to utilize the spatial and semantic understanding
inherited by pretrained, large-scale diffusion models for image generation (Stable Diffusion) and automate this task (Po
et al. 2023; Tang et al. 2023; Luo et al. 2023).
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3.1 Related Work

A number of works have recently addressed the idea of utilizing and transferring learned latent representations from
large-scale models for downstream tasks (Goodwin et al. 2022; Oquab et al. 2024; Tumanyan et al. 2022). From
various studies and applications, we know that those representations carry information about the underlying structure
and composition of images (Fan et al. 2023a; Sabour et al. 2024). The possibility to draw semantic correspondences
with these deep features has also been proven (Amir et al. 2022; Caron et al. 2021; Oquab et al. 2024).

Recently, Luo et al. 2023 have made significant progress in this domain by consolidating the latent feature maps from
SD, extracted over multiple layers and timesteps, into an interpretable, per-pixel descriptor. The so-called Hyperfeature
map allows to draw semantic correspondences between two images by comparing their respective Hyperfeature maps.
In their work, they train an aggregation network to consolidate an image into its Hyperfeature Map. This is done
by caching the intermediate feature maps obtained by either generating a synthetic image or inverting an existing
image through multiple diffusion timesteps. Each extracted feature map is upsampled to a standard resolution and
passed through a bottleneck layer for standardization. Subsequently, mixing weights are learned that identify the most
significant features. For the task of semantic correspondence, the cosine similarity is computed between the flattened
descriptor maps of image pairs that are labeled with corresponding keypoints. The aggregation network is trained by
minimizing a symmetric cross-entropy loss similar to CLIP (Radford et al. 2021) between the predicted and ground
truth keypoints.

3.2 Method

We propose to utilize the aggregation network pretrained for semantic correspondence to draw geometric correspon-
dences in the GeoBiked images. In their work, Luo et al. 2023 already show that their approach outperforms existing
alternatives for matching keypoints in natural images. We apply their methodology for our dataset and extend it to be
able to handle multiple annotated source images. We draw inspiration from the manual labeling process, where a human
annotator is shown a small number of annotated reference images that show the relevant features and subsequently
identifies them in unseen images showing similar concepts. The possibility to base the prediction of the geometric
reference points on multiple source images is introduced to make the prediction more reliable given the variety of
bicycle geometries and styles in the dataset.

The source images i ∈ Is are annotated with their corresponding geometric points pik. It is worth noting that while
the points can be chosen freely, they have to be consistent inbetween the source images, meaning that they mark the
same geometric characteristics. Using the pretrained aggregation network, the Hyperfeature map Hsi ∈ RC×64×64 is
computed for each source image. Depending on the resolution of the source images (H ×W ), the Hyperfeatures are
interpolated back to the original image size to obtain H ′

si ∈ RC×H×W . They are subsequently flattened and normalized
to form Fsi ∈ R(H·W )×C . Per source image, each labeled point k ∈ pik is translated into its index idxik to extract the
corresponding Hyperfeatures Vsi from the flattened map Fsi :

Vsi = Fsi [:, idxik, :] with Vsi ∈ RN×C . (1)

When processing an entire dataset, the unlabeled images to be annotated are processed one after another. For each target
image It, we compute its Hyperfeature map Ht ∈ RC×64×64, interpolate it to the original image size H ′

t ∈ RC×H×W

and also flatten and normalize it for Ft ∈ R(H·W )×C . Given the Hyperfeature representations of the source points Vsi
and the target image Ft, we now can compute the similarity matrix:

Si = Vsi × FT
t with Si ∈ RN×(H·W ). (2)

We obtain one similarity matrix of size N × (H ·W ) per combination of source and target image, where N is the
number of points. The similarity matrix contains the cosine similarities between the Hyperfeatures of the annotated
source points and the Hyperfeatures of the entire target image. Now we extract the maximum cosine similarities per
row in Si to obtain vi, which describes the Hyperfeatures in the target image that have the highest correspondence to
the Hyperfeatures of source image i with respect to the points. Since we are processing multiple source images, we can
concatenate the similarity vectors vi along the y-axis and now extract the row-wise maximum similarity:

vmax[k] = max
i

(vi[k]) (3)

This increases flexibility in the prediction of the geometric points as per-point, the source-target combination with the
highest correspondence is selected. In simple terms, this allows us to predict the positions of the geometric reference
points in the target images using the information from all the source images. We always chose the position of the point
where the correspondence between the Hyperfeatures of the source and target image is highest.
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3.3 Experiments

In our experiments, we aim to verify the hypothesis that we can in fact use the diffusion Hyperfeatures to detect the
geometric features in unseen structural images. Furthermore, we want to find the optimale selection and quantity of
annotated source images to accurately label the diverse bicycle images in the dataset. For the evaluation, we select
a subset of 150 diverse samples from our dataset. All calculations are conducted on an NVIDIA RTX A4500 with
20GB of VRAM. The results are summarized in Table II as well as in Figure 11. For evaluation, we use the pixel-wise
MAE and MSE between the predicted location of the point and the ground truth location that we annotated by hand.
We average the errors over all annotated points per image to gain insights on how well the entire geometric layout is
captured and predicted.

Table II. Experiment results. The accuracy of the geometry-points detection in the GeoBiked subset depends on the
selection and quantity of annotated source images. We evaluated multiple bicycle style combinations per quantity. The
results below are the best results per source image quantity. The metrics are computed as a pixel-wise distance between
prediction and ground truth and averaged over all 12 geometry-points. The duration measures the processing time of
the subset of 150 samples.

Source Image Quantity MAE ↓ MSE ↓ Duration (min.)

1 2.429 33.158 21.76
2 2.063 13.836 22.11
3 1.989 11.367 24.97
4 1.943 12.251 27.76
5 2.025 12.256 28.15
6 1.845 11.733 26.82
7 2.028 14.204 26.12
8 2.001 13.928 30.74

3.3.1 Results

Single Source Image. When providing only one source image, we observe that the accuracy of the point-location
prediction is heavily dependant on the type of source image that is provided as reference (see Table IV and Figure 9).
We selected various bicycle styles as reference images and observed that an average geometry, which captures a wide
selection of bicycle frames, leads to good prediction accuracy as the MAE is below 3 pixels. However, with this kind
of source image, the method is not able to draw accurate correspondences to bicycles with a significantly different
geometric layout. This is evident in the large MSE. When samples are chosen as source images that are not in the
middle of the geometric distribution, the prediction accuracy deteriorates significantly, as seen in Table IV. For the
source image with the best prediction accuracy, we still observe typical error patterns. Tube intersections are often
annotated inaccurately as well as the saddle top and points around the handlebars. For the annotation of outlier samples,
only the wheel centers are captured reliably.

The observed ambiguities most likely originate from the structure of the bicycles in the images. Due to them being
plain grayscale structures on a white background, areas with tube intersections look very similar. A single source image
does not capture the different options of the bicycle layout with respect to the saddle position, stem and handlebars and
tube intersections. For example, if multiple tube intersections fall into the same position in the source image, but are in
different positions in the target image, they will not be detected with high precision.

Multiple Source Images. Comparing an unlabeled target image with multiple source images for geometric corre-
spondence noticeably improves the accuracy of the point prediction. By just using a second source image showing a
different type of bicycle, we reduce the MSE by a factor of 2.4. The variety of layouts in the dataset gets captured much
more reliable. Since we can precompute the Hyperfeatures for the source images once and then use them for processing
the entire dataset, the computational overhead is insignificant. For two source images, we test a variety of combinations.
We observe that using the sample that performs best when used as the only input together with a sample showing a
different, but common, style leads to the best accuracy. Typical error patterns observed in the previous section are
largely eliminated (see Figure 5 and Figure 10). Nevertheless, for uncommon styles the prediction is still inaccurate.

Based on the observations with one and two source images, we add a third source image showing such sample. With
that, we are able to further reduce the MSE by about 18%. In our experiments, we observe that increasing the number of
source images beyond three does not have a significant impact on the prediction accuracy (see Table II and Figure 11).
We therefore propose that, in the case of the GeoBiked dataset, using three source images presents a good balance of
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manual annotation effort and prediction accuracy of the automated process. Using the three source images shown in
Figure 5, we also process the entire GeoBiked dataset, achieving an accuracy of MAE = 1.837 and MSE = 14.009
in a processing duration of 11.33 hours.

Figure 5. Qualitative Comparison of error patterns using one, two and three source images respectively. Images in the
left columns (red marks) are source images. Images in the right column (blue marks) are target images. Most of the
inaccuracies disappear when using three source images compared to a single one. Some uncertainty remains when
uncommon samples are processed (see middle and last column). Best viewed when zoomed in.

3.3.2 Implications

For engineering design images with fine-grained details, the provided source images have to capture the variety of
structures in the target image space as much as possible. It is important to select the references so that they show
different layouts of the object geometry. In our case, this correlates to bicycles with overlapping and non-overlapping
tube intersections. When processing a diverse dataset, outliers and uncommon samples require specific attention. They
need to be annotated by and or at least evaluated for sufficient accuracy. When these limitations are regarded for,
pretrained diffusion models can be used to automate the process of data annotation. Finetuning of the aggregation
network might be necessary for some applications where the off-the-shelf accuracy is not sufficient.

Our experiments show that representing images through their diffusion Hyperfeatures generally allows us to process
domain-specific, structural image data. Even though the diffusion model was not specifically trained on such data,
the learned semantic correspondences and spatial understanding can be transferred and applied to engineering design
tasks. Efficiently using the inherited capabilities however is not straightforward, as the feature representations extracted
from the diffusion model need to be further processed. In this case, training an encoder-like model is required to draw
semantic correspondences. Nevertheless, compared to a full-scale training or finetuning of a diffusion model this is
relatively cheap. The aggregation network was trained on a single NVIDIA RTX TITAN 24GB GPU (Luo et al. 2023).
Computing the Hyperfeatures of an image and using them for downstream applications can also be considered efficient
as it is possible on a consumer-grade GPU.

In an outlook, we propose that Diffusion Hyperfeatures of images can also be used for other engineering design
applications in image generation and modification. A future research direction can be to utilize them in order to improve
object consistency in generative processes by comparing the Hyperfeature representations of the generated object with a
learned distribution or ground-truth example. In a different work building up upon Diffusion Hyperfeatures, the authors
address this task in broad terms (Luo et al. 2024).

4 Automatic Generation of Text Descriptions with Vision-Language Models

The possibility of text-based conditioning is a key factor of the recent success in image generation as it provides an
intuitive modality to control the generated content. Numerous works discuss this topic. Most notably (Ramesh et al.
2021; Rombach et al. 2022; Saharia et al. 2022b; Ruiz et al. 2022; Inc. 2023) in image generation and (Saharia et al.
2022a; Brooks et al. 2023; Yang et al. 2023; Tumanyan et al. 2022) in image-to-image editing. It provides a way to
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dynamically adjust the amount of information passed to the model. For engineering design applications, the DGM
can be trained to adhere to many design constraints and requirements as well as fill in the blanks for short, high-level
descriptions. Training such models and corresponding conditioning mechanisms requires pairs of images and diverse
text-descriptions. For better generalisation, the text-descriptions have to contain varying amounts of information.

Labeling domain-specific images with diverse text-prompts by hand is generally unfeasible. In addition to the high
manual effort on a repetitive task, the descriptions would follow the bias of the annotators and be limited in their
diversity and creativity. Therefore, we provide a recipe on how to bootstrap the capabilities of large-scale (vision-)
language models to automate this task. We employ GPT-4o (OpenAI 2024b), which build upon GPT-4 (OpenAI 2024a)
and GPT-4(Vision) (OpenAI 2023) with the additional benefit of providing noticeably faster inference. We use this
model because of its state-of-the-art vision-language understanding and reasoning and its easy accessibility through the
API. In addition to providing a method for automatic labeling, this task provides insights on the capabilities of GPT-4o
for context understanding and reasoning in technical images with fine-grained details.

4.1 Related Work

Our approach fundamentally is an image captioning task. Previous works address this topic with a variety of approaches,
utilizing CLIP-embeddings (Mokady et al. 2021) or vision-language transformers (Zhou et al. 2019; L. H. Li et al.
2019). The development of GPT-4(V) is a major improvement as it possesses vast context understanding and broad
general reasoning capabilities to accurately caption contents of an image (Singh et al. 2023; Hwang et al. 2023).
Besides the multi-modal variations of GPT-4, other vision-language models like LLaVA (Liu et al. 2023; Liu et al.
2024) are available, but are outperformed on the VisIT-Benchmark for VLMs (Bitton et al. 2023) by GPT-4(V) in terms
of model performance across a diverse set of instruction-following tasks.

The comprehensive study by Picard et al. 2023 investigates the feasibility of including GPT-4(V) in an engineering
design process and thereby underlines our assumptions that the capabilities of the model are sufficient for domain-
specific captioning tasks on technical images.

In terms of using language models for generating synthetic descriptions of images, a few works are to be named.
Cosmopedia (Ben Allal et al. 2024) is a dataset of synthetic textbooks, blogposts, stories, posts and WikiHow articles
generated by Mixtral-8x7B-Instruct (Jiang et al. 2023).The dataset contains over 30 million files and 25 billion tokens.

BLIP-2 employs a two-stage pre-training approach to enhance image-grounded text generation. By using transformers
for both image and text processing, BLIP-2 generates accurate and contextually relevant descriptions from images. It
demonstrates the ability to perform zero-shot image captioning effectively, making it versatile for various applications
(J. Li et al. 2023).

LAVIS is a whole suite for developing multi-modal models, allowing to rapidly employ and benchmark models for
different tasks, image captioning being one of them (D. Li et al. 2023). DreamSync (Sun et al. 2024) employs VLMs to
automate the selection of high-quality image-text pairs to finetune a text-to-image model. Garg et al. 2024 employ a
VLM together with human annotators to create a dataset of hyper-detailed, synthetic image descriptions.

4.2 Method

We access GPT-4o through the API and prompt it to generate descriptions of the GeoBiked bicycle images. To obtain
diverse descriptions of the images, we prompt GPT-4o to adhere to specific description characteristics. The system-
prompt passed to GPT-4o specifically outlines the format of the generated description. The mask for the system-prompt
is provided in Appendix C.1.

• Length: We distinguish between short (5-10 words), medium (10-20 words) and long (20-40 words) descrip-
tions.

• Vibe: The model is prompted to generate descriptions with either a technical character or a casual description.
• Style: The descriptions have to be either in style of a marketing message or of a prompt for a text-to-image

model (Midjourney).

We generate text-descriptions with three different data sources that are provided to GPT-4o. For the first one, only the
bicycle image is provided. It is wrapped in the system-prompt after the general task description and the definition of the
required description characteristics. The general task instructs to model to analyse the input information and create a
description for it while adhering to the formulated description characteristics. The second data source are labels in
the form of technical categories describing the bike. No image is used for this configuration. From GeoBiked, we use
bicycle style, rim styles, fork type and whether there are bottles on the down- or seattubes. In the third configuration,
we pass the image together with the technical categories.
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The motivation for selecting the three input information combinations is grounded on several ideas. By providing only
the image, we generally test if the VLM has sufficient context understanding and visual detection capabilities to capture
the details of the presented bicycle images. The label-only configuration is used for comparison and for verification that
the increased information density of an image compared to five categorical features actually leads to more diverse and
accurate descriptions. With the third setup, we test if both information inputs used together hold an advantage over any
combination on its own.

4.3 Experiments

First and foremost, we aim to verify if GPT-4o is able to generate creative and diverse descriptions of the samples from
GeoBiked, given that the images are of a technical character and contain fine-grained visual details. We further analyze
if the generated descriptions follow the required length, vibe and style. By also passing ground-truth labels to the model,
we evaluate the possibility of generating diverse, but hallucination-free descriptions as hallucination is a well-known
issue with LLMs (Huang et al. 2023).

In terms of evaluation metrics, we measure diversity by counting the number of unique outputs generated with
different description requirements. This metric provides insights on the repetitiveness of the generated descriptions
and therefore indirectly measures how well the VLM can capture different inputs and create unique descriptions from
them. Additionally, we compute the Levenshtein-distance between unique outputs as a measurement for the difference
between two linguistic sequences (Haldar and Mukhopadhyay 2011). A higher average Levenshtein-distance indicates
more diverse text-descriptions. We use the implementation by (Bachmann 2024).

To evaluate the accuracy of the generated text-description with the ground-truth labels, we again use GPT-4o. In this
setting, the model is utilized as a classifier. We instruct it to infer the categorical labels from the text description and
then compare the extracted labels from the text-description to the ground-truth labels and count the inconsistencies.
The code is provided in the linked repository. We acknowledge that this approach adds a degree of uncertainty due to
the classifier having to infer the labels from the text-description. We assume that the error injected by this process is
consistent and we therefore can still derive correlations between the system-prompt configuration, the provided input
information and the accuracy of the generated text-prompt.

We conduct our experiments on the entire GeoBiked dataset, containing all 4355 samples. We use the images with
2048× 2048 resolution. For better comparison, we only use one thread, calling the API one time after another. In terms
of hardware, for CPU we use 12th Gen Intel Core i7-12850HX 2.10 GHz. Generating the descriptions for each of the
three input configurations takes approximately 15 hours.

4.3.1 Results

Our results for description uniqueness are visualized in Figure 6. When only the image is passed to GPT-4o, we observe
that for short descriptions, between 84.5% and 88.2% of the outputs are unique. Short descriptions therefore tend to
be repetitive in some cases (see Figure 6a). The long descriptions are almost entirely unique (between 96.9% and
99.9%). On average, we obtain 90.9% unique descriptions. This is also the case when an image together with the
ground-truth label is passed (Figure 6c). When the ground-truth labels are used as sole input, the uniqueness of the
generated descriptions is significantly reduced for the short ones (Figure 6b). Even if the temperature, a parameter for
randomness and therefore diversity of outputs, is set to a high value of 1, the label grounding restricts the model so
much that the uniqueness is noticeably reduced.

(a) Image only (b) Ground-Truth Label (c) Image and Ground-Truth Label

Figure 6. Percentage of unique descriptions generated by GPT-4o, compared over different configurations of description
characteristics. Best viewed zoomed in.
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The analysis of the Levenshtein distance as a measure of diversity and creativity supports the previous findings.
Providing only an image leads to a greater Levenshtein distance among unique text-descriptions, as shown in the violin
plot (Figure 7). For image-grounded text-descriptions, the average Levenshtein distance is significantly higher than
for label-grounded descriptions, especially for long, technical ones. Grounding the generation on image and labels
seems to also restrict the diversity of the unique outputs. As this configuration of input information generally produces
more unique outputs than label-only grounding, we assume that providing the image leads to diverse descriptions while
the label streamlines the descriptions in terms of format and sentence structure, hence the lower Levenshtein distance
between unique descriptions.

For short descriptions, the distances of the unique outputs are again greater for image-only grounding, although the
difference is smaller. A fact to keep in mind here is that image-grounding produces far more unique outputs in total.

Figure 7. Levenshtein distances between unique values for all three configurations of inputs.

When manually evaluating the generated text descriptions, we find that the ones generated on image grounding are
more creative overall. For the label-grounded descriptions, we observe a pattern that they tend to be a concatenation of
the ground-truth labels wrapped with some filling text. Furthermore, some design characteristics of bicycles are not
captured by the ground-truth labels and therefore not regarded for in the generated description. Examples of this can be
found in Table V. The bicycle in column four is correctly identified and described as vintage or retro when using the
image for grounding, while the label-grounded descriptions do not mention anything about the extraordinary design.
The same is true for the example given in column five, where the pannier, that is clearly visible in the image, is correctly
mentioned for both image-grounded descriptions, but not for the label-based descriptions.

Besides diversity in generated outputs, we measure the accuracy of the generated descriptions to verify that they
fit the image they aim to describe. The accuracy is calculated by instructing GPT-4o as a classifier and count the
quantity of features that are described inaccurately, as described in Section 4.3. For the results in Table III, the error
quantities are averaged over all text-descriptions of an instruction-setting (e.g. Length: Long, Vibe: Casual, Style:
Marketing-Message). The results underline our previous findings. Providing only an image as input information leaves
more degrees of freedom for the description generation. While this leads to more diverse outputs, it also increases
hallucination. Shorter descriptions seem to be more accurate than longer ones for image-only grounding. We observe a
mean error of 1.048 for short descriptions and 1.215 for long descriptions, as the model has more room for hallucinations.
On average, there are 1.13 labels described inaccurately per description.

Only providing the ground-truth labels restricts the diversity of outputs but therefore noticeably limits hallucinations.
The average error per description is reduced by a factor of 5.38. If an image is passed together with the ground-truth
label, the accuracy is lowered by about 28.6% compared to label-only, but still surpasses the image-only accuracy
by a factor of 4. The results are summarized in Table III. For these two cases, we observe that longer prompts are
more accurate than shorter ones. For label-only inputs, short descriptions contain 0.265 errors on average while long
descriptions contain 0.15. For image and labels as the data source, short descriptions lead to a mean error of 0.355 per
description and long ones to only 0.1725.
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Table III. Average error ratios for generated text-descriptions compared to the ground-truth annotations in GeoBiked.
We compare different configurations of the system-prompt (Instruction Setting). The table shows the average number of
categorical labels that the text description misrepresented per instruction setting and input information configuration.

Instruction Setting Image Only Ground-Truth Label Image and Label

Long; Casual; Marketing-message 0.72 0.19 0.20
Long; Casual; Prompt-to-midjourney 1.05 0.20 0.27
Long; Technical; Marketing-message 1.33 0.13 0.12

Long; Technical; Prompt-to-midjourney 1.76 0.08 0.10
Short; Casual; Marketing-message 0.77 0.36 0.40

Short; Casual; Prompt-to-midjourney 1.03 0.31 0.34
Short; Technical; Marketing-message 1.08 0.23 0.30

Short; Technical; Prompt-to-midjourney 1.31 0.16 0.38

Mean 1.13 0.21 0.27

4.3.2 Implications

For the task of automatically annotating technical images with feasible and diverse text descriptions, GPT-4o is an
adequate choice. Due to the broad context understanding and the sufficient vision-language reasoning capabilities,
domain-specific details are captured and described accurately. For the configuration of the input information, there
exists a tradeoff between diversity of the generated text descriptions and their accuracy compared to ground-truth labels.
While grounding the generation on labels leads to more accurate descriptions and reduces hallucinations, it restricts the
diversity. For our example, pure label-grounding also leads to loss of information, as the labels contain significantly
less details than the images. Providing an image paired with labels appears to reduce hallucinations while accurately
capturing most visual features of the geometries. The diversity of text descriptions is noticeably reduced compared to
only using an image as input information. Therefore, this configuration is somewhat of a tradeoff between diversity and
accuracy. The configuration of instruction settings and input information ultimately depends on the desired application
of the generated text descriptions.

Although GPT-4o reliably adheres to the instructions stated in the system-prompt, we find that for large-scale automated
annotation tasks, the system-prompt has to be evaluated and systematically optimized. The requirements and constraints
for the model need to be explicitly included to avoid hallucinations. The system-prompt severely influences the quality
of the outputs and their downstream usability. The same is true for employing GPT-4o as a label-classifier to infer
categories from natural language texts. The model possesses sophisticated capabilities for this task that can be of
benefit, as no use-case specific classifier has to be trained on the given problem. However, this does require careful
prompt-engineering for the outputs to be in a structure that can be evaluated algorithmically. We find the DSPy-library
of enormous help for such tasks (Khattab et al. 2023).

To process technical or CAD-like images with fine-grained visual details and generate adequate descriptions, large
VLMs are necessary. In an ablation experiment, we instruct the significantly smaller Moondream model (vikhyatk 2024)
with the same task and observe that the generated descriptions are very uniform. Unique descriptions are generated
rarely. The descriptions that are unique show a low Levenshtein distance, as all of them follow the same sentence
structure (see Figure 12).

5 Limitations and Future Work

GeoBiked Dataset. With the dataset, we aim to build a foundation to apply DGMs in engineering design processes.
While real-world use-cases require data beyond bicycle images, comparing the performance of DGMs is an important
first-step to foster the future development of the field. GeoBiked presents an opportunity to create benchmark-challenges
for visual DGMs. There is however a need for evaluation metrics that capture the structural integrity and real-world
feasiblity of the synthesized images. While there are approaches to better capture structural feasibility in images (Fan
et al. 2024; Regenwetter et al. 2023), this largely remains an open challenge. Additionally, the dataset currently does
not include any explicit features to evaluate the performance of the bicycle designs. Adding this is another step towards
improving applicability in engineering design domains.

13



Geometric Feature Detection with Diffusion Hyperfeatures. While we show that Diffusion Hyperfeatures can be
used to draw semantic correspondences in technical images and label the data in a few-shot fashion, the technique most
likely requires refinement for more complex structures. Possible directions are retraining or finetuning the aggregation
network for use-case specific problems or modifying the similarity computation to compare Hyperfeatures of patches
rather than singular points. Overall, we find that is method is an exiting approach worth exploring for other problems
such as object consistency and similarity in image and 3D generation.

Automatic Generation of Text Descriptions with VLMs. The dependence on GPT-4o, as a model only accessible
through the API without open-source weights is a drawback. While this solution is easy-to-use, we encourage
investigating open-source alternatives such as LLaVA (Liu et al. 2023; Liu et al. 2024) for this task. Vision-language
understanding capabilities are likely to improve rapidly in open-source alternatives.

6 Conclusion

We illustrate the potential of utilizing large-scale pretrained generative models to address the challenges of domain-
specific tasks in engineering design. The GeoBiked dataset serves as a resource for baseline investigations into
model feasibility, data requirements, and benchmarking in engineering design applications, providing a foundation
for exploration of Deep Generative Models (DGMs). Additionally, we have demonstrated that off-the-shelf visual
foundation models, when used effectively and guided correctly, can automate data labeling and annotation tasks,
significantly lowering the barriers to entry for DGMs in technical fields.

Diffusion models for image generation inherit spatial and semantic understanding that can be used to draw geometric
correspondences in structural images by consolidating image features into an interpretable Hyperfeature map. The
prediction of geometric reference points in unseen images of technical objects is significantly improved if multiple
examples, which are showing different styles of objects are used as reference. Large vision-language models are
applicable to automatically generate text descriptions of technical images. The accuracy and creativity of the generated
descriptions depend on careful prompting and the provided input information. Overall, our findings aim to facilitate
the broader adoption of AI-driven approaches in engineering design, streamlining processes and expanding creative
possibilities in the field.
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Appendix

A Dataset Distribution

Figure 8. Variance of geometric bicycle layouts before (orange) and after (blue) the filtering of the dataset. The blue
bars represent GeoBiked, while the orange bars represent Biked (Regenwetter et al. 2021).

B Geometric Feature Detection with Diffusion Hyperfeatures - Experiment Details

When using a single source image, the accuracy of the point detection heavily depends on the source images. An average
sample that shows a bicylce of very common style and high similarity with many samples in the dataset produces good
mean prediction accuracy (Table IV). Outliers however are not predicted well (see Figure 9, top row). Typical error
patterns include uncertainty in the detection of the saddle top and tube intersections. When other bicycle styles are used
as source images, the prediction accuracy deteriorates significantly. Using a BMW-style as source, the saddle is not
detected for any other style than BMW (Figure 9, middle row). When an uncommon style is used as source, only the
wheel centers are accurately detected. All other points are prone to significant inaccuracies (Figure 9, bottom row).

Table IV. Experiment results for a single source image. The metrics are computed as a pixel-wise distance between
prediction and ground truth and averaged over all 12 geometry-points. The duration measures the processing time of
the subset of 150 samples. Image indices from left to right are 1, 2, 31 and 74.

Source

MAE 2.429 3.385 12.274 2.710
MSE 33.158 41.635 482.969 41.272
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Figure 9. Qualitative Comparison of Error Patterns for a single source image. Top row shows the source image with the
highest predicition accuracy.

Figure 10. Qualitative Comparison of Error Patterns using two source images. Top row shows the combination of
source images with the best prediction accuracy.

Figure 11. Pixel-wise MAE, MSE and Processing Duration over the number of annotated source images.
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C Automatic Generation of Text Descriptions with Vision-Language Models

C.1 GPT-4o System-Prompt

1 def construct_prompt(
2 length: str ,
3 vibe: str ,
4 style: str ,
5 mode: Literal["im -only", "txt -grounded", "im-txt -grounded"] = "im -only",
6 ) -> str:
7 length_map = {
8 "short": "between 5 and 10 words",
9 "medium": "between 10 and 20 words",

10 "long": "between 20 and 40 words",
11 }
12 mode_task_map = {
13 "im -only": "images",
14 "txt -grounded": "technical data about bicycles",
15 "im -txt -grounded": "images and technical data about bicycles contained in

them",
16 }
17

18 image_wrapper = ’Images will be wrapped between <image i></image i> tags.\n’
if ’im’ in mode else ’’

19 bike_wrapper = ’Bike data will be wrapped between <data i></data i> tags.\n’
if ’txt’ in mode else ’’

20 description_usage = (
21 ’You do not have to include all , or any , ’
22 ’of the bike data in the description if it does not fit the style or vibe.

’
23 ’It is important that the description fits the constraints mentioned above

.\n’
24 if "txt" in mode else ’’
25 )
26

27 prompt = (
28 "Your task is to create descriptions of bicycles based on {0}. ".format(

mode_task_map[mode])
29 + "Each description should fulfill the following constraints: \n"
30 + "- The length of the provided description should be {0}. \n".format(

length_map[length ])
31 + "- The descriptions should be {0}. \n".format(vibe)
32 + "- The descriptions should be in the style of a {0}. \n".format(style)
33 + "{0}".format(image_wrapper)
34 + "{0}".format(bike_wrapper)
35 + "Wrap the resulting bike description in <description i></ descriptions i>

tags.\n"
36 + "There should be *no* newlines in the descriptions .\n"
37 + "{0}".format(description_usage)
38 + "The descriptions should be very diverse within the given constraints."
39 )
40

41 return prompt
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C.2 Examples of Generated Description

Table V. Examples of generated text descriptions for different bicycles from the GeoBiked dataset. Descriptions are
generated with different configurations of the system prompt and for all three input information combinations.
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C.3 Gpt-4o vs. Moondream

Figure 12. Levenshtein distance of unique outputs generated by GPT-4o configurations compared to Moondream. The
descriptions generated by Moondream are significantly less diverse.
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