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Abstract

This work introduces a novel hybrid method combining Reinforcement Learning
and Genetic Algorithms to solve Vehicle Routing Problems (VRP). While Machine
Learning approaches have been extensively applied to VRP, they have struggled
to surpass state-of-the-art optimization methods. Our approach bridges this gap
by leveraging the strengths of both ML and traditional optimization techniques.
We also design a novel regularization method for learning to minimize the number
of vehicles (in addition to travel distance), as required in many applications. Our
method presents state-of-the-art solution costs given limited optimization time
budgets, and scales to hundreds of locations within seconds.

1 Introduction

The Traveling Salesperson Problem [Robinson, 1949] and its extension, the Vehicle Routing Problem
(VRP, Dantzig and Ramser [1959]), are a cornerstone of combinatorial optimization, with profound
implications across industries such as logistics [Jin, 2020] and urban planning [Dowds et al., 2013].
The theoretical and practical importance of VRP led to significant effort to develop fast and scalable
algorithms for approximate solutions, such as Adaptive Large Neighborhood Search (ALNS) [Voigt,
2025] and iterated local-search solvers [Helsgaun, 2017]. In particular, Genetic Algorithms (GA)
achieve many current state-of-the-art (SOTA) results [Akif Çördük et al., 2024, Vidal, 2022, Santini
and V., 2023]. Yet, the NP-hard problem of VRP remains an enduring challenge for nearly 200 years
[Anonymous, 1832].

VRP often presents a trade-off between computing time and solution quality. Solving VRP for
hundreds of locations within seconds has become increasingly important for real-world applications
[Jin, 2020, James et al., 2019, Bertsimas et al., 2019, Crane et al., 2024], motivating early optimization
stopping with an approximate solution rather than optimizing longer. Real-time applications include
last-mile delivery routing with on-the-fly updates; routing emergency vehicles under changing road
conditions where every second may matter; interactive “what-if” logistics planning with sub-second
response times; and ride-sharing services. In real-time warehouse order picking, for example,
optimization budget is bounded by the countdown to the next assignment – hence the time budget
may vary greatly between different instances. Iterative methods like GA naturally support early
optimization stopping with any given time budget.

Importantly, VRP instances are often solved not in isolation, but rather in a "repeated-VRP" way,
where multiple instances from the same distribution have to be solved. For example, delivery plans
within a given region may involve hundreds of related instances daily, all sharing the same roads and
with customer requests from the same distribution. Popular VRP solvers like GA and ALNS apply
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Figure 1: EARLI: Evolutionary Algorithm with Reinforcement Learning Initialization. a, During offline
training, an RL agent interacts with a dataset of problem instances and learns to generate high-quality solutions.
b, In production, the trained RL agent faces a new problem instance and generates K solutions with quick
decision making. c, The K solutions are used as the initial population of a genetic algorithm (GA), initiating its
optimization loop.

iterative refinement of approximate solutions, but do not benefit from the repeated-VRP settings: they
solve each instance in isolation without learning from other instances. In contrast, recent approaches
based on Machine Learning (ML) and Reinforcement Learning (RL) leverage the repeated-VRP
settings and train a solver using an offline dataset of VRP instances [Nazari et al., 2018, Kwon et al.,
2020, Zhou et al., 2023, Ma et al., 2024, Bengio et al., 2021]. The trained solver can be applied to new
instances and produce solutions very quickly, but current ML solvers still yield lower solution quality
compared to GAs, in particular in large-scale [Berto et al., 2023, Ma et al., 2024]. The challenge still
remains how to achieve superior solutions faster by combining (a) leveraging offline data for fast
inference, and (b) enable the user to produce solutions for any point on the trade-off curve of solution
quality vs. optimization time.

To that end, we present the framework Evolutionary Algorithm with Reinforcement Learning
Initialization (EARLI) for solving the NP-hard combinatorial optimization problem of repeated-VRP.
To address the problem in real time and large scale, EARLI is designed to leverage the key strengths
of both its components: the RL agent benefits from training data, and the GA provides control over
the trade-off between inference time and solution quality. The workflow is illustrated in Figure 1.
After training an RL agent over a set of problem instances (Figure 1a), EARLI uses the pre-trained
RL agent to quickly generate high-quality (but sub-optimal) solutions (Figure 1b); these are then
used as the seed population for a GA process (Figure 1c), which improves the solutions.

We found two main challenges for making EARLI generate initial solutions that genuinely help the
GA search. First, the number of vehicles is often the dominant objective in practical VRP, yet this is
a challenging metric to optimize: it is sparse, non-continuous, and often ignored in RL methods that
focus solely on distance optimization. When initial solutions use too many vehicles, the GA may
waste time or even converge to suboptimal fleet sizes. We developed a capacity-aware regularization
scheme that guides the RL policy toward using fewer vehicles, outperforming a naïve penalty over
the number of vehicles. Second, scaling common RL approaches is hard. They typically target up to
100 customers, as direct training on larger problem instances is prohibitively slow. We scaled model
fine-tuning to significantly larger problems using a curriculum learning protocol.

Many methods have been proposed for initializing GAs [Alkafaween et al., 2024, Kazimipour et al.,
2013, Rahnamayan et al., 2007, Yang, 1997], including ML approaches [Li et al., 2024]. Most
initialization methods substantially differ from EARLI, as they aim to maximize the quality of the
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end solution rather than solver speed, and do not use the repeated-VRP settings. For example, some
popular ML initialization methods apply test-time training without learning from offline instances
[Ruan et al., 2024, Cai et al., 2019, Mundhenk et al., 2021, Radaideh and S., 2021]. As another
example, common metaheuristics for initialization focus on covering the solution landscape to avoid
local-optima that would limit the end solution [Kazimipour et al., 2013, Rahnamayan et al., 2007].
Some learning approaches, like the Deep Ant Colony Optimization solver (DeepACO) [Ye et al.,
2023], do exploit offline data in a repeated-VRP manner and generate an edge-heatmap using RL
guidance. Our experiments below show that GA solvers strongly outperform this approach.

EARLI substantially improves SOTA performance on VRP with limited time-budget and scales to
instances with hundreds of delivery points, including instances derived from real delivery data. This
improvement is robust across several GA solvers, data sources, problem sizes and optimization time
budgets – from sub-second up to minutes into the optimization process. In some settings, EARLI
achieves in 1s the same solution quality that takes the GA over 10s to reach. Such 10x speedup can
significantly enhance existing applications and even enable new use-cases of few-second optimization,
for both interactive scientific research and practical applications as discussed above.

In summary, our work introduces a framework for accelerating combinatorial optimization by
integrating iterative solvers with learning from past experience. It provides high-quality routing
solutions at speed and scale previously considered impractical. This capability can cut costs in classic
industries and enable the emergence of applications like interactive logistics planning. With the
release of both code and data, our framework opens new avenues for future work in both ML and
optimization communities, encouraging their synergy in NP-hard optimization in general and routing
problems in particular.

2 Problem setup

In the Capacitated Vehicle Routing Problem (VRP or CVRP), a problem instance is defined over
a graph G = (V,E), where the vertices V represent a depot and delivery points, and the edges E
represent travel costs (e.g., distances). Each delivery i is associated with a known demand di. A fleet
of K vehicles with capacity Q is stationed at the depot (vertex i = 0). A solution is defined by a
partition that assigns each vertex to a vehicle route, and by the order of deliveries within each route.
In a feasible solution, all routes start and end at the depot, each customer is visited exactly once,
and the total demand in each route does not exceed Q. The goal is to find a feasible solution that
minimizes first the number of vehicles, and subject to that, the total travel cost. Solvers are typically
evaluated under a time budget t given per instance I = (G, {di},K,Q).

We define the repeated-VRP problem, where instances are drawn from a fixed distribution I ∼ D.
The distribution D may express recurring structure, such as distances derived from the same road
network, or consistent demand scales and vehicle capacities. D is unknown but can be sampled offline
for training. During inference on new instances, the solver may leverage pre-learned knowledge
without reducing its time budget.

3 Method

EARLI leverages offline data of instances {I} ∼ D and trains an RL agent to generate high-quality
solutions (Figure 1a). In inference time, the agent quickly generates solutions and feeds them as the
initial population of the GA, which refines them iteratively (Figure 1b-1c).

In the RL environment, the state at step τ is defined by the instance I = (G, {di},K,Q), the set of
already-visited vertices, and the remaining capacity in the current route. The action is the next vertex
to visit. The reward is the travel cost to the next vertex, possibly with additional regularization as
discussed below. We train a parameterized policy πθ(a | s) based on an Attention Model similar to
Kwon et al. [2020]. The policy outputs a distribution over feasible actions. A stochastic solution
is generated by iteratively sampling this distribution, and a deterministic solution by choosing the
action with highest probability. We optimize πθ using PPO [Schulman et al., 2017], relying on a
learned value function to reduce variance and accelerate training.

In inference time, the RL agent generates 1 deterministic solution and 7 stochastic ones per problem.
The local-search operator of Vidal et al. [2012] is applied to each solution. The resulting solutions are
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then fed to the solver as its initial population. If the solver only permits fewer than 8 solutions (LKH3),
we choose the lowest-cost solutions. If the solver’s initial population is larger than 8 solutions (HGS
and PyVRP), we let the solver fill in random solutions using its internal implementation, up to its
standard initial population size. Below we discuss two main challenges in our approach.

Scalable RL training via curriculum learning: Scaling RL to large VRPs is often unstable
and prohibitively slow in practice: direct training on 500-customer instances failed to learn in our
setup. Standard RL techniques for variance reduction in long horizons, like Generalized Advantage
Estimation (GAE), failed to produce reliable learning. We therefore adopt a variant of curriculum
learning [Soviany et al., 2022]: train on 50-node instances and gradually increase size, fine-tuning
at each stage on new larger instances. This enables stable learning at tractable training times. In
addition, unlike alternative curriculums for VRP [Ma et al., 2021], our method naturally produces
a family of size-specific models that can be used for different problems, as demonstrated in our
experiments.

Vehicle minimization via capacity regularization: Most RL works for VRP focus on minimizing
cost or distance, ignoring the number of vehicles [Nazari et al., 2018, Kwon et al., 2020]. By contrast,
many practical problems prioritize vehicle minimization, as supported by common solvers [Akif
Çördük et al., 2024]. We found empirically that initial solutions with sub-optimal vehicles often slow
down or even prevent the solver from optimizing the vehicles. As detailed below, we address this by
(a) encourage the RL agent to minimize the number of vehicles; (b) only feed the solver with initial
solutions whose number of vehicles is guaranteed to be optimal.

(a) To encourage the RL agent to minimize vehicles, we first attempted straight-forward vehicle
penalty on training: every time the agent adds a new vehicle, a fixed cost is added. We found this
approach limited, especially on large problem instances. We hypothesize the feedback is too delayed
to be learned. For example, consider the last order of the first vehicle in a solution: if its demand
does not utilize the remaining vehicle capacity, the immediate vehicle penalty remains the same, yet
the capacity waste may lead to an additional vehicle in the end. This extra penalty is only observed
hundreds of steps later.

Instead, we propose a novel capacity regularization penalty. At the end of each vehicle route, we add
a penalty proportional to the remaining capacity in the vehicle:

penalty(vehicle route) = λ

(
Q−

∑
i∈route

di

)
,

where Q is the vehicle capacity, di are the route demands and λ is the regularization scale coefficient.
This provides immediate feedback on capacity waste, allowing the RL agent to strategize vehicle
minimization without propagating penalties throughout hundreds of steps. As demonstrated below
(Figure 5), capacity regularization significantly improves vehicle minimization compared to vehicle
regularization.

(b) To verify that the solver is fed only solutions with an optimal number of vehicles, we recall
that the minimal number of vehicles for a VRP instance is lower bounded by ⌈ total demand)

capacity ⌉. In
the experiments, our RL solutions have met this lower bound in 87-96% of the problem instances
(depending on the benchmark). Hence, in all these instances, at least one RL solution was guaranteed
to obtain the optimal number of vehicles. We fed EARLI’s initial solutions to the GA solver only in
these cases. In the remaining instances, we used instead the nearest-neighbor solution for initialization;
and if it did not meet the lower bound either, we simply executed the solver without initialization,
with the remaining time-budget.

4 Results

To evaluate EARLI in a realistic challenging scenario, we introduce a new VRP benchmark derived
from e-commerce data, in addition to the standard synthetic benchmark in the literature of ML for
VRP [Nazari et al., 2018, Kwon et al., 2020]. The standard synthetic benchmark consists of up to 100
customers, with uniformly distributed locations and demands, and Euclidean traveling distances (as
illustrated in Figure 2a). However, most real-world instances are fundamentally different: customers
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Figure 2: Synthetic and real datasets used in this study. a, Synthetic data: An illustration of a problem instance
with 49 customers and 1 depot. Locations are uniformly distributed and travel distances are Euclidean. Random
customer demands are represented by the triangle sizes. b, Real data: Olist orders, 100km2 around Sao Paulo
center, include locations of 23K customers and 1K sellers. For every problem instance, multiple customers and
one depot are sampled from these locations, respectively. Travel costs correspond to driving time computed with
OSRM. Demands correspond to actual product volumes.

Figure 3: EARLI improves solution quality given a fixed time-budget. EARLI (solid lines) improves the mean
cost across a variety of optimization times from seconds up to minutes. Cost gaps are averaged over 256 test
instances of 500 customers. Shading corresponds to 95% confidence intervals. t0 corresponds to the runtime of
the RL initialization on its own, before applying the GA.

are often located in clusters of varying sizes, and driving times vary according to the roads, not
necessarily even being symmetric.

In our real-data benchmark, the locations of customers and of the depot are sampled from a real-world
dataset [Olist and André Sionek, 2018], as visualized in Figure 2b. Driving durations between
locations are computed based on real roads, using Project OSRM [Luxen and Vetter, 2011]. Demands
are derived from real order volumes.

We evaluate EARLI when applied to 4 popular VRP solvers: HGS [Vidal, 2022], cuOpt [Akif Çördük
et al., 2024], PyVRP [Wouda et al., 2024] and LKH3 [Helsgaun, 2017]. The first three are based on
GAs, and LKH3 relies on an iterative local-search operator. HGS and cuOpt report SOTA results on
various routing problems [Vidal, 2022, Akif Çördük et al., 2024]. By default, all 4 solvers initialize
their population with random solutions. We test each solver with its own random initialization; with
our proposed RL initialization; and with various alternative initialization methods as specified below.
For each of the 4 solvers, the initialization schemes are compared over 256 test instances across a
range of time budgets. For every time budget, we show the gap between the obtained cost and the
best-known solution cost, defined as the lowest cost amongst all solvers, initialization schemes and
time budgets.
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Figure 4: EARLI outperforms alternative initializations, and its benefit grows with problem size. The solver
(cuOpt or DeepACO) is given a time budget of 1s per problem. Shading corresponds to 95% confidence intervals
over 256 test instances.

Overall, as presented in Figure 3, EARLI obtains state-of-the-art solution costs across a wide range of
time budgets in both real data and synthetic data benchmarks, improving all 4 solvers up to minutes
into the optimization process.

As EARLI combines an RL agent with a GA solver, it strongly outperforms each of the two on their
own. Consider for example the real-data problem instances of 500 customers in Figure 3. When
compared to the RL agent alone, EARLI with HGS or cuOpt solvers improves solution quality almost
immediately, and the improvement grows over time. When compared to the GA-based HGS solver
after 6s, for example, EARLI improves the solution quality by 7.7%. In fact, it achieves within 1s
the same average solution quality that takes HGS over 10s to reach with its default initialization,
obtaining 10x optimization speedup in this scenario.

Our experiments focus on problem sizes of 100-500 customers, a regime that poses a significant
challenge for existing solvers given limited time budget. As presented in Figure 4, the advantage
of EARLI holds for different problem sizes and increases with the size, as larger instances pose a
harder challenge for the GA solver. We further compared EARLI to several alternative initialization
methods: (a) the default random initialization; (b) a nearest-neighbor initialization procedure, shown
effective for routing problems [Shanmugam et al., 2013]; (c) TNT and (d) QBL, found to perform
best among the candidates evaluated in [Kazimipour et al., 2013]. We further consider (e) DeepACO
[Ye et al., 2023], which also uses RL to learn from data and guide an Ant Colony Optimization solver.
In contrast to the other methods, DeepACO is a complete pipeline that includes its own ACO solver
rather than a GA initialization scheme. We test DeepACO following the settings of [Ye et al., 2023],
namely, synthetic problem instances with 100 or 500 customers. As shown in Figure 4, EARLI
provides significant value over the compared methods.

Figure 5: Capacity regularization improves the trade-off
between vehicle minimization and net cost minimization.
Every point represents fine-tuning of the RL agent with a
different regularization scale λ, tested over 256 instances
with 500 customers.

Finally, we evaluate our capacity regulariza-
tion method for vehicle minimization, as a
key component of the RL agent. To that end,
we take an RL agent pre-trained for 200 cus-
tomers in Sao Paulo, and fine-tune for 500
customers. For each regularization method,
fine-tuning has a trade-off between vehicle
minimization and net cost minimization, de-
pending on the regularization coefficient λ.
As shown in Figure 5, capacity regularization
produces a superior trade-off curve compared
to direct vehicle regularization. In addition,
vehicle regularization provides only limited
control over the trade-off, as increasing λ does
not necessarily improve vehicle minimization.
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