
Under review as submission to TMLR

Introducing Background Temperature to Characterise Hid-
den Randomness in Large Language Models

Anonymous authors
Paper under double-blind review

Abstract

Even when decoding with temperature T = 0, large language models (LLMs) can produce
divergent outputs for identical inputs. Recent works align in highlighting implementation-
level sources of nondeterminism, including batch-size variation, kernel non-invariance, and
floating-point non-associativity. In this work, we formalize this behavior by introduc-
ing the notion of background temperature Tbg, the effective temperature induced by an
implementation-dependent perturbation process observed even when nominal T = 0. We
provide clean definitions, show how Tbg relates to a stochastic perturbation governed by
the inference environment I, and propose an empirical protocol to estimate Tbg via the
equivalent temperature Tn(I) of an ideal reference system. We conclude with a set of pilot
experiments run on a representative pool from the major LLM providers that demonstrate
the idea and outline implications for reproducibility, evaluation, and deployment.

1 Introduction

A common assumption in LLM deployment is that setting the decoding temperature to T = 0 (greedy de-
coding) ensures determinism. However, empirical evidence shows output variability persists under nominally
deterministic settings. The recent work in He & Lab (2025) argues that nondeterminism in LLM inference
often arises from practical systems issues such as varying batch sizes and the lack of batch-invariant kernels,
along with floating-point non-associativity and reduction-order effects. Despite growing awareness of this
phenomenon, current approaches to quantifying nondeterminism rely on isolated and often incompatible
metrics—exact-match rates, edit distances, entropy changes, or perplexity-based measures (see Terven et al.
(2025) and Yun et al. (2025)). While these capture specific facets of instability, they provide a fragmented
picture and are of difficult usage to compare among models, providers, or hardware environments. This lack
of an integrated approach prevents practitioners from reliably characterizing, monitoring and benchmarking
the effective randomness of deployed systems.

To address this, we introduce the notion of a background temperature (Tbg). This quantity summarizes
the effective stochasticity induced by the models’ inference environment, even when the configured decoding
temperature is zero. By how it is defined, Tbg abstracts the specific stochastic sampling implementations of
the various models, which affect each model’s logits before decoding, instead providing the temperature of
an idealized and shared reference system whose output-variability statistics best match those observed under
real deployment conditions. This approach offers a unified, interpretable scalar that aggregates all sources
of implementation noise into a consistent scale. Instead of tracking a bundle of heterogeneous metrics,
practitioners obtain a single descriptor of inference instability, comparable across models, providers, and
hardware.

The paper is organized by a first presentation of an heuristic definition and estimation protocol of background
temperature, followed by a rigorous mathematical formalization. Finally, we validate the approach through
extensive experiments.

Contributions. (i) A concise formal model that addresses the phenomenon of nondeterminism as a
stochastic effect on the output probability; (ii) a formal definition of background temperature; (iii) the

1

Under review as submission to TMLR

outline of a practical protocol to estimate it; (iv) a set of pilot experiments illustrating and validating the
concept.

2 Related Work

2.1 Sources of non-determinism

LLM outputs can vary for several reasons. First, stochastic decoding methods (e.g., temperature, top-k,
top-p) intentionally introduce randomness via sampling. Second, floating-point non-associativity makes large
reductions (dot products, softmax, layer norms) sensitive to kernel implementations, parallelism patterns,
and hardware, so small numerical differences can be amplified through the network and flip argmax decisions.
Third, non–batch-invariant kernels combined with dynamic batching cause the numerics for a given request to
depend on batch size and position within the batch, so changing server load leads to different outputs for the
“same” prompt. Finally, system-level factors—such as parallelism configuration, non-deterministic library
algorithms, and variation across training runs or checkpoints—introduce additional run-to-run variability
even when the model architecture and code are nominally unchanged.

The recent work by Thinking Machines Lab He & Lab (2025) provides a systems-first analysis of LLM
nondeterminism, emphasizing batch-size variation and batch-invariant kernels for inference; they also explain
how floating-point non-associativity and reduction ordering contribute to variability. A key, and sometimes
underappreciated, driver of this variability is the effective batch size seen by the serving stack. Modern
inference servers dynamically batch concurrent requests for throughput, and many GPU kernels used in
the transformer forward pass—particularly matrix multiplications, attention, and normalization layers—are
not batch-invariant: their floating-point reduction order changes as a function of batch size and, in some
cases, of the position of a sequence within the batch. Because floating-point arithmetic is non-associative,
different reduction orders induce small but systematic numerical differences, which can then be amplified by
subsequent layers and eventually flip argmax decisions in the decoder, producing different token sequences
for the same logical query. In this view, the inference engine is “run-to-run deterministic” given a fixed batch
configuration, but from the perspective of an individual user facing time-varying server load, the stochasticity
in batch composition translates directly into apparent nondeterminism in the model’s outputs.

In addition to this work, similarly, several recent studies have quantified non-determinism in large language
model outputs even under settings intended to be deterministic (e.g. temperature T = 0, fixed seeds). For
example:

• Atil et al. (2025) systematically evaluate multiple LLMs configured under deterministic settings
across zero-shot and few-shot tasks. They observe large accuracy variations (up to 15%) across
runs with the same input, and show that even the string outputs are often not identical.

• Song et al. (2024) explore how evaluation practices often ignore variability arising from different
decoding configurations (greedy vs sampling). They show that even for greedy decoding, evaluation
metrics vary, and that alignment methods can help reduce sampling variance.

• Ouyang et al. (2025) analyze code generation benchmarks and show that many coding tasks produce
different code outputs across repeated prompt invocations, even when using T = 0. This confirms
that deterministic temperature settings do not guarantee output consistency.

• Yuan et al. (2025) show that changing system-level factors (GPU type, batch size, numeric precision)
can alter LLM outputs even under greedy decoding.

2.2 Batch-invariant kernels

Batch-invariant kernels are numerical primitives whose outputs for a given logical example do not depend on
the size of the enclosing batch, the example’s position within that batch, or the way batches are assembled at
serving time. Concretely, a batch-invariant matrix multiplication, RMSNorm, or attention kernel guarantees
that running a single example in isolation, or as part of any larger batch, yields bitwise identical activations

2

Under review as submission to TMLR

for that example, assuming fixed hardware and software versions. Achieving this property requires carefully
constraining parallelization and reduction strategies: instead of allowing the compiler or kernel library to
switch between different reduction trees (e.g., data-parallel vs. Split-K / stream-K) depending on batch size,
batch-invariant kernels enforce a fixed, example-local reduction order that is reused across all batch shapes.
This often trades some peak throughput for predictable numerics, but in practice the overhead can be modest
when kernels are engineered to maintain sufficient parallelism without changing reduction topology. Recent
LLM serving systems have begun to expose explicit “deterministic” or “batch-invariant” modes, which swap
in such kernels for the critical operations (RMSNorm, matmul, attention) to decouple user-visible outputs
from dynamic batching and to enable reproducible inference at scale.

While prior work largely documents the existence and magnitude of non-determinism, there remains a gap in
formalizing this behavior in terms of an equivalent temperature transformation functional and in proposing
standard protocols to measure the effective background randomness. Our work addresses this by introducing
the notion of an equivalent temperature Tn(I) and its expectation Tbg. In the next sections, we transition
from formal definitions to a concrete empirical protocol aimed at estimating an equivalent temperature Tn(I)
induced by implementation noise, and ultimately the background temperature.

3 Heuristic Definition and Empirical Estimation

This section introduces Tbg heuristically and outlines its estimation protocol. We start by defining the role of
temperature in LLMs to establish the intuition behind Tbg, followed by a concrete measurement procedure.
A rigorous formalization is deferred to Section 4.

3.1 Preliminaries and Heuristic Definition

Let D denote the vocabulary of a LLM, with cardinality |D|. For any token sequence τ ∈ D|τ |, we write
τ t for its t-th token, and τ<t = {τ j : j < t} for the subsequence of previously generated tokens. At each
generation step t ∈ {1, . . . , |τ |}, the model produces a vector of logits zt = {zt,θ : θ ∈ D} ∈ R|D| depending
on the context τ<t. These logits are real-valued scores, one for each token θ ∈ D. By applying the softmax
function to zt, we obtain a probability distribution over the vocabulary:

Pt(θ) = Pt(θ | τ<t) = exp(zt,θ)∑
η∈D exp(zt,η) , for all θ ∈ D. (1)

A temperature parameter T ≥ 0 is typically introduced to control the concentration of this probability
distribution. The temperature acts by modifying the logits prior to the softmax by a scaling factor 1/T .
The resulting temperature-adjusted distribution is

P T
t (θ) = P T

t (θ | τ<t) = exp(zt,θ/T)∑
η∈D exp(zt,η/T) for all θ ∈ D. (2)

For T = 0, the distribution concentrates its mass on the most likely token, effectively becoming a degenerate
distribution (a Dirac delta) over arg maxθ∈D Pt(θ). Conversely, as T → ∞, the distribution flattens and
converges to the uniform distribution P T

t (θ) → 1/|D|. See also Li et al. (2025) for details.

It is convenient to interpret temperature as a transformation applied to the original distribution. We therefore
define a temperature functional

FT : R|D| → R|D| (3)
such that, given the base probability vector Pt = Pt(·) ∈ [0, 1]|D|, one obtains the adjusted distribution
P T

t = P T
t (·) by P T

t = FT (Pt). In the idealized limit, F0 corresponds to greedy decoding, assigning unit mass
to the most probable token, while FT with T > 0 produces a probability distribution used for sampling the
next token in language models. In real LLM deployments, the effective distribution obtained at temperature
T = 0 may exhibit nondeterministic behavior due to implementation-dependent factors. As observed by the
authors in He & Lab (2025), even nominally deterministic decoding (T = 0) can produce variability in the
generated token sequence. Let I denote the inference environment, which includes hardware characteristics,

3

Under review as submission to TMLR

backend implementations, numerical precision, batch composition, concurrency, reduction ordering, and
other low-level sources of variation (see He & Lab (2025) and Shanmugavelu et al. (2024), for more details).
Let F ′

T denote the temperature transformation functional realized by the system under environment I. We
model these effects as a perturbation of the ideal functional FT . Specifically, we assume that there exists
a perturbation mapping ϵI from probability distributions over D to probability distributions over D such
that, at T = 0,

F ′
0(Pt) = ϵI(F0(Pt)) = ϵI(Pt). (4)

Even if the changes given by ϵI are small in magnitude, regions of the probability simplex where two or more
tokens have similar mass are highly sensitive: arbitrarily small changes may alter the arg max and therefore
change the emitted token at step t.

We interpret the effect of ϵI as producing a distribution that behaves approximately as if sampling were
performed at a nonzero temperature, even when T = 0 has been selected. We therefore postulate the
existence of an equivalent temperature Tn(I) such that

F ′
0(Pt) = ϵI(Pt) = FTn(I)(Pt). (5)

The background temperature of an LLM implementation is the expected equivalent temperature over all the
possible inference environments I, so, heuristically, it is given by

Tbg := EI∈I [Tn(I)] . (6)

Intuitively, Tbg quantifies the implicit randomness present in real systems even when the user explicitly
requests deterministic next-token selection. The quantity Tbg thus captures implementation-level nonde-
terminism and paves the way for an effective measure of intrinsic variability in practical LLM decoding
pipelines.

3.2 Estimating Tn(I) and Tbg Empirically

The heuristic definition in equation 6 involves an abstract expectation over inference environments, which
cannot be observed directly. To make Tn(I) and Tbg empirically measurable, we replace the ideal reference
system with a quasi-ideal baseline: a controlled inference setup in which known sources of nondeterminism -
batch-dependent kernels, floating-point precision issues, concurrency, reduction order, and framework-specific
flag- are minimized. Prior works shows that such configurations significantly reduce output variability under
zero temperature, making them suitable as reference systems. Running the models locally guarantees a
stable inference environment.

The empirical estimation protocol proceeds as follows. First, one selects a diverse and representative prompt
set Π, including general generation prompts (short or long, with common or rare vocabulary), task bench-
marks such as QA (e.g., truthful_qa Lin et al. (2022), SQuADPrice & Cote (2025), TriviaQAJoshi et al.
(2017)), summarization, classification, or code generation, edge or adversarial prompts (e.g., long contexts,
rare tokens, top-k ties), and so on.

Second, repeated inference is run at T = 0 with the system under test, while systematically varying the
inference environment I along axes known to influence nondeterminism. These include batch structure and
co-batching, concurrency and load, hardware/backend types (GPU/CPU, numeric precision, kernel imple-
mentations), and numerics such as reduction order, deterministic flags, or fused versus unfused kernels (see
He & Lab (2025), Shanmugavelu et al. (2024), Ravi et al. (2025) for details). For remote systems, prolonged
and repeated operation can be used to statistically sample the distribution of inference environments.

Third, under the stable baseline environment, the same prompts are run across a grid of temperatures to
establish a mapping between temperatures and output-variability statistics.

Fourth, variability metrics are computed across multiple runs to capture the system’s nondeterminism.
Metrics can include exact-match rates, first-divergence indices, edit distances, distributional divergences
such as KL or JS divergence, and entropy of next-token distributions.

4

Under review as submission to TMLR

Fifth, the distributions of variability metrics are compared between the system under test and the reference
system. The temperature of the reference system that minimizes some chosen distance between distributions
is taken as the equivalent temperature for that environment. Repeating this across prompts and environ-
mental samples yields an empirical estimate of Tn(I).

Finally, aggregating the equivalent temperatures across sampled environments and prompts produces an
estimate of the system’s background temperature Tbg, capturing the intrinsic nondeterminism in real-world
LLM deployments. Uncertainty bounds can be derived from the variability across prompts, environments,
and reference models. This protocol allows measurement of implicit randomness in LLMs without requir-
ing access to a perfect oracle, while providing guidance for system design and operational mitigation of
nondeterminism.

4 Mathematical Formalization

4.1 Rigorous Definitions

In this Section we provide a rigorous definition of Tbg, generalizing it to the case in which the temperature of
system under test is not set to 0 but to a generic τ > 0. First of all we introduce all the necessary notation
that we are going to use.

4.1.1 Notation

We denote by L̄ the set of all possible LLMs ℓ. Let S denote the set of pairs s = (m, α), where m ∈ L̄
and α is the provider through which m is accessed. Note that if there is no provider — meaning that the
LLM is run locally — we simply denote s = (m, 0) = m. Closely related to the models accessed through a
provider is the set Ī of all possible inference environments in which a system s ∈ S can be executed. The
temperatures used in the LLM configurations are denoted by T ∈ [0, Tmax], where Tmax is a finite arbitrarily
large value in R+. We denote by Π̄ the set of all possible prompts.

Then we introduce the concept of variability measures, which are functions that take as input a set of N
responses produced by an LLM and return a scalar (or vector) value that quantifies the variability among
them. The set of all variability measures is denoted by V̄. The empirical distribution of the values of
v ∈ V̄ computed for each prompt in Π̄ over N answers generated by ℓ ∈ L̄ at temperature T ∈ [0, Tmax]
is denoted by f ℓ

T (v) = f ℓ
T (v, Π̄). Analogously, the empirical distribution of the values of v ∈ V̄ computed

for each prompt in Π̄ over the N answers generated by s ∈ S at temperature τ ∈ [0, Tmax] in the inference
environment I ∈ Ī is denoted by gs

τ (v, I) = gs
τ (v, Π̄, I). Note that both f ℓ

T (v) and gs
τ (v) are elements of

cod(v)|Π̄|, where cod(v) denotes the codomain of v. Lastly, for each v ∈ V̄, we denote by dv a function that
evaluates the distance (or similarity) between variability distributions computed with v. For example, if v
has codomain RN , dv could be the Kolmogorov-Smirnov distance (see Wilcox (2010)), which quantifies the
distance between two distributions.

4.1.2 Definitions

Hereinafter, let us assume that all the sets Π̄, V̄, Ī, L̄ and S are finite and discrete. This could seem restrictive
in general, but in practice, it is trivially true. First, we define precisely the equivalent temperature Tn

introduced in Section 3.1.

Definition 4.1 Consider the probability space (Ω, F , p), where Ω = Ī ×V̄ ×L̄, F = 2Ω, and p is the uniform
probability measure on Ω. For any ℓ ∈ L̄, s ∈ S, v ∈ V̄, I ∈ Ī, τ ∈ [0, Tmax], and a chosen distance function
dv, we define the equivalent temperature T ℓ

s,τ (I, v) as the value of the random variable

Ts,τ : Ω −→ [0, Tmax],

(I, v, ℓ) 7−→ T ℓ
s,τ (I, v) := 1

|Mℓ
s,τ (I, v)|

∑
t∈Mℓ

s,τ (I,v)

t, (7)

5

Under review as submission to TMLR

where
Mℓ

s,τ (I, v) := argmin
T ∈[0,Tmax]

dv

(
f ℓ

T (v), gs
τ (v, I)

)
(8)

and the set of minimizers Mℓ
s,τ (I, v) is assumed to be nonempty (which holds, for instance, if T 7→

dv(f ℓ
T (v), gs

τ (v, I)) is continuous on the compact interval [0, Tmax]).

In words, T ℓ
s,τ (I, v) is defined as the mean of all temperatures in [0, Tmax] that minimize the distance between

the variability distributions f ℓ
T (v, Π) and gs

τ (v, Π, I). Given the assumptions it is easy to prove that Ts,τ is a
measurable random variable. Now, we can finally define rigorously the background temperature of a system.

Definition 4.2 The background temperature T τ
bg(s) of a system s ∈ S run at temperature τ ∈ [0, Tmax] is

the value of the function
Tbg : S × [0, Tmax] −→ [0, Tmax]

(s, τ) 7−→ T τ
bg(s) := Ep[T ℓ

s,τ (I, v)],
(9)

at the point (s, τ). Where the expectation is taken with respect to the probability measure p introduced in
Definition 4.1.

Definition 4.2 is quite general and takes into account the possibility of estimating background temperature for
systems run at non 0 temperatures, this goes beyond the intuitive idea given in Section 3.1 but it generalize
that concept and will be useful for next Sections.

4.2 Estimation Procedure

Clearly, when we want to estimate the background temperature for a system s ∈ S, working with the sets
used in Section 4.1 is practically impossible. To make estimation tractable, we restrict ourselves to finite
subsets of the original domains: a reduced set of reference LLMs L ⊂ L̄; a subset of prompts Π ⊂ Π̄; a
limited set I ⊂ Ī of inference environments; a finite discrete subset of temperatures Θ ⊂ [0, Tmax]; a selection
of variability measures V ⊂ V̄. Thus, the distributions f ℓ

T (v) and gs
τ (v), have to be intended as f ℓ

T (v, Π) and
gs

τ (v, Π, I), for T, τ ∈ Θ, ℓ ∈ L, v ∈ V.

Then, adapting the definitions in Section 4.1, the estimated equivalent temperature is defined as

T̂ ℓ
s,τ (I, v) := 1

|M̂ℓ
s,τ (I, v)|

∑
t∈M̂ℓ

s,τ (I,v)

t, where M̂ℓ
s,τ (I, v) := argmin

T ∈Θ
dv

(
f ℓ

T (v), gs
τ (v, I)

)
. (10)

That is, T̂ ℓ
s,τ (I, v) is the mean of all discrete temperatures in Θ that minimize the distance between the

empirical variability distributions f ℓ
T (v) and gs

τ (v, I). Consequently, the estimated background temperature
is given by the empirical mean

T̄ τ
bg(s) := 1

|I| |L| |V|
∑
I∈I

∑
ℓ∈L

∑
v∈V

T̂ ℓ
s,τ (I, v). (11)

Clearly, the larger the sets I, L, and V, the more robust the estimate T̄ τ
bg(s) will be.

The focus through this work will be on estimating the value of T̄ 0
bg(s) for different systems s, but we will

also use the estimates T̄ τ
bg(s) for generic temperatures τ for validating the pipeline.

5 Experiments setting

The experiments were conducted using the following settings (see notation in Sections 4.1.1 and 4.2):

• Π = Πn, consisting of the first n prompts in TruthfulQA1 (Lin et al. (2022)) dataset. Each prompt
was used N = 100 and N = 32 times for each system under test and reference model, respectively,
limiting the answers to 32 tokens.

1https://huggingface.co/datasets/truthfulqa/truthful_qa

6

https://huggingface.co/datasets/truthfulqa/truthful_qa

Under review as submission to TMLR

• Θ = {0, 0.01, . . . , 0.19, 0.2, 0.25, . . . , 0.45, 0.5, 0.6, . . . , 0.9, 1}.

• The reference LLMs considered are L = {smoll, llama, mistral}, where smoll, llama and mistral
stand for, respectively, SmolLM3-3B2 (Bakouch et al. (2025)), Llama-3.2-3B-Instruct3 and Mistral-
7B-Instruct-v0.34 (Jiang et al. (2023)).

• In most of the experiments, we considered a single inference environment I, corresponding to the
conditions under which the experiment was run. Unless otherwise specified, the set I therefore
consists of this single element I.

• The distance that we use between the distributions of the variability–metric values is always the
Kolmogorov–Smirnov distance and we denote it by dKS . This choice is appropriate because it
quantifies discrepancies between one-dimensional distributions, and all variability metrics in our set
V produce one-dimensional real values (see Section 5.1).

In the following Section, we define rigorously the variability metrics, i.e. the set V, that we used. The set S
of the systems under test will be specified for each experiment.

5.1 Variability Measures

We used the following variability measures to quantify the variability within the N answers given by the
LLMs to each prompt. See Figure 1 for a more in-depth analysis of them. Throughout this section let us
denote for each prompt π ∈ Π, the generated answers by Aπ = {aπ

1 , . . . , aπ
N }.

5.1.1 Maximum Exact Match Fraction

Let φπ be the frequency of the most common answer in Aπ. The maximum exact match fraction for the
answers given to π ∈ Π is defined as

MEMF(π) := φπ

N
, (12)

which measures how often the model produces exactly the same answer. MEMF(π) = 1 in the case in which
all the answers to π are identical, and it is MEMF(π) = 1/N if all the answers are unique.

5.1.2 Average Normalized Levenshtein Distance

Let Lev(a, b) denote the Levenshtein distance between two lists of tokens, i.e. the number of elements to
change, add or remove from a to make it identical to b. The average normalized Levenshtein distance for
the N answers given to π ∈ Π is defined as

AvgLev(π) := 1(
N
2
) ∑

1≤i<j≤N

Lev(aπ
i , aπ

j)
Lmax

, (13)

where Lmax is a normalization factor. Note that in our context Lmax = 32, indeed, being the answers capped
to 32 tokens, the maximum value of Lev(aπ

i , aπ
j), for any i, j ∈ {1, . . . , N} and π ∈ Π, is 32. It goes from 0,

when all answers are identical to 1 where they are all completely different.

5.1.3 Average Longest Common Subsequence Distance

Let LCS(a, b) denote the length of the Longest Common Subsequence between two sequences of tokens a
and b. We define the corresponding normalized distance as

DistLCS(a, b) := 1 − LCS(a, b)
min(|a|, |b|) . (14)

2https://huggingface.co/HuggingFaceTB/SmolLM3-3B
3https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct
4https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3

7

https://huggingface.co/HuggingFaceTB/SmolLM3-3B
https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3

Under review as submission to TMLR

Thus, DistLCS(a, b) = 0 for identical answers and approaches 1 when the two answers share no common
subsequence. For each prompt π ∈ Π, the average LCS distance is defined as

AvgLCS(π) := 1(
N
2
) ∑

1≤i<j≤N

DistLCS
(
aπ

i , aπ
j

)
. (15)

0.0 0.2 0.4 0.6 0.8 1.0
Temperature

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
m

et
ric

 v
al

ue

SmolLM3-3B - MEMF
SmolLM3-3B - AvgLev
SmolLM3-3B - AvgLCS
Llama-3.2-3B-Instruct - MEMF
Llama-3.2-3B-Instruct - AvgLev

Llama-3.2-3B-Instruct - AvgLCS
Mistral-7B-Instruct-v0.3 - MEMF
Mistral-7B-Instruct-v0.3 - AvgLev
Mistral-7B-Instruct-v0.3 - AvgLCS

Figure 1: Mean values of the metrics defined below as a function of the temperature, computed over the answers
produced by the reference models in L to the prompts in Π30, each sampled 32 times.

6 Experiments and Results

In this section, we present some experiments to validate the theory presented in this work.

6.1 Background Temperature Estimate Across Models and Providers

In this experiment, we estimate the background temperature using the pipeline and the settings presented
in Sections 4.2 and 5, for a set of different systems s ∈ S run at zero temperature. The goal is to determine
whether different LLMs, accessed through different providers, exhibit significantly different variability in their
answers, and whether the background temperature can capture this property. We used the same prompt set
Π30 for all the systems considered, and we also tested whether significant changes appear when increasing
the prompt set in the case s = (gpt-4.1-nano, Azure), in which we also considered Π200, to see if this change
modifies significantly the estimates. All results are reported in Table 1.

Estimated background temperatures T̄ 0
bg(s) vary systematically across systems s ∈ S, spanning an order of

magnitude from 0 (claude-sonnet-4 on AWS) to 0.288 (DeepSeek-V3.1 on Azure). This pattern of variability
indicates that the background temperature is not determined solely by the underlying model architecture,
but instead emerges from the specific model–provider pair. The case of DeepSeek-V3.1 makes this especially
clear: the model deployed on AWS showed T̄ 0

bg(s) = 0.186, whereas the same model on Azure increases to
0.288, despite the model and the experimental protocol being identical in both settings.

Another interesting observation is that claude-sonnet-4 on AWS behaved perfectly deterministically over the
tested prompt set: for each prompt, it produced the same sequence of tokens across all N = 100 iterations,
resulting in a background temperature of 0. While this does not guarantee determinism for arbitrary prompt
sets or token limits, it suggests that the configuration s = (claude-sonnet-4, AWS) represented the most stable
system among those tested.

Overall, these results indicate that T̄ 0
bg(s) captures a consistent signature of variability that depends on the

specific model–provider combination, rather than on the LLM model alone.

8

Under review as submission to TMLR

Table 1: Values of T̄ 0
bg(s) where s is the combination of the first two columns. The column “Region” gives additional

information about the inference environment considered.

LLM Provider Region T̄ 0
bg(s) Prompt Set

claude-sonnet-4 AWS eu-west-3 0.000 Π30

grok-3-mini Azure swedencentral 0.016 Π30

mistral-large-2402-v1:0 AWS us-east-1 0.016 Π30

gemini-2.0-flash Google – 0.048 Π30

gpt-4.1-nano Azure eastus2 0.068 Π200

gpt-4.1-nano Azure eastus2 0.087 Π30

DeepSeek-V3-0324 Azure swedencentral 0.148 Π30

DeepSeek-V3.1 AWS us-west-2 0.186 Π30

DeepSeek-V3.1 Azure swedencentral 0.288 Π30

6.2 Validation of Background Temperature via Configured Sampling Temperature

To further validate the background temperature as a consistent measure of LLM response variability, we
evaluated T̄ τ

bg(s) for multiple values of the configured sampling temperature τ across different systems and
providers, keeping all other inference settings fixed. We also included an on-premises model, gemma-3-1b-it5

(Team (2025)), providing a fully controlled environment that serves as a baseline for comparison against
cloud-hosted systems. The tested systems and the obtained values are reported in Table 2.

Table 2: Values of T̄ τ
bg(s) for different values of τ and systems s ∈ S.

LLM Provider Region τ T̄ τ
bg(s) Πn

gpt-4.1-nano Azure eastus2 0.00 0.068 Π200

gpt-4.1-nano Azure eastus2 0.05 0.081 Π200

gpt-4.1-nano Azure eastus2 0.10 0.101 Π200

grok-3-mini Azure swedencentral 0.00 0.016 Π30

grok-3-mini Azure swedencentral 0.05 0.032 Π30

grok-3-mini Azure swedencentral 0.10 0.066 Π30

claude-sonnet-4 AWS eu-west-3 0.00 0.000 Π30

claude-sonnet-4 AWS eu-west-3 0.05 0.018 Π30

claude-sonnet-4 AWS eu-west-3 0.10 0.022 Π30

gemma-3-1b-it On-premises – 0.00 0.000 Π200

gemma-3-1b-it On-premises – 0.05 0.032 Π200

gemma-3-1b-it On-premises – 0.10 0.061 Π200

gemma-3-1b-it On-premises – 0.15 0.093 Π200

The estimated background temperatures generally do not match exactly the configured sampling tempera-
tures, even in fully controlled on-premises settings. However, T̄ τ

bg(s) consistently increases with τ across all
systems, demonstrating a monotonic relationship:

τ1 < τ2 =⇒ T̄ τ1
bg (s) < T̄ τ2

bg (s) ∀s ∈ S. (16)

For example, claude-sonnet-4 on AWS consistently exhibits the lowest background temperature among cloud-
hosted models, confirming the trends observed in the zero-temperature experiments. These results indicate
that T̄ τ

bg(s) provides a meaningful and interpretable estimate of the effective stochasticity in the model
outputs. Importantly, it captures the variability of responses independently of the configured sampling
temperature τ , which can be influenced by provider-specific implementations and the inference environment.

5https://huggingface.co/google/gemma-3-1b-it

9

https://huggingface.co/google/gemma-3-1b-it

Under review as submission to TMLR

0 2 4 6 8 10 12 14 16 18 20 22
Approximate Time (UTC)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

T0 bg

DeepSeek-V3-0324_Azure
claude-sonnet-4_AWS

gpt-4.1-nano_Azure
mistral-large-2402-v1:0_AWS

Figure 2: Evolution of T̄ 0
bg(s) for different s ∈ S (see Table 1 for the regions and prompt sets) over the course of a

day, highlighting the effect of temporal changes in the inference environment.

Therefore, T̄ τ
bg(s) can be considered a more uniform and intrinsic measure of output variability, allowing for

meaningful comparisons across models and deployment environments regardless of the temperature setting.

6.3 Temporal Variability of T̄ 0
bg(s)

To investigate the stability of background temperature estimates over time, hypothesizing that the time is
a relevant component of the inference environment, we repeated the estimation procedure for a selection of
LLMs from different providers at multiple times throughout the day (Figure 2). All models exhibited some
temporal fluctuations in T̄ 0

bg(s), except for claude-sonnet-4 accessed via AWS, which remained perfectly stable
throughout the day, confirming the results discussed in Section 6.1. Despite these variations, the trajectories
of different systems did not intersect, indicating that temporal fluctuations are smaller than those induced
by other inference-environment factors. To clarify whether these temporal fluctuations were due to intrinsic
variability of the models or to changes in the inference environment, we performed five concurrent estimations
of T̄ 0

bg(s) using gpt-4.1-nano on Microsoft Azure, keeping all conditions constant (same provider, model,
execution time) and using the prompt set Π30. The fluctuations observed across these concurrent runs were

Table 3: T
0
bg statistics for gpt-4.1-nano via Azure (swedencentral). “Same-time” refers to five contemporary estimates,

“Day-long” refers to the experiment in Section 6.3 and Figure 2.

Experiment Mean m Std. Dev. σ σ/m

Same-time 0.0985 0.0038 0.039
Day-long 0.0650 0.0085 0.131

minimal (Table 3) and considerably smaller than those observed in the non-simultaneous measurements.
This demonstrates that the temporal variations seen in the first experiment are primarily driven by changes
in the inference environment over time, rather than by intrinsic randomness of the models under identical
conditions. In general, these results show that temporal aspects are relevant components of the inference
environment, significantly changing the estimates T̄ 0

bg(s), i.e. influencing the stability of the answers given
by the model.

6.4 Validation of T̄ τ
bg(s) as a Measure of Answer Variability

To further assess whether the estimated background temperature T̄ τ
bg(s) provides a reliable measure of the

variability exhibited by a system s ∈ S at a given sampling temperature τ , we evaluated the relation-

10

Under review as submission to TMLR

ship between T̄ τ
bg(s) and the empirical variability of model outputs on a new dataset. For this purpose,

we considered a prompt set Π̃ consisting of the first 100 instructions from the test split of the Hugging-
FaceH4/testing_self_instruct_small6 dataset. We selected three systems whose estimated background tem-
peratures (see Table 2) allowed for a controlled comparison: gpt-4.1-nano deployed on Azure with τ = 0,
gemma-3-1b-it running on-premises with τ = 0.10, which share similar values of T̄ τ

bg(s) (respectively, 0.068
and 0.061); and gemma-3-1b-it on-premises with τ = 0.15, whose estimated background temperature (0.093)
is noticeably higher. This setup enables testing the hypothesis that systems with similar T̄ τ

bg(s) exhibit
similar distributions of output variability on a given prompt set (different from the one used to estimate
T̄ τ

bg(s)), independently of model architecture and deployment environment.

Thus, we analyzed the distributions of response variability (computed with the measures in Section 5.1) over
the prompt set Π̃, using each prompt 100 times. Pairwise differences between the variability distributions
were quantified using the Kolmogorov–Smirnov distance dKS (Figure 3) across all variability metrics v ∈
V. Additionally, the Wilcoxon signed-rank test (see Wilcox (2010)) was applied to assess whether the

gpt0 gemma0.10 gemma0.15

gp
t 0

ge
m

m
a 0

.1
0

ge
m

m
a 0

.1
5

0 0.13 0.28

0.13 0 0.17

0.28 0.17 0

dKS MEMF

gpt0 gemma0.10 gemma0.15

0 0.09 0.16

0.09 0 0.12

0.16 0.12 0

dKS AvgLev

gpt0 gemma0.10 gemma0.15

0 0.08 0.17

0.08 0 0.14

0.17 0.14 0

dKS AvgLCS

Figure 3: dKS between the variability distributions on the answers given to the prompts in Π̃, by the models gpt-
4.1-nano, via Azure at temperature 0, denoted by gpt0, and gemma-3-1b-it, on-premises at temperatures 0.10 and
0.15, denoted respectively by gemma0.10 and gemma0.15.

distributions corresponding to the two models with similar T̄ τ
bg(s) can be considered statistically analogous,

while the third model is expected to exhibit a different distribution. The results, summarized in Figure 3 and

Table 4: Wilcoxon signed-rank test results for variability comparisons between model pairs across for v ∈ V. The
model are denoted as follows: gpt-4.1-nano, via Azure at temperature 0, by gpt0, and gemma-3-1b-it, on-premises at
temperatures 0.10 and 0.15, denoted, respectively, by gemma0.10 and gemma0.15. The bold p-values are the cases in
which we can not reject the null hypothesis H0 that the distributions are analogous, in the other cases we reject H0.

Metric Model Pair Wilcoxon Stat p-value
MEMF gpt0 vs gemma0.10 1090.0 0.05342
MEMF gpt0 vs gemma0.15 727.5 0.00008
MEMF gemma0.10 vs gemma0.15 50.5 0.00000
AvgLev gpt0 vs gemma0.10 1398.0 0.73647
AvgLev gpt0 vs gemma0.15 1097.0 0.03999
AvgLev gemma0.10 vs gemma0.15 33.0 0.00000
AvgLCS gpt0 vs gemma0.10 1276.0 0.54805
AvgLCS gpt0 vs gemma0.15 939.0 0.01568
AvgLCS gemma0.10 vs gemma0.15 24.0 0.00000

Table 4, clearly indicate that models with similar background temperatures produce variability distributions
6https://huggingface.co/datasets/HuggingFaceH4/testing_self_instruct_small

11

https://huggingface.co/datasets/HuggingFaceH4/testing_self_instruct_small

Under review as submission to TMLR

that are significantly closer to each other than to those of the higher-temperature system. Across all metrics,
the Wilcoxon test fails to reject the null hypothesis of analogous distributions for the pair with matching
T̄ τ

bg(s), whereas comparisons involving the third model consistently reject it.

Overall, these findings confirm that T̄ τ
bg(s) effectively captures the intrinsic variability of responses induced

by a given sampling temperature. Moreover, the consistency of the results across datasets and metrics
demonstrates that background temperature is a robust and reliable proxy for measuring answer variability
in LLMs.

7 Discussion and Conclusion

In this work, we introduced background temperature (Tbg) as a quantitative lens on implementation-
dependent variability in Large Language Models. Even under nominally deterministic decoding, different
inference environments induce statistically measurable randomness in the generated outputs. Our contribu-
tion is twofold: (i) we formalized Tbg as an equivalent temperature that best matches observed variability
against a controlled reference, and (ii) we proposed and empirically demonstrated a practical protocol for
estimating it through variability metrics computed over repeated generations.

Across multiple models, providers, and configured temperatures, our pilot studies show that Tbg cap-
tures systematic and interpretable differences. First, background temperature varies substantially across
model–provider combinations, rather than merely across model architectures. For example, the same model
deployed via different cloud providers can differ by an order of magnitude, suggesting that infrastructure
plays a central role in inference stability. Second, Tbg exhibits a monotonic relationship with the sampling
temperature T , indicating that it reflects effective output stochasticity beyond the configured temperature
parameter. Third, temporal experiments show that Tbg is sensitive to time-dependent factors, reinforcing
that inference environment includes load patterns and low-level system behavior, not only model and API
configuration. Finally, systems with similar estimated background temperature produce statistically similar
distributions of output variability on unseen prompts, suggesting that Tbg can serve as a stable proxy for
characterizing response variability. Thus, we can conclude that using background temperature, rather than
relying on ad hoc observations of nondeterministic outputs, provides a scalar quantity that practitioners can
report, monitor, and compare across deployments.

It is essential to emphasize that background temperature must not be interpreted as the model’s actual
sampling temperature. Rather, it is a single scalar that summarizes the net effect of implementation-
induced noise by matching the variability statistics of the tested system to those of controlled reference
runs. While alternative metrics such as perplexity, diversity scores, or edit-distance statistics each capture
only a fragment of model variability, background temperature offers a unified and interpretable measure
that aggregates all sources of randomness—hardware behavior, software kernels, concurrency effects, and
numerical precision—into one coherent quantity.

The methodology introduced here also comes with important limitations. A primary challenge is the lack of a
truly ideal reference configuration: current estimates require comparisons against quasi-ideal, stable setups,
which inevitably introduce model-dependent effects. While averaging over multiple reference systems helps
reduce this influence, future work should focus on identifying well-defined, highly stable reference models
and documenting their characteristics. Scaling the approach is another open issue. Although we employed
multiple variability metrics, our experiments rely on relatively small prompt sets, and broader, domain-
diverse prompt collections will be required for more robust estimates. In addition, background temperature
values depend on several design choices, including the distance metric, the temperature grid, and prompt
selection. Establishing shared conventions for these components — particularly through a standardized set of
stable reference models and common evaluation settings — would allow background temperature to become
a practical and genuinely comparable method for quantifying output variability in LLM systems.

References
Berk Atil, Sarp Aykent, Alexa Chittams, Lisheng Fu, Rebecca J. Passonneau, Evan Radcliffe, Guru Rajan

Rajagopal, Adam Sloan, Tomasz Tudrej, Ferhan Ture, Zhe Wu, Lixinyu Xu, and Breck Baldwin. Non-

12

Under review as submission to TMLR

determinism of "deterministic" llm settings, 2025. URL https://arxiv.org/abs/2408.04667.

Elie Bakouch, Loubna Ben Allal, Anton Lozhkov, Nouamane Tazi, Lewis Tunstall, Carlos Miguel Patiño,
Edward Beeching, Aymeric Roucher, Aksel Joonas Reedi, Quentin Gallouédec, Kashif Rasul, Nathan
Habib, Clémentine Fourrier, Hynek Kydlicek, Guilherme Penedo, Hugo Larcher, Mathieu Morlon, Vaib-
hav Srivastav, Joshua Lochner, Xuan-Son Nguyen, Colin Raffel, Leandro von Werra, and Thomas Wolf.
SmolLM3: smol, multilingual, long-context reasoner. https://huggingface.co/blog/smollm3, 2025.

Horace He and Thinking Machines Lab. Defeating nondeterminism in llm infer-
ence. Thinking Machines Lab blog, 2025. URL https://thinkingmachines.ai/blog/
defeating-nondeterminism-in-llm-inference/. Accessed: 2025-09-15.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and
William El Sayed. Mistral 7b, 2023. URL https://arxiv.org/abs/2310.06825.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly supervised
challenge dataset for reading comprehension. In Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 1601–1611, Vancouver, Canada, July 2017.
Association for Computational Linguistics. doi: 10.18653/v1/P17-1147. URL https://aclanthology.
org/P17-1147/.

Lujun Li, Lama Sleem, Niccolo’ Gentile, Geoffrey Nichil, and Radu State. Exploring the impact of tem-
perature on large language models: Hot or cold? Procedia Computer Science, 264:242–251, 2025. ISSN
1877-0509. doi: https://doi.org/10.1016/j.procs.2025.07.135. URL https://www.sciencedirect.com/
science/article/pii/S1877050925021854.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human falsehoods,
2022. URL https://arxiv.org/abs/2109.07958.

Shuyin Ouyang, Jie M. Zhang, Mark Harman, and Meng Wang. An empirical study of the non-determinism
of chatgpt in code generation. ACM Transactions on Software Engineering and Methodology, 34(2):1–28,
January 2025. ISSN 1557-7392. doi: 10.1145/3697010. URL http://dx.doi.org/10.1145/3697010.

S. Price and D. L. Cote. Document analysis with llms: Assessing performance, bias, and nondeterminism
in decision making. In ICPRAM 2025: Proceedings of the 14th International Conference on Pattern
Recognition Applications and Methods, pp. 207–214, 2025. ISBN: 978-989-758-730-6.

Nikita Ravi, Abhinav Goel, James C. Davis, and George K. Thiruvathukal. Improving the reproducibil-
ity of deep learning software: An initial investigation through a case study analysis. arXiv preprint,
arXiv:2505.03165, 2025. URL https://arxiv.org/abs/2505.03165. Accessed: 2025-09-15.

Sanjif Shanmugavelu, Mathieu Taillefumier, Christopher Culver, Oscar Hernandez, Mark Coletti, and Ada
Sedova. Impacts of floating-point non-associativity on reproducibility for hpc and deep learning appli-
cations. arXiv preprint, arXiv:2408.05148, 2024. URL https://arxiv.org/abs/2408.05148. Accessed:
2025-09-15.

Yifan Song, Guoyin Wang, Sujian Li, and Bill Yuchen Lin. The good, the bad, and the greedy: Evaluation
of llms should not ignore non-determinism, 2024. URL https://arxiv.org/abs/2407.10457.

Gemma Team. Gemma 3 technical report, 2025. URL https://arxiv.org/abs/2503.19786.

Juan Terven, Diana-Margarita Cordova-Esparza, Julio-Alejandro Romero-González, Alfonso Ramírez-
Pedraza, and E.A. Chávez-Urbiola. A comprehensive survey of loss functions and metrics in deep learning.
Artificial Intelligence Review, 58, 2025. ISSN 1573-7462. doi: https://doi.org/10.1007/s10462-025-11198-7.
URL https://link.springer.com/article/10.1007/s10462-025-11198-7#citeas.

13

https://arxiv.org/abs/2408.04667
https://huggingface.co/blog/smollm3
https://thinkingmachines.ai/blog/defeating-nondeterminism-in-llm-inference/
https://thinkingmachines.ai/blog/defeating-nondeterminism-in-llm-inference/
https://arxiv.org/abs/2310.06825
https://aclanthology.org/P17-1147/
https://aclanthology.org/P17-1147/
https://www.sciencedirect.com/science/article/pii/S1877050925021854
https://www.sciencedirect.com/science/article/pii/S1877050925021854
https://arxiv.org/abs/2109.07958
http://dx.doi.org/10.1145/3697010
https://arxiv.org/abs/2505.03165
https://arxiv.org/abs/2408.05148
https://arxiv.org/abs/2407.10457
https://arxiv.org/abs/2503.19786
https://link.springer.com/article/10.1007/s10462-025-11198-7#citeas

Under review as submission to TMLR

Rand R. Wilcox. Fundamentals of Modern Statistical Methods. Springer New York, NY, 2010. doi: https:
//doi.org/10.1007/978-1-4419-5525-8.

Jiayi Yuan, Hao Li, Xinheng Ding, Wenya Xie, Yu-Jhe Li, Wentian Zhao, Kun Wan, Jing Shi, Xia Hu, and
Zirui Liu. Understanding and mitigating numerical sources of nondeterminism in llm inference, 2025. URL
https://arxiv.org/abs/2506.09501.

Longfei Yun, Chenyang An, Zilong Wang, Letian Peng, and Jingbo Shang. The price of format: Diversity
collapse in LLMs. In Christos Christodoulopoulos, Tanmoy Chakraborty, Carolyn Rose, and Violet Peng
(eds.), Findings of the Association for Computational Linguistics: EMNLP 2025, pp. 15454–15468, Suzhou,
China, nov 2025. Association for Computational Linguistics. doi: 10.18653/v1/2025.findings-emnlp.836.
URL https://aclanthology.org/2025.findings-emnlp.836/.

14

https://arxiv.org/abs/2506.09501
https://aclanthology.org/2025.findings-emnlp.836/

	Introduction
	Related Work
	Sources of non-determinism
	Batch-invariant kernels

	Heuristic Definition and Empirical Estimation
	Preliminaries and Heuristic Definition
	Estimating Tn(I) and Tbg Empirically

	Mathematical Formalization
	Rigorous Definitions
	Notation
	Definitions

	Estimation Procedure

	Experiments setting
	Variability Measures
	Maximum Exact Match Fraction
	Average Normalized Levenshtein Distance
	Average Longest Common Subsequence Distance

	Experiments and Results
	Background Temperature Estimate Across Models and Providers
	Validation of Background Temperature via Configured Sampling Temperature
	Temporal Variability of 0bg(s)
	Validation of bg(s) as a Measure of Answer Variability

	Discussion and Conclusion

