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ABSTRACT

The evolution of microscopy, beginning with its invention in the late 16th
century, has continuously enhanced our ability to explore and understand the
microscopic world, enabling increasingly detailed observations of structures and
phenomena. In parallel, the rise of data-driven science has underscored the need
for sophisticated methods to explore and understand the composition of complex
data collections. This paper introduces the Vendiscope, the first algorithmic
microscope designed to extend traditional microscopy to computational analysis.
The Vendiscope leverages the Vendi scores – a family of differentiable diversity
metrics —- and assigns weights to data points based on their contribution to the
overall diversity of the collection. These weights enable high-resolution data
analysis at scale. We demonstrate this across biology and machine learning
(ML). We analyzed the 250 million protein sequences in the protein universe,
discovering that over 200 million are near-duplicates and that ML models like
AlphaFold fail on proteins with Gene Ontology (GO) functions that contribute
most to diversity. Additionally, the Vendiscope can be used to study phenomena
such as memorization in generative models. We used the Vendiscope to identify
memorized training samples from 13 different generative models spanning
several model classes and found that the best-performing generative models often
memorize the training samples that contribute least to diversity. Our findings
demonstrate that the Vendiscope can serve as a powerful tool for data-driven
science, providing a systematic and scalable way to identify duplicates and
outliers, as well as pinpointing samples prone to memorization and those that
models may struggle to predict—even before training.

1 INTRODUCTION

As machine learning (ML) continues to become more deeply integrated in critical applications, the
ability to scrutinize models and the data they are trained on becomes more important (Biderman
et al., 2024; Alampara et al., 2025; Banerjee et al., 2024; Longpre et al., 2024). Current evaluation
practices, however, are dominated by performance benchmarking. While convenient for comparison,
these metrics do not enable deeper analysis into the contents of a dataset or the failure patterns of a
model. For example, protein structure prediction models have achieved remarkable progress on the
CASP leaderboards (Kryshtafovych et al., 2019; 2021), but solely monitoring predictive accuracy
will not reveal where models like AlphaFold systematically struggle.

To address this gap, this paper introduces the concept of algorithmic microscopes, tools designed
to reveal hidden structure in both dataset composition and model behavior. An algorithmic micro-
scope emphasizes understanding – helping researchers understand the contents of their data and
where their models fail. Given the breadth of ML applications, such a tool must be flexible across
domains. To this end, we present the Vendiscope, a scalable algorithmic microscope for analyz-
ing models and datasets in any domain where similarity can be defined. The Vendiscope uses the
probability-weighted Vendi Score (pVS) (Friedman & Dieng, 2023) to measure the contribution of
each datapoint to the overall diversity of a collection. This is done by assigning each data point with
an unknown weight, using those weights to define the pVS of the set of data points, and maximizing
the pVS to learn the weights. Those weights in turn are used to analyze data and model outputs.

1
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Contributions. We make several contributions in this paper as detailed below.

• We demonstrate the Vendiscope’s contribution scores can help identify outliers and near-
duplicates in linear time.

• We show how the same framework can be used to evaluate machine learning models –
both predictive and generative. For predictive models, the Vendiscope can correlate perfor-
mance metrics with contribution to diversity, thus helping characterize data points where
models perform poorly. For generative models, the Vendiscope is the first method to fully
characterize the types of data points that are prone to memorization as those that contribute
least to the diversity of the training data.

• We apply the Vendiscope to the 250 million sequences composing the protein universe,
where it identifies >80% redundant data points at a 90% similarity threshold. It also un-
covers AlphaFold’s failure in modeling sequences that contribute most to the diversity of
the protein universe. When applied to 13 generative models trained on CIFAR-10, the
Vendiscope uncovers a consistent relationship between rarity and memorization, revealing
that models achieving the highest perceptual quality do so by duplicating and memorizing
samples that contribute least to diversity.

2 THE VENDISCOPE

We first provide background on the pVS as a measure of diversity. Next, we present the Vendiscope’s
optimization algorithm for measuring datapoint-level contributions to diversity, followed by an anal-
ysis of its complexity and implementation. Finally, we describe how the Vendiscope’s outputs can
be interpreted, which will allow us to evaluate datasets and models in Section 3.

2.1 PROBABILITY-WEIGHTED VENDI SCORES

Consider a collection of N elements (x1, . . . ,xN ). Let k(·, ·) denote a positive semi-definite kernel
that measures the similarity between any two elements, and such that k(xi,xi) = 1 ∀i. Denote
by K the similarity matrix induced by the kernel k(·, ·). Its element at row i and column j is
Kij = k(xi,xj). Since k(·, ·) is positive semi-definite, K is positive semi-definite and has non-
negative eigenvalues which we denote by λ1, . . . , λN . Let p = (p1, . . . , pN ) denote a discrete
probability distribution over the collection (x1, . . . ,xN ). Define K̃p = diag(

√
p)Kdiag(

√
p) and

let η1p, . . . , ηNp denote the eigenvalues of K̃p. Friedman & Dieng (2023) define the pVS of the
collection as the exponential of the Shannon entropy of the eigenvalues. This can be generalized
using the Rényi entropy (Pasarkar & Dieng, 2024),

pVSk(x1, . . . ,xN ,p) = exp

 1

1− q
log

∑
i∈supp(η)

ηqip

 , (1)

where supp(η) denotes the set of non-zero eigenvalues of K̃p and q ≥ 0 is the order of the pVS.

2.2 MEASURING DIVERSITY CONTRIBUTIONS

We can use the pVS as an objective function to measure the contribution of each datapoint to the
dataset’s overall diversity. In particular, the Vendiscope considers p as an unknown probability
distribution to be learned by maximizing Eq. 1,

p∗ = argmax
p

pVSk(x1, . . . ,xN ,p) such that
N∑
i=1

pi = 1. (2)

Optimizing over the pVS balances the spectrum of the probability-weighted similarity matrix. This
amplifies dimensions of the dataset that would be otherwise underrepresented. As a result, the
solution to Eq. 2 will lead to higher probabilities on the rarest samples, and lower probabilities on
the most common ones (Section A.1).

The Vendiscope’s gradient-based algorithm is provided in Algorithm 1. Following the computation
of the VSs and its gradients, we perform projected gradient decent using the active set method
described in Michelot (1986).

2
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Algorithm 1 The Vendiscope: An algorithmic microscope for data collections
Inputs: Data {x1, . . . ,xn}, similarity kernel k, order q > 0, step sizes ϵ1, . . . , ϵn
Form a data matrix X ∈ Rn×d, normalize its rows: Xi = xi/||xi||2, and initialize diversity
contribution scores uniformly pi =

1
n for all i = 1, . . . , n

while not converged do

Compute weighted similarity matrix K̃ =

{
X⊤diag(

√
p)diag(

√
p)X if k is cosine

diag(
√
p)Kdiag(

√
p) otherwise

Compute loss function L(p) = − log pVSk(x1, . . . ,xn)
Compute gradients ∇p1L(p), . . . ,∇pnL(p) using backpropagation
Compute unnormalized weights y1, . . . , yn such that yi = pi − ϵi∇piL(p)
Set vi = yi for all i and ρ = 1

n

∑n
i=1 yi − 1

while the norm of v continues to change do
Set vi = I(yi > ρ) and ρ =

∑n
i=1 vi−1∑n
j=1 vj

for all i ∈ {1, . . . , n}
end
Update diversity contribution scores pi = max(yi − ρ, 0) for all i ∈ {1, . . . , n}

end

Time and space complexity. Each iteration of the Vendiscope requires calculating the VS for a
collection of n elements, which involves computing the eigenvalues of an n×n matrix. This process
has a time complexity of O(n3). However, Friedman & Dieng (2023) indicated that when data
embeddings are available, the VS can be computed cheaply by using a cosine similarity kernel with
corresponding similarity matrix K = XTX , where X ∈ Rn×d denotes the data embedding matrix.
In this case the VS computation has complexity O(d2n + d3). The improvement in complexity
enables the scaling of the Vendiscope to large collections where n≫ d.

The projected gradient updates are linear in n as well. Condat (2016) notes that the active set
method has an observed runtime of O(n). There are certain examples for which the runtime can be
quadratic (Cominetti et al., 2014), but we will not encounter such instances when most weights are
similar. Empirically, small learning rates ensure linear runtimes. In all, we reach a time complexity
of O(d3+d2n+n) = O(d2n) and a space complexity of O(dn) for each iteration of the Vendiscope.

2.3 IMPLEMENTATION DETAILS

The Vendiscope enables the scalable analysis of large data collections. Below we describe the design
choices that drive its effectiveness.

Scaling to massive datasets. As presented, Algorithm 1 would require the entire dataset to be
loaded into memory. This is prohibitively expensive for many of the massive datasets available to-
day. We circumvent this problem by estimating the pVS using only a subset of the data’s dimensions
at each iteration. In particular, at each iteration t, we sample a random subset of the columns of the
data matrix, dt ⊆ {1, . . . , D} and use Xdt

∈ Rn×|dt| instead of the entire dataset X . This ap-
proach provides an approximation of the true pVS. Our subsampling approach also allows us to take
advantage of data parallelism by sampling a separate set of data dimensions for each GPU. These
approaches allow us to run the Vendiscope on datasets with hundreds of millions of samples.

Hyperparameters and convergence. The Vendiscope requires the Vendi score order q as a user-
specified hyperparameter. Previous work by Pasarkar et al. (2023) demonstrated that small values
q < 1, are more sensitive to rare elements, whereas large values of q place greater emphasis on
common elements. We find that the sensitivity of small values q helps all elements have non-zero
contributions to diversity. We use q = 0.1 and q = 0.5 in all experiments.

In the presented analyses, we focus on the relative ranking of elements based on the Vendiscope
weights rather than the magnitude of the weights themselves. As a result, we stop the Vendiscope
when the ranking of elements stabilizes. This occurs within 500 iterations in all of our studies.

3
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Algorithm 2 Efficient near-duplicate detection with the Vendiscope
Inputs: Data {x1, . . . ,xn} sorted in order of the Vendiscope scores, similarity kernel k, near-
duplicate similarity threshold s ≤ 1, and search-range m ≤ n
for i = 1, . . . , n do

If xi is in a cluster c ∈ C then xi is already analyzed, go to the next sample
Else create new cluster c← {xi}
for j = i+ 1, . . . , i+m do

If k(xi,xj) > s and xj not in a cluster then c = c ∪ xj

end
Add c to a list of clusters C

end

Initialization and identifiability. In Algorithm 1, we initialize the weights to be equal, reflecting,
in a Bayesian sense, an uninformative prior over the Vendiscope’s probabilities. This choice allows
the Vendiscope to assign identical weights to exact duplicates. A random weight initialization would
cause issues with the identifiability of exact duplicates due to the optimization of the pVS. For exact
duplicates, an optimized pVS only places a constraint on the sum of their scores. Consider, for
instance, a collection with 3 elements and the kernel matrix with the first column (1, 0, 0) and and
identical second and third columns (0, 1, 1). In this setting, the pVS can be maximized with p1 = 0.5
and p2 + p3 = 0.5, yielding an optimal pVS of 2. If we initialize all weights to be equal, p2 and p3
will have identical gradients throughout the iterations and will remain equal.

2.4 UTILIZING THE VENDISCOPE SCORES

The Vendiscope scores enable a range of diagnostic tasks. Below we highlight three uses illustrative
use cases, showing how the scores act as an algorithmic microscope for datasets and models.

Detecting rare elements. We call rare elements those data points that contribute most to the di-
versity of the collection. As demonstrated earlier, these are the data points to which the Vendiscope
assigns the highest probabilities. Our experiments also show that these data points tend to be the
ones that models may struggle to predict. Instead, we find that data points that are assigned the
lowest probabilities by the Vendiscope yield the best model predictions.

Detecting duplicates. Duplicates in data will contribute to the diversity of a dataset almost iden-
tically. These duplicates should therefore have very similar probabilities. This insight motivates
how we detect duplicates in Algorithm 2. Importantly, we do not need to calculate all N2 pair-wise
similarities in the data and can instead focus on data points that the Vendiscope assigns similar prob-
abilities. More specifically, we find redundant data points by only computing similarities between
each sample and its m closest neighbors, where closeness is measured using the assigned probabil-
ities from the Vendiscope. Choosing m large comes at a higher computational cost. We find that
values of m in the order of 1− 2% of the size of the dataset are sufficient for analyzing large-scale
datasets with hundreds of millions of data points. At this scale, the Vendiscope can identify over
95% of all duplicates at a fraction of the cost of computing all pairwise similarities.

This algorithm is also amenable to computing optimizations. After computing the Vendiscope
weights, we can distribute subsets of the dataset across independent processes, avoiding the need
to load the full dataset into memory. Batch comparisons can further leverage GPU matrix operations
for additional speedups. Together, these optimizations make duplicate detection with the Vendiscope
both scalable and memory-efficient, suitable for large modern ML datasets.

Detecting memorization. Detecting whether a generative model has memorized its training data
is typically done by comparing each generated output against all training examples. This brute-force
strategy is prohibitively expensive for large-scale datasets. The Vendiscope offers a scalable alter-
native: by applying it to the training data, we find that outputs assigned the lowest probabilities are
exactly those that overlap most with the generated set. We confirm this empirically in Section 3,
where we show that low-probability training datapoints coincide with memorized samples across
multiple image generative models. The patterns also hold when applying the Vendiscope to the gen-
erated collection instead of the training set. The generated outputs assigned the lowest probabilities

4
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by the Vendiscope have higher similarities with samples in the training set. These findings can allow
researchers to more efficiently detect memorization in generative models.

3 EXPERIMENTS

We demonstrate the various capabilities by analyzing the protein universe and AlphaFold’s perfor-
mance. We then analyze CIFAR-10 and 13 image generative models trained on it. In all settings,
the Vendiscope uncovers important insights about training data composition and the performance
of models trained on these datasets. We also analyze benchmark materials science data alongside 3
property prediction models in Section A.3.

3.1 EXPLORING THE LANDSCAPE OF THE PROTEIN UNIVERSE

The UniProt database is the community’s most comprehensive representation of the protein universe,
containing over 250 million annotated sequences. It underpins nearly all modern ML models for
proteins, including AlphaFold, ProtBert, and ProtT5 (Jumper et al., 2021; Brandes et al., 2022;
Elnaggar et al., 2021) and has become an important resource for biological discovery.

We use the Vendiscope to analyze UniProt, revealing key insights into rare and redundant sequences
in the dataset and how it can affect model performance. Using ProtT5 embeddings, the Vendis-
cope analyzes the entire database in under two hours on a single compute node equipped with 8
NVIDIA A6000 GPUs. We expect even faster speeds with optimized data loading procedures. All
experimental settings are in Section A.2.

The Vendiscope scores measure more than prevalence. Here we show how the ranking pro-
duced by the Vendiscope can reflect important factors about how datasets are formed. In the protein
universe in particular, the Vendiscope’s scores capture evolutionary phenomena. We demonstrate
this with two contrasting sets of proteins in Figure 1.

Proteins involved in amino acid metabolism are consistently ranked low by the Vendiscope. These
proteins come from enzymes that have been repeatedly reused across different biological func-
tions (Jensen, 1976). As a result, many homologous sequences with high similarity exist, even
if they are functionally distinct. The presence of these similar sequences makes these proteins com-
mon from the perspective of the Vendiscope, driving their scores down. Binding proteins such as
chemokine or bombesin receptor ligands, in contrast, are marked as rare by the Vendiscope. Each
of these proteins tends to be highly distinct from each other and subject to strong evolutionary con-
straints that prevent the emergence of close variants with different functions (Wang et al., 2016;
Zlotnik et al., 2006). The lack of similar sequences makes these protein rare, and thus they con-
tribute strongly to the diversity of the protein universe. We provide additional examples of how
common proteins are often associated with fundamental metabolic pathways in Fig. 6.

AlphaFold struggles with proteins that contribute most to diversity. This distinction between
common and rare proteins has direct implications for model evaluation. We find that the rare se-
quences identified by the Vendiscope – the sequence that contribute most to the diversity of the
protein universe – are also those on which AlphaFold performs most poorly. As shown in Fig-
ure 2, prediction confidence, as determined by the average predicted local distance difference test
(pLDDT) over each sequence, declines significantly for the rarest sequences. Structural accuracy is
particularly poor for functions concentrated in rare sequences, such as binding proteins, compared
to those found among common sequences. These results underscore the value of algorithmic mi-
croscopy: the same scoring that highlights outliers in the data also pinpoints where models are most
likely to fail. Our analysis also provides a roadmap for improved data collection that prioritizes
regions of the protein universe where new data would most enhance model performance.

The Vendiscope efficiently detects redundant protein sequences. Next, we deploy the Vendis-
cope to identify near-duplicate sequences in the protein universe. Detecting and removing redundant
samples is important for building smaller versions of datasets like UniProt. For biologists, this can
enable faster sequence searches and more efficient model training (Sieber et al., 2018; Suzek et al.,
2015). Currently, MMseqs2 is the most popular approach for protein sequence clustering (Steineg-
ger & Söding, 2018). In Figures 3 and 7, we highlight how the duplicate clusters identified by the

5
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Figure 1: Various selected Gene Ontology (GO) functions that are enriched among highly-ranked
and low-ranked proteins. All displayed functions concentrated in rare proteins have roles in protein
binding (GO:0005515), whereas all displayed functions in low-ranked proteins fall under amino acid
metabolic processes (GO:0006520).
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Figure 2: AlphaFold confidence is significantly worse on rare protein sequences. Left: Violin plot of
average pLDDT for the top (most rare) and bottom (most common) 50,000 sequences. Right: Violin
plot of AlphaFold confidences for proteins with certain GO functions. We select 10 GO functions
that are primarily present among low-scoring proteins (’Common GO’) and 10 GO functions that
are enriched among high-scoring proteins (’Rare GO’). GO functions are shown in Fig. 1.

Vendiscope have clear biological interpretations and are significantly larger than those identified
by MMseqs2. Indeed, we identify 21, 003, 854 clusters containing 210, 372, 272 proteins with the
Vendiscope, while MMseqs2 identifies 29, 540, 400 clusters that encompass only 127, 545, 233 pro-
teins. We further benchmark the quality of clusters using GO annotations and find that the Vendis-
cope and MMseqs2 provide similar levels of consistency (Section A.2). The Vendiscope also runs in
the same time as MMseqs2 (two hours on 40 CPU cores). By producing larger, biologically mean-
ingful clusters without additional cost, the Vendiscope offers a scalable and practical alternative for
redundancy detection in massive protein datasets.

3.2 DIAGNOSING IMAGE GENERATIVE MODELS

We apply the Vendiscope to CIFAR-10 and to the outputs of 13 state-of-the-art generative models
trained on CIFAR-10. These models span architectures, including GANs, diffusion, and flow net-
works (Stein et al., 2023). In this setting, the Vendiscope exposes near-duplicates in both training
and generated data and reveals systematic memorization patterns in high-performing models. All
experimental settings are in Section A.4.
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Figure 3: The Vendiscope identifies large protein clusters with consistent annotations. Top: PCA
scatter plot of all proteins originating from the ahcY gene, with duplicate clusters from the Vendis-
cope (left) and MMseqs2 (right) overlaid. The 10 clusters with the most proteins from the ahcY
gene are shown for both methods.
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Figure 4: CIFAR-10 image generative models with
high duplication rates have high human error rates.
Models that produce 0 duplicates produce lower qual-
ity outputs according to human judges.

Detecting duplicates in CIFAR-10.
The Vendiscope efficiently identifies
near-duplicates in CIFAR-10 (Fig. 10),
assigning them nearly identical contribu-
tions to dataset diversity. While duplicates
can be identified with brute-force searches
or manual curation (Recht et al., 2018), the
Vendiscope provides a scalable alternative
for much larger datasets.

Detecting duplicates in state-of-the-art
image generative models. We next ap-
ply the Vendiscope to the generative mod-
els from Stein et al. (2023). Useful gener-
ative models should produce images that
are novel, diverse, and of high percep-
tual quality. However, existing evaluation
methods for image generative models do

not directly measure the number of duplicates in the generated outputs. In Fig. 4, we show the num-
ber of duplicates for each model, as well as the average human error rate provided by Stein et al.
(2023). We observe that the generative models producing the highest quality images, with lower hu-
man error rates, also produce many duplicates. These results are consistent with Pasarkar & Dieng
(2024), where they found that the models that produced the highest perceptual quality models also
seemed to generate large clusters of similar images.

Detecting memorization. We now apply the Vendiscope to detect memorization on these mod-
els. Memorization is an undesirable property of generative models, although its causes are not well
understood. We use the Vendiscope to study this phenomenon by comparing each training data-
point’s score with its maximum similarity to generated outputs. Memorized points are those with
near-duplicate matches in the generated collection. Across the 13 generative models, we find a
strong negative correlation between the Vendiscope scores and memorization: low-scoring training
samples are frequently reproduced by the models, while high-scoring (rare) samples are never mem-
orized (Fig. 5, Fig. 11). This suggests that generative models preferentially copy data points that
contribute least to diversity. We additionally find that models trained on CIFAR-10 which memo-
rize common images the most achieve higher image quality scores as measured by human error rate
(Figs. 5 and 12). This raises significant concerns about the reliability of image fidelity metrics like
human error rate and underscores the need for more granular analyses when evaluating models.
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Figure 5: Memorization is strongly correlated with the Vendiscope rank of CIFAR-10 training data
for various image generative models. Top: 12 models and their degree of memorization for each
training point is displayed, showing strong correlations between rarity and memorization. Models
for which the correlation is weaker are in the third column. Bottom: Bar plot showing that the
models with stronger memorization and higher correlation with the Vendiscope rank produce higher
quality images than others.
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4 RELATED WORK

The Vendiscope offers many capabilities, including detection of duplicates and memorized samples.
Related works address these tasks individually and in specific domains. We review them below.

Near duplication detection. Several methods exist to detect duplicates in specific domains, e.g.
proteins and text (Kocetkov et al., 2022; Lee et al., 2021; Steinegger & Söding, 2018; Zhang et al.,
2023). We provide a summary of many popular algorithms in Table 1. For proteins, MMSeqs2
relies on k-mer matching (Steinegger & Söding, 2018), but its heuristics can miss near-duplicates
(Ou et al., 2023). knnProtT5 leverages embeddings instead to perform k-nearest neighbors, though
it struggles with variable cluster sizes (Schütze et al., 2022). For text, MinHash-based LSH (Lee
et al., 2021; Kocetkov et al., 2022) scales well but ignores semantic similarity. RETSim accounts
for semantic similarity by training specialized text encoders, but is not generally applicable (Zhang
et al., 2023). In contrast, the Vendiscope identifies near-duplicates efficiently across domains and
provides insights into datasets beyond redundancy.

Detecting memorization in generative models. Significant efforts have been made to identify
the causes of memorization in generative models (Kandpal et al., 2022; Lee et al., 2021; Tirumala
et al., 2022). Duplication and overfitting are often linked to memorization, although models may
still memorize in the absence of duplicates or long training regimes (Jagielski et al., 2022; Somepalli
et al., 2023). Webster et al. (2021) showed that when face datasets contain over-represented iden-
tities, generative models often reproduce those identities, revealing how redundant regions of the
training distribution are prone to memorization. Our results align with this view: we find that redun-
dant samples, those that contribute least to diversity, are more prone to memorization.

Characterizing large-scale datasets. Datasets like the Stack, FineWeb, and C4, have become
staples for training large language models (Kocetkov et al., 2022; Penedo et al., 2024; Raffel et al.,
2020). However, the contents of these datasets are not well understood. Prior work has focused on
high-level analyses, such as ablations to justify curation strategies (Penedo et al., 2024), n-gram and
duplicate counts (Elazar et al., 2023), or topic distributions (Zhong et al., 2024). The Vendiscope
can complement these analyses by providing information about sample rarity. Furthermore, the
Vendiscope can facilitate more nuanced duplicate searches and is applicable across domains.

Vendi scoring. The Vendiscope maximizes the pVS (Friedman & Dieng, 2023) and, as such, re-
lates to methods that leverage the VS. Berns et al. (2023) optimized the sum of the pVS and the
Shannon entropy of the probabilities involved in the computation of the pVS to balance the modes
of generative models, enhancing their ability to produce diverse outputs. The VS has been extended
and applied in multiple ways, owing to its flexibility (Askari Hemmat et al., 2024; Kannen et al.,
2024; Liu et al., 2024; Nguyen & Dieng, 2024; Mousavi & Khalili, 2024; Pasarkar et al., 2023;
Rezaei & Dieng, 2025; Bhardwaj et al., 2025; Jung et al., 2025). The Vendiscope optimizes the pVS
via projected gradient descent, yielding interpretable sample-level measurements and an ability to
scale to massive datasets with parallelization.

5 CONCLUSION

We introduced the Vendiscope, an algorithmic microscope designed to enhance our ability to analyze
complex datasets and models. The Vendiscope measures the contribution of each datapoint to the
overall diversity of the dataset in linear time. Our experiments on proteins, images, and materials
show this flexible framework can identify rare and redundant data, diagnose model failure modes,
and detect memorization. Looking ahead, the Vendiscope has the potential to serve as a predictive
tool that helps researchers anticipate model performance even before training begins.

CODE AND DATA AVAILABILITY

All code, data, and model checkpoints are available at this anonymized Google Drive folder.
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dis, Yacine Jernite, Margaret Mitchell, Sean Hughes, Thomas Wolf, et al. The stack: 3 tb of
permissively licensed source code. arXiv preprint arXiv:2211.15533, 2022.

Andriy Kryshtafovych, Torsten Schwede, Maya Topf, Krzysztof Fidelis, and John Moult. Critical
assessment of methods of protein structure prediction (casp)—round xiii. Proteins: Structure,
Function, and Bioinformatics, 87(12):1011–1020, 2019.

Andriy Kryshtafovych, Torsten Schwede, Maya Topf, Krzysztof Fidelis, and John Moult. Critical
assessment of methods of protein structure prediction (casp)—round xiv. Proteins: Structure,
Function, and Bioinformatics, 89(12):1607–1617, 2021.

Katherine Lee, Daphne Ippolito, Andrew Nystrom, Chiyuan Zhang, Douglas Eck, Chris Callison-
Burch, and Nicholas Carlini. Deduplicating training data makes language models better. arXiv
preprint arXiv:2107.06499, 2021.

Kangming Li, Daniel Persaud, Kamal Choudhary, Brian DeCost, Michael Greenwood, and Jason
Hattrick-Simpers. Exploiting redundancy in large materials datasets for efficient machine learning
with less data. Nature Communications, 14(1):7283, 2023.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Tsung-Wei Liu, Quan Nguyen, Adji Bousso Dieng, and Diego Gomez-Gualdron. Diversity-driven,
efficient exploration of a mof design space to optimize mof properties: application to nh3 adsorp-
tion. ChemRxiv preprint, 2024.

Shayne Longpre, Robert Mahari, Anthony Chen, Naana Obeng-Marnu, Damien Sileo, William
Brannon, Niklas Muennighoff, Nathan Khazam, Jad Kabbara, Kartik Perisetla, et al. A large-
scale audit of dataset licensing and attribution in ai. Nature Machine Intelligence, 6(8):975–987,
2024.

Christian Michelot. A finite algorithm for finding the projection of a point onto the canonical simplex
of Rn. Journal of Optimization Theory and Applications, 50:195–200, 1986.

Mohsen Mousavi and Nasser Khalili. VSI: An Interpretable Bayesian Feature Ranking Method
Based on Vendi Score. SSRN, 2024.

Quan Nguyen and Adji Bousso Dieng. Quality-Weighted Vendi Scores And Their Application To
Diverse Experimental Design. In International Conference on Machine Learning, 2024.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In International conference on machine learning, pp. 8162–8171. PMLR, 2021.

Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional image synthesis with aux-
iliary classifier gans. In International conference on machine learning, pp. 2642–2651. PMLR,
2017.

Sadman Sadeed Omee, Steph-Yves Louis, Nihang Fu, Lai Wei, Sourin Dey, Rongzhi Dong, Qinyang
Li, and Jianjun Hu. Scalable deeper graph neural networks for high-performance materials prop-
erty prediction. Patterns, 3(5), 2022.
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A APPENDIX

A.1 THE VENDISCOPE MEASURES CONTRIBUTION TO DIVERSITY

We argue that optimizing Eq. 2 yields probabilities that correspond to the rarity of each sample.
Indeed, for all orders of q, Equation 2 is maximized when the eigenvalues η1p, . . . , ηNp are the
same. Therefore, to successfully optimize Equation 2 the probabilities should be learned such that
all eigenvalues are within a small ϵ distance of each other: ηmin ≤ ηip ≤ ηmin + ϵ, where ϵ > 0 and
ηmin denotes the minimum eigenvalue. We assume without loss of generality that ηmin is non-zero.
We can link the uniformity of the eigenvalues to the Vendiscope’s learned probabilities using the
Gershgorin Circle Theorem (Varga, 2011). From this theorem, we know that the eigenvalues of K̃p

are located in discs with radii determined by the row-sums. Define Cj =
∑N

i ̸=j Kij
√
pi, which

corresponds to a sum of weighted similarities between one sample and the rest of the dataset. Then,
for each eigenvalue ηip, there exists a row index j ∈ {1, . . . , N} such that

|ηip − pj | ≤
√
pjCj (3)

Varga (2011) additionally states in Theorem 1.6 that if a set of L discs is disjoint from all other
discs, it must contain L eigenvalues. As a result, if there exists a single sample xj with disc cen-
tered at pj that is disjoint from all other discs and is not within √pjCj of the eigenvalue interval
[ηmin, ηmin + ϵ], it would contain an eigenvalue that violates our uniformity assumption. We there-
fore expect all discs to be tightly clustered around the eigenvalue interval.

In order to construct such discs, the highest probabilities pj must be assigned to the samples xj with
the smallest weighted row-sums Cj . Otherwise, any disc with small Cj and pj will have a small
radius and be far away from the eigenvalue interval, creating a disjoint disc. Since samples with low
Cj are those that are most distinct from the rest of the dataset, particularly other high-probability
samples, assigning high probability to them ensures the rarest samples receive the greatest weight in
the optimal p∗.

A.2 PROTEIN UNIVERSE ANALYSIS

A.2.1 EXPERIMENTAL SETTINGS

We use the UniProtKB release v2024.02. To extract protein embeddings from sequences, we average
over all per-residue embeddings from the ProtT5-XL-UniRef50 model (Elnaggar et al., 2021) to
obtain a single vector respresentation per protein. We then use Vendi Score order q = 0.1 to calculate
the Vendi Scores in 1. Finally, To detect duplicates in Algorithm 2, we use a search range of m =
2, 000, 000.

A.2.2 ADDITIONAL ANALYSIS OF THE PROTEIN UNIVERSE

We have reported that over 80% of the UniprotKB has a near-duplicate in the database based on
a similarity threshold of 0.9. We find that there remains a large number of duplicates for other
thresholds as well: 46.9% of sequences have a near-duplicate even for a threshold of 0.99 (Fig. 8).

To further benchmark the quality of the clusters identified by the Vendiscope, we measure the con-
sistency of the functions of the proteins in each cluster. Each protein has a list of GO annotations
that describe all of the protein’s known functions (Ashburner et al., 2000; Aleksander et al., 2023).
To measure the similarity between two GO terms, we record the reciprocal of the distance between
GO terms on the corresponding GO tree, as described in (Sangar et al., 2007). To then compute the
similarity between pairs of proteins P1 and P2, we must compare two lists of GO terms. We use the
Average-Best-Match approach by Zhao & Wang (2018). Suppose P1 has m terms go11, go12, . . . ,
go1m and P2 has n terms go21, go22, . . . , go2n. The similarity between P1 and P2 is defined as

k′(P1, P2) =
1

m+ n

 m∑
i=1

max
go1i

k(go1i, go2j) +
n∑

j=1

max
go2j

k(go1i, go2j)

 . (4)

where k(·, ·) is a similarity kernel. Eq. 4 provides a measure of similarity between the functional
annotations of a pair of proteins. To then obtain a measure of consistency for a given cluster, we
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A0A1J4KEB7 

Uncharacterized F-BAR 
domain-containing

P02332

Uncharacterized 
Protein

A0A0J7K793

Uncharacterized 
Protein

P02334

Uncharacterized 
Protein

Top Scoring Proteins

A0A4Q6FGC7 

Cystathionine beta-
synthase

C1D719 

NAD(+) synthetase, 
translocation of lipoproteins

A0A5J6NSM1

Glutamine-dependent 
NAD(+) synthetase

A0A5C8ISY3

Glutamine-dependent 
NAD(+) synthetase

Bottom Scoring Proteins

Figure 6: The Vendiscope’s rarest (top scoring) proteins and those that contribute least to diversity
(low scoring) proteins and their corresponding AlphaFold predicted structures. Rare proteins are
mostly uncharacterized or contain unrealistic structures, such as missing the characteristic banana
shape of the F-BAR domain. Bottom-scoring proteins are involved in fundamental pathways such
as NAD(+) synthesis and transsulfuration.

Figure 7: PCA scatter plot of all proteins originating from the ahcY gene, with duplicate clusters
from the Vendiscope (left) and MMseqs2 (right) overlaid. The 10 clusters with the most proteins
from the ahcY gene are shown for both methods.

compute the average semantic similarity between a cluster’s representative sequence and all other
sequences in the cluster. In the Vendiscope, we define the representative sequence for each cluster
as the sequence whose closest to the cluster’s centroid. For context, the representative sequence
in a MMseqs2 cluster is the cluster’s longest sequence. We find that the clusters identified by the
Vendiscope have an average semantic similarity of 0.942±0.105, while those identified by MMseqs2
have an average of 0.985 ± 0.049 semantic similarity. Both similarities are quite high and likely
suffer from how certain proteins may have poor annotations. Nevertheless, the Vendiscope is within
one standard deviation of MMseqs2 in terms of semantic similarity while still identifying 65% more
proteins with near-duplicates.

A.3 ANALYZING THE MATERIALS PROJECT DATABASE

We use the Vendiscope to analyze the composition of the Materials Project database (v2024.12.18).
The Materials Project is the result of a significant computational effort to calculate the properties
of many materials (Jain et al., 2013). This database has been instrumental in training ML models
for materials property prediction and continues to grow. The prioritization of which materials are
added has significant implications for the quality of future models. Using the Vendiscope on three
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Figure 8: Number of Sequences with Near-Duplicates in the UniprotKB using different similar-
ity thresholds. Even for larger similarity thresholds, including exact matches, here is a significant
amount of near-duplication

popular models—ALIGNN (Choudhary & DeCost, 2021), CGCNN (Xie & Grossman, 2018), and
DeeperGATGNN (Omee et al., 2022)—we characterize the materials in the Materials Project, reveal
potential biases within the database, and identify patterns of model failure for property prediction.

Material Property Prediction Model Training. We train 3 models on the Materials Project. We
use the recommended settings from each model for pre-processing crystal structures. We therefore
use a cut-off radius of 8 Å for constructing graphs for CGCNN and DeeperGATGNN, and 4 Å for
constructing graphs for ALIGNN. We sweep over hyperparameters such as the number of hidden
layers and hidden dimensions before training models on the entire dataset. All models are trained
to convergence: CGCNN uses 1000 epochs with batch-size 256, DeeperGATGNN uses a batch-size
of 100 for 400 epochs, and ALIGNN uses a batch-size of 16 for 300 epochs. We use the model
checkpoint at the final epoch for all downstream analysis.

Property prediction accuracy degrades on materials that enhance diversity. The three selected
models all achieved state-of-the-art property prediction performance at the time of their publication.
However, they all fail to model the same types of materials: the ones that enhance diversity.

We trained each model to predict formation energy and band gap. We then extracted embeddings
from each model by using the output from the layer just before the final prediction layer and used
them to run the Vendiscope. In Figure 9, we show that the error associated with formation energy
prediction is significantly higher for rare materials. The rare materials, as shown in 9, tend to have a
smaller number of sites in their unit cell.

To characterize model behavior further, we partitioned materials into conductors (band gap = 0
eV) and non-conductors (band gap ̸= 0). Applying the Vendiscope to the embeddings from each
group separately shows that model performance worsens significantly on rare materials. Across
all models, rare materials are shown to have distinct physical properties from their bottom-scoring
counterparts. One-sided Mann-Whitney U tests confirm that rare non-conductors have lower band
gaps than common materials. The tests also confirm that rare conductors have large energies above
the hull for both the CGCNN and DeeperGATGNN models.

The failure of models to generalize to rare materials is unsurprising - previous work by Li et al.
(2023) also observe strong performance on redundant materials and poorer performance elsewhere.
Our findings motivate future data collection in the Materials Project database. Researchers should
aim to add smaller materials, semi-conductors, and less stable conductors to improve model perfor-
mance.
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Figure 9: Property prediction worsens on rare materials across models. Top: Analysis of formation
energy models, showing larger predictive errors on the 500 most rare materials compared to the bot-
tom 500 materials as computed by the Vendiscope. (Left). The rare materials correspond to those
with less sites in the unit cell (Right). Middle: Analysis of band-gap prediction models on non-
conducting materials. Predictive errors are higher for rare materials compared to common materials,
as shown by violin plots of error distribution (Left). Y-axis is logarithmic for display. The rare mate-
rials correspond to those with smaller band-gaps (Right). Bottom: Analysis of band-gap prediction
models on conductors. Prediction errors are significantly higher for rare materials than common
ones (Left). For all models except ALIGNN, rare materials correspond to those with higher energies
above the hull (Right). All distributions are statistically distinct as measured by Mann-Whitney U
Test (p < 0.01) unless otherwise specified.
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The Vendiscope detects duplicate crystals in the Materials Project database. We also apply the
Vendiscope to detect near-duplicates in the Materials Project database in the two embedding spaces
from ALIGNN. The first embedding space is the one implied by formation energy prediction.

Using Algorithm 2, we identify that 148, 907 materials (87.9% of the dataset) are near-duplicates at
a similarity threshold of s = 0.9, decreasing only to 121, 683 at a stricter threshold of s = 0.95. The
second embedding space is the one corresponding to band gap prediction. Among conductors in
this space, 67, 910 materials are near-duplicates at s = 0.9, with 52, 684 remaining near-duplicates
at s = 0.95. For non-conductors, 78, 643 materials are near-duplicates at s = 0.9, and 65, 891
materials remain above the stricter threshold of 0.95.

With the Vendiscope, we are able to find all of these near-duplicates rapidly: in all embedding
spaces, we only need to compute 19% of all pair-wise similarities in the Materials Project database.
Alternative approaches to identifying materials with similar structures rely on computing all pair-
wise similarities and require manual inputs. For example, the Materials Project database compares
carefully curated coordination site fingerprints across all materials to identify crystals with similar
atomic arrangements and bonding patterns.

A.4 IMAGE GENERATIVE MODEL ANALYSIS

A.4.1 EXPERIMENTAL SETTINGS

We employ image embeddings from the DINOv2 ViT-L/14 network (Oquab et al., 2023). In all
analyses, we use a cosine similarity kernel and a Vendi Score order of q = 0.1. Duplicates are iden-
tified with a search range of m = 10, 000 and a similarity threshold of s = 0.9, which corresponds
to computing only 33% of all pairwise similarities on CIFAR-10. To analyze the generative models
from Stein et al. (2023), we run the Vendiscope on the DinoV2 embeddings of 50, 000 generated
images from each model.

A.4.2 ADDITIONAL ANALYSIS OF IMAGE GENERATIVE MODELS

Specific examples of the varying degrees of memorization for rare and common samples from the
iDDPM-DDIM model are displayed in Fig. 11 (Nichol & Dhariwal, 2021). The rare samples in the
training dataset are not represented in the generated dataset, whereas the model generates almost
exact replicas of common samples.

We also find that models whose pattern of memorization can be explained by the Vendiscope’s
ranking of training data create the highest-quality images (Figure 12). These models memorize
common images and do not recreate the rare training samples in their outputs. Models that do
not follow this pattern of memorization, such as the LOGAN model, do so at the cost of creating
high-quality images. Finally, in Figure 13, we run the Vendiscope on the generated outputs from
each model. We find that the most common images generated by each model are those that are
increasingly similar to the training data. This suggests we can use the Vendiscope to identify model
memorization, even in the absence of training data.

Our findings span popular model architectures, including diffusion models, GANs, VAEs, and flows.
In all, we tested 8 GAN models: ACGAN (Odena et al., 2017), BigGAN (Brock et al., 2019),
LOGAN (Wu et al., 2019), ReACGAN (Kang et al., 2021), MHGAN, (Turner et al., 2019), WGAN-
GP (Gulrajani et al., 2017), StyleGAN2-ada (Karras et al., 2020), and StyleGAN2-XL (Sauer et al.,
2022). Additional models tested include NVAE (Vahdat & Kautz, 2020), RESFLOW (Chen et al.,
2019), and the three diffusion models iDDPM-DDIM (Nichol & Dhariwal, 2021) PFGM++ (Xu
et al., 2023), and LSGM-ODE (Vahdat et al., 2021).
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Figure 10: The Vendiscope Helps Detect Near-Duplicates Left: Selected near-duplicates present
in the training CIFAR10 dataset. Right: The Vendiscope ranks of each pair of near-duplicates are
concentrated along the diagonal, demonstrating that similar images contribute similarly to a dataset’s
overall diversity. A total of 955 images are near-duplicates.

Figure 11: CIFAR-10 training data Vendiscope scores are strongly correlated with their degree of
memorization. Results shown for iDDPM-DDIM model. Left: Redundant training samples, those
with low contributions to diversity, are memorized by the generative model. Samples are marked
in red on the center plot. Right: Rare samples, those with high diversity contributions, are not
memorized. Samples are marked in blue on the center plot.

Method Input
Complexity

Time Space
MMSeqs2 Protein Sequences O(N) O(NL)
knnProtT5 Protein Embeddings O(NlogN) O(ND)
MinHash Raw Text O(KT2N) O(NK)
RETSim Text Embeddings O(ND) O(ND)
The Vendiscope Any Embedding O(Nm+ND2) O(ND)

Table 1: A comparison of various de-duplication methods for a dataset with N samples. For protein
sequence databases, we denote L as the maximum protein sequence length. For embedding-based
methods, we denote D as the dimensionality of each sample’s embedding. For MinHash, we denote
K as the number of hashing functions used, and T as the maximal number of tokens in a document.
In the Vendiscope, we denote m as the search-range used in Algorithm 2.
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Figure 12: Image fidelity is linked to memorization of common samples. Left: Scatter plot showing
the ranking of samples by Vendiscope weights for CIFAR-10 training data against their degree of
memorization by the LOGAN model. Line of best fit shows correlation between the two. Right:
Scatter plot of the Human Error Rate for all 13 models (LOGAN highlighted in orange) against
what % of the Memorization can be explained by the Vendiscope’s ranking of the training data. %
Memorization explained is measured by computing the R2 between the Vendiscope’s ranking of
CIFAR-10 training data and the closeness to the nearest generated sample.
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Figure 13: Memorization is also correlated with the Vendiscope rank of CIFAR-10 synthetic images
for all tested various image generative models. Memorization of a generated image is measured as
its highest similarity to any sample in the training set. Models for which the correlation is weaker
are in the third column.
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