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ABSTRACT

Inspired by the low-energy characteristics of biological computing mechanisms,
Spiking Neural Networks (SNNs), with their spike-driven operations and spatiotem-
poral dynamics, offer a promising solution for constructing energy-efficient lan-
guage models. Although prior research has attempted to integrate SNNs with Large
Language Models (LLMs), these approaches often suffer from limited performance
or low inference efficiency. To tackle these challenges, we propose a Spike-driven
Large Language Model (SDLLM) that enables large-scale modeling by eliminating
matrix multiplications and relying solely on sparse additions. Specifically, we
propose a two-step spike quantization strategy to address the numerous outliers in
LLM activation values, significantly mitigating the accuracy loss caused by binary
spike trains. To further reduce the spike firing rate, we introduce bidirectional
encoding under symmetric quantization, along with a membrane potential clipping
mechanism, which together reduce energy consumption without compromising
accuracy. Extensive experiments demonstrate that SDLLM performs effectively on
both language modeling and commonsense QA tasks. For example, compared to
previous spike-based LLMs, our SDLLM reduces energy consumption by 7.8×
and improves accuracy in common scene reasoning by 4.2%. SDLLM is the first to
demonstrate that SNNs outperform quantized artificial neural networks (ANNs) in
both performance and energy efficiency, and can serve as a low-energy algorithmic
approach to guide the collaborative design of neuromorphic hardware, exhibiting
superior performance and energy efficiency in LLM scenarios.

1 INTRODUCTION

Large Language Models (LLMs) have emerged as a significant breakthrough in artificial intelligence
research, gaining considerable attention for their exceptional performance (Touvron et al., 2023a;b;
Zhang et al., 2022a) in natural language processing, knowledge reasoning, and generative tasks.
However, the deployment of LLMs faces substantial computational and storage challenges, especially
on resource-constrained devices (Shao et al., 2023). In contrast, the human brain efficiently performs
complex tasks with a power consumption of less than 20 watts, posing a new challenge for the
energy efficiency of AI systems (Balasubramaniana, 2021). Spiking Neural Networks (SNNs),
inspired by the low-energy characteristics of biological computation, offer a promising approach for
energy-efficient language modeling. Leveraging their unique spike-driven mechanism (Yao et al.,
2024b) and spatiotemporal dynamics (Maass, 1997), SNNs present an opportunity to optimize energy
consumption in language tasks. Therefore, there is an urgent need for low-bit and high-performance
Spike-based LLMs.

Initially, SNNs were mainly used for visual tasks, where the optimization demands for spike repre-
sentation, sparsity, and time steps are much lower than those of LLMs. As a result, SNNs perform
well in visual tasks but are difficult to transfer directly to LLMs (Luo et al., 2024; Yao et al., 2025;
Liu et al., 2025). Numerous efforts have been made to integrate SNNs with LLMs. However, simply
combining SNNs with LLMs either results in insufficient performance or low inference efficiency. For
instance, some works (Lv et al., 2023; Zhu et al., 2023; Xing et al., 2024b) combine SNNs with NLP
models such as BERT or GPT (Devlin et al., 2019; Radford et al., 2021). However, their parameter
scale remains limited to millions, making them suitable only for small supervised tasks and prone to
performance degradation as data scale increases. SpikeLLM (Xing et al., 2024a) pushes generative
tasks forward by converting a 7B-parameter Transformer into a spiking version, achieving promising
results. Nevertheless, it relies on 8-bit high activation values to compensate for performance, which
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Figure 1: (a) The architecture of Spike-Driven LLM. (b) Two steps for quantizing spike neurons.
(c) Performance and energy comparison of SDLLM vs. W4A4 SpikeLLM (top) and standard W4A4
quantization (bottom) on LLaMA-2 13B baseline.

undermines the spike-driven nature and hinders the exploitation of spike-based sparsity, as well as
adaptation to neuromorphic hardware.

In this work, we aim to develop a spike-driven language model with large-scale capacity, balanced
performance, and low power consumption, focusing on efficient sparsity utilization in SNNs. To
address the performance gap between ANNs and SNNs, we replace conventional matrix multiplication
with binary spike-based operations during inference, achieving energy-efficient sparse additions.
Our two-step method constructs spike neurons by first quantizing continuous membrane potentials
into integer spike counts, then expanding these counts into binary spike trains for event-driven
computation. Controlling the spike firing rate is crucial, impacting computational load and energy
consumption. Reducing higher spike count probabilities effectively lowers firing rates. Compared
with quantization schemes, symmetric methods result in lower firing rates due to the reduced mapping
region as spike counts increase. To enhance sparsity, we propose a ReLU-based variant that truncates
the membrane potential distribution before quantization and combines it with rotation matrices to
reduce quantization error. Our contributions are summarised as follows:

• We design and implement the first sparse addition-based spike-driven LLM We employ a
two-step spike quantization method that significantly mitigates the accuracy loss caused by
0/1 spike encoding, achieving performance comparable to or even surpassing mainstream soft
quantization approaches in ANN under equivalent bit-width.

• We significantly reduce the spike firing rate by incorporating two techniques: bidirectional
encoding under symmetric quantization and membrane potential clipping. Under equivalent
bit-width, our method achieves lower operations and up to 13× reduction in energy consumption
compared to ANN quantization methods, demonstrating the strong advantages of spike-based
models over their ANN counterparts. At the same time, our method can provide guidance for the
customization and optimization of low-energy neuromorphic hardware at the software-hardware
co-design level.

2 RELATED WORKS

Training of Spiking Neural Networks The development of SNNs has long been hindered by the
challenge of training non-differentiable binary spikes. To address this, researchers have focused on
improving training methods and architectural designs. Recently, two primary methods for training
high-performance SNNs have emerged. One approach is to convert ANNs into spike form through
neuron equivalence (Li et al., 2021; Hao et al., 2023), known as ANN-to-SNN conversion. However,
this method requires long simulation time steps and increases energy consumption. We employ the
direct training method (Wu et al., 2018) and apply surrogate gradient training.
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Spiking Neural Networks for Natural Language Processing As LLMs like GPT-3 scale, their
rising computational and energy demands raise cost and sustainability concerns. To address this, SNNs
are being explored in NLP for energy-efficient modeling. Bi-SNN (Xiao et al., 2022) introduced
a bidirectional SNN for sentiment classification and translation. SpikingBERT (Lv et al., 2023;
Bal & Sengupta, 2024) and SpikeLM (Xing et al., 2024b) combined SNNs with BERT via spike-
based distillation and dual-spike encoding, but remain limited to million-scale parameters and small
supervised tasks. SpikeGPT (Zhu et al., 2023) adopted binary spike activations and simplified
attention to reduce computation, yet suffered from scaling issues. SpikeLLM (Xing et al., 2024a)
scaled SNNs to 7 B-parameter Transformers using a “best-brain” framework, achieving competitive
results, but relied on 8-bit high activations, weakening spike sparsity and neuromorphic compatibility.

Model Compression Various compression techniques have been explored to reduce the scale
of large SNNs, including: (i) Sparsification in SNNs (Han et al., 2015; Wei et al., 2025), which
typically adapts pruning techniques from traditional ANNs to suit both the spatial and temporal
domains of spiking models (Shi et al., 2023; Shen et al., 2024). While effective on simple datasets
and shallow networks, achieving strong performance on complex tasks and deeper architectures
remains challenging. (ii) Knowledge distillation (Hinton et al., 2015) transfers knowledge from
large ANNs or SNNs into smaller SNNs to reduce model size and power consumption. However,
numerous methods (Takuya et al., 2021; Xu et al., 2023a) only distill final output logits, leading
to incomplete knowledge transfer and limited effectiveness in downstream SNN performance. (iii)
Quantization (Jacob et al., 2018; Krishnamoorthi, 2018), especially relevant for hardware deployment,
reduces bit-widths of weights and activations, enabling energy-efficient inference. Recent studies
on SNN quantization (Deng et al., 2021; Qiu et al., 2025) have focused on Quantization-Aware
Training (QAT) techniques for convolutional and transformer models in vision tasks, achieving strong
performance with task-specific training protocols. However, such methods are not directly applicable
to spike-based LLMs. Some recent efforts (Xing et al., 2024a; Shao et al., 2023; Liu et al., 2024b)
have explored adapting post-training quantization (PTQ) to spike-based LLMs. In this work, we
propose a method that directly maps quantized LLM activations to spike trains, maintaining the
spike-driven nature of inference while enabling scalable and efficient deployment for spike-based
LLMs.

3 PRELIMINARY

Quantization Framework We employ uniform quantization for both weights and activations to
enhance hardware compatibility and efficiency. For a full-precision matrix X, the N -bit quantization
process is as follows:

X̂ = Clamp

(⌊
X

α

⌉
+ Z, 0, 2N − 1

)
,where α =

Max(X)− Min(X)

2N − 1
,Z = −

⌊
Min(X)

α

⌉
, (1)

where X̂ is the quantized counterpart, α is the quantization step size, ⌊·⌉ is the rounding function,
and Z represents the zero-point value. Moreover, clip{x, a, b} confines x within range [a, b]. The
quantization process described above can be expressed using the quantization function Q(·).

LIF Spike Neuron The Leaky Integrate-and-Fire (LIF) neuron is a simplified biologically inspired
model that simulates the electrical activity of biological neurons (Roy et al., 2019). It integrates
incoming signals while accounting for the gradual decay (leakage) of membrane potential over
time. When the membrane potential reaches a threshold, a spike is generated and the potential is
reset to a baseline. Due to its balance between computational simplicity, efficiency, and biological
plausibility, the LIF model is widely used in neuroscience and computational models to simulate
neural information processing. The update process is defined as follows:

v(ℓ)[t] = h(ℓ)[t− 1] + f(w(ℓ),x(ℓ−1)[t]), (2)

s(ℓ)[t] = Θ(v(ℓ)[t]− ϑ), (3)

h(ℓ)[t] = v(ℓ)[t] · (1− s(ℓ)[t]) + vreset · s(ℓ)[t]. (4)

Here, the membrane potential v(ℓ)[t] at time step t is updated based on the previous potential
h(ℓ)[t− 1] and the input signal f(w(ℓ),x(ℓ−1)[t]), as shown in Eq. 2. A spike is triggered when the
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potential exceeds the threshold ϑ, with the step function Θ in Eq. 3 indicating the firing decision. If a
spike occurs, the membrane potential is reset to vreset, as shown in Eq. 4.

4 METHOD

4.1 TWO STEPS FOR QUANTIZING SPIKE NEURONS

We aim to construct a sparse computation-based LLM driven by spikes. In the inference phase, we
replace traditional matrix multiplication operations with 0/1 spike operations, thereby achieving
more energy-efficient model computation through sparse addition. However, during the replacement
from traditional ANN to SNN, performance degradation due to quantization becomes a significant
challenge. To effectively reduce spike quantization errors, we propose a two-step quantization method
to optimize the performance of spike neurons. As illustrated in Fig. 1(b), we first quantize the
continuous membrane potential into integer-form spike counts; then, through time-domain expansion,
we further map these integer spikes into 0/1 spike trains, enabling event-driven discrete computation.

Step One: Integer-LIF Spike Neuron The Integer Leaky Integrate-and-Fire (I-LIF) neuron is
designed to reduce quantization errors in SNNs (Luo et al., 2024), improving performance in low-
power scenarios. Unlike traditional SNNs that convert membrane potentials directly into binary
spikes, which often causes representational loss. I-LIF uses integer-valued activations to enhance
stability and training efficiency. For its dynamic process, we rewrite Eq. 3 as:

s(ℓ)[t] = Clip(Round(v(ℓ)[t]), 0, D). (5)

At each time step t, the spike signal s(ℓ)[t] is generated by rounding and clipping the membrane
potential v(ℓ)[t], ensuring that the spike value lies within the range [0, D]. We use the resulting
integer spike as the spike count for the second step, where it is expanded into a 0/1 spike train.

Step Two: From Integer Spike to 0/1 Spike Spike counts in integer form are converted to
traditional 0/1 spike values by extending the virtual time step from T to T ×D (Luo et al., 2024).
Specifically, the input s(ℓ)[t] is extended into a spike train {s(ℓ)[t, d]}Dd , effectively converting integer
values into traditional spike values, performing computations without matrix multiplication. The
corresponding equations are given as follows:

v(ℓ+1)[t] = h(ℓ+1)[t− 1] +

D∑
d

(
w(ℓ+1)s(ℓ)[t, d]

)
. (6)

Since w(ℓ+1)
∑D

d s(ℓ)[t, d] =
∑D

d

(
w(ℓ+1)s(ℓ)[t, d]

)
, where w(ℓ+1) is the corresponding weight

matrix, the spike s(ℓ)[t, d] can thus replace matrix multiplication with sparse addition, (Appendix C).

We design a Sparse Addition-based Linear Layer based on spike neurons, and construct a spike-
driven LLM without matrix multiplication, relying solely on sparse addition operations, based on the
LLaMA architecture (Fig.1(a)). It is worth noting that the majority of computation in large models
is concentrated in matrix multiplication operators, while other operators, including bias, typically
contribute several orders of magnitude less computational cost. Furthermore, RMSNorm has been
empirically shown to be efficiently implementable on neuromorphic hardware using sparse addition
operations (Abreu et al., 2025), and other nonlinear operators, such as GELU, Softmax, and the
natural exponential function, can be approximated using Taylor series expansion (Arora et al., 2024).

4.2 ANALYSIS AND CHALLENGES OF SPIKE FIRING

The event-driven mechanism makes the firing rate a key factor in determining computational energy
consumption. During the spike-based quantization process, the network exhibits inherent sparsity
by quantizing floating-point values into spike counts, which are further expanded into 0/1 spike
trains with specific firing rates. Based on this, we further investigate the regularity of sparsity in the
quantized spike representation.

4
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Figure 2: Different methods of spike quantization methods. Clipped method has adjustable 0-1
boundary, the other thresholds are uniformly split among 0 and saturation value D.

Statistic spike firing count We first investigate the spiking sparsity resulting from different integer
values obtained in the first step of our quantization method, as defined in Eq. 5. Since these integer
values correspond to the number of spike fired of binary spike trains within the time window during
inference, we denote this as k:

k(ℓ) =
T∑
t

D∑
d

s(ℓ)[t, d]. (7)

k(ℓ) denotes the total number of spike fired by the ℓ-th layer neuron over the time window. s(ℓ)[t, d]
is the spike state at time step t and virtual step d (1 if a spike is fired, 0 otherwise). The total count
k(ℓ) is obtained by summing s(ℓ)[t, d] over all t and d.

Calculate Spike Firing Rate As shown in the left panel of Fig. 2, for integer spike counts
0, 1, . . . , T (defined in Eq. 7), the probability of each integer corresponds to the area of a specific
interval under the membrane potential probability density function. The density function is divided
into T intervals, with each corresponding to one integer value. The area under each interval represents
the probability of that value, denoted as P . The firing rate is expressed as follows:

R(ℓ) =
∑
k

k(ℓ)

T
· P (ℓ)

k . (8)

In this formula, R(ℓ) denotes the firing rate of the ℓ-th layer neuron, where k(ℓ) is the integer spike
count, T is the time window length, and P

(ℓ)
k is the probability of quantizing to integer k. The firing

rate is obtained by a weighted sum over all integer spike counts and their corresponding probabilities.

Since time steps are skipped when no spikes are fired, real T is defined as T := TD ×R, where TD

represents the extended time steps and R is the firing rate. We visualize the spike firing counts across
different layers of LLaMA2-7B in Fig. 3, where the first-step quantization adopts W4A4 (T = 1)
and the second-step quantization adopts W4A1 (T = 7.5). Taking the QKV layer as an example, the
input spike count reaches 7.52 with a firing rate of 0.5, indicating a clear spike redundancy.

4.3 MORE SPARSITY ACHIEVED UNDER SYMMETRIC SPIKE QUANTIZATION

To reduce the spike firing rate, we begin by analyzing the inherent sparsity patterns in the spike
quantization process and the relationship between membrane potential and spike firing probability.

Theorem 1 (The Relationship Between R(ℓ) and Pk). To reduce the spike firing rate R(ℓ), smaller
integer spike counts k should correspond to larger probabilities Pk.

Proof. From equation (8), the spike firing rate R(ℓ) is given by: R(ℓ) =
∑

k
k(ℓ)

T · P (ℓ)
k . Let k1 <

k2 < · · · < kn denote the integer spike counts, with corresponding quantization probabilities
Pk1

> Pk2
> · · · > Pkn

. When k decreases, Pk increases. Since k1 is the smallest spike count, its
corresponding probability Pk1

is the largest, and its contribution to the overall firing rate is dominant.
To minimize the firing rate R(ℓ), smaller k should be paired with larger Pk. This allocation minimizes
R(ℓ), producing a sparser binary spike train within a unit time window.

5
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(a) QKV (ASymmetric) (b) QKV (Symmetric) (c) OProj (ASymmetric) (d) OProj (Symmetric)

Figure 3: Significant reduction in spike count after symmetric quantization and bidirectional encoding.
More results can be found in Appendix B.
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Figure 4: Spike count is further reduced by membrane potential clipping via quantile-based ReLU.

As illustrated in the left panel of Fig. 2, the previously adopted asymmetric quantization tends to
concentrate the spike probability around middle integer values, with lower probabilities at both ends.
To address this, we introduce a new encoding scheme using ternary spikes −1/0/1 to enable bidirec-
tional encoding, allowing the membrane potential to be discretized through symmetric quantization
(see Appendix A for details and formulas on two-step spike quantization and spike firing count under
bidirectional encoding). In this approach, the membrane potential is mapped to a symmetric integer
range k ∈

(
−D

2 − 1, D
2

)
, where positive and negative k represent spike counts in the positive and

negative directions, respectively. The extended time step is halved to D
2 .

As shown in the middle panel of Fig. 2, in the symmetric spike quantization mode, the mapping range
of the membrane potential narrows as the number of spikes within the unit time window increases,
causing the mapping probability to decrease, resulting in a significantly lower overall firing rate
compared to the asymmetric mode. In Fig. 3, we present the results on the QKV layer of LLaMA,
where the average spike count is reduced from 7.52 to 1.78 and the firing rate decreases from 0.5 to
0.22 under symmetric quantization.

4.4 MORE SPARSITY ACHIEVED VIA MEMBRANE POTENTIAL CLIPPING

In addition to symmetric spike quantization, we further explore enhancing sparsity by modifying the
initialization of the membrane potential distribution through clipping. As shown in Fig. 2 (right),
the majority of the membrane potential distribution is mapped to the spike count of 0, while only
a small clipped portion of the distribution is progressively mapped to spike counts from 1 to the
maximum value. This design significantly increases the proportion of the probability mapping area
corresponding to zero spikes, thereby further reducing the overall spike firing rate (see Fig. 4).

Quantile-Shifted ReLU The ReLU (Rectified Linear Unit) activation function has been validated
for its sparsity in traditional models. Inspired by this, we propose a variant more suitable for the
problem in this paper— the quantile-shifted rectified unit activation function, which is applied to the
train-level sparsity problem to address the challenges in membrane potential correction. We define
the Quantile-Shifted Rectified Linear Unit Activation Function as:

v(ℓ)
sp (t) = ReLU

(
v(ℓ)(t)− Quantile(v(ℓ)(t), q)

)
. (9)

v(ℓ)(t) represents the membrane potential of the ℓ-th layer neuron at time step t, q is the quantile ratio,
and Quantile(v(ℓ)(t), q) calculates the membrane potential corresponding to the q-th quantile. The
final processed value, v(ℓ)

sp (t), is obtained by applying the ReLU function and shifting the quantile

6
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threshold. The ReLU function, based on the q-th quantile threshold, retains only the values above
this threshold, which are used for sparsification. Then, We rewrite Eq.5 as:

s(ℓ)[t] = Clip(Round(v(ℓ)
sp (t)), 0, D). (10)

Joint Sparsity and Rotation Matrices Rotation matrices help reduce quantization information loss
by uniformizing data distributions. We incorporate them into our spike-based quantization framework
and explore their combination with sparsification. By learning sparsity from computational invariance,
we utilize XW = XQQTW , where Q is an orthogonal rotation matrix (Ashkboos et al., 2024), and
construct ReLU(XQ)QTW to enhance quantization performance and spike sparsity. Eq.9 becomes:

v(ℓ)
sp (t) = ReLU

(
v(ℓ)(t)Q− Quantile(v(ℓ)(t)Q, q)

)
. (11)

For the next layer, we have: v(ℓ+1)[t] = h(ℓ+1)[t−1]+f(w(ℓ+1)Q, s(ℓ)[t]). In Eq. 11, the membrane
potential is transformed by rotation matrix Q and adjusted by the quantile ReLU to generate sparse
potentials. These are quantized into spike signals, which are then multiplied by rotated weights
w(ℓ+1)Q, enabling sparse addition-based updates to the next-layer membrane potential.

5 EXPERIMENTS

Models and Evaluations We apply our spike-driven approach to the LLaMA family of pre-trained
LLMs (and the newer LLM Qwen2.5 (Team, 2024)) and systematically evaluate the performance
on commonsense question answering (PIQA (Bisk et al., 2020), ARC-easy (Clark et al., 2018),
ARC-challenge (Clark et al., 2018), HellaSwag (Clark et al., 2018), and WinoGrande (Sakaguchi
et al., 2021)) and more complex language generation, including reading comprehension (BoolQ
(Clark et al., 2019), SQuAD (Rajpurkar et al., 2016)), world knowledge (TriviaQA (Touvron et al.,
2023a)), and math (GSM8K (Cobbe et al., 2021)).

Implementation Details (i) Our evaluation focuses on 4-bit quantization, with a value range of
0 ∼ 24+Z0, representing 16 integer values, where Z0 is the zero-point used to offset the quantization.
To clearly compare SNNs and ANNs, we provide the corresponding quantization ranges in the results.
For example, in A1.5TD8, A1.5 represents symmetric encoding, and multiplying by TD8 is used
to supplement the quantization values, i.e., A1.5TD8 = {−8,−7, . . . ,−1} ∪ {0, 1, . . . , 7}, with
2× 8 values in total. (ii) We performed offline quantization on all inputs, weights, and KV caches
using online quantization, without the need for training any quantization parameters. We adapted the
rotation matrix method from the QuaRot paper (Ashkboos et al., 2024) and further optimized it. (iii)
The sparse rotation training configuration and additional details are provided in Appendix D.

Operations and Energy Consumption (i) As in the SpikeLLM paper, we adopt the ACE metric
(Xing et al., 2024a; Zhang et al., 2022b) to measure the total number of binary operations in the model,
ACE = MACs × bitweight × bitact.. (ii) As in the previous paper, due to the different computational
overhead of quantized values compared to floating-point values (Wang et al., 2020), we use 1/32
FLOPs to represent 2-bit operations (Xu et al., 2023b; Liu et al., 2020). Similarly, for 4-bit × 4-bit,
it’s equivalent to 4× (2-bit × 2-bit). (iii) Regarding power consumption, due to the different energy
costs between a single multiplication and a single addition, we follow previous standards (Yao et al.,
2025; 2024a) to estimate power. (iiii) For ease of comparison between ANN and SNN, we set T for
ANN to 1, and and calculate the above metrics ×T . (See Appendix F for details.)

5.1 MAIN RESULTS

Comparisons with SpikeLLM As shown in Tab. 1, we compare SDLLM (W4A1.5, T = 1.73)
with SpikeLLM (W4A4, T = 1.2), where both models are improved based on QuaRot rotation-based
quantization and use RTN for weight quantization. Since A1.5 × T8 < A4 × T1.2, SpikeLLM
actually uses a higher number of activation bits than ours. Experimental results demonstrate that
SDLLM achieves performance improvements of 5.69% and 4.23% over SpikeLLM on the LLaMA-2-
7B and LLaMA-2-13B models, respectively. Moreover, compared to SpikeLLM, SDLLM reduces
ACEs by 1.39×, FLOPs by 1.39× and energy consumption by 7.58×.
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Table 1: Zero-shot QA (↑) results between SDLLM and SpikeLLM under SpikeLLM settings.

Method Spike W A PIQA ARC-e ARC-c BoolQ HellaS WinoG Avg. ACEs Flops Power
Bit Bit T=TD×R Range(+Z0)

(T) (J)
LLaMA-2-7B ✗ - - - - 78.84 74.54 46.33 77.74 75.97 69.22 70.44 1× 6.91 33.84
QuaRot ✗ 4 4 - 0∼24 71.82 59.89 36.18 67.37 63.88 59.12 59.71 0.063× 0.86 4.23
SpikeLLM ✓ 4 4 1.2 0∼24 72.47 62.29 36.01 69.48 64.74 59.43 60.74 0.075× 1.04 5.08
SDLLM ✓ 4 1.5 1.73=8×0.216 0∼24 75.84 69.65 41.21 74.01 71.75 66.14 66.43 0.054× 0.75 0.67
LLaMA-2-13B ✗ - - - - 80.63 77.48 49.23 80.73 79.37 71.74 80.69 1× 13.42 65.77
QuaRot ✗ 4 4 - 0∼24 74.86 69.19 41.98 72.54 70.35 64.72 65.61 0.063× 1.68 8.22
SpikeLLM ✓ 4 4 1.2 0∼24 75.79 69.53 41.21 74.31 71.51 65.51 66.31 0.075× 2.01 9.87
SDLLM ✓ 4 1.5 1.67=8×0.209 0∼24 78.51 74.12 46.16 78.26 76.36 69.85 70.54 0.052× 1.40 1.26

Table 2: Zero-shot QA (↑) with Membrane Potential Clipping: Lower Firing Rate Enhances Efficiency.

Method QKV PIQA ARC-E ARC-C BoolQ HellaS WinoG Avg.
q T=TD×R Range(+Z0)

ACEs FLOPs(T) Power(J)
LLaMA-2-7B - - - 1× 1.649 8.081 78.84 74.54 46.33 77.74 75.97 69.22 70.44
QuaRot-W4A4 - - 0∼24 0.063× 0.206 1.010 71.82 59.89 36.18 67.37 63.88 59.12 59.71
SpikeLLM-W4A4 - 1.2 0∼24 0.075× 0.247 1.212 72.47 62.29 36.01 69.48 64.74 59.43 60.74
SDLLM-W4A1.5 - 1.73=8×0.216 0∼24 0.054× 0.184 0.166 75.84 69.65 41.21 74.01 71.75 66.14 66.43
SDLLM-W4A1.5 0.5 0.96=8×0.120 0∼24 0.030× 0.100 0.090 73.94 59.22 34.30 71.71 64.30 63.61 61.18
SDLLM-W4A1.5 0.6 0.80=8×0.100 0∼24 0.025× 0.083 0.075 73.07 61.15 34.13 69.60 63.57 60.85 60.40

Membrane Potential Clipping We evaluate the performance of spike-based models under the
membrane potential clipping scheme, as shown in Tab. 2. Compared to SDLLM with symmetric
quantization, applying a clipping threshold at the 60% quantile (q = 0.6) reduces the spike firing
rate in the QKV layer from 0.22 to 0.10, leading to to a 2.2× reduction in ACEs, FLOPs and energy
consumption. Compared to SpikeLLM, the QKV layer of SDLLM reduces energy consumption by
16× while maintaining comparable accuracy.

Comparison with General Quantization We compare SDLLM with general quantization methods,
such as SmoothQuant (Xiao et al., 2023), OS + (Wei et al., 2023), OmniQuant (Shao et al., 2023),
AffineQuant (Ma et al., 2024), QLLM (Liu et al., 2024a), Atom (Zhao et al., 2023), DuQuant (Lin
et al., 2024). As shown in Tab. 3 and 4, SDLLM outperforms DuQuant in Zero-shot QA tasks,
achieving state-of-the-art (SOTA) performance on LLaMA-2-7B, LLaMA-2-13B, and LLaMA3-8B,
while reducing ACEs by 1.17×, 1.21×, and 1.19×, FLOPs by 1.14×, 1.20×, and 1.19×, and energy
consumption by 6.31×, 6.52×, and 6.51×, respectively. These results demonstrate the advantages
of our proposed SDLLM. It not only establishes new SOTA performance in comparison with ANN
quantization methods but also significantly reduces operations and energy consumption through
sparse addition enabled by spike-driven computation. Additionally, we report SDLLM’s strong
results on Qwen2.5-14B and more complex tasks in the Appendix F.

5.2 ABLATION STUDY

Ablation Results (i) Improved Performance. Increasing the time step T from 1.73 to 1.79 in the
W4A1.5 configuration boosts LLAMA-2-7B accuracy to 68.80%, reducing energy consumption by
3×, balancing performance and efficiency. (ii) A1 vs A1.5. A1.5 significantly reduces spike firing rate
and time step in bidirectional encoding, cutting operations and energy by 4× (accuracy unaffected by
encoding). (iii) W6A6. W6A6 increases model capacity but reduces SDLLM’s energy efficiency.
Compared to ANN quantization, W6A6 consumes 2× less energy, demonstrating high efficiency at
higher bit-widths. (Tab. 5)

Hardware Potential (i) Spike Delay. The real-time steps are very short, typically T < 2, and our
algorithm adapts to various hardware architectures (serial, parallel, and parallel-reuse), maximizing
hardware efficiency (Appendix H) (ii) Ternary no-Matrix Multiplication Feasibility. Previous
work on Loihi 2 demonstrated ternary no-matrix multiplication’s feasibility and energy efficiency
advantages (Zhu et al., 2024). However, ternary weights with no-matrix multiplication cannot
leverage sparse event-driven computation. In contrast, our ternary spikes enable sparser additions,
significantly reducing computation and energy consumption (e.g., with a firing rate of 0.2, only 20%
of neurons are active). (iii) Inspiring Hardware Design. These findings highlight the importance of

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Evaluation of Zero-shot QA (↑) results of LLaMA2-7B and 13B under QLLM settings.

Method Spike W A PIQA ARC-e ARC-c BoolQ HellaS WinoG Avg. ACEs Flops Power
Bit Bit T=TD×R Range(+Z0)

(T) (J)
LLaMA-2-7B ✗ - - - - 76.88 53.54 40.53 71.13 72.96 67.25 63.72 1× 6.91 33.84
SmoothQuant ✗ 4 4 - 0∼24 60.17 35.23 27.13 57.92 37.08 49.57 44.52 0.063× 0.86 4.23
OS+ ✗ 4 4 - 0∼24 63.11 39.10 28.84 - 51.30 45.93 45.66 0.063× 0.86 4.23
OmniQuant ✗ 4 4 - 0∼24 65.61 44.28 30.38 62.66 53.51 51.85 51.38 0.063× 0.86 4.23
AffineQuant ✗ 4 4 - 0∼24 67.36 44.23 31.91 62.75 54.34 55.18 52.64 0.063× 0.86 4.23
QLLM ✗ 4 4 - 0∼24 67.68 45.29 32.09 62.42 58.45 56.59 51.60 0.063× 0.86 4.23
Atom ✗ 4 4 - 0∼24 69.75 47.35 34.22 62.42 63.21 56.51 55.58 0.063× 0.86 4.23
DuQuant ✗ 4 4 - 0∼24 75.24 51.89 36.77 67.86 69.54 62.12 60.57 0.063× 0.86 4.23
SDLLM ✓ 4 1.5 1.73=8×0.216 0∼24 74.54 51.89 38.74 68.81 69.00 63.54 61.09 0.054× 0.75 0.67
LLaMA-2-13B ✗ - - - - 79.05 57.91 44.20 69.02 76.60 69.69 66.08 1× 13.42 65.77
SmoothQuant ✗ 4 4 - 0∼24 62.30 40.28 30.72 60.49 42.24 49.96 47.67 0.063× 1.68 8.22
OS+ ✗ 4 4 - 0∼24 64.47 41.46 32.17 - 59.30 51.38 49.76 0.063× 1.68 8.22
OmniQuant ✗ 4 4 - 0∼24 69.80 47.22 33.79 65.47 59.34 55.49 55.19 0.063× 1.68 8.22
AffineQuant ✗ 4 4 - 0∼24 68.55 47.64 32.34 66.97 59.97 55.07 55.09 0.063× 1.68 8.22
QLLM ✗ 4 4 - 0∼24 70.46 48.48 34.39 - 62.80 55.41 54.31 0.063× 1.68 8.22
Atom ✗ 4 4 - 0∼24 71.16 50.89 37.88 63.91 67.51 58.40 58.29 0.063× 1.68 8.22
DuQuant ✗ 4 4 - 0∼24 77.31 55.60 41.55 66.61 73.68 66.06 63.47 0.063× 1.68 8.22
SDLLM ✓ 4 1.5 1.67=8×0.209 0∼24 77.26 57.41 41.55 66.67 73.33 66.69 63.82 0.052× 1.40 1.26

Table 4: Evaluation of Zero-shot QA (↑) results of LLaMA3-8B under DuQuant settings.

Method Spike W A PIQA ARC-e ARC-c BoolQ HellaS WinoG Avg. ACEs Flops Power
Bit Bit T=TD×R Range(+Z0)

(T) (J)
LLaMA3-8B ✗ - - - - 80.85 77.78 53.41 81.28 79.16 72.84 74.22 1× 7.97 39.06
SmoothQuant ✗ 4 4 - 0∼24 54.57 31.9 24.23 52.72 31.26 51.14 40.97 0.063× 1.00 4.88
OmniQuant ✗ 4 4 - 0∼24 50.22 26.94 24.57 37.98 26.55 50.20 36.08 0.063× 1.00 4.88
AffineQuant ✗ 4 4 - 0∼24 50.71 25.93 26.02 40.55 26.07 48.46 36.29 0.063× 1.00 4.88
Atom ✗ 4 4 - 0∼24 62.95 49.45 30.12 60.31 53.75 56.04 52.10 0.063× 1.00 4.88
DuQuant ✗ 4 4 - 0∼24 75.68 68.48 41.81 71.99 73.07 66.22 66.21 0.063× 1.00 4.88
SDLLM ✓ 4 1.5 1.68=8×0.210 0∼24 75.90 67.05 44.37 72.45 73.26 67.01 66.67 0.053× 0.84 0.75

Table 5: Ablation study of SDLLM for LLaMA2-7B (13B in the Appendix Tab. S3).

Method Spike W A PIQA ARC-e ARC-c BoolQ HellaS WinoG Avg. ACEs Flops Power
Bit Bit T=TD×R Range(+Z0)

(T) (J)
LLaMA-2-7B ✗ - - - - 78.84 74.54 46.33 77.74 75.97 69.22 70.44 1× 6.91 33.84
SDLLM ✓ 4 1.5 1.73=8×0.216 0 ∼ 24 75.84 69.65 41.21 74.01 71.75 66.14 66.43 0.054× 0.75 0.67

SDLLM ✓ 4 1.5 1.79=8.3×0.216
0 ∼ 24 92%
0 ∼ 25 8%

77.31 70.29 41.13 72.42 73.05 67.64 66.97 0.056× 0.77 0.70

SDLLM ✓ 4 1.5 3.54=16×0.221 0 ∼ 25 78.02 72.05 44.28 75.87 74.49 68.11 68.80 0.111× 1.53 1.37
SDLLMstep1 ✓ 4 4 1 0 ∼ 24 75.84 69.65 41.21 74.01 71.75 66.14 66.43 0.063× 0.86 4.23
SDLLM ✓ 4 1.5 1.73=8×0.216 0 ∼ 24 75.84 69.65 41.21 74.01 71.75 66.14 66.43 0.054× 0.75 0.67
SDLLM ✓ 4 1 7.5=15×0.500 0 ∼ 24 75.84 69.65 41.21 74.01 71.75 66.14 66.43 0.117× 3.24 2.92
SDLLMstep1 ✓ 6 6 1 0 ∼ 26 78.89 74.58 45.56 76.57 75.80 68.98 70.06 0.141× 1.94 9.52
SDLLM ✓ 6 1.5 7.1=32×0.222 0 ∼ 26 78.89 74.58 45.56 76.57 75.80 68.98 70.06 0.333× 4.60 4.14
SDLLM ✓ 6 1 31.5=63×0.500 0 ∼ 26 78.89 74.58 45.56 76.57 75.80 68.98 70.06 0.738× 20.41 18.37

algorithm-driven hardware design, offering insights for neuromorphic chip development and future
hardware optimization.

6 CONCLUSION

In this work, we present the first spike-driven LLM that eliminates matrix multiplication entirely
by leveraging sparse addition, built upon the LLaMA architecture. Unlike prior studies that only
compared SNNs with full-precision ANNs, we are the first to systematically benchmark SNNs against
mainstream ANN quantization methods. Our results demonstrate that, under equivalent bit-width
settings, SDLLM achieves competitive accuracy while reducing energy consumption by up to 13×.
This work provides the first compelling evidence that SNNs are not only feasible for large-scale
models, but also possess the potential to rival quantized ANNs in both accuracy and energy efficiency,
laying a critical foundation for the next generation of neuromorphic general intelligence.
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LIMITATIONS

Although our proposed Spike-driven Large Language Model (SDLLM) has made significant progress
in both performance and energy efficiency, there are still some limitations to be addressed. Our model
is based on sparse addition, and its inherent event-driven computation model requires hardware-level
support, particularly for event-driven computation and sparse ternary spike representations. This
support is crucial for fully realizing the potential of sparse addition and spike-based execution in
large-scale implementations.

While existing research has optimized ternary weights without matrix multiplication on neuromorphic
chips, demonstrating the feasibility of ternary values without matrix multiplication, it has not yet
addressed the further need for optimization in event-driven computation and sparse capabilities. This
work also highlights the importance of algorithm-guided hardware design. Our SDLLM algorithm
provides significant insights for the next generation of neuromorphic hardware, contributing to the
collaborative development of efficient neural chips that combine algorithmic advances with hardware
optimizations.

APPENDIX

A BIDIRECTIONAL ENCODING UNDER SYMMETRIC QUANTIZATION

A.1 TWO STEPS SPIKE QUANTIZATION

Step One As mentioned in Section 4.3, to address the high firing rate caused by asymmetrically
quantized spikes, we adopt bidirectional spike encoding under symmetric quantization. We rewrite
the dynamic process of the I-LIF neuron as:

v(ℓ)[t] = h(ℓ)[t− 1] + f(w(ℓ),x(ℓ−1)[t]), (S1)

s(ℓ)[t] = Clip(Round(v(ℓ)[t]),−D

2
− 1,

D

2
), (S2)

h(ℓ)[t] = v(ℓ)[t] · (1− s(ℓ)[t]) + vreset · s(ℓ)[t]. (S3)

The membrane potential v(ℓ)[t] is computed by summing the previous hidden state h(ℓ)[t−1] and the
transformed input signal x(ℓ−1)[t] through the weights w(ℓ). The resulting potential is then rounded
and clipped into a valid integer range

[
−D

2 − 1, D
2

]
to produce the spike signal s(ℓ)[t]. Depending

on whether a spike occurs, the hidden state h(ℓ)[t] is either retained or reset to vreset at the spiking
positions. To ensure D

2 is an integer, we define it as
⌊
D
2

⌋
by applying the floor operation.

Step Two To generate bidirectionally encoded spike values of −1/0/1, the integer spike counts are
mapped by extending the virtual time step from T to T ×max

(∣∣−D
2 − 1

∣∣ , ∣∣D2 ∣∣). In this process,

the input spike signal s(ℓ)[t] is expanded into a spike train {s(ℓ)[t, d]}
D
2 +1

d , effectively distributing
the original integer value into a temporally spread train of bidirectional spikes. The corresponding
computation is defined as:

v(ℓ+1)[t] = h(ℓ+1)[t− 1] +

D
2 +1∑
d

(
w(ℓ+1)s(ℓ)[t, d]

)
. (S4)

The membrane potential in the (ℓ+1)-th layer is then updated based on both the previous hidden state
h(ℓ+1)[t−1] and the weighted sum of binary spikes across all virtual steps, using the weight matrix
w(ℓ+1).

A.2 SPIKE FIRING COUNT

Under bidirectional spike encoding, neural outputs take values in {−1, 0,+1}, where both nonzero
components are interpreted as distinct forms of activation. Regardless of direction, all nonzero spikes
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Figure S1: Significant reduction in spike count after symmetric quantization and bidirectional
encoding.
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are considered functionally equivalent activation events. Accordingly, the total spike activity at layer
ℓ is computed as:

k(ℓ) =

T∑
t

D
2 +1∑
d

∣∣∣s(ℓ)[t, d]∣∣∣ . (S5)

Here, k(ℓ) denotes the aggregate number of spikes, irrespective of polarity, offering a unified measure
of temporal activation under the bidirectional scheme.

B VISUALIZATION OF SYMMETRIC VS. ASYMMETRIC SPIKE QUANTIZATION

In Fig. S1, we visualize the pre-activation values and the corresponding spike quantization results for
the activations and KV cache components of LLaMA-2 7B. The spike count per time window reflects
the overall firing rate. It is evident that symmetric quantization with bidirectional encoding (using
-1/0/1 spikes) leads to significantly sparser activity compared to asymmetric quantization (using 0/1
spikes). This highlights the efficiency benefits of symmetric spike quantization and bidirectional
encoding in reducing neural activity.

C REPLACING MATRIX MULTIPLICATION WITH SPARSE ADDITIONS

Fig. S2 illustrates how the matrix multiplication operator can be transformed into a sparse addition
process through spike-based encoding. On the left, a continuous activation vector is first quantized in
two steps and expanded into 0/1 spike trains over multiple time steps. During the weight computation,
additions are performed only at positions where spikes occur. These spike positions are used to
index the corresponding columns of the weight matrix, and the associated weights are summed. This
mechanism bypasses traditional dense matrix multiplication, replacing it with sparse, event-driven
additions. As a result, it significantly improves inference efficiency and reduces computational energy
consumption.

To formalize this computation, we present two theorems showing how dense matrix multiplication
can be replaced with sparse additions based on spike events.

Theorem 2 (Substituting Matrix Multiplication with Sparse Addition from 0/1 Spikes). Given an
input spike train X ∈ {0, 1}n, the dense matrix multiplication Y = WX, where W ∈ Rm×n, is
equivalent to a sparse addition over selected columns of W:

Y =
∑
i∈I

W:,i, where I = {i | Xi = 1}.

Proof. Since each element of the input vector X is binary (Xi ∈ {0, 1}), the multiplication Wj,i ·Xi

simplifies to:

Wj,i ·Xi =

{
Wj,i, if Xi = 1

0, if Xi = 0

Therefore, the matrix-vector product Y = WX can be rewritten as a summation over the columns of
W corresponding to indices i where Xi = 1. This eliminates all multiplications with 0, resulting in
sparse addition:

Y =
∑
i∈I

W:,i.

This shows that when X is a 0/1 spike vector, the dense computation degenerates into a sparse
event-driven process, where only active spikes contribute to the output.

Theorem 3 (Substituting Matrix Multiplication with Sparse Addition from -1/0/1 Spikes). Given an
input vector X ∈ {−1, 0, 1}n, the matrix multiplication Y = WX can be equivalently computed as
a sparse accumulation over selected columns of W, weighted by the sign of spike events:

Y =
∑
i∈I+

W:,i +
∑
i∈I−

(−W:,i), where I+ = {i | Xi = 1}, I− = {i | Xi = −1}.
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Proof. Each nonzero element in X represents an event-triggered spike at index i, and contributes to
the output according to:

W̃:,i =


W:,i, if Xi = 1

−W:,i, if Xi = −1

0, if Xi = 0

Thus, instead of computing WX through dense multiply-accumulate, we perform sparse selection
and signed accumulation over active spike positions:

Y =
∑
i∈I+

W:,i +
∑
i∈I−

(−W:,i).

This sparse formulation eliminates multiplications and directly reflects the event-driven nature of
bidirectional spike encoding, where each spike corresponds to a column-wise inclusion or exclusion
in the final output.

Figure S2: Replacing dense matrix multiplication with sparse addition via spike encoding.

D ROTATIONAL SPARSE TRAINING

D.1 TRAINING SETUP

Following the setup in ReLU Strikes Back citemirzadehrelu, we fine-tune the pre-trained LLaMA
series pre-trained models on the RefinedWeb dataset (Penedo et al., 2023) to evaluate the performance
of SDLLM under the membrane potential clipping method. We train on 8 A800 GPUs with approx-
imately 10 million tokens and use the AdamW optimizer with a fixed learning rate of 1.5× 10−5.
To improve training efficiency and reduce memory consumption, we adopt the ZeRO Stage 2 opti-
mization strategy (Rajbhandari et al., 2020) provided by DeepSpeed for distributed management of
optimizer states and gradients.

D.2 TRAINING STRATEGY

As discussed in the Joint Sparsity and Rotation Matrices subsection of Section 4.4, we adopt a
rotational sparse training strategy to enhance quantization performance and activation sparsity during
training. Specifically, during training, as illustrated in Fig. S3, we apply an orthogonal rotation matrix
Q only to the linear operators whose outputs are involved in sparsification, i.e., those followed by the
Quantile-Shifted ReLU activation function. This transformation improves the uniformity of feature
distributions and facilitates effective sparsity learning. For operators not participating in sparsification,
no rotation is applied during training, thereby avoiding unnecessary computational overhead. During
inference, however, we apply the rotation matrix Q uniformly to all linear operators and use the
rotated weights QTW to ensure compatibility across both sparse and non-sparse computation paths.
This strategy strikes a balance between training efficiency and inference consistency, demonstrating
the practicality and generalizability of rotational sparse training.
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Figure S3: Implementation of rotational sparse training for enhancing spike sparsity.

E DETAILS OF OPERATIONS AND ENERGY CONSUMPTION

E.1 ACES

For a ∈ [0, 2p) and b ∈ [0, 2q), their binary expansions can be written as a =
∑p−1

i=0 ai2
i, b =∑q−1

j=0 bj2
j , ai, bj ∈ {0, 1}. Then the product a · b can be computed bitwise as Xing et al. (2024a):

a · b =
p−1∑
i=0

q−1∑
j=0

2 i+j PopCount(ai&bj).

Here, each PopCount(ai&bj) corresponds to a multiply–accumulate operation (MAC). Therefore,
the total number of operations required to compute a · b is proportional to p × q MACs, which is
exactly the definition of the arithmetic computation effort (ACEs) metric Zhang et al. (2022b).

For a ∈ {0, 1} and b ∈ [0, 2q), the binary expansion of b is b =
∑q−1

j=0 bj2
j , bj ∈ {0, 1}. Then the

product a · b can be expressed as:

a · b =
q−1∑
j=0

2j PopCount(a&bj).

If a ∈ {−1, 0}, the sign bit of a should be separated and does not participate in the bitwise
multiplication; in this case, the product can be written as

a · b = sign(a) ·

(
q−1∑
j=0

2j PopCount(|a|&bj)

)
,

where sign(a) ∈ {−1, 0} and |a| ∈ {0, 1}.

For clarity of comparison between ANN and SNN, we consider the time step of ANN as T = 1, so
the ACEs metric can be rewritten as ACEs× T .

E.2 FLOPS

We refer to the FLOPs calculation method for q-bit operations from the Q-DETR paper. For 2-bit,
3-bit, and 4-bit operations, the FLOPs for 2-bit operations is 1

32 of the 32-bit FLOPs, for 3-bit
operations it’s 1

16 , and for 4-bit operations it’s 1
8 Xu et al. (2023b); Liu et al. (2020), since the current

CPU can parallelize bitwise XNOR and popcount operations.

For 4-bit × 1.5-bit operations, we calculate the FLOPs as 4-bit × 2-bit, which corresponds to 2
× 1 operations of 2-bit × 2-bit FLOPs. Similarly, for 6-bit × 1.5-bit operations, we calculate the
FLOPs as 6-bit × 2-bit, corresponding to 3 × 1 operations of 2-bit × 2-bit FLOPs. For 4-bit ×
4-bit operations, which corresponds to 2 × 2 operations of 2-bit × 2-bit FLOPs. For 6-bit × 6-bit
operations, corresponding to 3 × 3 operations of 2-bit × 2-bit FLOPs. For ANN with a time step T ,
the FLOPs is written as FLOPs × T .
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Table S1: Evaluation of Zero-shot QA (↑) results of LLaMA2-7B and 13B under QLLM settings.

Method Spike W A PIQA ARC-e ARC-c BoolQ HellaS WinoG Avg. ACEs Flops Power
Bit Bit T=TD×R Range(+Z0)

(T) (J)
LLAMA-2-7B ✗ - - - - 76.88 53.54 40.53 71.13 72.96 67.25 63.72 1× 6.91 33.84
SmoothQuant ✗ 6 6 - 0 ∼ 26 75.57 53.62 39.93 69.54 71.76 66.14 62.76 0.141× 1.94 9.52
OS+ ✗ 6 6 - 0 ∼ 26 76.22 52.74 40.70 - 71.89 65.19 61.35 0.141× 1.94 9.52
OmniQuant ✗ 6 6 - 0 ∼ 26 76.55 53.83 40.96 68.75 55.89 65.59 60.26 0.141× 1.94 9.52
QLLM ✗ 6 6 - 0 ∼ 26 77.48 52.99 39.33 - 71.38 65.98 61.43 0.141× 1.94 9.52
DuQuant ✗ 6 6 - 0 ∼ 26 76.99 52.99 40.87 70.40 72.49 67.32 63.51 0.141× 1.94 9.52
SDLLM ✓ 6 1.5 7.1=32×0.222 0 ∼ 26 76.99 53.75 41.04 70.64 72.84 67.25 63.75 0.333× 4.60 4.14
LLAMA2-13B ✗ - - - - 79.05 57.91 44.20 69.02 76.60 69.69 66.08 1× 13.42 65.77
SmoothQuant ✗ 6 6 - 0 ∼ 26 78.29 57.41 43.86 69.50 75.02 66.93 65.17 0.141× 3.77 18.49
OS+ ✗ 6 6 - 0 ∼ 26 78.29 59.13 43.34 - 75.37 67.56 64.74 0.141× 3.77 18.49
OmniQuant ✗ 6 6 - 0 ∼ 26 78.24 57.58 43.86 71.10 75.52 68.35 65.78 0.141× 3.77 18.49
AffineQuant ✗ 6 6 - 0 ∼ 26 78.35 57.58 43.34 66.73 74.71 68.59 64.88 0.141× 3.77 18.49
QLLM ✗ 6 6 - 0 ∼ 26 78.78 58.29 43.77 - 75.10 68.43 64.87 0.141× 3.77 18.49
DuQuant ✗ 6 6 - 0 ∼ 26 78.62 56.94 43.43 68.35 76.19 69.22 65.46 0.141× 3.77 18.49
SDLLM ✓ 6 1.5 6.9=32×0.217 0 ∼ 26 79.05 57.66 44.20 67.83 76.42 69.93 65.85 0.326× 8.74 7.86

Table S2: Evaluation of Zero-shot QA (↑) results of LLaMA3-8B under DuQuant settings.

Method Spike W A PIQA ARC-e ARC-c BoolQ HellaS WinoG Avg. ACEs Flops Power
Bit Bit T=TD×R Range(+Z0)

(T) (J)
LLaMA3-8B ✗ - - - - 80.85 77.78 53.41 81.28 79.16 72.84 74.22 1× 7.97 39.06
SmoothQuant ✗ 6 6 - 0 ∼ 26 78.94 75.88 49.49 77.58 77.39 70.80 71.68 0.141× 2.24 10.98
OmniQuant ✗ 6 6 - 0 ∼ 26 78.90 73.95 47.35 74.95 76.77 70.56 70.41 0.141× 2.24 10.98
AffineQuant ✗ 6 6 - 0 ∼ 26 78.73 73.32 46.08 74.59 77.08 70.88 70.11 0.141× 2.24 10.98
DuQuant ✗ 6 6 - 0 ∼ 26 80.20 77.27 52.05 80.12 79.14 72.77 73.59 0.141× 2.24 10.98
SDLLM ✓ 6 1.5 6.82=32×0.213 0 ∼ 26 80.20 77.23 52.22 82.05 79.01 73.56 74.04 0.320× 5.10 4.59

Table S3: Ablation study of SDLLM on Zero-shot QA (↑) results of LLaMA2-13B.

Method Spike W A PIQA ARC-e ARC-c BoolQ HellaS WinoG Avg. ACEs Flops Power
Bit Bit T=TD×R Range(+Z0)

(T) (J)
LLaMA-2-13B ✗ - - - - 80.63 77.48 49.23 80.73 79.37 71.74 80.69 1× 13.42 65.77
SDLLM ✓ 4 1.5 1.67=8×0.209 0 ∼ 24 78.51 74.12 46.16 78.26 76.36 69.85 70.54 0.052× 1.40 1.26

SDLLM ✓ 4 1.5 1.73=8.3×0.209
0 ∼ 24 94%
0 ∼ 25 6%

79.33 73.99 47.70 77.09 76.94 69.85 70.82 0.054× 1.45 1.31

SDLLM ✓ 4 1.5 3.44=16×0.215 0 ∼ 25 80.25 76.77 49.40 77.49 77.92 69.77 71.93 0.108× 2.89 2.60
SDLLMstep1 ✓ 4 4 1 0 ∼ 24 78.51 74.12 46.16 78.26 76.36 69.85 70.54 0.063× 1.68 8.22
SDLLM ✓ 4 1.5 1.67=8×0.209 0 ∼ 24 78.51 74.12 46.16 78.26 76.36 69.85 70.54 0.052× 1.40 1.26
SDLLM ✓ 4 1 7.5=15×0.500 0 ∼ 24 78.51 74.12 46.16 78.26 76.36 69.85 70.54 0.234× 6.29 5.66
SDLLMstep1 ✓ 6 6 1 0 ∼ 26 80.25 76.30 48.46 80.06 79.12 72.14 72.72 0.141× 3.77 18.49
SDLLM ✓ 6 1.5 6.9=32×0.217 0 ∼ 26 80.25 76.30 48.46 80.06 79.12 72.14 72.72 0.326× 8.74 7.86
SDLLM ✓ 6 1 31.5=63×0.500 0 ∼ 26 80.25 76.30 48.46 80.06 79.12 72.14 72.72 0.738× 39.63 35.67

E.3 POWER

We refer to the energy consumption metrics from works like SFA, with a 32-bit floating-point
implementation in 45nm technology, where EMAC = 4.6 pJ and EAC = 0.9 pJ Yao et al. (2025;
2024a); Luo et al. (2024). Similarly, for cases with time step T , we set T = 1 for ANN, then EMAC
becomes EMAC × T and EAC becomes EAC × T .

F MORE RESULTS

Zero-shot QA Results for 6-bit LLaMA Family Tab. S1 and S2 present a comparison of zero-
shot QA performance under the W6A6 configuration between SDLLM and several mainstream
quantization methods, including SmoothQuant, OmniQuant, AffineQuant, and DuQuant, on LLaMA-
2 (7B and 13B) and LLaMA-3 (8B). The results show that even under the higher-precision W6A6
setting, SDLLM achieves approximately 2× lower power consumption compared to traditional ANN

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table S4: Comparison of PPL (↓) metrics on Wikitext2 and C4 for LLaMA2-7B and LLaMA2-13B
between SDLLM and QuaRot.

Method Spike W A Wiki C4 ACEs Flops Power
Bit Bit T=TD×R Range(+Z0) (T) (J)

LLaMA2-7B ✗ - - - - 5.47 7.26 1× 6.91 33.84
SmoothQuant ✗ 4 4 - 0 ∼ 24 83.12 77.27 0.063× 0.86 4.23
OmniQuant ✗ 4 4 - 0 ∼ 24 14.26 18.02 0.063× 0.86 4.23
AfineQuant ✗ 4 4 - 0 ∼ 24 12.69 15.76 0.063× 0.86 4.23
QLLM ✗ 4 4 - 0 ∼ 24 11.45 13.26 0.063× 0.86 4.23
Atom ✗ 4 4 - 0 ∼ 24 8.40 10.96 0.063× 0.86 4.23
QuaRot-RTN ✗ 4 4 - 0 ∼ 24 8.73 12.27 0.063× 0.86 4.23
SDLLM-RTN ✓ 4 1.5 1.73=8×0.216 0 ∼ 24 6.41 8.58 0.054× 0.75 0.67
SDLLM-RTN ✓ 4 1.5 3.54=16×0.221 0 ∼ 25 5.95 7.93 0.111× 1.53 1.37
LLaMA2-13B ✗ - - - - 4.88 6.73 1× 13.42 65.77
SmoothQuant ✗ 4 4 - 0 ∼ 24 35.88 43.19 0.063× 1.68 8.22
OmniQuant ✗ 4 4 - 0 ∼ 24 12.30 14.55 0.063× 1.68 8.22
AfineQuant ✗ 4 4 - 0 ∼ 24 11.75 13.97 0.063× 1.68 8.22
QLLM ✗ 4 4 - 0 ∼ 24 9.09 11.13 0.063× 1.68 8.22
Atom ✗ 4 4 - 0 ∼ 24 6.96 9.12 0.063× 1.68 8.22
QuaRot-RTN ✗ 4 4 - 0 ∼ 24 6.31 9.02 0.063× 1.68 8.22
SDLLM-RTN ✓ 4 1.5 1.67=8×0.209 0 ∼ 24 5.49 7.61 0.052× 1.40 1.26
SDLLM-RTN ✓ 4 1.5 3.44=16×0.215 0 ∼ 25 5.18 7.15 0.108× 2.89 2.60

Table S5: Evaluation of Zero-shot QA (↑) results of Qwen2.5-14B.

Method Spike W A PIQA ARC-e ARC-c BoolQ HellaS WinoG Avg. ACEs Flops Power
Bit Bit T=TD×R Range(+Z0)

(T) (J)
Qwen2.5-14B ✗ - - - - 82.10 79.12 58.87 85.26 82.91 75.30 77.26 1× 13.53 62.23
RTN ✗ 4 4 - 0 ∼ 24 51.31 32.91 24.32 50.40 29.29 47.91 39.35 0.063× 1.69 7.78
GPTQ ✗ 4 4 - 0 ∼ 24 51.80 26.64 23.63 41.13 26.27 49.17 36.73 0.063× 1.69 7.78
SmoothQuant ✗ 4 4 - 0 ∼ 24 51.20 26.09 26.54 41.13 26.27 49.17 36.73 0.063× 1.69 7.78
SDLLM ✓ 4 1.5 1.7=8×0.212 0 ∼ 24 79.00 77.82 52.13 80.00 78.28 67.80 72.51 0.053× 1.43 1.29
SDLLM ✓ 4 1.5 3.4=16×0.213 0 ∼ 25 81.28 80.43 55. 29 82.64 81.41 74.82 76.15 0.107× 2.88 2.59
RTN ✗ 6 6 - 0 ∼ 26 80.41 81.40 56.57 84.19 81.52 71.27 75.89 0.141× 3.81 17.50
GPTQ ✗ 6 6 - 0 ∼ 26 79.71 76.85 52.82 80.24 80.11 70.17 73.32 0.141× 3.81 17.50
SmoothQuant ✗ 6 6 - 0 ∼ 26 79.33 78.96 55.03 80.89 79.12 68.67 73.66 0.141× 3.81 17.50
SDLLM ✓ 6 1.5 6.9=32×0.215 0 ∼ 26 82.48 79.04 57.76 84.83 82.85 75.22 77.03 0.323× 8.73 7.85

Table S6: Evaluation of PPL (↓) results of Qwen2.5-14B.

Method Spike W A Wiki C4 ACEs Flops Power
Bit Bit T=TD×R Range(+Z0) (T) (J)

Qwen2.5-14B ✗ - - - - 5.29 10.35 1× 13.53 62.23
RTN ✗ 4 4 - 0 ∼ 24 2e3 2e3 0.063× 1.69 7.78
GPTQ ✗ 4 4 - 0 ∼ 24 6e3 4e3 0.063× 1.69 7.78
SmoothQuant ✗ 4 4 - 0 ∼ 24 2e4 2e4 0.063× 1.69 7.78
SDLLM ✓ 4 1.5 1.70=8×0.212 0 ∼ 24 8.19 16.12 0.053× 1.43 1.29
SDLLM ✓ 4 1.5 3.41=16×0.213 0 ∼ 25 6.13 11.14 0.107× 2.88 2.59

quantization, while achieving SOTA performance. This demonstrates the potential of spike-based
sparse inference at higher bit-widths.

Zero-shot QA and PPL Results for Qwen2.5-14B We validated our proposed method on the
newer LLaMA model Qwen2.5-14B. According to the results in Tab. S5 and S6, SDLLM continues
to perform excellently in Zero-shot QA and PPL tasks, while significantly reducing the number of
operations and energy consumption. For example, in the case of W4A4, compared to quantization
methods, SDLLM reduces the number of operations by 1.2× and energy consumption by 6×.
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Table S7: Evaluation of more complex language tasks (↑) on the LLaMA family: reading Compre-
hension (SQuAD), world Knowledge (TriviaQA), and math (GSM8K)

Method Spike W A GSM8K SQuAD TriviaQA ACEs Flops Power
Bit Bit T=TD×R Range(+Z0)

Str. Flex. EM F1 HA-EM HA-F1 NA-F1 EM (T) (J)
Llama-2-7B ✗ - - - - 15.30 15.30 16.77 24.21 24.68 39.37 8.66 64.14 1× 6.91 33.84
QuaRot ✗ 4 4 - 0 ∼ 24 1.97 2.73 17.04 24.76 29.01 44.26 4.77 33.20 0.063× 0.86 4.23
SDLLM ✓ 4 1.5 1.73=8×0.216 0 ∼ 24 6.36 6.67 19.16 25.52 18.96 31.52 19.37 51.71 0.054× 0.75 0.67
SDLLM ✓ 4 1.5 3.54=16×0.221 0 ∼ 25 10.00 10.15 13.88 22.53 20.76 37.86 6.82 58.86 0.111× 1.53 1.37
QuaRot ✗ 6 6 - 0 ∼ 26 13.48 13.79 16.50 24.37 22.22 37.77 10.64 62.72 0.063× 1.94 9.52
SDLLM ✓ 6 1.5 7.1=32×0.222 0 ∼ 26 14.85 1.39 18.05 25.12 24.82 38.77 11.12 64.05 0.333× 4.60 4.14
Llama-2-13B ✗ - - - - 22.73 22.88 22.77 29.67 37.19 50.82 7.98 70.45 1× 13.42 65.77
QuaRot ✗ 4 4 - 0 ∼ 24 12.42 12.42 21.96 29.62 41.78 56.90 1.64 52.25 0.063× 1.68 8.22
SDLLM ✓ 4 1.5 1.67=8×0.209 0 ∼ 24 15.91 16.21 21.29 28.49 37.52 51.75 4.64 62.44 0.052× 1.40 1.26
SDLLM ✓ 4 1.5 3.44=16×0.215 0 ∼ 25 21.06 21.36 21.15 28.82 33.07 48.21 8.94 66.45 0.108× 2.89 2.60
QuaRot ✗ 6 6 - 0 ∼ 26 21.82 21.97 23.85 30.42 41.25 54.24 6.00 69.14 0.063× 3.77 18.49
SDLLM ✓ 6 1.5 6.9=32×0.217 0 ∼ 26 21.52 21.82 21.99 29.06 34.46 48.43 9.21 69.84 0.326× 8.74 7.86
Llama-3-8B ✗ - - - - 48.64 49.55 26.71 32.58 52.69 64.30 0.07 71.58 1× 7.97 39.06
SDLLM ✓ 4 1.5 1.68=8×0.210 0 ∼ 24 18.80 19.41 19.65 27.43 37.66 52.59 0.05 49.31 0.053× 0.84 0.75
SDLLM ✓ 4 1.5 3.38=16×0.211 0 ∼ 25 31.84 32.60 24.55 30.89 48.37 60.89 0.14 60.40 0.106× 1.68 1.51
SDLLM ✓ 6 1.5 6.82=32×0.213 0 ∼ 26 46.55 47.16 28.32 34.74 54.31 66.61 0.05 70.26 0.320× 5.09 4.58

Table S8: Spike Firing Details and FLOPs of Linear Layers in LLaMA2-7B

Model Layer Time Complexity T R FLOPs (G) Power (mJ)

LLaMA2-7B
W4A1.5

k proj NDh
2 8 0.2230 1.92 1.73

v proj NDh
2 8 0.2230 1.92 1.73

q proj NDh
2 8 0.2230 1.92 1.73

out proj NDh
2 8 0.2028 1.74 1.57

gate proj NDhDi 8 0.2189 5.05 4.55
up proj NDhDi 8 0.2189 5.05 4.55
down proj NDhDi 8 0.2096 4.84 4.36

LLaMA2-7B
W4A1.5

k proj NDh
2 16 0.2257 3.88 3.49

v proj NDh
2 16 0.2257 3.88 3.49

q proj NDh
2 16 0.2257 3.88 3.49

out proj NDh
2 16 0.2192 3.77 3.39

gate proj NDhDi 16 0.2212 10.21 9.19
up proj NDhDi 16 0.2212 10.21 9.19
down proj NDhDi 16 0.2192 10.12 9.11

LLaMA2-7B
W6A1.5

k proj NDh
2 32 0.2284 11.77 10.59

v proj NDh
2 32 0.2284 11.77 10.59

q proj NDh
2 32 0.2284 11.77 10.59

out proj NDh
2 32 0.2217 11.43 10.29

gate proj NDhDi 32 0.2237 30.99 27.89
up proj NDhDi 32 0.2237 30.99 27.89
down proj NDhDi 32 0.2133 29.54 26.59

PPL Results for LLaMA Family Tab. S4 shows a comparison of PPL between SDLLM and
QuaRot under W4A4 quantization precision for the LLaMA2-7B and LLaMA2-13B models. SDLLM
significantly outperforms QuaRot, reducing perplexity by 26.6% and 29.9% on the WikiText2 and
C4 datasets, respectively (LLaMA2-7B), while also reducing ACEs by 1.17×, FLOPs by 1.15×,
and energy consumption by 6.3×. For LLaMA2-13B, SDLLM improves model performance under
low-precision quantization, reducing perplexity by 13.0% and 15.7%, while reducing ACEs by 1.21×,
FLOPs by 1.2×, and energy consumption by 6.5×.

More Complex Tasks for LLaMA Family In addition to performing well in commonsense
reasoning tasks (such as PIQA, ARC-easy, ARC-challenge, HellaSwag and WinoGrande), we further
extended our evaluation to more complex language generation tasks, including reading comprehension
(BoolQ, SQuAD), world knowledge (TriviaQA), and mathematical problem solving (GSM8K). These
tasks assess the model’s performance in different domains, particularly those that require higher
reasoning abilities and domain knowledge. The results show that SDLLM demonstrates strong
adaptability and excellent performance in these complex tasks. Especially under low-precision
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quantization (such as the W4A4 configuration), it significantly improves the model’s reasoning
efficiency, while also showing advantages in reducing energy consumption and computational
resources.

G SPIKE FIRING DETAILS

As mentioned earlier in Section 4.1, the computational cost of non-matrix multiplication operators
is several orders of magnitude lower. Therefore, in Tab. S8, we present the spike firing behavior
and corresponding FLOPs of the linear layers in the SDLLM based on the LLaMA-2 7B baseline.
In all tables, N denotes the train length, and we uniformly set N = 1024. In addition, Dh and Di

represent the hidden size and intermediate size, respectively. In addition to applying spiking to the
linear layers, we also spiked the KV Cache, similar to how quantization methods process the KV
Cache. The spiked KV Cache is directly involved in the computation of spiking attention.

H HARDWARE STRATEGIES

In hardware implementation, three different design strategies can be considered: Serial, Parallel, and
Parallel Reuse, as illustrated in Fig. S5 Among them, Serial is the most fundamental, where each
time step is computed sequentially. However, since the effective number of time steps in our setting
is usually less than 2, the delay overhead can be neglected. The Parallel strategy allows multiple
time steps to be computed simultaneously, thereby eliminating delay, but it requires higher memory
and hardware resources. To strike a balance between the two, the Parallel Reuse strategy processes
a fixed number of time steps in parallel and reuses the same computation units, thus achieving an
optimal trade-off between latency and memory overhead.

Figure S4: Illustration of three hardware strategies: Serial, Parallel, and Parallel Reuse.
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Figure S5: Ternary spike visualization in LLaMA2-7B. Time is token time × TD.
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