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Mamba in Speech: Towards an Alternative to
Self-Attention

Xiangyu Zhang
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Abstract—Transformer and its derivatives have achieved success
in diverse tasks across computer vision, natural language process-
ing, and speech processing. To reduce the complexity of compu-
tations within the multi-head self-attention mechanism in Trans-
former, Selective State Space Models (i.e., Mamba) were proposed
as an alternative. Mamba exhibited its effectiveness in natural
language processing and computer vision tasks, but its superiority
has rarely been investigated in speech signal processing. This paper
explores solutions for applying Mamba to speech processing by
discussing two typical speech processing tasks: speech recogni-
tion, which requires semantic and sequential information, and
speech enhancement, which focuses primarily on sequential pat-
terns. The experimental results confirm that bidirectional Mamba
(BiMamba) consistently outperforms vanilla Mamba, highlighting
the advantages of a bidirectional design for speech processing.
Moreover, experiments demonstrate the effectiveness of BiMamba
as an alternative to the self-attention module in the Transformer
model and its derivates, particularly for the semantic-aware task.
The crucial technologies for transferring Mamba to speech are then
summarized in ablation studies and the discussion section, offering
insights for extending this research to a broader scope of tasks.
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1. INTRODUCTION

RANSFORMER-BASED models [1] have shone brightly
T across various domains in machine learning, including
computer vision (CV) [2], [3], [4], natural language processing
(NLP) [5], [6], [7], and speech processing [8], [9], [10], [11].
This success is linked to the multi-head self-attention (MHSA)
module, which facilitates the representation of intricate data
structures within a specific context window. However, the self-
attention mechanism encounters a challenge with computational
complexity, which grows quadratically as the size of the con-
text window increases. In speech tasks, the window typically
encompasses an entire speech signal, leading to substantial
computational demands, particularly for frame-level acoustic
feature sequences.

To address this challenge, state space models (SSMs) have
emerged as a promising alternative [12], [13], [14], [15]. By in-
tegrating a time-varying mechanism into SSMs, a selective SSM
named Mamba [16] has been proposed and shown outstanding
performance to be effective in CV [17],[18] and NLP [19]. How-
ever, in the field of speech processing, despite some attempts to
replace Transformers with Mamba [20], [21], [22], the results
have not been as satisfactory as expected. In [20], each Mamba is
directly employed as a substitute for a Transformer within a dual-
path framework for speech separation. [21] proposed SPMamba
for speech separation, where Mamba is used in conjunction with
MHSA. Although these approaches achieve high performance
by employing a dual-path strategy or combining Mamba with
attention to form a new module, these methods negate the low
time complexity of Mamba. In the domain of multi-channel
speech enhancement, Mamba was implemented to enhance a
SpatialNet from offline to online [22] yet underperformed the
vanilla version.

Since different speech tasks focus on various characteristics
of a speech signal (e.g., speaker, language, emotion), they gen-
erally require different levels of information. However, existing
approaches have mostly investigated speech enhancement and
separation tasks, which focus primarily on the low-level infor-
mation within a speech signal. Therefore, it is still unclear how to
efficiently employ Mamba for other speech tasks, such as speech
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recognition and spoken language understanding, which require
high-level semantic information within the speech signals.

In this paper, we explore solutions for applying Mamba to
different speech tasks based on their varying information re-
quirements (in different abstraction levels [23]) using speech
recognition and speech enhancement as examples. We first intro-
duce and compare two bidirectional Mamba (BiMamba) struc-
tures, external BiMamba (ExtBiMamba) and inner BiMamba
(InnBiMamba), in speech tasks. The experiments confirm that
a bidirectional design can enhance the capability of Mamba
to model global dependencies within the features of a speech
signal. Mamba and BiMamba models are then evaluated inde-
pendently or as replacements for MHSA in Transformer and
Conformer models. We demonstrate that the proposed BiMamba
modules require additional nonlinearity to effectively learn high-
level semantic information in speech tasks. Therefore, using Bi-
Mamba as an alternative to MHS A presents an optimal approach
for applying Mamba in this scenario.

II. PRELIMINARY
A. State Space Models and Mamba

The State Space Model (SSM) based architectures, such
as the Structured State Space Sequence (S4) Model [13] and
Mamba [16], are typically inspired by the continuous linear
time-invariant (LTI) systems. It maps a sequence z(¢) € R to
y(t) € R by leveraging a hidden state h(¢) € RV *!. Formally,
the mapping process of SSMs can be formulated as follows:

h'(t) = Ah(t) + Bz(t),

y(t) = Ch'(t) + Da(t), 8]
where A c RV*N BecRN*!, CeR"™ N, and D €R (optional)
represent the continuous SSM parameters [16].

SSM Discretization: In Mamba and S4, a discretization pro-
cess is applied to continuous-time SSMs for the integration
into practical deep neural architectures. A timescale parameter
A € Ris introduced to transform the continuous matrices A, B
to their discrete counterparts A, B. The zero-order hold (ZOH)

is a commonly used approach for the transformation, which is
formulated as follows:

A =exp(AA),
B=(AA) '(expAA —-T)-AB )

The approximation of B refined using the first-order Taylor
series is given by B ~ (AA)(AA) 'AB ~ AB. Thus, the
discrete SSM is expressed as:

h'(t) = Ah(t) + ABz(t),
y(t) = Ch'(t) + Dx(t). 3)

The output sequence can be computed simultaneously through
a global convolution operation as follows:

K- (CE, CAB,...,CA"'B,.. )

yzx@K, @)
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where K is a convolution kernel derived from the SSM, L is
the length of the input sequence, and ® denotes the convolution
operation. Since the parameters A, B, and C remain constant
with respect to input contents (temporal dynamics), previous S4
models struggle to effectively capture contextual information.

Selective SSM: Mamba [16] improves S4 by incorporating a
selective mechanism that enables adaptive parameter adjustment
based on input characteristics, presenting the selective state
space model. The parameters A, B, and C are computed as
functions of the input. Given the input sequence X = {x; | x; €
R>F 1 =1,...,L} and the output sequence Y = {y, |y, €
RY>E ] =1,... L}, the selective SSM handles each channel
independently through the hidden state h; € RV*¥ and the
formulation can be written as follows [24]:

h;=A,0h, ;1 +B/(A o), A; e RVXE

y,=Chi + Doy, DeR™", (5
where B; € RV*1, C; e RN, and A; € R are derived
from the input, and © denotes the Hadamard product. Mamba
generates the parameters B € RV*L, C € RE*N and A €
RL*E using the following projections: B = (XWpg)', C =
XWe, A = Softplus(XW; Wy) where W, W € REXN,
W, € REXIE/T] and W, € RIZ/71%E are projection matrices,
and softplus(-) refers to log(1 -+ exp(-)). The reduction ratio
r of the two-layer linear projection for A is set to 16 by
default [16]. Equation 5 represents the exact selective SSM used
in Mamba, with only slight formatting adaptations.

The selective mechanism features the dynamic parameters,
allowing the model to learn context-aware representations and
effectively filter out irrelevant information. However, it poses a
computational challenge: the convolution kernels become input-
dependent, preventing parallel convolution operations. To over-
come this problem, Mamba employs a hard-aware algorithm to
speed up computation, leveraging three classical techniques, i.e.,
parallel associative scan (also called parallel prefix-sum) [25],
kernel fusion, and recomputation. Researchers observed that
each state represents the whole compression of the previous
states, enabling the direct computation of new states from pre-
vious ones. This suggests that the execution order of operations
is independent of their associated attributes. Thus, Mamba em-
ploys the selective scan algorithm by computing sequences in
segments, iteratively combining them, and integrating parame-
ters that are conditioned on the input. In addition, GPUs consist
of numerous processors capable of highly parallel computations.
Mamba leverages the GPU’s high-bandwidth memory (HBM)
and fast SRAM I/O to avoid frequent SRAM writes to HBM
through kernel fusion. Concretely, the discretization and re-
cursive operations are performed in the higher-speed SRAM
memory, and the output is then written back to the HBM. During
backpropagation, the intermediate states are not stored but are
recomputed when inputs are loaded from the HBM to the SRAM.

Although these modifications have enhanced model perfor-
mance, granting it “selective” capabilities, they do not alter the
inherent nature of SSMs, which operate in a unidirectional man-
ner such as RNNs [26], [27]. This is not an issue in training large
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language models, as many of these models are trained in an au-
toregressive manner [28], [29]. However, for non-autoregressive
speech models, we require a module with non-causal capabilities
similar to attention. Thus, finding a suitable method to address
this issue is essential. Moreover, the observation that Mamba’s
A matrix randomization and real-valued diagonal initialization
perform equivalently suggests that Mamba’s ability to delineate
dependencies between inputs, compared to S4, needs further
enhancement.

B. Mamba for Audio Processing

Recent works have explored the use of SSMs and Mamba
methods in speech enhancement and separation. Distilled Au-
dio SSM (DASS) applied knowledge distillation with SSMs
and outperformed transformer-based models with processing
sequences up to 2.5 hours long [30]. Audio Mamba (AuM) [31]
and its variant for audio tagging [32] achieved comparable
or better performance than Audio Spectrogram Transform-
ers (AST) with roughly one-third of the parameters. Mean-
while, Self-Supervised Audio Mamba (SSAM) [33] established
that unidirectional Mamba blocks were particularly effective
for masked spectrogram modeling, consistently outperforming
transformer-based approaches while better handling varying
sequence lengths. [34] proposed a SEMamba method for speech
enhancement, which improved state-of-the-art performance by
integrating time-frequency Mamba into advanced SE architec-
ture. These advances collectively demonstrate the potential of
Mamba architectures as an efficient and scalable alternative to
transformers for audio processing tasks.

[35] conducted comprehensive experiments to compare
Mamba encoder and decoder with existing methods across var-
ious tasks, including TTS, ASR, SLU, and SUMM. Mamba en-
coder and decoder are introduced. [36] incorporates the Mamba
module in state-of-the-art methods of speech separation, ASR,
and TTS, comparing them with the vanilla models in their
respective tasks. [34] proposed a SEMamba method for speech
enhancement, which improved state-of-the-art performance by
integrating time-frequency Mamba into advanced SE architec-
ture. Our work, similar to [35] and [36], explores the use of
Mamba in speech processing tasks. However, we specifically
investigate Mamba’s ability to learn speech information at var-
ious levels of abstraction, positioning it as an alternative to the
self-attention module within Transformer and its derivatives.
Beyond experiment-based analysis, we delve into the reasons
behind the independent Mamba model’s lower performance in
ASR by examining the impact of nonlinearity.

III. INVESTIGATING MAMBA IN SPEECH PROCESSING
A. Bidirectional Processing

The original Mamba performs causal computations in a unidi-
rectional manner, using only historical information. However, in
speech tasks, the model is provided with the complete speech sig-
nal. Therefore, Mamba requires bidirectional computations, as
employed in the MHS A module, to capture global dependencies
within the features of the input signal. In this paper, we explored
two bidirectional strategies for Mamba in speech tasks, i.e., inner
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bidirectional Mamba (InnBiMamba) from vision Mamba [17]
and external bidirectional Mamba (ExtBiMamba) as shown in
Fig. 1.

InnBiMamba: We first explore the inner bidirectional
Mamba (InnBiMamba) from Vision Mamba [17] for speech
tasks as detailed in Fig. 1(a). Here, two SSM modules share the
same input and output projection layers. The process feeds the
input forward into one SSM module, while reversing the input
along the time dimension before feeding it into the other SSM
module. The output of the backward SSM module is reversed
back before being combined with the output of the forward SSM
module. The combined output then passes through the output
projection layer.

ExtBiMamba: We next propose a simpler and more straight
bidirectional modeling strategy, i.e., external bidirectional
Mamba (ExtBiMamba). The ExtBiMamba design is motivated
by several key considerations in bidirectional sequence model-
ing. While existing approaches often rely on internal bidirec-
tional mechanisms, our external approach offers distinct advan-
tages. First, by maintaining separate input and output projections
for forward and backward directions, ExtBiMamba allows each
direction to learn direction-specific feature transformations that
are optimal for processing the sequence in that particular order.
This is particularly valuable for modeling contextual dependen-
cies in speech signals, where certain acoustic patterns may be
more interpretable when traversed in one direction rather than
the other.

The separation of forward and backward paths also enables
more explicit modeling of temporal dependencies. The forward
pathway captures the natural progression of acoustic events,
while the backward pathway can effectively utilize future infor-
mation when analyzing the sequence in reverse. This is critical
for tasks that rely on contextual and sequential information, like
ASR, speech enhancement, or emotion recognition. Compared
to the InnBiMamba, the proposed ExtBiMamba design allows
the forward and backward directions to learn complementary
and non-redundant feature spaces. This separation enhances
the capacity of BiMamba to represent complex, hierarchical
structures in speech and contributes to improved performance
in tasks requiring fine-grained temporal understanding. Detailed
algorithms of these two methods are included in Section III-C.

B. Task-Aware Model Designs

Recent works have investigated Mamba in speech separation
and speech enhancement. These tasks primarily focus on low-
level spectral information of a speech signal [11]. In contrast,
other speech tasks like speech recognition and spoken language
understanding require capturing high-level semantic informa-
tion. With reference to equation 5, SSM comprises mostly linear
computations. This implies that it has limited capability to
capture high-level information such as semantics and emotions.
Although SiLU is used within residual structures in practical
implementations, this is primarily to represent the parameter D in
equation 1 for the state space model [16]. Therefore, adding more
nonlinearity ability is crucial for Mamba to capture high-level
information.
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Three applications of the Mamba layer in speech processing include: (a) using stacked unidirectional/bidirectional Mamba layers as an alternative

to Transformer layers; (b) replacing causal and non-causal MHSA in Transformer layer with unidirectional/bidirectional Mamba, termed TransMamba and
TransBiMamba; and (c) replacing MHSA in Conformer layer with Mamba, termed ConMamba and ConBiMamba.

To capture information of various abstraction levels, we
progressively explored three structures for increasing nonlin-
earity capability. As depicted in Fig. 2(a), the first strategy
uses the Mamba/BiMamba layers independently (i.e., as a di-
rect replacement for the transformer layer) to construct the
Mamba/BiMamba model. The second approach employs the
Mamba/BiMamba layer to replace the MHSA modules within
the Transformer, where the feed-forward network (FFN) and
layer normalization are used to provide nonlinearity. The third

replaces the MHSA modules with Mamba/BiMamba layers in
the Conformer, which is a variant of the Transformer employing
a convolutional layer after each MHSA designed to additionally
capture local information.

C. Algorithms of Bidirectional Mamba Modules

Algorithms 1 and 2 illustrate the workflows of InnBiMamba
and ExtBiMamba, respectively. The main differences are
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highlighted in violet. For the InnBiMamba layer, the linear
input projections (Linear™ and Linear?®) and the linear output
projection Linear™ are shared across forward and backward
operations. In contrast, the ExtBiMamba layer uses different
input linear projections (Linear) and Linear?) and output
linear projections (Linear},{) across forward and backward
operations. The dimensionality of the matrices is defined as
follows: B represents the training batch size, L denotes the
sequence length, D denotes the dimension of the input hidden
state, and £ denotes the expanded hidden state dimension, and
N denotes the SSM state dimension.

IV. EXPERIMENTAL SETUP

A. Speech Enhancement

Datasets: We follow previous works [37], [38] and employ
the clean speech data from the LibriSpeech train-clean-100
corpus [39] as the training set, containing 28 539 speech clips
spoken by 251 speakers. The noise recordings are collected from
the following datasets [37], i.e., the noise data of the MUSAN
datasets [40], the RSG-10 dataset [41] (voice babble, F16, and
factory welding are excluded for testing), the Environmental
Noise dataset [42], [43], the colored noise set (with an « value
ranging from -2 to 2in increments of 0.25) [44], the UrbanSound
dataset [45] (street music recording no 26 270 is excluded
for testing), the QUT-NOISE dataset [46], and the Nonspeech
dataset [47].

Noise recordings that exceeds 30 seconds in duration are split
into clips of 30 seconds or less. This yields 6 809 noise clips,
with each clip less than or equal to 30 seconds in duration.
For validation experiments, 1 000 clean speech and noise clips
(without replacement) were randomly drawn from the afore-
mentioned clean speech and noise sets and mixed to generate
a validation set of 1000 noisy clips, where each clean speech
clip was degraded by a random section of one noise clip at a
random SNR level (sampled between —10 and 20 dB, in 1 dB
steps). For evaluation experiments, we employed four real-world
noise sources (excluded from the training set) including two
non-stationary and two colored ones. The two non-stationary
noise sources were the voice babble from the RSG-10 noise
dataset [41] and street music from the Urban Sound dataset [45].
The two colored noise sources were F16 and factory welding
from RSG-10 noise dataset [41]. For each of the four noises, we
randomly picked twenty clean speech clips (without replace-
ment) from the test-clean-100 of LibriSpeech corpus [39] and
degraded each clip with a random section of the noise clip at the
five SNR levels, i.e., {—5dB,0dB,5 dB, 10 dB, 15 dB}. This
generated 400 noisy mixtures for evaluation.

Feature Extraction: All audio signals are sampled at a rate
of 16 kHz. We employ a 512-sample (32 ms) long square-root-
Hann window with a hop length of 256 samples (16 ms), to
extract a 257-point single-sided STFT spectral magnitude as the
input to the neural models [37].

Model Configurations: In our experiments, we employ the
same backbone network architecture (a typical neural solution
to speech enhancement) [37], [38], [48], [49], which comprises
an input embedding layer, stacked feature transformation layers

1937

Algorithm 1: InnBiMamba Layer Workflow.

Require: H; 1: (B, L, D)
Ensure: H;: (B, L, D)

I: HLl : (B,L,D) + Norm(H; ;)

2: : (B, L, E) < Linear*(H,_,)

3: z:(B,L,E) < Linear*(H, ,)

4: fo roec {forward backward} do

5. x,:(B,L,E) + SiLU(Convld,(x))
6: B,:(B,L,N) + Linear?(x))

7:  C,:(B,L,N) « LinearS(x,/)

8 A,:(B,L,E)«+

log(1 + exp(Linear? (x )+Parameter )

9: K :(B,L,E,N) + A,QParameter?
10: :(B,L,E,N) + A,QB,
11: : ( ,L,E) + SSM(A,,B,,C,)(x,)
12: end for
13: yforward (B, L, E) < Ytorwara © SiLU(z)
14: Yackward * (Bs Ly E) <= Ypackward © SiLU(2)
15 H;:(B,L,D)«+

. H
Linear (y;’orward + y{)ackward) + Hl71
16: returnH;

Algorithm 2: ExtBiMamba Layer Workflow.

Require: H; 1: (B, L, D)
Ensure: H;: (B, L, D)
1: H) ,:(B,L,D) <+ Norm(H; )
2: for o € {forward, backward} do
33 x,:(B,L E) < Linear} (H] ;)
Zo : (B ) < Linear?(H;_,)
E) < SiLU(Convld,(x,))
L,N) + Linear?(x/)
C,: (B,L,N) + LinearS(x,’)
E)

A AN A
S

9:  A,:(B,L,E,N) + A,QParameter’?
10: B,:(B,L,E,N)+ A,Q®B,

11:  y,:(B,L,E) «+ SSM(XO,EmC ) (%)

122 y! :(B,L,D) + Linear: (y, ® SiLU(z,))
13:  end for

14: H; : (B L, D) — (ygorward + yl/)ackward) +H;

15: returnH;

(such as Mamba, Transformer, and Conformer layers), and an
output layer. To systematically study the Mamba networks, we
use the standard Transformer [37], [38] and Conformer [9]
models as the baseline backbone networks, across causal and
non-causal configurations.

To perform extensive comparison studies across different
model sizes, we use the Transformer and Conformer architec-
tures comprising 4 and 6 stacked Transformer and Conformer
layers respectively [37]. For the Transformer speech enhance-
ment backbone, we follow the configuration in [37], [38]: the
layer dimension dpodel =256, the number of attention heads
H =8, and the inner-layer size of the feed-forward network
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(FFN) d sy = 1024. For the Conformer backbone, we adopt the
parameter configurations in [37]: the layer dimension dyodel =
256, the number of attention heads H = 8, the kernel size of
convolution 32, the expansion factor for convolution module 2,
and the inner-layer size of FFN d¢r = 1024. For Mamba and
BiMamba models, we employ the following hyper-parameter
configurations: the hidden state dimension D = 256, the SSM
state dimension N =16, the local convolution width d.q,, =4,
and the expanded hidden state dimension F = 512 (i.e., the
expansion factor Iy = 2). All the experiments were run on an
NVIDIA Tesla V100-SXM2-32 GB GPU.

Training strategy: We use mean-square error (MSE) on the
power-law compressed spectral magnitude as the objective loss
function [50]. The noisy mixtures are dynamically generated
at training time. For each mini-batch, we randomly pick 10
clean speech clips and degraded each clip by a random section
of a random noise clip at a random SNR level sampled from
—10 to 20 dB (in 1 dB steps). The Adam optimization algo-
rithm [51] is employed for gradient descent, with parameters
as in [1], i.e., 81 = 0.9, By = 0.98, and € = 1077. We utilize
the gradient clipping technology to cut the gradient values to
a range between —1 and 1. All the models are trained for 150
epochs for fair comparison. The warm-up strategy is adopted to
adjust the learning rate: Ir = d %> - min(n_step™ %, n_step -
w_steps~?), where n_step and w_steps denote the iteration
steps and the warm-up iteration steps, respectively. We follow
the study [37] and set w_steps as 40000.

Evaluation Metrics: We evaluate enhanced speech with five
commonly used assessment metrics, i.e, perceptual evaluation
of speech quality (PESQ) [52], extended short-time objective
intelligibility (ESTOI), and three composite metrics. For PESQ,
both wide-band PESQ (W-PESQ) and narrow-band PESQ (N-
PESQ) were used to evaluate the speech quality, with the score
range of [—0.5, 4.5]. The ESTOI [53] score is typically between
0 and 1. The three composite metrics [54] are used to predict the
mean opinion scores of the intrusiveness of background noise
(CBAK), the signal distortion (CSIG), and the overall signal
quality (COVL), respectively, with the score range of [0, 5]. For
each metric, 1 indicates that higher values are preferable, while
J indicates that lower values are preferable.

B. Speech Recognition

Datasets: We evaluate our models on ASR with four datasets,
i.e., LibriSpeech [39], AN4 [55], SEAME [56], and ASRU [57],
in which all speech signals are sampled at 16 kHz. LibriSpeech
(LibriSpeech960) containing approximately 1000 hours of au-
dio recordings and their paired texts, in which a subset Lib-
riSpeech100 is used for ablation studies due to its higher record-
ing quality. The AN4 dataset contains approximately one hour of
audio recordings of primarily spoken alphanumeric strings, such
as postal codes and telephone numbers. It is employed to assess
the model’s ability to perform with a small dataset. Two English-
Mandarin code-switching datasets SEAME and ASRU-CS-
2019 (denoted as ASRU) are then used for a more challenging
scenario compared to monolingual. The SEAME dataset con-
tains 200-hour spontaneous South-east Asian-accented speech
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TABLE I
IMPLEMENTATION DETAILS IN DIFFERENT TASKS AND DATASETS

LibriSpeech100 LibriSpeech960 ASRU SEAME

Frontend

window length 400 400 400 400
hop length 160 128 160 160
SpecAug

time warp window 5 5 5 5
num of freq masks 2 2 2 2
freq mask width (0, 27) (0, 30) 0,27) (0,27)
num of time masks 2 2 2 2
time mask width (0, 0.05) (0, 40) (0, 0.05) (0, 0.05)
Architecture

feature size d 256 512 256 256
hidden size dhidden 1024 2048 1024 2048
attention heads h 4 8 4 4
num of encoder layers 18 18 18 24
depth-wise conv kernel 31 31 31 31
Training

epochs 70 100 70 70
learning rate 2e-3 2e-3 2e-3 2e-3
warmup steps 15k 25k 15k 15k
weight decay le-6 le-6 le-6 le-6
dropout rate 0.1 0.1 0.1 0.1
ctc weight 0.3 0.3 0.3 0.3
label smoothing 0.1 0.1 0.1 0.1

We show the best Transformer configurations reported in ESPnet official.

with intra- and inter-sentential code-switches, divided as
introduced in [58]. The ASRU dataset contains a 500-hour
Mandarin and a 200-hour code-switching training sets recorded
in mainland China, where only the code-switching set is used
for training, following [56], [57], [59].

For Mamba and BiMamba models, we employ the default
hyper-parameters [16]: the SSM state dimension N = 16, the lo-
cal convolution width dcony =4, and the expansion factor Ey =2.
To keep the same batch size as in the official implementation
of ESPnet, the experiments on the LibriSpeech-960 dataset
were performed on an NVIDIA A100 80 GB. All the other
experiments were run on an NVIDIA V100 32 GB. The detailed
model configurations for each dataset are given in Tables I, II
and III.

Evaluation Metrics: We employ word error rate (WER) and
mixed word error rate (MER) to measure the ASR performance
for monolingual and code-switching ASR tasks, respectively,
where the MER considers the word error rate for English and
the character error rate for Mandarin. We employ | to indicate
that lower WER and MER are preferable. All experiments are
performed using the ESPnet toolkit [60]

V. EXPERIMENTAL RESULTS AND ANALYSIS
A. Speech Enhancement

InnBiMamba vs. ExtBiMamba: Table IV presents the compar-
ison results of InnBiMamba and ExtBiMamba across different
model sizes, in terms of six metrics, i.e., N-PESQ, W-PESQ,
ESTOI, CSIG, CBAK, and COVL. Overall, ExtBiMamba con-
sistently demonstrates slightly superior performance compared
to InnBiMamba across the model sizes. In addition, Table V
presents the comparison results of InnBiMamba and ExtBi-
Mamba in training time (time per training step, sec/step), infer-
ence speed, and computational complexity. The inference speed

Authorized licensed use limited to: University of New South Wales. Downloaded on December 21,2025 at 11:36:50 UTC from IEEE Xplore. Restrictions apply.



TABLE II

ZHANG et al.: MAMBA IN SPEECH: TOWARDS AN ALTERNATIVE TO SELF-ATTENTION

IMPLEMENTATION DETAILS IN DIFFERENT TASKS AND DATASETS

LibriSpeech100 LibriSpeech960 ASRU SEAME

Frontend

window length 400 400 400 400
hop length 160 160 160 160
SpecAug

time warp window 5 5 5 5
num of freq masks 2 2 2 2
freq mask width 0, 27) (0, 27) (0, 30) (0, 30)
num of time masks 2 2 2 2
time mask width (0, 0.05) (0, 0.05) (0, 40) (0, 40)
Architecture

feature size d 256 512 256 256
hidden size dhidden 1024 2048 2048 2048
attention heads h 4 8 4 4
num of encoder layers 12 12 12 12
depth-wise conv kernel 31 31 31 31
Training

epochs 120 50 70 70
learning rate 2e-3 2.5e-3 le-3 le-3
warmup steps 15k 40k 25k 25k
weight decay le-6 le-6 le-6 le-6
dropout rate 0.1 0.1 0.1 0.1
ctc weight 0.3 0.3 0.3 0.3
label smoothing 0.1 0.1 0.1 0.1

We show the best Conformer configurations reported in ESPnet Official.

TABLE III

IMPLEMENTATION DETAILS IN DIFFERENT TASKS AND DATASETS

LibriSpeech100 LibriSpeech960 ASRU SEAME

Frontend

window length 400 400 400 400
hop length 160 160 160 160
SpecAug

time warp window 5 5 5 5
num of freq masks 2 2 2 2
freq mask width (0, 27) (0, 27) 0,27) (0,27)
num of time masks 2 2 2 2
time mask width (0, 0.05) (0, 0.05) (0, 0.05) (0, 0.05)
Architecture

feature size d 256 512 256 256
hidden size dhigden 1024 2048 2048 1024
attention heads h 4 8 4 4
num of encoder layers 12 18 12 12
depth-wise conv kernel 31 31 31 31
Training

epochs 70 70 70 70
learning rate 2e-3 2.5e-3 2e-3 2e-3
warmup steps 15k 40k 15k 15k
weight decay le-6 le-6 le-6 le-6
dropout rate 0.1 0.1 0.1 0.1
ctc weight 0.3 0.3 0.3 0.3
label smoothing 0.1 0.1 0.1 0.1

We show the best branchformer configurations reported in ESPnet Official.

TABLE IV
THE COMPARISON RESULTS OF INNBIMAMBA AND EXTBIMAMBA NETWORK
ARCHITECTURES IN N-PESQ, W-PESQ, ESTOI (%), CSIG,
CBAK, AND COVL

Model #Para. Cau. Metrics

N-PESQT W-PESQ? ESTOIt CSIG t CBAK?T COVL?t
Noisy - - 1.88 1.24 56.12  2.26 1.80 1.67
InnBiMamba-9 4.48M X 2.84 2.14 7574 339 259 274
ExtBiMamba-5 4.5IM X 2.86 2.15 76.12 346  2.60 278
InBiMamba-13 641IM X 290 219 7689 350 263 282
ExtBiMamba-7 6.26M X 2.90 2.20 77.04 354 2.64 284

The model name is denoted in the format ‘network architecture-number of building blocks’.
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TABLE V
THE COMPARISON RESULTS OF INNBIMAMBA AND EXTBIMAMBA IN TERMS
OF TRAINING SPEED MEASURED BY TIME PER TRAINING STEP
(SECONDS/STEP), INFERENCE SPEED MEASURED BY RTF (x10~4), AND
COMPUTATION COMPLEXITY (MACS)

Model #Para. sec/step| RTF| MACs|
InnBiMamba-9 4.48M 0.159 1.88 3.09G
ExtBiMamba-5 4.51M 0.122 1.71 2.98G
InnBiMamba-13  64IM 0212 276 443G

ExtBiMamba-7

TABLE VI
PERFORMANCE COMPARISONS OF MAMBA TO TRANSFORMER AND
CONFORMER NETWORK ARCHITECTURES IN N-PESQ, W-PESQ,
ESTOI (%), CSIG, CBAK, AND COVL, ACROSS CAUSAL
AND NON-CAUSAL CONFIGURATIONS

Model #Para. Cau. Metrics

N-PESQ?T W-PESQ?T ESTOIT CSIGT CBAK?T COVL?
Noisy - - 1.88 1.24 56.12  2.26 1.80 1.67
Mamba vs. Transformer
Transformer-4  3.29M ¢ 2.56 1.84 7032 317 239 2.47
Mamba-4 1.88M v 2.60 1.87 70.99 3.17 241 248
Mamba-7 320M v 2.64 1.91 7246 326 245 2.56
Transformer-4  320M X 274 201 7344 331 250 263
ExtBiMamba-3 2.76M X 2.76 2.05 7393 336 253 2.67
ExtBiMamba-4 3.64M X 2.83 2.11 7543 346 257 275
Transformer-6  4.86M X 278 205 7456 338 252 269
ExtBiMamba-5 4.51M X 2.86 2.15 76.12 346  2.60 278
ExtBiMamba-6 5.39M X 2.88 2.17 76.69 350 2.62 282
Mamba vs. Conformer
Conformer-4 6.22M v 2.67 1.94 7278 330 246 259
Mamba-13 5.83M v 2.70 1.97 7353 332 250 2.62
Conformer-4  6.22M X 288 217 7668 351 261 282
ExtBiMamba-6 5.39M X 2.88 2.17 76.69  3.50 2.62 2.82
ExtBiMamba-7 6.26M X 2.90 2.20 77.04 354 2.64 284
Conformer-6  926M ¢ 268 194 7341 330 246 259
Mamba-20 8.89M v 2.72 2.00 74.09 335 251 2.65
Conformer-6  9.26M X 291 220 7756 354 262 284
ExtBiMamba-10 8.89M X 291 2.20 77.64 359  2.65 2.87

The model name is denoted in the format ‘network architecture-number of building blocks’.

and computation complexity are measured in terms of real-time
factor (RTF) [37], [61] and the number of multiply-accumulate
operations (MACS), respectively. RTF is computed as the ratio
of processing time to speech duration, measured on an NVIDIA
Tesla V100 GPU and averaged over 20 runs. We employ a batch
size of 4 speech utterances, each with a duration of 10 sec-
onds [61]. The results demonstrate that ExtBiMamba achieves
faster training and inference speeds and lower computational
complexity compared to InnBiMamba at similar model sizes.
Mamba vs. Transformer: Table VI reports the comparison
results of Mamba with Transformer and Conformer network
architectures. For Mamba models, we report the results of
Mamba models with the same number of layers and a similar
model size to the Transformer. It can be observed that the
Mamba models consistently demonstrate obvious performance
superiority over the Transformer models with lower parameter
overheads, across causal and non-causal configurations. For
instance, the Mamba-7 (3.20 M) and ExtBiMamba-5 (4.51 M)

Authorized licensed use limited to: University of New South Wales. Downloaded on December 21,2025 at 11:36:50 UTC from IEEE Xplore. Restrictions apply.



1940

TABLE VII
THE COMPARISON RESULTS OF TRAINING TIME (SEC/STEP), RTF (x 10~%),
AND COMPUTATION COMPLEXITY (MACS), ACROSS DIFFERENT INPUT SPEECH
LENGTHS (10s, 20s, AND 40s)

10s 20s 40s
#Para. sec/step|
RTF| MACs| RTF| MACs| RTF| MACs]

Model

Mamba vs. Transformer

Transformer-4  329M 0.099 148 2.84G 231 7.28G 3.94 2091G
ExtBiMamba-3 2.76M 0.089 1.08 182G 0.745 3.64G 0.695 7.28G
ExtBiMamba-4 3.64M 0.102 138 240G 0.965 4.80G 0914 9.60G
Transformer-6  4.86M  0.125 2,12 422G 332 10.83G 5.89 31.20G
ExtBiMamba-5 45IM  0.122 171 298G 1.19 596G 1.13 11.92G
ExtBiMamba-6 539M 0.141 207 356G 142 7.12G 135 14.23G
Mamba vs. Conformer

Conformer-4  622M 0.160 227 467G 291 1093G 450 2821G
ExtBiMamba-6 539M 0.141 207 356G 142 7.12G 135 14.23G
ExtBiMamba-7 626M 0.156 237 4.14G 1.64 828G 157 16.55G
Conformer-6  926M 0215 327 696G 428 1631G 6.74 42.16G
ExtBiMamba-10 8.89M 0206 3.32 588G 231 11.75G 222 23.50G

improve on the causal Transformer-4 (3.29 M) and the non-
causal Transformer-6 (4.81 M) by 0.08 and 0.08, 0.07 and 0.1,
2.14% and 1.56%, 0.09 and 0.08, 0.06 and 0.08, and 0.09 and
0.09 in terms of N-PESQ, W-PESQ, ESTOI, CSIG, CBAK, and
COVL, respectively. In addition, ExtBiMamba models provide
substantial performance improvements over original (unidirec-
tional) Mamba models across all the metrics, which confirms
the effectiveness of the bidirectional modeling. ExtBiMamba-5
(4.51 M) provided gains of 0.18 in N-PESQ, 0.21 in W-PESQ,
2.92% in ESTOI, 0.16 in CSIG, 0.13 in CBAK, and 0.19 in
COVL over Mamba-10 (4.51 M), respectively.

Mamba vs. Conformer: From the comparison results of Con-
former and Mamba in Table VI, We can see that original Mamba
(causal) models outperform causal Conformer models across
all six metrics while involving fewer parameters. For instance,
compared to causal Conformer-6 (9.26 M), Mamba-20 (8.89 M)
improves N-PESQ by 0.04, W-PESQ by 0.06, ESTOI by 0.68%,
CSIG by 0.05, CBAK by 0.05, and COVL by 0.06. It can also
be seen that overall, ExtBiMamba models exhibit slightly better
or comparable performance to non-causal Conformer models.
The substantial performance superiority of the bidirectional
modeling is observed from evaluation results of ExtBiMamba-6
(5.39 M) vs. Mamba-13 (5.83 M) and ExtBiMamba-10 (8.89 M)
vs. Mamba-20 (8.89 M).

Table VII presents the comparison results of ExtBiMamba
with non-causal Transformer and Conformer in training time,
RTF, and MACs. We employ different input speech lengths (i.e.,
10 s, 20 s, and 40 s) for a comprehensive evaluation. We can
find that ExtBiMamba consistently demonstrates lower RTF and
MACs Transformer at similar model sizes, and its superiority
further expands with longer inference lengths. For 10 s and 40 s
inference lengths, ExtBiMamba-4 (3.64 M) achieves RTF values
of 0.93x and 0.23x, and MACs of 0.85x and 0.46x, respec-
tively, versus Transformer-4 (3.29M). Compared to Conformer,
a trend similar to the results of the comparison with Transformer
is observed. ExtBiMamba has a marginally higher RTF for 10s
inference length but significantly lower RTF and MACs for 20s
and 40s lengths.
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TABLE VIII
EVALUATION RESULTS FOR REPLACING THE MHSA MODULE WITH
MAMBA/BIMAMBA LAYER IN TRANSFORMER AND CONFORMER NETWORKS,
ACROSS CAUSAL AND NON-CAUSAL CONFIGURATIONS

Metrics
N-PESQ? W-PESQ? ESTOI? CSIGt CBAKt COVL?
Mamba vs. MHSA in Transformer

Model #Para. Cau.

Noisy - - 1.88 1.24 56.12 226 1.80 1.67
Transformer-4 329M v 2.56 1.84 7032 3.17 239 247
MHSA—Mamba 3.99M v 2.65 1.93 72.28 324 245 255

Transformer-4 X

MHSA—InnBiMamba 4.17M X
MHSA—ExtBiMamba 5.74M X 2.88 2.18

v

v

Transformer-6 4.86M

MHSA—Mamba
Transformer-6  486M X 278 205 7456 338 252 269
MHSA—InnBiMamba 6.19M
MHSA—ExtBiMamba 8.54M
Mamba vs. MHSA in Conformer

6.22M

*x X X
NN T
%

o
S
—

Q

Conformer-4
MHSA—Mamba

Conformer-4  622M X 288 217 7668 351 261 282
MHSA—InnBiMamba 7.10M

X

X
MHSA—ExtBiMamba 8.67M X 2.92 220

v

v
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Conformer-6 9.26M

MHSA —Mamba
Conformer-6
MHSA—InnBiMamba 10.59M

MHSA—ExtBiMamba 12.94M
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Mamba vs. MHSA: We also explore replacing the MHSA with
the Mamba layer in Transformer and Conformer. Tables VIII
presents the evaluation results of replacing the MHSA module
in Transformer and Conformer with the Mamba (or BiMamba)
layer. It can be observed that Transformers substantially benefit
from using the Mamba and BiMamba layers. TransMamba-4
and TransExtBiMamba-6 improve over causal Transformer-4
and non-causal Transformer-6 by 0.09 and 0.13 in N-PESQ,
0.09 and 0.16 in W-PESQ, 1.96% and 4.04% in ESTOI,
0.07 and 0.22 in CSIG, 0.06 and 0.13 in CBAK, and 0.08
and 0.19 in COVL, respectively. In addition, TransMamba-4
(3.99 M) and TransInnBiMamba-4 (4.17 M) outperform causal
Transformer-6 (4.86 M) and non-causal Transformer (4.86 M),
respectively, which further confirms the superiority of Mamba
layer over MHSA. Among InnBiMamba and ExtBiMamba, we
observe that TransExtBiMamba performs slightly better than
TransInnBiMamba. With fewer parameters, TransExtBiMamba-
4 (5.74 M) achieves slightly higher scores in W-PESQ, CSIG,
CBAK, and COVL, but slightly lower scores in N-PESQ and
ESTOI than TransInnBiMamba-6 (6.19 M).

As shown in Table VIII, we observe that the Conformer ar-
chitecture can benefit from the use of Mamba and ExtBiMamba.
The ConExtBiMamba-4 and ConExtBiMamba-6 outperform
non-causal Conformer-4 and Conformer-6 by 0.04 and 0.02 in
N-PESQ, 0.03 and 0.03 in W-PESQ, 1.06% and 0.65% in
ESTOI, 0.06 and 0.06 in CSIG, 0.03 and 0.03 in CBAK, and 0.06
and 0.05 in COVL, respectively. In addition, ConExtBiMamba-
4 (8.67 M) also exhibits a slightly better performance than
non-causal Conformer-6 (9.26 M). Among InnBiMamba and
ExtBiMamba, similarly, ConExtBiMamba performs better than
ConlnnBiMamba. Table IX compares non-causal Transformer
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TABLE IX
TRAINING TIME, RTF (x10~%), AND MACS OF NON-CAUSAL TRANSFORMER
AND TRANSBIMAMBA, AND NON-CAUSAL CONFORMER AND CONBIMAMBA,
ACROSS DIFFERENT INPUT SPEECH LENGTHS (10s, 20s, AND 405S)

10s 20s 40s
#Para. sec/step)
RTF| MACs| RTF| MACs| RTF| MACs|

Model

Transformer-6 486M 0.125 2.12 422G 3.32 10.83G 5.89 31.20G
TranslnnBiMamba-6 6.19M 0.155 1.81 4.06G 1.63 8.11G 1.55 16.22G
TransExtBiMamba-6 8.54M  0.161 195 5.53G 1.76 11.05G 1.69 22.10G
Conformer-6 9.26M 0.215 327 6.96G 4.28 1631G 6.74 42.16G
ConInnBiMamba-6 10.59M 0.206 2.85 6.80G 2.56 11.75G 2.45 23.50G
ConExtBiMamba-6 12.94M 0214 299 8.26G 2.72 16.53G 2.60 33.06G
TABLE X
THE COMPARISON RESULTS OF THE MODELS ON VOICEBANK+DEMAND
BENCHMARK DATASET

Method #Para. W-PESQ1? STOI? CSIG? CBAKt COVL?
Noisy - 1.97 092 335 244 263
SEGAN [63] 43.2M 2.16 093 348 294 2380
DSEGAN [64] - 2.35 093 355 310 293
WaveCRN [65] 4.66M 2.64 - 394 337 329
MHSA+SPK [66] - 2.99 - 4.15 342 357
HiFi-GAN [67] - 2.94 - 4.07 3.07 349
MetricGAN [68] 1.89M 2.86 - 399 318 342
PHASEN [69] 8.41M 2.99 - 421 355 3.62
TFT-Net[70] - 2.75 - 393 344 334
DCCRN [71] 3.7M 2.68 094 388 3.18 3.27
DCCRN+ [72] 3.3M 2.84 - - - -
S-DCCRN [73] 2.34M 2.84 094 4.03 297 343
SADNUNet [74] 2.63M 2.82 095 418 347 351
SEAMNET [75] 5.1IM - - 387 316 323
SA-TCN [76] 3.76M 2.99 094 425 345 3.62
DeepMMSE [45] 1.98M 2.95 094 428 346 3.64
DCTCN [77] 9.7M 2.83 - 391 337 337
CleanUNet [62] 46.07TM 291 096 434 342  3.65
SE-Conformer [78] - 3.13 095 445 355 382
MetricGAN+ [79] - 3.15 - 4.14 3.16 3.64
T-GSA [80] - 3.06 - 4.18 359 362
DEMCUS [81] 58M 3.07 095 431 340 3.63
SGMSE+ [82] - 2.96 - - - -
StoRM [83] 27.8M 2.93 - - - -
SGMSE+M [83] - 2.96 - - - -
ResTCN+TFA-Xi [40] 1.98M 3.02 094 432 352 3.68
CMGAN [84] 1.83M 341 096 4.63 394 412
MP-SENet-Conformer! [85] 2.05M 3.46 096 4.66 392 415
MP-SENet-SA+BiGRUT [86]2.26M 3.53 096 4.72 395 4.25
MP-SENet-ExtBiMamba 2.19M 3.438 096 4.69 394 417
SEMamba (-CL)" [34] 2.33M 3.51 096 470 393 4.19

T denotes the results reproduced using the source code provided by the authors.

and TransBiMamba, as well as non-causal Conformer and Con-
BiMamba, in terms of training time, RTF, and MACs, across
inference lengths of 10 s, 20 s, and 40 s. We can observe
that the replacement of MHSA with both InnBiMamba and
ExtBiMamba leads to lower RTF, particularly for longer input
speech lengths.

VoiceBank+DEMAND Benchmark: In Table X, we eval-
uate the use of ExtBiMamba on the VoiceBank+DEMAND
dataset [86], which is a commonly used benchmark for speech
enhancement. Results regarding [34], [84], [85] are obtained us-
ing the source code provided by the authors, with their respective
default parameter configurations. To ensure a fair comparison,
we follow the model structures described in the referenced works
and reproduce their results. We denote the MP-SENet models
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proposed in [84] and [85] as MP-SENet-Conformer and MP-
SENet-SA+BiGRU, respectively, reflecting their architectural
differences. For SEMamba [34], we exclude the use of the
consistency loss (CL) and perceptual contrast stretching (PCS),
as these components are not utilized in the other baseline meth-
ods and may introduce an unfair advantage. In addition, MP-
SENet-Conformer involves relatively complex model structure
designs, such as the two-stage Conformer backbone network,
magnitude mask and phase decoders, PSEQ-based metric gener-
ative adversarial training, and joint optimization of multiple loss
functions. Hence, the independent ExtBiMamba model is not di-
rectly comparable to MP-SENet-Conformer. We thus substitute
the Conformer module within MP-SENet-Conformer with our
proposed ExtBiMamba, resulting in MP-SENet-ExtBiMamba.
Although MP-SENet-ExtBiMamba does not achieve the highest
performance among all approaches, the experimental results
clearly demonstrate that replacing the Conformer with ExtBi-
Mamba yields consistent performance improvements.

B. Speech Recognition

Independent vs. Substitute for MHSA: Table XI reports the
performance of Mamba when used independently and as a
replacement for MHSA across various datasets. We can ob-
serve that independent Mamba and BiMamba models exhibit
significantly lower performance compared to the Transformer
and Conformer models (with the same number of layers). Since
the Mamba has fewer parameters when configured with the
same number of layers as the Transformer and Conformer,
we increased its number of layers as shown in Table XII to
match the number of parameters with the Conformer to further
evaluate Mamba for ASR. The performance of Mamba, however,
remained undesirable.

In contrast to the independent Mamba/BiMamba, we ob-
serve a significant improvement in the ASR task when
Mamba/BiMamba is used as a replacement for MHSA.
Specifically, replacing MHSA with ExtBiMamba in the Con-
former (named ConExtBiMamba) exhibits higher performance
than the SOTA performance achieved by Conformer and Branch-
former across multiple datasets with the same training setups.
Additionally, ConExtBiMamba provides faster training and in-
ference speeds compared to the Conformer model as detailed in
Table XIII. When we replaced MHSA with ExtBiMamba, the
number of parameters exceeded that of the original Conformer.
To eliminate the possibility that the performance improvement
results from the higher number of parameters, we increase
the size of Conformer to a similar number of parameters as
ConExtBiMamba, and present the results in Table XII. We
found that although the Conformer’s performance improves,
it still underperforms ConExtBiMamba and ConlnnBiMamba,
supporting the effectiveness of our approach.

Our experiments indicate that increasing the number of layers
to match parameter sizes does not proportionally improve perfor-
mance. We can explain it by the rule of diminishing returns [89].
Even when training is stable, a point of diminishing returns [89]
is often reached as depth increases. Each additional layer yields
progressively smaller improvements once the model’s capacity
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TABLE XI
ASR RESULTS FOR THE DIFFERENT DATASETS WITHOUT LANGUAGE MODEL IN WER/MER (%)

Method LibriSpeech-100 LibriSpeech-960 SEAME ASRU
#Para. dev] test|  #Para. dev] test] #Para. man| sgel #Para. dev] test]
ESPnet
Conformer [9] 3423M 6.3 6.5 116.15M 2.1 2.4 - 16.6 233 - - 12.2
Branchformer [10] 38.96M 6.1 6.3 12624M 2.2 2.4 - - - - - -
Reproduced Results
Branchformer [10] 38.96M 6.3 6.4 12625M 2.2 24 3896M 163 232 3896M 125 11.8
© Mamba 2041M 408 400 93.02M 218 223 204IM 445 553 204IM 380 363
InnBiMamba 2094M  39.6 382 9352M 21.8 225 2094M 443 554 2094M 384 379
ExtBiMamba 2579M  38.5 37.7 9820M 21.6 22.1 2579M 444 552 2579M 382 36.8
* Transformer [1]  2938M 80 84 9936M 28 32 2986M 17.7 245 3086M 137 13.1
MHSA —Mamba 32.53M 109 11.2 102.51M 3.2 3.5 34.06M 20.7 29.5 340IM 242 23.1
MHSA—InnBiMamba 33.34M 8.8 94 103.35M 25 30 35.14M 184 26.0 3482M 202 195
MHSA—ExtBiMamba 40.42M 8.4 8.7 110.04M 25 2.8 4456M 172 243 41.89M 18.7 18.0
" Conformer [9]  3423M 63 65 11615M 23 26 4727TM 169 236 4827M 128 122
MHSA —Mamba 36.33M 6.6 69 11930M 2.6 29 4937M 177 249 5037M 135 129
MHSA—InnBiMamba 36.89M 6.0 64 120.11IM 2.1 23 4991M  17.1 238 509IM 127 122
MHSA—ExtBiMamba 41.59M 5.9 6.0 12351M 2.0 23 5462M 166 234 5562M 123 115

“ESPnet” indicates the best result reported by ESPnet or related works, where the SEAME and ASRU numbers are taken from [88], [89], [60].

TABLE XII
‘WER RESULTS ON LIBRISPEECH (WITHOUT EXTERNAL LANGUAGE MODEL)
ACROSS VARIOUS PARAMETER COUNTS AND FRAMEWORKS

Model #Para. dev| dev other] test| test other]

LibriSpeech100

Mamba 2041IM 40.8 40.0

Mamba Large 32.52M 38.8 39.2

ExtBiMamba 25.79M 38.5 37.7

ExtBiMamba Large 33.52M 37.8 37.2 -

Transformer [1] 2038M 80 200 84 202
MHSA—InnBiMamba 33.34M 8.8 233 9.4 23.6
MHSA—ExtBiMamba 4042M 84 224 8.7 23.1

‘Conformer Large - £217M 62 174 64 173

Conformer [9] 3423M 6.3 17.4 6.5 17.3
MHSA—InnBiMamba 36.80M 6.0 17.4 6.4 17.6

MHSA—InnBiMamba Large 49.90M 6.1 17.3 6.3 17.3

MHSA—ExtBiMamba 41.59M 5.9 17.1 6.0 17.2
LibriSpeech960
Transformer [1] 99.36M 2.8 7.6 32 7.5

MHSA—InnBiMamba 103.35M 2.5 74 30 73

MHSA—ExtBiMamba 110.04M 25 69 28 69
Conformer [9] | 116.15SM 23 55 26 56

MHSA—InnBiMamba 12011M 2.1 56 24 55

MHSA—ExtBiMamba 123.51M 2.0 54 2.3 54

TABLE XIII
TRAINING TIME (MINS/EPOCH) AND INFERENCE SPEED (RTF) FOR ASR IN
LIBRISPEECH100 ON NVIDIA TESLA V100

Conformer ConlnnBiMamba ConExtBiMamba
214 18.3 19.8
0.179 0.174 0.177

mins/epoch
RTF

exceeds the complexity of the task. Essentially, the network hits
a complexity ceiling where extra layers learn redundant features
or noise. The model’s capacity was likely sufficient at moderate
depth, so additional layers provided minimal new information.

Thus, employing extra layers may even start to hurt if they cause
overfitting or optimization issues

Additionally, unlike in the Conformer model, replacing
MHSA with Mamba modules in the Transformer does not
consistently lead to performance improvements for ASR tasks.
Due to the limited inherent nonlinearity of Mamba modules,
Mamba-based models require stronger nonlinear capabilities
to effectively learn high-level abstractions in speech. The
Conformer architecture includes additional convolutional mod-
ules with nonlinear activations than the Transformer. These ad-
ditional components compensate for the weak nonlinearity of the
Mamba module, thereby enabling more effective representation
learning. This architectural distinction explains why the inte-
gration of BiMamba proves more beneficial in the Conformer
model than in the Transformer.

Apart from the lower performance than serving as an alter-
native to MHSA, using Mamba independently poses training
stability issues. Due to its weak inherent nonlinearity, indepen-
dent Mamba may struggle to capture the high-level abstractions
required for ASR tasks, consequently hindering stable and ef-
fective model training.

Unidirectional vs. Bidirectional: Tables XI-XII present the
evaluation results of unidirectional Mamba and two bidirec-
tional Mamba modules (InnBiMamba and ExtBiMamba) along
with their model sizes. Both InnBiMamba and ExtBiMamba
show significant improvements over unidirectional Mamba
when replacing the MHSA module in Transformer and Con-
former frameworks, confirming the effectiveness of bidirec-
tional modeling. Additionally, ExtBiMamba consistently out-
performs InnBiMamba across various frameworks and datasets,
as demonstrated in Tables XII. Even when increasing the number
of layers in InnBiMamba to match the parameter count of
ExtBiMamba for a fair comparison, ExtBiMamba still achieves
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TABLE XIV
ABLATION STUDIES FOR CONEXTBIMAMBA ON LIBRISPEECH100

Model dev] dev other| test] test other|
ConExtBiMamba w/ Gaussian Noise 5.9 17.1 6.0 17.3
— N =32 5.9 17.1 6.0 17.3
— deony = 2 6.0 17.1 6.2 17.3
— Ef =4 5.9 17.1 6.0 17.3
— Random Noise A matrix 6.0 17.2 6.2 174
— default A matrix 6.1 17.2 6.2 17.5
— complex-valued A matrix 6.0 17.2 6.2 17.3
ConExtBiMamba 5.9 17.1 6.0 17.3
— Macaron 6.1 17.7 6.3 17.9
— Swish 6.2 17.7 6.4 18.1
— Dropout 6.0 17.1 6.0 17.4
+ Positional Encoding 6.0 17.1 6.0 17.3
TABLE XV
PERFORMANCE ON EXTREMELY SMALL DATASET AN4 BY EMPLOYING WER
(%)
Model Seed Average Variance
2048 233 666 1024 3407
Conformer 40 82 6.1 44 274 10.02 77.71
ConExtBiMamba 3.8 3.8 48 3.8 6.5 4.54 1.11

better performance. Moreover, further comparisons with
Conformer-Large and ConlnnBiMamba-Large indicate that the
performance improvements in ASR are not solely due to an
increase in model parameters.

C. Ablation Study on ConExtBiMamba

We employ the ConExtBiMamba model, which improves the
SOTA result achieved by Branchformer in the ASR task, for
ablation studies.

Hyper-Parameter for BiMamba in ConExtBiMamba: The
default hyper-parameters for ConExtBiMamba are as follows:
the SSM state dimension N = 16, the state expansion fac-
tor E'y = 2, and the local convolution width dcony = 4. From
Table XIV, we find that increasing the state expansion factor
or decreasing the local convolution width has little impact on
the performance of ConExtBiMamba. We further investigate the
impact of the A matrix on performance. The A matrix plays a
crucial role in both S4 and Mamba. In the original Mamba paper,
it is initialized using a real-valued diagonal matrix. However,
ensuring randomness is important in deep learning [90]. To
explore this, we examine four types of A matrices: a real-valued
diagonal matrix, a completely randomized matrix, complex-
valued matrix and a real-valued diagonal matrix initialized by
multiplying each element with noise generated from a Gaussian
distribution. Through our experiments, we discovered that the
diagonal matrix with Gaussian noise yielded the best results.

Hyper-Parameters for ConExtBiMamba: We conduct abla-
tion experiments on Swish Activation, Macaron-style feed-
forward layers, positional encoding, and dropout. From
Table X1V, it is apparent that Swish Activation and Macaron-
style feed-forward layers enhance the model’s performance,
while positional encoding and dropout do not have a significant
impact. We suggest that the reason positional encoding, a crucial
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component in Transformer-based models, does not significantly
affect the ConExtBiMamba model is twofold. Firstly, Mamba
independently models each input, which suggests that the model
may better differentiate between different positions. Secondly,
because Mamba operates similarly to an RNN, the dependen-
cies between inputs inherently embed some positional informa-
tion into the model, thus diminishing the impact of positional
encoding.

Performance on Extremely Small Datasets: To evaluate model
robustness, we conduct tests on the AN4 dataset, a notably small
dataset, by averaging the results obtained from five randomly
selected seeds for both the Conformer and ConExtBiMamba
models under identical hyperparameters. Our results in Table
XV show that ConExtBiMamba consistently outperforms the
Conformer across all seeds. Specifically, the mean WER for
the Conformer was 10.02, while it was significantly lower for
ConExtBiMamba at just 4.54. As shown in Fig. 3(a) and (b),
both models converged properly on the development set, with
ConExtBiMamba exhibiting more stable convergence behavior.
Remarkably, ConExtBiMamba also demonstrated exceptional
robustness, with a WER variance of only 1.11 compared to
the Conformer’s substantially higher variance of 77.71. The
stability in both the loss curves and WER variance suggests that
ConExtBiMamba is less prone to overfitting on small datasets
compared with the Conformer. This suggests that ConExtBi-
Mamba, like RNNs, benefits from its ability to process in-
formation recursively over time, updating only a small set of
parameters with each iteration, which helps prevent overfitting
in scenarios with limited data. Additionally, this framework also
avoids the gradient vanishing and explosion issues typically
associated with RNNs. Combining these observations with our
main results, we can conclude that ConExtBiMamba effectively
merges the strengths of MHSA-based models and RNN models.

D. Discussion

As demonstrated in Section V-B, independent Mamba or
BiMamba models exhibit low performance in the ASR task,
while replacing MHSA with BiMamba layers demonstrates im-
pressive performance and outperforms the vanilla Transformer
and Conformer models. Since the latter approach achieves sig-
nificantly higher ASR performance by additionally employing a
feed-forward network (FFN) and a residual connection com-
pared to the independent Mamba and BiMamba models, we
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TABLE XVI
ABLATION STUDIES ON LIBRISPEECH100 FOR TRANSFORMER AND
EXTBIMAMBA BY WER

Model dev test
Transformer [1] 8.0 8.4

— Residual 45.7 54.8

— FFN 23.2 25.4
ExtBiMamba 85 377

+ Residual 42.1 41.7

+ FFN 349 36.1

then explore the factors contributing to this performance im-
provement via ablation studies in Table XVI.

As illustrated in Section II, we consider a BiMamba layer
as a weakly nonlinear module similar to MHSA [91]. We thus
assume that extracting high-abstraction-level information re-
quires greater nonlinearity than capturing low-abstraction-level
information. Specifically, ASR models transcribe speech signals
by understanding the context of acoustic features and aligning
speech to tokens, corresponding to low-level sequential and
high-level semantic information, respectively. Since a speech
enhancement model focuses on low-abstraction-level spectral
information, an ASR model may need higher nonlinear ability
than a speech enhancement model. This assumption aligns with
the results presented in Table XI, where replacing MHSA with
Mamba modules in the Transformer does not consistently yield
performance improvements, in contrast to their use within the
Conformer model for ASR tasks. This indicates that the con-
volution modules in the Conformer provide more nonlineari-
ties compared to the Transformer, enhancing the representation
learning for ASR tasks.

To further validate this hypothesis, we design a visualization
experiment using two synthetic datasets with different complex-
ity levels: (1) a simple dataset containing two Gaussian clusters
centered at (2,2) and (—2,—2) with a variance of 0.5; (2) a
complex dataset consisting of two interleaved spirals with added
Gaussian noise (noise level = 0.2). We generate 800 samples
for each dataset with an 80-20 train-test split. The models are
trained using Adam optimizer with a learning rate of 0.01 for 100
epochs. The decision boundaries are visualized by evaluating
model predictions on a 100x 100 point grid spanning the input
space. In Fig. 4, we use the BiMamba model to find the decision
boundary for data with simple and complex distribution, respec-
tively. We observe that BiMamba struggles to find the decision
boundary for data of a complex distribution without the aid of
an FEN (with ReLU activation similar to that in Transformer),
which validates our assumption.

In addition, results in Table XVI indicate the effectiveness
of the FFN and residual connection in a Transformer model
for ASR. Similar to independent ExtBiMamba, removing the
residual connection and FFN from a Transformer model leads
to gradient vanishing and decreases nonlinearity, resulting in
significant performance degradation for ASR. This further un-
derpins that using BiMamba layers as a replacement for MHSA
is more appropriate for speech tasks which require models
to learn high-abstraction-level information than employing it
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Fig. 4. Decision boundaries for BiMamba and BiMamba with feed-forward
layer (FEN).

independently. Recent studies proposed that training stability
of Mamba models benefits significantly from the application
of normalization layers [92], and suggested that the lack of
inherent nonlinearity in Mamba necessitates the integration of
components such as decoders or feed-forward layers to effec-
tively handle the complexities of speech recognition [93]. These
studies support our conclusion and extend it to training stability.

Similar to our investigation of Mamba in speech process-
ing, numerous studies have explored different strategies for
incorporating Mamba into ASR systems. Most of these works
focus on integrating Mamba with other architectures (such as
self-attention-based models) [36], [94], [95]. [35] took a dif-
ferent approach and demonstrated promising results with an
independent Mamba encoder. Here, authors in [35] observed
that the Mamba model exhibited occasional instability during
training. Therefore, fine-grained hyper-parameter tuning is re-
quired with an AdamW optimizer to achieve desirable perfor-
mance. Our experiments are consistent with the observation
that the Mamba model was sometimes unstable during training.
To ensure fair comparisons between models, we directly trans-
ferred the optimal parameters from attention-based models to the
corresponding experiments involving Mamba. We attempted to
replicate the experiments following the setup in [35] and found
that our baseline performance improved by approximately 10%
when using the AdamW optimizer. However, we were unable
to exactly reproduce their results, likely due to differences in
the computational environment and the random seed. Since
Mamba shows consistently high performance in ASR when
used as a replacement for the self-attention module rather than
independently, the above underpins our claim that using Mamba
to replace the self-attention module is more appropriate for
tasks requiring high-abstract-level information due to greater
nonlinearity compared to independent Mamba.

Based on our findings and existing literature [35], [36], we
extend the scope of tasks that rely on low-abstraction-level

Authorized licensed use limited to: University of New South Wales. Downloaded on December 21,2025 at 11:36:50 UTC from IEEE Xplore. Restrictions apply.



ZHANG et al.: MAMBA IN SPEECH: TOWARDS AN ALTERNATIVE TO SELF-ATTENTION

information beyond speech enhancement to include phoneme
recognition, speech separation, voice activity detection, and
similar tasks. On the other hand, speech processing tasks that
require high-abstraction-level information are not limited to
speech recognition but also encompass speech translation, text-
to-speech, and speech emotion recognition.

VI. CONCLUSION

In this paper, we explore the use of Mamba in speech process-
ing, for tasks requiring information from low to high abstraction
levels. We first compared two bidirectional designs for Mamba
and next employed them independently or as a replacement
for MHSA in Transformer and Conformer models. While in-
dependent BiMamba models exhibited high performance in
the speech enhancement task with the ability to capture low-
abstraction-level spectral information, it can not well achieve
speech recognition, which requires semantic information within
the speech signal. In contrast, using BiMamba as a replacement
of MHSA in Conformer (i.e., ConExtBiMamba) matched or
exceeded the performance of the SoTA Branchformer across
multiple datasets. Ablation studies suggest that using BiMamba
to replace MHSA is more appropriate for tasks requiring high-
abstract-level information due to greater nonlinearity compared
to independent BiMamba.
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