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ABSTRACT

Recommender models that utilize unique identities (IDs for short) to represent
distinct users and items have been the state-of-the-arts and dominating the rec-
ommender system (RS) literature for over a decade. In parallel, the pre-trained
modality encoders, such as BERT (Devlin et al., 2018) and ResNet (He et al.,
2016), are becoming increasingly powerful in modeling raw modality features,
e.g., text and images. In light of this, a natural question arises: whether the modal-
ity (a.k.a, content) only based recommender models (MoRec) can exceed or be on
par with the ID-only based models (IDRec) when item modality features are avail-
able? In fact, this question had been answered once a decade ago, when IDRec
beat MoRec with strong advantages in terms of both recommendation accuracy
and efficiency.
We aim to revisit this ‘old’ question and systematically study MoRec from sev-
eral aspects. Specifically, we study several sub-questions: (i) which recommender
paradigm, MoRec or IDRec, performs best in various practical scenarios, includ-
ing regular, cold and new item scenarios? does this hold for items with different
modality features? (ii) will MoRec benefit from the latest technical advances in
corresponding communities, for example, natural language processing and com-
puter vision? (iii) what is an effective way to leverage item modality representa-
tions, freezing them or adapting them by fine-tuning on new data? (iv) are there
any other factors that affect the efficacy of MoRec. To answer these questions, we
conduct rigorous experiments for item recommendations with two popular modal-
ities, i.e., text and vision. We provide empirical evidence that MoRec with stan-
dard end-to-end training is highly competitive and even exceeds IDRec in some
cases. Many of our observations imply that the dominance of IDRec in terms of
recommendation accuracy does not hold well when items’ raw modality features
are available. We promise to release all related codes & datasets upon acceptance.

1 INTRODUCTION

Recommender systems (RS) model the historical interactions of users and items and recommend
items that users may interact with in the future. RS are playing a key role in search engines, adver-
tising systems, e-commerce websites, video and music streaming services, and various other Internet
platforms. Mainstream recommender models usually use unique IDs to represent items, which can
be broadly categorized into two classes: two-tower based architectures (Rendle et al., 2012; Huang
et al., 2013) and sequence or session-based neural architectures (Hidasi et al., 2015; Yuan et al.,
2019; Kang & McAuley, 2018; Sun et al., 2019). These ID-only or ID-based recommender models
(IDRec) are well-established and have been dominating the RS field for over a decade.

Despite their popularity and success, there are also key weaknesses that should not be ignored. First,
IDRec highly rely on the ID interactions, which fail to provide recommendations when users and
items have few interactions (Yuan et al., 2020), a.k.a. the cold-start setting. Second, pre-trained
IDRec are not transferable across platforms given that user IDs and item IDs are in general not
shareable in practice. This issue seriously limits the development of big & general-purpose RS
models (Ding et al., 2021; Bommasani et al., 2021; Wang et al., 2022), an emerging paradigm
in other deep learning application areas. Third, IDRec represent items mainly by ID embedding
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features, ignoring the inherent content features and thus are prone to achieving sub-optimal perfor-
mance. Moreover, maintaining a large and frequently updated ID embedding matrix for users and
items remains a key challenge in industrial applications (Sun et al., 2020). Beyond these issues,
ID-only recommender models cannot benefit from advances in other communities, such as powerful
representation models developed in NLP (natural language processing) and CV (computer vision)
areas. Last but not the least, recommender models leveraging ID features have obvious drawbacks
in terms of interpretability, visualization and evaluation.

In contrast to IDRec, content-based recommender models (CoRec) rely heavily on item features,
i.e., characteristics of the item such as the color of an object, authors of a book, and keywords in an
article. While intuitive and interpretable, they have been far less prevalent than IDRec over the past
decade. A key reason for this could be that the content-based item encoders are not as expressive
as the standard item ID embedding, therefore leading to unsatisfactory performance. Nevertheless,
we believe that given the recent extraordinary success of deep representation learning, it is time
to revisit the critical comparison between CoRec and IDRec. In particular, BERT (Devlin et al.,
2018), GPT-3 (Brown et al., 2020) and Vision Transformers (Dosovitskiy et al., 2020; Liu et al.,
2021) have revolutionized the NLP and CV fields in terms of representing the raw text and vision
features. Whether the item representations learned by these backbone models are better suited for
recommender systems than ID embeddings remains largely unknown until now.

In this paper, we intend to rethink the potential of CoRec and study a key question: should we still
stick to the ID-based recommender paradigm? We concentrate on item recommendation based on
the text and vision modalities — the two most common modalities in literature. To differentiate
from traditional attribute-based CoRec, we refer to recommender models directly encoding items’
raw modality features as MoRec. To be concise, we attempt to address the following sub-questions:

Q(i): Equipped with strong modality encoders (ME), can MoRec perform comparably or bet-
ter than IDRec in various recommendation scenarios? To answer this question, we conduct em-
pirical studies by taking into account the two most representative recommender architectures (i.e.,
two-tower based DSSM (Huang et al., 2013; Rendle et al., 2020) and session-based SASRec (Kang
& McAuley, 2018)) equipped with four powerful ME evaluated on three large-scale recommenda-
tion datasets with two modalities (text and vision) and three recommendation scenarios (regular,
cold & new item settings).

Q(ii): If Q(i) is yes, can the recent technical advances developed in NLP and CV fields be
translated into accuracy improvement for MoRec when they utilize text and vision features?
We address this question by performing three experiments. First, we evaluate MoRec by compar-
ing modality-based item encoders (e.g. BERT and ResNet (He et al., 2016)) with vs without pre-
training on corresponding NLP and CV datasets; second, we evaluate MoRec by comparing weaker
vs stronger ME where weaker and stronger are determined by NLP and CV tasks; third, we evaluate
MoRec by comparing smaller vs larger ME given that ME with larger model sizes tend to perform
better than their smaller counterparts in various downstream tasks.

Q(iii): How can we effectively employ item modality representations derived from an NLP or
CV encoder network? Is the end-to-end (E2E) fine-tuned representation largely superior to
the frozen representation given that the E2E training fashion requires much more compute
and training time? The de facto practice for industrial recommender systems is to first extract item
modality representations through some ME as ‘off-the-shelf’ features and then incorporate them into
a recommender model (McAuley et al., 2015; Covington et al., 2016), often referred to as the two-
stage (TS) paradigm. While such TS paradigm is architecturally flexible, easy-to-implement and
requires less compute and training time, we show that there is a substantial accuracy loss compared
to the E2E paradigm.

Beyond these key questions, we also identify several other factors that affect the training of MoRec
in practice. To serve as a foundation for further research of MoRec, we will publish all our codes and
datasets, including a large-scale real-world video recommendation dataset (collected by ourselves)
containing over 4 million user-video interactions with around 128K video thumbnails and 400K
users.1

1K is short for thousand.
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2 IDREC & MOREC
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Figure 1: Illustration of IDRec vs MoRec. Vi and Ti denote raw features of vision and text modal-
ities. Ei is the item representation vector fed into the recommender model. The only difference
between IDRec and MoRec is the item encoder. IDRec use an item ID embedding matrix as the
item encoder, whereas MoRec use the pre-trained ME (followed by a dense layer for the dimension
transformation, denoted by DT-layer) as the item encoder.

One core function of a recommender model is to represent items and users. Denote I (of size |I|)
and U (of size |U|) as the set of items and users respectively. For an item i ∈ I, we can represent
it either by its unique ID i or its modality content, such as text and image features. Likewise, for a
user u ∈ U , we can represent her either by the unique ID u or the profile of u, where a profile can
be the demographic information or a sequence of interacted items.

For IDRec, an ID embedding matrix XI ∈ R|I|×d is constructed as the item encoder for all items
in I, where d is the embedding size. During training and inference, IDRec retrieve XI

i ∈ Rd from
XI as the embedding of item i and then feed it to the recommender network.

In MoRec, items are assumed to contain modality information beyond their IDs. For item i, MoRec
use the modality encoder (ME) to generate the representation for the raw modality input of i and use
it to replace the ID embedding vector in IDRec. For instance, in the news recommendation scenario,
we can use the pre-trained BERT or RoBERTa (Liu et al., 2019) as text ME and represent a piece of
news by the output textual representation of its title. Similarly, when items contain visual features,
we can simply use a pre-trained ResNet or Vision Transformer as vision ME.

In this paper, we perform rigorous empirical studies on the two most commonly adopted recom-
mender paradigms: DSSM (Huang et al., 2013) and SASRec (Kang & McAuley, 2018). The DSSM
model is a two-tower based architecture where users/items are encoded by their own encoder net-
works with user and item IDs as input. SASRec is a well-known sequential recommender model
based on multi-head self-attention (Vaswani et al., 2017) which describes a user by her interacted
item ID sequence. As mentioned before, by replacing the ID embedding matrix with an item modal-
ity encoder, we obtain the MoRec version of both DSSM and SASRec. We illustrate IDRec and
MoRec in Figure 1, and provide training details in Appendix A.

3 EXPERIMENTAL SETUPS

3.1 DATASETS

We evaluate IDRec and MoRec on three real-world datasets, namely, the MIND dataset from the
Microsoft news recommendation platform (Wu et al., 2020), the HM clothing purchase dataset
from the H&M platform2 and the Bili dataset (see Appendix C for data collection details) from an
online video recommendation platform3. For MIND, we use the title of each article to represent
the item, while for HM & Bili, we represent items by their associated images (one image per item).
To fully exploit the capabilities of MoRec, the dataset used should ensure that the user’s decisions

2https://www.kaggle.com/competitions/h-and-m-personalized-fashion-recommendations/overview
3https://www.bilibili.com/
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(whether to interact with an item or not) are determined only by the content features of the item.
We notice that neither HM nor Bili meets this assumption since, in addition to the appearance of the
item, users’ purchase decisions on HM are also influenced by the price and textual description of the
product, while users’ commenting behavior on Bili is mainly affected by the video (with hundreds
of images) and audio signals (not only the cover image).(see Appendix C Figure 6). That is, HM
and Bili are not well suited for MoRec when using only an image to represent the item.4

Table 1: Dataset characteristics. n and m denote the numbers of users and items respectively.
|R|train, |Rvalid|, |Rtest|, |Rcold| and |Rnew| denote the number of interactions of the training set,
validation set, testing set, cold items, and new items respectively. |R|/(nm) represents density.

Dataset n m |R|train |Rvalid| |Rtest| mcold mnew |Rtrain|/(nm) Behavior Types

MIND 630K 79,707 8,407K 630K 630K 32,246 13,133 0.0167% clicks
HM 500K 86,733 5,500K 500K 500K 37,087 14,498 0.0127% purchases
Bili 400K 127,625 4,400K 400K 400K 39,331 5,030 0.0086% comments

To construct the datasets, we randomly select around 400K, 500K and 600K users from Bili, HM,
and MIND, respectively. Then, we perform basic pre-processing by setting the size of all images to
224×224 and the title of all news articles to a maximum of 30 tokens (covering 99% of descriptions).
For MIND, we select the latest 23 items for each user to construct the interaction sequence. For HM
and Bili, we choose the 13 most recent interactions since encoding images requires much larger
GPU memory (especially with the SASRec architecture). Following (Rendle et al., 2012), we
remove users with less than 5 interactions, simply because we do not consider cold user settings in
this paper. Moreover, we do consider the cold item setting. Specifically, we count the interactions
of all items in the training set (data split is described below) and regard those that appear less than
10 times as cold items and those that never appear as new items. Then we select additional user
sequences out of the training dataset that contain such cold or new items to perform evaluation.5 We
report the statistics of all processed datasets in Table 1.

3.2 EVALUATIONS

We split the datasets into training, validation, and testing sets by adopting the standard leave-one-out
strategy. Specifically, the latest interaction of each user was used for evaluation, while second-to-
last was used as validation for hyper-parameter searching, and all others are used for training. We
evaluate all models using two popular top-N ranking metrics: HR@N (Hit Ratio) and NDCG@N
(Normalized Discounted Cumulative Gain) (Yuan et al., 2019), where N is set to 10. We rank the
ground-truth target item by comparing it with all the other items in the item pool. Finally, we report
the results on the testing set by choosing checkpoints with the best validation performance.

3.3 COMPARISON SETTINGS

For a fair comparison, we ensure that IDRec and MoRec have exactly the same network architecture
except the item encoder. For both text and vision encoders, we pass their output item representations
to a DT-layer (see Figure 1) for dimension transformation. Regarding the hyper-parameter setting,
our principle is to ensure that IDRec are always thoroughly tuned, including learning rate γ, em-
bedding size d, layer number l, dropout ρ, etc. While for MoRec, we attempt to first use the same
set of hyper-parameters as IDRec and then perform some basic searching around the best choices.
Thereby, without specially mentioning we do not guarantee that MoRec are reported with the best re-
sults as searching all possible hyper-parameters for MoRec is super expensive and time-consuming.
We report detailed settings in the Appendix G Table 12.

4 COMPARATIVE STUDIES (Q(I))

We perform evaluation on three RS scenarios, namely, the canonical scenario (CANO-SC) with both
warm, cold and new items, cold item scenario (COLD-SC) and new item scenario (NEW-SC).

4Nevertheless, there is no ideal publicly available image recommendation dataset (with raw image features)
where a user’s interaction decisions are only or mostly determined by the image itself.

5This is simply because the original testing set has too few cold items for evaluation.
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Table 2: Accuracy (%) comparison of IDRec and MoRec using DSSM and SASRec in CANO-SC.
MoRec with different ME are directly denoted by their encoder names for clarity. The best results for
DSSM and SASRec are bolded. ‘Improv.’ is the relative improvement of the best MoRec compared
with the best IDRec. All results of MoRec are obtained by fine-tuning their whole parameters
including both the item encoder and user encoder. Swin-T and Swin-B are Swin Transformer with
different model sizes, where T is tiny and B is base. ResNet50 is a 50-layer ResNet variant.

Dataset Metrics DSSM SASRec Improv.
IDRec BERTbase RoBERTabase IDRec BERTsmall BERTbase RoBERTabase

MIND HR@10 3.58 2.68 3.07 17.71 18.50 18.23 18.68 +5.48%
NDCG@10 1.69 1.21 1.35 9.52 9.94 9.73 10.02 +5.25%

IDRec ResNet50 Swin-T IDRec ResNet50 Swin-T Swin-B

HM HR@10 4.93 1.49 1.87 6.84 6.67 6.97 7.24 +5.85%
NDCG@10 2.93 0.75 0.94 4.01 3.56 3.80 3.98 -0.75%

Bili HR@10 1.14 0.38 0.57 3.03 2.93 3.18 3.28 +8.25%
NDCG@10 0.56 0.18 0.27 1.63 1.45 1.59 1.66 +1.84%

4.1 MOREC VS IDREC ON CANO-SC

Here, we evaluate IDRec and MoRec with the two most important recommender architectures, i.e.,
DSSM and SASRec. We use pre-trained BERT and RoBERTa as ME when items are of text fea-
tures, and use pre-trained ResNet and Swin Transformer (Liu et al., 2021) when items are of visual
features. We provide details (model size & download urls) of these ME in Appendix G Table 9. Note
for BERT and RoBERTa, we add the DT-layer on the final representation of the “[CLS]” token. We
report results on the testing set in Table 2 and convergence curves on Appendix B Figure 4 (and
Appendix F.2 Figure 10 with session length of 23 for vision recommendations).

First, we observe that DSSM always substantially underperforms SASRec, regardless of the item
encoding strategy used. For instance, SASRec-based IDRec is around 4.9× better than DSSM-based
IDRec in terms of HR@10 for news recommendation, although their training, validation, and testing
sets are kept the same. The performance gap for image recommendation is relatively small, around
1.4× and 2.7×, on HM and Bili respectively. This is expected since much prior literature (Kang &
McAuley, 2018; Sun et al., 2019) has revealed that properly representing users with their interacted
item sequence — e.g., by an autoregressive training manner (Kang & McAuley, 2018; Yuan et al.,
2019) — is in general more powerful than dealing them as individual user IDs. Besides, DSSM
neither explicitly, nor implicitly, takes into account interaction orders which reflect user’s dynamic
preference, thereby leading to inferior results for time-aware item recommendations.

Second, we notice that with the DSSM architecture, MoRec perform much worse than IDRec in all
three datasets even with the SOTA ME, in particular for the visual recommendation scenarios. By
contrast, with the SASRec architecture, MoRec consistently achieve better results than IDRec on
MIND using any of the three text encoders, i.e., BERTsmall, BERTbase and RoBERTabase. For in-
stance, MoRec outperform IDRec by over 5% on the two evaluation metrics with the RoBERTabase
text encoder. Meanwhile, MoRec perform comparably to IDRec when using Swin Transformer
as ME but perform relatively worse when using ResNet50. The performance disparity of MoRec
between DSSM and SASRec potentially implies that a powerful recommender architecture (SAS-
Rec vs DSSM) is required to fully harness the strengths of the modality-based item encoder.6

4.2 MOREC VS IDREC ON COLD-SC & NEW-SC

MoRec are a natural fit for cold item recommendation as their ME module is specifically developed
to model the raw modality features of an item, whether it is cold or not. To validate this, we evalu-
ate IDRec and MoRec in the two scenarios, i.e., COLD-SC and NEW-SC. We report the results in
Appendix D Table 7. As clearly shown in Table 7, MoRec consistently and substantially improve
IDRec on all three datasets for both text and vision modalities in both COLD-SC and NEW-SC. In
particular, the HR@10 on MIND rises from 0.0036% to 3.0637% in COLD-SC and from 0.0125%

6Given MoRec’s poor results with DSSM, we only focus on the SASRec architecture in the following.
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to 0.5899% in NEW-SC.7 Similar observations can also be made for the image and video recom-
mendation on HM and Bili. The superiority of MoRec comes from the powerful representations of
ME which is first pre-trained on large-scale text and image datasets and then fine-tuned to adapt the
recommendation objectives.

The above results shed the following insights: (1) the recommender architecture matters a lot for the
performance of MoRec; (2) the item encoder network influences the performance of MoRec as well;
(3) (Answer for Q(i)) equipped with the most powerful ME, MoRec clearly beat the IDRec
counterpart for text recommendation and is on par with IDRec for vision recommendation
with the sequential recommender architecture. However, it seems that there is little chance for
MoRec to replace IDRec with the typical two-tower DSSM paradigm in the canonical scenario,
in particular for items with vision modality. (4) Without any doubt, MoRec markedly outperform
IDRec in the cold-start and new item settings. It is worth mentioning again that Bili and HM datasets
are somewhat unfair for MoRec since their interacted items are not mostly determined by image
features (e.g., it is nearly impossible to learn the price or audio features from only a raw image).
Suggested by reviewr jqDE & tNVZ: We also present the cross-domain recommendation task of
MoRec in Appendix J.

5 CAN MOREC INHERIT ADVANCES IN MULTIMEDIA COMMUNITIES? (Q(II))

One key advantage of MoRec is that it promises to introduce the strong representation learning
techniques from other communities, e.g., NLP and CV, to the recommendation task. Hence, we ask:
can the latest advances in NLP and CV be transferred to the tasks of recommender systems? We aim
to answer this question from the following perspectives.
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Figure 2: Accuracy with different pre-trained ME in
MoRec. Parameters of the pre-trained encoder network are
all fine-tuned on the recommendation task.

Table 3: Pre-trained (PE) ME vs TFS
on the testing set regarding HR@10
(%). BERTbase are used as text ME,
and ResNet50 and Swin-T are used
as vision ME. ‘Improv.’ indicates the
relative improvement of PE over TFS.
We report the convergence behaviors
on the validation set in Appendix E
Figure 7.

Dataset Encoder TFS PE Improv.

MIND BERTbase 17.78 18.23 +2.53%

HM ResNet50 5.82 6.67 +14.60%
Swin-T 6.27 6.97 +11.16%

Bili ResNet50 2.67 2.93 +9.74%
Swin-T 2.83 3.18 +12.37%

First, we investigate whether a larger pre-trained ME enables better recommendation accuracy since
in NLP and CV larger pre-trained models tend to offer higher performance in corresponding down-
stream tasks. As shown in Figure 2, a larger vision item encoder always achieves better image rec-
ommendation accuracy, i.e., ResNet18-based MoRec < ResNet34-based MoRec < ResNet50-based
MoRec, and Swin-T based MoRec < Swin-B based MoRec. Similarly, we find that BERTtiny-based
MoRec < BERTsmall−, BERTmedium-, BERTbase-based MoRec. One difference is that BERTmedium-
and BERTbase-based MoRec do not outperform BERTsmall-based MoRec although the latter has a
smaller-size BERT variant. We conclude that in general larger ME tend to improve the recommen-
dation accuracy but this may not strictly hold in all cases.

Second, we investigate whether a more powerful encoder network enables better recommenda-
tions (see Appendix G Table 9 for more details about these ME). For example, it is recognized
that RoBERTa outperforms BERT (Liu et al., 2019), and BERT outperforms the unidirectional

7We find that the accuracy of IDRec on MIND in COLD-SC is worse than the random strategy (HR@N≈
1
m

×N ) used for new item recommendation (e.g., 0.0036 vs. 0.0125). This is reasonable since cold items have
fewer chances to be ranked higher after training IDRec, sometimes even worse than a basic random sampler.
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GPT (Radford et al., 2018), e.g., OPT, for most text understanding (but not generative) tasks with
similar model size, and that Swin Transformer often outperforms ResNet in many CV tasks (Liu
et al., 2021). As shown in Figure 2, MoRec’s performance keeps consistent with the findings in NLP
and CV, i.e., RoBERTabase-based MoRec > BERTbase-based MoRec > OPT125M-based MoRec, and
Swin-T based MoRec > ResNet50-based MoRec (Swin-T has a similar model size to ResNet50, the
same for RoBERTabase, BERTbase and OPT125M).

Third, we investigate whether the pre-trained ME produces higher recommendation accuracy than
its training-from-scratch (TFS) version (i.e., with random initialization). There is no doubt that
the pre-trained BERT, ResNet, and Swin largely improve corresponding NLP and CV tasks against
their TFS versions. We report the recommendation results on the testing set in Table 3 and the
convergence behaviors on the validation set in Appendix E Figure 7. It can be clearly seen that
pre-trained MoRec obtain better convergence and final results. In particular, MoRec achieve around
10% improvements with the pre-trained ME (ResNet and Swin) on HM and Bili, which also aligns
with findings in NLP and CV domains.

According to the above experiments, we conclude that (Answer for Q(ii)) MoRec build connec-
tions for RS and other multimedia communities, and can in general inherit the latest advances
from the NLP and CV fields. In other words, MoRec have more chances to be improved in the
future as long as new breakthrough happens in corresponding research fields.

6 END-TO-END (E2E) VS TWO-STAGE (TS) TRAINING (Q(III))

E2E-based MoRec incur a significant computational overhead due to forward and backward prop-
agation for each item in a given sequence of user interactions. The common approach in practice
is usually based on a TS manner: first extracting offline features by ME and then adding them into
a recommender network (He & McAuley, 2016b;a) (see Figure 3). Such TS pipeline is especially
popular for industrial applications (e.g., Deep Crossing (Shan et al., 2016) and YouTubeDNN (Cov-
ington et al., 2016)) considering that there are often hundreds of millions of training examples. Here,
we evaluate whether this widely adopted strategy with fixed features leads to ideal recommendation.

As shown in Table 4, we find that TS-based MoRec show surprisingly poor results, compared to
IDRec and E2E-based MoRec. In particular, with ResNet, it achieves only 60% and 25% perfor-
mance of E2E-based MoRec on HM and Bili respectively. The results indicate that the modality
features pre-trained by these NLP and CV tasks are not universal enough, which thereby results in
inferior recommendation results. MoRec achieve the best results by performing further parameter
fine-tuning, which needs the E2E training manner (Suggested by reviewer jqDE: For a comprehen-
sive comparison, we also add several additional neural network layers on the top of the extracted
item representation so as to see whether such strategy will better align these fixed representation
with the current recommender backbone network. We report the results in Appendix I). Thereby,
we want to remind researchers and practitioners that (Answer for Q(iii)) the de facto two-stage
recommender regime causes severe performance degradation, which should not be ignored in
practice. Meanwhile, we advocate more efforts on optimizing the training8 cost and efficiency of
the E2E-based MoRec since it cause around 100x-1000x large compute & training time than IDRec
(see Appendix Table 12).
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Figure 3: Illustration of MoRec with TS and E2E.

Table 4: E2E vs TS in terms of HR@10 (%).

Dataset IDRec Encoder TS E2E

MIND 17.71 BERTbase 13.93 18.23

HM 6.84 ResNet50 4.03 6.67
Swin-T 3.45 6.97

Bili 3.03 ResNet50 0.72 2.93
Swin-T 0.79 3.18

8For the online inference stage, MoRec are as fast as IDRec since ME can be calculated by offline manner.
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7 BAG OF OTHER OBSERVATIONS

E2E-based MoRec have been less studied before, especially for visual recommendation. Here, we
present several other findings (including both positive and negative results) towards practical MoRec.

A second round of pre-training on ME. Performing a second round of pre-training for ME using
the downstream dataset (without using labels) sometimes works well in the DL literature (Guru-
rangan et al., 2020). Here, we explore whether it offers improved recommendations for MoRec.
Following the pre-training of BERT, we adopt the “masked language model” (MLM) objective to
train the text encoder of MoRec (denoted by BERTbase-MLM) on MIND and report results in Table 5.
As shown, BERTbase-MLM gains higher accuracy than BERTbase for both the TS and E2E models.
Similarly, we explore whether it holds for the vision encoder. Note that ResNet and Swin Trans-
former used in previous experiments are pre-trained in a supervised manner, but neither HM nor Bili
contains supervised image labels. To this end, we turn to use MAE (He et al., 2022), a SOTA image
encoder pre-trained in an unsupervised manner, similar to MLM. We find MAEbase-MLM clearly
improves the standard MAEbase on HM with the TS model, but obtains marginal gains with the E2E
model. By contrast, no accuracy improvements are observed on Bili. By examining image cases in
Appendix C Figure 5, we find that pictures in Bili have very diverse topics and are more challenging
than HM (with only very simple fashion elements). Our conclusion is that the effectiveness of the
second round of pre-training depends on individual datasets; more importantly, it seems very
difficult to obtain larger accuracy gains for the E2E strategy.

Trade-off between accuracy and efficiency. While fine-tuning full parameters in ME produces
better accuracy than frozen features, it also imposes a greater computational burden. Here, we
attempt to investigate whether all parameters need adaptation. As shown in Table 6, MoRec with
BERT-based ME show the optimal results when fine-tuning the top 6 blocks (approximately a half
of all parameters). For the two visual datasets, fine-tuning all layers yields slightly better results than
fine-tuning the top 2 out of 4 blocks. According to this, we conclude that in practice, fine-tuning
the top half of ME is worth considering for the balance between accuracy and efficiency. 9

Besides, we have examined separate parameter searching for item & user encoders, and report the
results in Appendix H. Our conclusion is searching hyperparameters (e.g., learning rate & weight
decay) separately for ME and user encoder matters for obtaining better MoRec results.

Table 5: Comparison of HR@10 (%) w/ and
w/o extra pre-training with the MLM objective
using the TS and E2E training strategy. ‘Im-
prov.’ means the relative improvement of w/
MLM compared to w/o MLM.

Dataset Encoder Manner w/o w/ Improv.MLM MLM

MIND BERTbase
TS 13.93 14.68 +5.38%

E2E 18.23 18.63 +2.19%

HM MAEbase
TS 2.50 2.79 +11.60%

E2E 7.03 7.07 +0.57%

Bili MAEbase
TS 0.57 0.57 0.00%

E2E 3.18 3.17 -0.31%

Table 6: Comparison of HR@10 (%) when
fine-tuning different blocks of the pre-trained
ME. ‘n/m’ means fine-tuning the top n blocks
of ME containing a total of m blocks.

Dataset Encoder Fine-tuning blocks

0/12 2/12 6/12 12/12

MIND BERTbase 13.93 17.87 18.51 18.23

0/4 1/4 2/4 4/4

HM ResNet50 4.03 6.46 6.59 6.67
Swin-T 3.45 6.18 6.80 6.97

Bili ResNet50 0.72 2.83 2.89 2.93
Swin-T 0.79 2.88 3.00 3.18

8 RELATED WORK

ID-based recommender systems (IDRec). There are thousands of recommender models purely
based on user/item ID as inputs, ranging from early item-to-item collaborative filtering (Linden
et al., 2003), latent factorization models (Koren et al., 2009; Rendle, 2010), to deep learning (DL)
models (He et al., 2017; Hidasi et al., 2015). According to whether explicitly modeling users’ tem-
poral preferences, they can be roughly divided into two types: two-tower based models (TTRM) and

9We have not reported such results since it can be easily analyzed from Appendix G Table 12 that both
training time, compute resources and GPU memory consumption will be largely reduced by fine-tuning only a
few layers.
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sequential neural models (SRM). TTRM (Rendle et al., 2012; Huang et al., 2013; He & McAuley,
2016b; Covington et al., 2016) assign a unique user ID to represent the user and posses both user
encoder and item encoder. Despite the remarkable success of DL, TTRM in literature still has very
shallow layers (Yang et al., 2020; Rendle et al., 2020). By contrast, SRM uses the user-item interac-
tion sequence to represent a user, which can be stacked with deeper layers (Yuan et al., 2019; Wang
et al., 2021; Sun et al., 2020) and is typically more powerful than TTRM. The most representative
sequential RM include GRU4Rec (Hidasi et al., 2015), NextItNet (Yuan et al., 2019), SASRec and
BERT4Rec (Sun et al., 2019) with RNN, CNN, Transformer and BERT as the backbone respectively,
among which SASRec often performs the best in the literature (Fischer et al., 2021).

Modality-based recommender systems (MoRec). MoRec, falls into the direction of content-
based RS, and focuses on modeling item’s modality features, such as text (Wu et al., 2020), im-
ages (McAuley et al., 2015), videos (Deldjoo et al., 2016), voice (Van den Oord et al., 2013) and
text-image pairs (Wu et al., 2021b). Previous work tended to adopt the two-stage regime by first
extracting item modality features by ME and then incorporate these fixed features into the recom-
mender model (McAuley et al., 2015; He & McAuley, 2016b;a; Shan et al., 2016; Lee & Abu-
El-Haija, 2017; Tang et al., 2019; Wei et al., 2019). More importantly, most of these works only
used modality information as side features but with IDs as main features. The unpopularity of the
E2E-style MoRec can be attributed into several reasons: (1) the two-stage regime is architecturally
flexible for industrial applications and requires much less compute and training cost; (2) there is no
high-quality publicly available dataset with raw item modality features until the recently released
MIND and HM (still not ideal for such research); (3) ME in the past literature are not very expres-
sive even by E2E training; and (4) researchers had lost confidence in content-based RS (unless for
cold-start settings) since a decade ago. Some recent works started to explore the E2E-based MoRec,
however, most of them focus on text recommendation. For example, Wu et al.; Shin et al.; Yu et al.;
Yang et al.; Xiao et al.; Hou et al. applied different types of pre-trained ME for news recommenda-
tion; Elsayed et al. introduced ResNet to fashion-based recommendation and co-trained it with ID
embeddings. However, to our knowledge, none of them performed a formal, purposeful and com-
prehensive study towards the comparison of IDRec and MoRec under a fair experimental setting
and particularly for the non cold-start setup. A more clear comparison of related work is shown in
Appendix K.

9 CONCLUSION, LIMITATIONS, AND FUTURE WORKS

In this paper, we studied an important yet unexplored question regarding whether IDRec would
continue to dominate the RS community. Obviously, this question cannot be thoroughly addressed
by one paper and need more efforts from the RS community. Yet, one major finding here is that
with the SOTA ME, MoRec could already perform on par or better than IDRec with the typical
recommender architecture (i.e., Transformer) even in the non-cold item recommendation setting.10

Moreover, MoRec can largely benefit from the technical advances in the NLP and CV fields, which
implies that it has larger room for accuracy improvements in the future. Given this, we believe our
research is meaningful and would potentially inspire more studies on MoRec, for example, develop-
ing more powerful recommender architectures, more expressive & generalized item encoders, better
item & user fusion strategies and more effective optimizations to reduce the compute & memory
costs and the longer training time. We also envision that in the long run the prevailing paradigm of
RS may have a chance to shift from IDRec to MoRec when raw modality features are available.

As mentioned above, this study is only a preliminary of MoRec and has several limitations: (1) we
considered RS scenarios with only text and vision, whereas MoRec’s behaviors with other modali-
ties, e.g., voice and video, remain unknown; (2) we consider only single-modal item encoders, while
the behaviors of multimodal MoRec are unknown; (3) we considered only a very basic approach to
fusing ME into recommender models, thereby MoRec may achieve sub-optimal performance; (4)
we only considered pure IDRec or MoRec, whereas the performance of a hybrid E2E-based rec-
ommender model with both ID and modality features is unknown (note in this case, some merits of
MoRec will no longer hold because of the ID features); (5) it remains to be seen whether the key
findings still hold if we scale up training data to 100× or 1000× as in many industrial systems.

10We emphasize again that since the evaluation settings are very unfair to MoRec, including unfavorable
recommendation datasets (see Section 3.1), sub-optimal hyper-parameter settings (see Section 3.3), and not the
largest or strongest item encoders, it might perform considerably better than IDRec on more fair settings.
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A TRAINING DETAILS

Denote R as the set of all observed interactions in the training set. For each observed interaction <
u, i >∈ R, we randomly draw a negative sample < u, j >/∈ R in each epoch during training. Note
that some literature (Yuan et al., 2016) shows that using more advanced hard negative sampling could
improve the results of recommender models, which we left for future investigation. All observed
interactions and sampled negative interactions can form the training set Rtrain. Following (He et al.,
2017; Kang & McAuley, 2018), we adopt the binary cross entropy loss as the objective function for
both DSSM and SASRec:

min−
∑

<u,i,j>∈Rsample

{log(σ(ŷui)) + log(1− σ(ŷuj))} , (1)

where σ(x) = 1/(1 + e−x) is the sigmoid function.

B CONVERGENCE OF IDREC AND MOREC ON SASREC

We show the convergence of SASRec-based IDRec and MoRec in Figure 4. Note that we report the
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Figure 4: Comparison of convergence of IDRec and MoRec based on the SASRec framework on
the validation data of the three datasets. We only report the convergence of SASRec since it far
outperforms DSSM. Note that increasing epochs does not further improve IDRec’s accuracy.

results on the testing set in Table 2 by using the best validation checkpoints here. It can be seen that
there is some performance gap between the validation set and testing set. In fact, we notice in much
recommendation literature, authors only use training and testing set without a validation set when
choosing hyperparameters — such results might be questionable.

C IMAGE EXAMPLES AND DATASET COLLECTION

As shown in Figure 5, we randomly pick up some image examples from the ImageNet1K dataset
used for ME pre-training and the two vision datasets HM and Bili used in our experiments.

For ImageNet1K dataset in Figure 5(a), there is a wide variety of images from people’s daily life
and natural environments. Vision encoders such as ResNet and Swin Transformers are pre-trained
on this dataset to obtain representations of arbitrary images (He et al., 2016; Liu et al., 2021).
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(a) ImageNet1K dataset.

(b) HM dataset.

(c) Bili dataset.

Figure 5: Image examples on HM and Bili. We have also shown some examples from ImageNet,
which are used to train these vision ME.

Text Description:
Lined Borg-collar Denim Jacket

Price: $ 84.99

Label: Conscious choice

Image:

(a) Item cases on HM. Each item has a picture,
a piece of text description, and price, and some
items have a “conscious choice” label for sustain-
able material.

Text Description:
[4K]乌苏古道|即将“消失”的史诗级
徒步线……

Views: 73K

Image:

Comments: 481

Producer: (Anonymous for privacy)

Duration: 6m15s

Publication time: 8-19

(b) Item cases on Bili. Every item has a thumbnail,
a piece of text description, video views, video com-
ments, producer(anonymous for privacy), publication
time and video duration etc.

Figure 6: Item cases on HM and Bili datasets. We only use the raw image feature information to
evaluate the performance of MoRec.
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The HM dataset in Figure 5(b) contains clothing images from H&M, a clothing shopping platform.
The images in HM dataset differ in the type, style and color of clothes. During the pre-training
process in ImageNet1K, the vision encoder often only needs to identify a few broad categories of
clothes and does not need to distinguish the details. However, clothing detail has a critical evaluation
criterion for users to purchase. That might be the reason why E2E training is largely better than the
two-stage freezing representations.

The Bili dataset in Figure 5(c) consists of thumbnails of videos in Bili, an online video recommen-
dation platform. To build this dataset, we randomly crawled videos (with duration time less than
10 minutes) from 23 different video channels in Bili and recorded their public comment infor-
mation of these items as interactions. These interactions occur from 2017 to 2022. We did not
crawl or use information that would involve the privacy of interacted users, whose IDs have
already been anonymous (We would be very happy to provide our datasets and codes during
the paper discussion period since according to the submission guidance this makes these ma-
terials only available to reviewers and AC). In total, we have collected over 2 million users and
150 thousand items with around 50 million interactions. However, performing research on such a
large-scale dataset will require huge compute and time, thereby we simply randomly draw 400K
users with their commented items as the evaluation dataset, as shown in Table 1. For this research,
we only use the thumbnails to represent the item since directly encoding the original videos is super
computationally expensive. As shown in Figure 5(c), the images in Bili datasets contain various
domain-specific knowledge (e.g., human-created video covers with complex semantics and heavy
text insertion), which may confuse the recognition of visual encoders.

We also show the actual item cases of H&M and Bili platforms in Figure 6(a) and Figure 6(b),
respectively. It can be found that the actual recommendation scene contains rich information. The
image and other factors (e.g., price, text description, etc.) together play a role in attracting the user’s
interactions. Clearly, it is impossible for MoRec to extract such features (e.g., price and audio) from
only a picture — the only input of an item encoder. Note that IDRec can indeed implicitly learn
such features in latent factors by item similarity supervision (Koren et al., 2009). For example, it is
recognized by the RS community that ID-based location recommender models (Hang et al., 2018)
can learn some good distance information even if we do not feed them distance features.

D MOREC VS IDREC ON COLD-SC & NEW-SC

We report the results of IDRec and MoRec on COLD-SC and NEW-SC in Table 7. Note that IDRec
cannot serve new items and thereby are approximated by the simple random sampling strategy.

Table 7: HR@10 (%) of IDRec and MoRec for
cold and new item recommendation. All results
are evaluated based on the SASRec architecture.

Dataset Cold item New item

IDRec BERTbase IDRec BERTbase

MIND 0.0036 3.0637 0.0125 0.5899

IDRec Swin-B IDRec Swin-B

HM 0.3744 1.0965 0.0115 0.6846
Bili 0.3551 0.6400 0.0078 0.0832

Table 8: Pre-trained (PE) ME vs TFS (ran-
dom initialization of ME) regarding HR@10
(%) in the 50K datasets.

Dataset Encoder TFS PE Improv.

MIND-50K BERTbase 15.04 14.35 -4.59%

HM-50K ResNet50 2.74 3.26 +18.98%
Swin-T 2.84 4.47 +57.39%

Bili-50K ResNet50 1.07 1.20 +12.05%
Swin-T 1.08 1.46 +35.19%

E MORE RESULTS OF MOREC WITH PRE-TRAINED ME AND ITS
TRAINING-FROM-SCRATCH VERSION

We show a more detailed comparison of MoRec with pre-trained ME and its training-from-scratch
(TFS) version. We report the convergence behaviors of Pre-trained ME vs TFS on the validation set
in Figure 7. It can be found that MoRec with the pre-trained ME have a faster convergence rate and
a more stable training process. The performance of TFS is relatively poor and may fluctuate wildly
during the convergence process.
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Figure 7: Convergence behaviors of pre-trained ME vs TFS on the validation set. B, R, S denotes
BERT, ResNet and Swin Transformer, respectively.
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Figure 8: Convergence behaviors of pre-trained ME vs TFS on the validation set with a smaller
dataset by randomly drawing 50K users. Larger relative improvements can be observed by compar-
ing with the above figure.

We also construct the smaller version datasets by randomly drawing 50K users from MIND, HM,
and Bili. We report the recommendation results on the testing set in Table 8 and the convergence
behaviors on the validation set in Figure 8. It can be seen that the advantages of pre-trained ME
over TFS are more obvious on small datasets. MoRec achieve around 57% and 35% improvements
with the pre-trained Swin-T on HM-50K and Bili-50K, respectively. However, we found that the
pre-trained BERTbase is even worse than its TFS version on MIND-50K.

F SUPPLEMENTARY EXPERIMENTS

F.1 MIND DATASET WITH OTHER EVALUATION STRATEGY

The evaluation method we used for MIND differs from the data splitting strategy used in (An et al.,
2019; Wu et al., 2021a; Yu et al., 2021). The MIND dataset contains both positive feedback and
true negative feedback where items are exposed to the user but there is no observed user interaction.
The above works used the exposed but no interacted items as true negative examples rather than the
randomly sampled items. However, most recommender system datasets such as HM and Bili contain
no item exposure information. For consistency, we treat all these recommender tasks as one-class
collaborative filtering (Rendle et al., 2012; Pan et al., 2008)— 99% cases in literature.

Meanwhile, we also conducted experiments in CANO-SC following the same experiment setting
of (An et al., 2019; Wu et al., 2021a; Yu et al., 2021), and report the result in Table 9. The result
shows that MoRec significantly outperform IDRec in text recommendation as well.

F.2 INCREASING USER SEQUENCE LENGTH

We conduct additional experiments with sequence length of maximum 23 items in CANO-SC on
the HM and Bili datasets, and report the convergence in Figure 10. We find that the results in such
settings are consistent as reported before: IDRec and MoRec still show comparable recommendation
accuracy.
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Figure 9: Comparison of
convergence of IDRec and
MoRec on the MIND dataset
under the same experiment
setting as (An et al., 2019; Wu
et al., 2021a; Yu et al., 2021).
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Figure 10: Comparison of convergence of IDRec and MoRec based
on the SASRec framework on the validation data of HM and Bili
datasets with sequence length of maximum 23 items.

G HYPER PARAMETERS AND TRAINING COST

For all methods, we employ an AdamW (Loshchilov & Hutter, 2017) as the default optimizer and
find that the dropout rate set to 0.1 (i.e., removing 10% parameters) offers the optimal results on
the validation set. Regarding other hyper-parameters, we follow the common practice and perform
extensive searching. For IDRec, we tune the learning rate γ from {1e-3, 5e-4, 1e-4, 5e-5}, the em-
bedding size d from {64, 128, 256, 512, 1024, 2048, 4096}, and set batch size b to 1024 for DSSM
and 128 for SASRec. For MoRec, we set d to 512 for both DSSM and SASRec, b to 512 and 64 for
DSSM and SASRec respectively due to GPU memory constraints. Given that ME (e.g., BERT and
ResNet) has already well pre-trained parameters, we use relatively smaller γ than other parts in the
recommender model. That is, we search γ from {1e-4, 5e-5, 1e-5} for the pre-trained ME networks,
and set γ to 1e-4 for other parts with randomly initialized parameters. Finally, we tune the weight
decay β from {0.1, 0.01, 0} for both IDRec and MoRec. The effectiveness of such factors will be
analyzed later in Appendix H.

For the MLPs (multilayer perceptron) used in DSSM, we initially set their middle layer size to d
as well and search the layer number l from {0, 1, 3, 5} but find that l = 0 (i.e., no hidden layers)
always produces the best results. For the Transformer block used in SASRec, we set l to 2 and the
head number of the multi-head attention to 2 for the optimal results. All other hyper-parameters are
kept the same for IDRec and MoRec unless specified otherwise. We report details of the pre-trained
ME used in the experiments in Table 9 and all hyper-parameter details in the Table 12.

Table 9: Network architecture, parameter size, and download URL of the pre-trained ME we used.
L: number of Transformer blocks, H: number of multi-head attention, C: channel number of the
hidden layers in the first stage, B: number of layers in each block.

Modality Pre-trained model Architecture #Param. URL

Text

BERTtiny L=2, H=128 4M https://huggingface.co/prajjwal1/bert-tiny
BERTsmall L=4, H=512 29M https://huggingface.co/prajjwal1/bert-small

BERTmedium L=8, H=512 41M https://huggingface.co/prajjwal1/bert-medium
BERTbase L=12, H=768 109M https://huggingface.co/bert-base-uncased

RoBERTabase L=12, H=768 125M https://huggingface.co/roberta-base
OPT125M L=12, H=768 125M https://huggingface.co/facebook/opt-125M

Image

ResNet18 C = 64, B={2, 2, 2, 2} 12M https://download.pytorch.org/models/resnet18-5c106cde.pth

ResNet34 C = 64, B={3, 4, 6, 3} 22M https://download.pytorch.org/models/resnet34-333f7ec4.pth

ResNet50 C = 64, B={3, 4, 6, 3} 26M https://download.pytorch.org/models/resnet50-19c8e357.pth

Swin-T C = 96, B={2, 2, 6, 2} 28M https://huggingface.co/microsoft/swin-tiny-patch4-window7-224

Swin-B C = 128, B={2, 2, 18, 2} 88M https://huggingface.co/microsoft/swin-base-patch4-window7-224
MAEbase L=12, H=768 86M https://huggingface.co/facebook/vit-mae-base
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Table 10: Searching learning rate γM, M and R
denote ME and the remaining modules of SAS-
Rec, respectively.

Dataset Encoder γR=1e-4, searching γM

γM=1e-5 γM=5e-5 γM=1e-4

MIND BERTbase 18.16 18.23 16.35

HM
ResNet50 6.08 6.62 6.67
Swin-T 6.41 6.97 6.92

MAEbase 6.26 7.03 6.96

Bili
ResNet50 2.33 2.84 2.93
Swin-T 2.29 3.18 3.01

MAEbase 2.78 3.05 3.18

Table 11: Searching same and different weight
decay β combinations.

Dataset Encoder
Searching βR and βM

βR = βM = β βR=0.1,

β=0 β=0.1 β=0.01 βM=0

MIND BERTbase 17.31 17.96 18.23 18.19

HM
ResNet50 6.42 6.36 6.67 6.57
Swin-T 6.51 5.88 6.81 6.97

MAEbase 6.30 5.72 6.63 7.03

Bili
ResNet50 2.76 2.58 2.93 2.74
Swin-T 2.73 2.47 2.76 3.18

MAEbase 2.81 2.69 2.95 3.18

Table 12: The best hyper parameters and training cost. γR: learning rate of recommendation net-
work, γM: fine-tune learning rate of modality encoder, βR: weight decay of recommendation net-
work, βM: weight decay of modality encoder, d: embedding size, b: batch size, HR: HR@10 (%),
ND: NDCG@10 (%), #Param: number of tunable parameters, FLOPs: computational complexity
(we measure FLOPs for each model with b = 1), Time/E: averaged training time for one epoch,
“m” means minutes, BE: epoch with the best validation result, MU: GPU memory use, e.g., “V100-
32G(2)” means that we used 2 V100s with 32G memory. BERTbase(2/12) means we only fine-tune
the top 2 blocks out of the 12 blocks, similar to ResNet and Swin Transformer. Note that FLOPs can
vary significantly depending on the implementation. For example, we can cache the representations
in certain layers of the ME for all items during pre-processing, and avoid the forward&backward
propagation on the bottom layers when fine-tuning only the top layers of ME.

Dataset Method γR γM βR βM d b HR ND #Param. FLOPs Time/E BE MU GPU

MIND

IDRec 1e-4 – 0.1 – 512 128 17.71 9.52 47M 0.12G 7m 120 3G V100-32G(1)
BERTtiny 1e-4 5e-5 0.1 0 512 64 17.64 9.42 11M 0.63G 10m 105 4G V100-32G(1)
BERTsmall 1e-4 1e-4 0.1 0 512 64 18.50 9.94 35M 16G 42m 84 13G V100-32G(1)

BERTmedium 1e-4 5e-5 0.1 0 512 64 18.39 9.88 48M 32G 83m 66 23G V100-32G(1)
BERTbase(0/12) 1e-4 – 0.01 – 512 64 13.93 7.55 7M 0.14G 3m 40 4G V100-32G(1)

BERTbase(0/12)-MLM 1e-4 – 0.1 – 512 64 14.68 8.00 7M 0.14G 3m 44 4G V100-32G(1)
BERTbase(2/12) 1e-4 1e-4 0.1 0 512 64 17.87 9.66 21M 107G 96m 84 27G V100-32G(1)
BERTbase(6/12) 1e-4 1e-4 0.1 0 512 64 18.51 10.02 49M 107G 138m 89 28G V100-32G(1)

BERTbase 1e-4 5e-5 0.01 0.01 512 64 18.23 9.73 116M 107G 102m 75 52G V100-32G(2)
BERTbase-MLM 1e-4 5e-5 0.1 0 512 64 18.63 10.05 116M 107G 102m 81 52G V100-32G(2)

RoBERTabase 1e-4 5e-5 0.1 0 512 64 18.68 10.02 131M 107G 103m 98 53G V100-32G(2)
OPT125M 1e-4 1e-4 0.1 0 512 64 17.24 9.20 132M 107G 100m 39 45G V100-32G(2)

HM

IDRec 5e-5 – 0.1 – 2048 128 6.84 4.01 114M 1G 1m 82 5G V100-32G(1)
ResNet18 1e-4 1e-4 0.01 0.01 512 64 6.30 3.36 18M 40G 95m 28 23G V100-32G(1)
ResNet34 1e-4 1e-4 0.01 0.01 512 64 6.40 3.40 29M 81G 136m 29 30G V100-32G(1)

ResNet50(0/4) 1e-4 – 0.1 – 512 64 4.03 2.12 7M 0.09G 1m 80 4G V100-32G(1)
ResNet50(1/4) 1e-4 1e-4 0.01 0.01 512 64 6.46 3.45 22M 91G 110m 29 13G V100-32G(1)
ResNet50(2/4) 1e-4 1e-4 0.01 0.01 512 64 6.59 3.53 29M 91G 150m 37 23G V100-32G(1)

ResNet50 1e-4 1e-4 0.01 0.01 512 64 6.67 3.56 31M 91G 83m 35 80G V100-32G(4)
Swin-T(0/4) 1e-4 – 0.1 – 512 64 3.45 1.78 7M 0.07G 1m 64 4G V100-32G(1)
Swin-T(1/4) 1e-4 1e-4 0.1 0 512 64 6.18 3.36 21M 96G 109m 74 43G V100-32G(2)
Swin-T(2/4) 1e-4 1e-4 0.1 0 512 64 6.80 3.70 33M 96G 104m 35 54G A100-32G(2)

Swin-T 1e-4 5e-5 0.1 0 512 64 6.97 3.80 34M 96G 107m 35 157G A100-40G(4)
Swin-B 1e-4 1e-4 0.1 0 512 64 7.24 3.98 94M 333G 102m 33 308G A100-40G(8)

MAEbase(0/12) 1e-4 – 0.01 – 512 64 2.50 1.26 7M 0.07G 2m 68 4G V100-32G(1)
MAEbase(0/12)-MLM 1e-4 – 0.1 – 512 64 2.79 1.40 7M 0.07G 2m 73 4G V100-32G(1)

MAEbase 1e-4 1e-4 0.1 0 512 64 7.03 3.83 92M 96G 86m 42 46G V100-32G(2)
MAEbase-MLM 1e-4 1e-4 0.1 0 512 64 7.07 3.87 92M 96G 86m 42 46G V100-32G(2)

Bili

IDRec 5e-5 – 0.1 – 1024 128 3.03 1.63 72M 0.25G 4m 191 4G V100-32G(1)
ResNet18 1e-4 1e-4 0.01 0.01 512 64 2.50 1.24 18M 40G 78m 37 23G V100-32G(1)
ResNet34 1e-4 1e-4 0.01 0.01 512 64 2.73 1.37 29M 81G 113m 44 30G V100-32G(1)

ResNet50(0/4) 1e-4 – 0 – 512 64 0.72 0.34 7M 0.09G 4m 51 4G V100-32G(1)
ResNet50(1/4) 1e-4 1e-4 0.01 0.01 512 64 2.83 1.41 22M 91G 89m 34 13G V100-32G(1)
ResNet50(2/4) 1e-4 1e-4 0.01 0.01 512 64 2.89 1.43 29M 91G 116m 40 23G V100-32G(1)

ResNet50 1e-4 1e-4 0.01 0.01 512 64 2.93 1.45 31M 91G 67m 88 80G V100-32G(4)
Swin-T(0/4) 1e-4 – 0.1 – 512 64 0.79 0.37 7M 0.07G 3m 55 4G V100-32G(1)
Swin-T(1/4) 1e-4 1e-4 0.1 0 512 64 2.88 1.45 21M 96G 88m 53 43G V100-32G(2)
Swin-T(2/4) 1e-4 1e-4 0.1 0 512 64 3.00 1.50 33M 96G 81m 47 54G A100-32G(2)

Swin-T 1e-4 5e-5 0.1 0 512 64 3.18 1.59 34M 96G 86m 74 157G A100-40G(4)
Swin-B 1e-4 1e-4 0.1 0 512 64 3.28 1.66 94M 333G 82m 34 308G A100-40G(8)

MAEbase(0/12) 1e-4 – 0.01 – 512 64 0.57 0.27 7M 0.07G 2m 73 4G V100-32G(1)
MAEbase(0/12)-MLM 1e-4 – 0.1 – 512 64 0.56 0.26 7M 0.07G 2m 57 4G V100-32G(1)

MAEbase 1e-4 1e-4 0.1 0 512 64 3.18 1.60 92M 96G 78m 45 46G V100-32G(2)
MAEbase-MLM 1e-4 1e-4 0.1 0 512 64 3.17 1.61 92M 96G 78m 53 46G V100-32G(2)
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H LEARNING RATE AND WEIGHT DECAY SEARCHING

Separate hyperparameters for item and user encoders. MoRec typically consist of two modules:
item encoders or a user encoder. Since item encoders or ME has been already well pre-trained in
advance, it might be reasonable to set separate hyper-parameters for ME and user encoder — e.g..
setting a smaller learning rate for ME. We report such results in Table 10 and Table 11. As shown,
MoRec in general yield better results by using different learning rates and weight decay for ME and
user encoder. In particular, it performs much worse on MIND when applying the same learning rate
for all modules (e.g., 16.35 vs. 18.23). Similar behaviors are found for Swin Transformer on the two
visual datasets. Thereby, we draw the conclusion that searching hyperparameters (e.g., learning
rate & weight decay) separately for ME & user encoder matters for the best MoRec results.

I TS-BASED MOREC BY ADDING MORE MLP LAYERS

Suggested by reviewer jqDE, we apply several multi-layer perceptrons (MLPs) layers after the dense
layer of the fixed representation extracted from the TS-based MoRec. We report the results in
Table 13. As shown, we find that deep neural network can indeed improve the performance of TS;
however, it is still obviously worse than IDRec and E2E-based MoRec.

Table 13: HR@10 (%) of E2E vs TS with additional MLP layers . “TS-DNN 6” denotes that TS-
based MoRec with six additional MLPs layers. ‘Improv.(ID)’ indicates the relative improvement
over IDRec. ‘Improv.(TS)’ indicates the relative improvement over TS-based MoRec without MLPs.

Dataset IDRec Encoder TS TS-DNN Improv. Improv. E2E Improv. Improv.

2 6 8 10 12 (ID) (TS) (ID) (TS)

MIND 17.71 BERTbase 13.93 15.20 16.26 16.66 16.32 16.14 -5.93% +19.60% 18.23 +2.94% +30.87%

HM 6.84 ResNet50 4.03 4.64 5.40 5.39 5.40 5.02 -21.05% +33.66% 6.67 -2.49% +65.10%
Swin-T 3.45 4.46 5.28 5.55 5.40 5.38 -18.86% +68.87% 6.97 +1.90% +102.2%

Bili 3.03 ResNet50 0.72 1.23 1.62 1.47 1.28 1.24 -46.53% +125.0% 2.93 -3.30% +306.9%
Swin-T 0.79 1.40 1.81 2.10 1.95 1.64 -30.69% +165.8% 3.18 +4.95% +302.5%

J CROSS-DOMAIN RECOMMENDATION EVALUATION OF MOREC

Table 14: Characteristics of
the target dataset for cross-
domain recommendations.

Dataset n m |R|train

Adressa 20K 3,149 241K
5K 1,633 60K

Amazon 20K 14,348 129K
5K 7,453 31K

Kuaishou 20K 30,463 144K
5K 10,544 34K

Suggested by reviewer jqDE & tNVZ, to evaluate the transfer learn-
ing ability of MoRec, we train MoRec on the three large-scale
datasets used in this paper as the source domain and then per-
form fine-tuning on three additional smaller datasets, i.e. the tar-
get datasets. To be specific, we use Adressa (Gulla et al., 2017),
a Norwegian news recommendation dataset11 as the target dataset
for textual MoRec pre-trained on MIND; Then, we use the Amazon
clothing&shoes (Ni et al., 2019) dataset as the target dataset for vi-
sual MoRec pre-trained on HM. At last, we use a Kuaishou12 dataset
(collected similarly as Bili) as the target dataset for visual MoRec
pre-trained on Bili. For all these target datasets, we randomly sample
20,000 and 5,000 users for evaluation. Note that there is no over-
lapped users and items between the target and source datasets. The
statistics of the target datasets is shown in Table 14.

We report the convergence behavior of MoRec adapted on the target datasets with (w/) and without
(w/o) pre-training in Figure 11. First, we indeed can see with pre-training MoRec converges faster
on all six datasets, in particular in the beginning epoches; It seems that MoRec with pre-training
has more advantage on a smaller target dataset (e.g. on Adressa 5K and Amazon 5K) than on a
larger target dataset (i.e. on Adressa 20K and Amazon 20K). Second, pre-trained MoRec does not
show obviously better results than its training-from-scratch version except on Adressa, which is a

11We translate this dataset from Norwegian to English by Google Translate.
12https://www.kuaishou.com/?isHome=1
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text recommendation dataset. The results surprise us a bit since we thought MoRec could perform
substantially better with pre-training in advance. We guess there are two possible reasons: (1) our
source dataset is still not large enough compared with the pre-trained data in NLP and CV (BERT
and Swin Transformer are trained with huge compute and data sources). It is interesting to see
whether MoRec could obtain larger improvements if we scale up the source data from 10x to 100x
times larger. (2) The source and target datasets still have some gap (at least for image recommenda-
tion) although they have the same modality. We believe this is a very interesting question for future
research work. We will release all datasets and codes used for this experiment.

0 10 20 30
Training Epoch

20
22
24
26
28
30
32
34
36

HR
@

10
. (

%
)

w/o pre-training
w/ pre-training

(a) Adressa (20K).

0 20 40 60 80
Training Epoch

26
27
28
29
30
31
32
33
34

HR
@

10
. (

%
)

w/o pre-training
w/ pre-training

(b) Amazon (20K).
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(c) Kuaishou (20K).
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(d) Adressa (5K).
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Figure 11: Comparison of convergence behavior of MoRec w/ and w/o pre-training.

K MOREC LITERATURE IN RECENT YEARS

We report the modality-only recommender systems (MoRec) literature in recent years in Table 15
(Note that, in this paper, we study the fair comparison of MoRec (use only modality features) vs
IDRec, rather than ID + modality vs IDRec (which is not our focus)). As shown, so far there is
no even one MoRec paper performing an explicit study between MoRec and its IDRec counterpart.
Note that we do not aim to question these literature since the comparison study might not be a focus
for these literature. Corrspondingly, we belive the comparison study of our paper is novel.

Table 15: The modality-only recommender systems (MoRec) literature in recent years.

Research Feature End2end Fair comparison Reasonwith IDRec?

HASC (Wu et al., 2019b) vision MoRec & IDRec used different network backbone for comparison
NRMS (Wu et al., 2019a) text No comparison with IDRec
LSTUR (An et al., 2019) text No comparison with IDRec
SAERS (Hou et al., 2019) vision MoRec & IDRec used different network backbone for comparison
FIM (Wang et al., 2020) text No comparison with IDRec

Prob-BERT (Penha & Hauff, 2020) text No comparison with IDRec
KIM (Qi et al., 2021) text No comparison with IDRec

SEMI (Lei et al., 2021) text, vision, video MoRec & IDRec used different network backbone for comparison
MM-Rec (Wu et al., 2021b) text, vision No comparison with IDRec
MINDSim (Luo et al., 2022) text No comparison with IDRec
TopicVAE (Guo et al., 2022) text MoRec & IDRec used different network backbone for comparison

ACMLM (Ni et al., 2019) text No comparison with IDRec
PLM4NewsRec (Wu et al., 2021a) text No comparison with IDRec

NewsBERT (Wu et al., 2021c) text No comparison with IDRec
UNBERT (Zhang et al., 2021) text No comparison with IDRec

MTRec (Bi et al., 2022) text No comparison with IDRec
SpeedyFeed (Xiao et al., 2022) text No comparison with IDRec

MINER (Li et al., 2022) text MoRec & IDRec used different network backbone for comparison

Ours text, vision –

21
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